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ABSTRACT

Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully
understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study
participants 18 years of age and older with data on ~400 genome-wide microsatellite markers spaced ~10 cM and arsenic
speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-
transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses
of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability
analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the
arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on
chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species).
This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second
principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering %
arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all
areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic
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toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel

approach that considers % arsenic species jointly.
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Inorganic arsenic (iAs) exposure is carcinogenic (IARC, 2004) and
increasing evidence also supports its association with cardio-
vascular disease (Moon et al., 2012; Wu et al., 2014) and diabetes
(Maull et al., 2012), although the importance of low-level expo-
sure remains unclear. The iAs species (arsenite, arsenate) are
metabolized to form methylated (MMA) and dimethylated
(DMA) arsenic species (Thomas, 2009; Vahter, 2002). The en-
zyme arsenic (III) methyltransferase coded by AS3MT on
10q24.32 is believed to be centrally important in arsenic methyl-
ation reactions (Wood et al., 2006), although other enzymes
might also be involved (Harari et al., 2013; Ren et al., 2010).

There is growing evidence from human samples that arsenic
species differ in their toxicities. Proliferation of T cells in fresh
blood collected from human participants recruited at University
of New Mexico was more strongly inhibited by exposure to tri-
valent MMA than exposure to trivalent arsenite (Burchiel et al.,
2014). In a study using blood collected from 2 male medical stu-
dents at the National Autonomous University of Mexico, treat-
ing lymphocytes with either trivalent MMA or trivalent DMA
induced DNA damage via oxidative-stress, but MMA was effec-
tive at lower doses (Soto-Reyes et al., 2005). Human lymphoblas-
toid cell culture experiments suggested that trivalent MMA had
greater impact on mitotic indices than arsenate, arsenite, pen-
tavalent MMA, or trivalent or pentavalent DMA; and trivalent
MMA and DMA were able to inhibit tubulin polymerization at
lower concentrations than arsenite (Kligerman et al., 2005). If ar-
senic species are toxicologically distinct, then their biotransfor-
mation and elimination may be relevant for human disease
risks from arsenic exposure.

Inter-individual variation in arsenic kinetic processes has
been studied indirectly by comparing the percentages of iAs,
MMA, and DMA species (relative to their sum) in urine (Chiou
et al., 1997; Gamble and Liu, 2005; Gomez-Rubio et al., 2011;
Gribble et al., 2013a; Hopenhayn-Rich et al., 1996; Navas-Acien
et al., 2009; Vahter, 2000). The pattern of urine arsenic species is
a possible risk factor for skin lesions (Ahsan et al., 2007; Chen
et al., 2009; Valenzuela et al., 2009); bladder, urothelial, lung, and
skin cancers (Agusa et al., 2010; Chen et al., 2003; Huang et al.,
2008a, b; Steinmaus et al., 2006, 2010; Yu et al., 2000) and cardio-
vascular diseases (Huang et al., 2007, 2009). Endogenous and en-
vironmental factors have been associated with urine arsenic
species patterns, including sex, age, pregnancy status, nutrition,
body mass, smoking, alcohol, diabetes status, and insulin level
(Gamble and Hall, 2012; Gomez-Rubio et al., 2011; Gribble et al.,
2013a; Su et al., 2012; Tseng, 2009). Arsenic species patterns are
also influenced by genetics (Antonelli et al., 2014; Hernandez
and Marcos, 2008). In the Strong Heart Study, a large popula-
tion-based cohort of American Indians with low-moderate arse-
nic exposure, heritability estimates for each % arsenic species
(%iAs, %MMA, and %DMA) were >50% (Tellez-Plaza et al., 2013).
The causal role of AS3MT in arsenic methylation biology has
been studied in both functional experiments (Wood et al., 2006)
and Mendelian randomization analysis of AS3MT variants for
urine arsenic species (Pierce et al., 2013). This gene has attracted
such interest that there have been several comparative studies
of AS3MT genetic variation across populations (Fujihara et al.,
2007, 2008, 2009, 2011); in study populations from Bangladesh

and Northern Mexico, there was a large linkage disequilibrium
region around this gene (Engstrom et al., 2013; Gomez-Rubio
et al., 2010).

The predominant approach to genetic epidemiology of arse-
nic kinetics (Hernandez and Marcos, 2008) has been candidate
gene or genome-wide association studies (Engstrom et al., 2011;
Gomez-Rubio et al., 2010; Gribble et al., 2013b; Hernandez et al.,
2008; Lindberg et al., 2007; Meza et al., 2005; Pierce et al., 2012;
Schlawicke Engstrom et al., 2009). Although often informative,
association studies can have limited power to detect genomic
relationships in the presence of allelic heterogeneity (Ott et al.,
2011), or for rare variants unless they have a large effect.
Association studies are also often performed using genotyping
arrays, which may have limited coverage in populations such as
American Indians. Family-based linkage studies can comple-
ment association studies to find chromosomal regions that
co-segregate across generations with urine arsenic species pat-
terns (Ott et al., 2011). We previously reported a preliminary
linkage analysis of urine arsenic species patterns in a pilot sam-
ple of 487 participants from the Strong Heart Family Study, an
ancillary study to the Strong Heart Study, finding suggestive
linkage evidence on chromosomes 5 (%iAs), 10 (%DMA), and 11
(%iAs and %MMA) (Tellez-Plaza et al., 2013).

In this study, we aimed to investigate the co-segregation of
loci with urine arsenic species in the full sample of the Strong
Heart Family Study cohort. In addition to considering each % ar-
senic species biomarker separately, we also used principal com-
ponents as a novel approach to describe overall patterns in the
3 % arsenic species measures.

MATERIALS AND METHODS

Study population. The Strong Heart Family Study is composed of
94 extended families from Arizona, Oklahoma, North Dakota,
and South Dakota (North et al., 2003). The rich family relation-
ships included 3975 relative pairs in Arizona; 3248 relative pairs
in Oklahoma; and 5571 relative pairs in North and South
Dakota. Trained nurses and medical assistants collected
anthropometric and interview data following standardized pro-
tocols (Lee et al.,, 1990). This study was approved by relevant
institutional and tribal ethics review boards. Informed consent
was obtained from all participants. For this study, we included
Strong Heart Family Study participants with both genotype and
arsenic species data measured as part of an ancillary study to
evaluate gene-environment interactions for diabetes incidence.
Arsenic species data were not available among persons with
baseline diabetes. We also excluded 245 participants with one
or more urine arsenic species <0.1 pg/l limit of detection, as it is
difficult to evaluate arsenic metabolism if arsenic species in
urine are undetectable. We also excluded participants with
missing data on smoking history (n=6), current alcohol con-
sumption (n=3), body mass index (n=38), educational attain-
ment (n=5), or with a sample error (n=2) for an analysis
sample size of n=2189.

Urine arsenic measures. Total urine arsenic levels and arsenic spe-
cies were measured by the Trace Element Laboratory of the
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Institute of Chemistry—Analytical Chemistry, University of
Graz in Graz, Austria, using high performance liquid chromatog-
raphy inductively-coupled plasma mass spectrometry (HPLC-
ICPMS) (Scheer et al., 2012). Samples had been occasionally
thawed and re-frozen in the years between sample collection
and chemical analysis, precluding accurate measurement of
reduction state of arsenicals in these samples (Scheer et al.,
2012). The inter-batch variability was monitored by replicate
measurements of 3 urine reference materials with certified
arsenic levels of 20.3 pg/l (NIST 2669 I), 50.2 pug/1 (NIST 2669 II), or
119 nug/1 (NIES 18); the coefficients of variation (CV) ranged from
3.8 to 14.4%, with an overall mean CV of 7.9% (n=46). Percent
arsenic species (%iAs, %MMA, and %DMA) were defined as the
contributions of inorganic, methylated, and dimethylated
arsenical species in urine to the sum of those species. For exam-
ple, %iAs =iAs/(iAs + MMA + DMA).

Genetic measures. Methods used for microsatellite marker geno-
typing have been described previously (Tellez-Plaza et al., 2013).
In brief, microsatellite markers from the ABI PRISM Linkage
Mapping Set-MD 10 version 2.5 (Applied Biosystems, now
Thermo Fisher Scientific, Grand Island, New York) set were gen-
otyped in amplified white blood cell DNA using the ABI PRISM
377 Genetic Analyzer. These ~400 markers were spaced roughly
10 cM apart with density ranging from 2.4 to 24.1 cM. Genotypes
were called using the Genotyper software (Thermo Fisher
Scientific). SNPs in ASSMT were typed as part of the Cardio-
Metabo DNA Analysis BeadChip following the manufacturer’s
protocol (Illumina, San Diego, California). In brief, genomic DNA
(200ng) was whole-genome amplified, enzymatically frag-
mented, and hybridized to the chips containing locus-specific
oligomers covalently linked to beads embedded in the chips.
The hybridization was followed by a single-base extension with
fluorescently labeled nucleotides. All steps were performed on a
Tecan Freedom EVO 150 cm liquid handler (Tecan, Ménnedorf,
Switzerland) with Illumina GTS Robot Control software
(IMlumina). Fluorescence intensities were detected using an
iScan (Illumina) and were consequently analyzed using the
Mllumina GenomeStudio software. Assay accuracy was assessed
using sample-dependent and independent controls. Potential
misclassification of pedigree relationships was inspected using
PREST (McPeek and Sun, 2000; Sun et al., 2002) and Simwalk2/
Preswalk (Sobel et al., 2002) software. Mendelian errors and
unlikely double recombinants were blanked, with an overall
blanking rate <1%. SNP variants were aligned to the UCSC
Genome Browser Human Genome Version 18 assembly.

Statistical analyses. A variance components decomposition
method implemented in Sequential Oligogenic Linkage
Analysis Routines (SOLAR) software was used to estimate herit-
ability and detect linkage to chromosomal locations that affect
the variation in arsenic species (Almasy and Blangero, 1998).
Analyses were conducted separately for each logit-transformed
measure of arsenic species patterns (%iAs, %MMA, and %DMA)
and for each study center (Arizona, Oklahoma, and North and
South Dakota). We also considered principal components of the
logit-arsenic species as another way of describing inter-individ-
ual phenotypic differences in urine arsenic species patterns.
The first 2 principal components were of substantive interest,
while the third principal component was a negligible (eigen-
value 0.01) artifact of the logit-transformation of the 3 depend-
ent % arsenic species variables. Models adjusted for age, age
squared, sex, linear, and quadratic interactions between age
and sex, study center (Arizona, Oklahoma, and North and South
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Dakota), obesity (body mass index >30kg/m?), high school com-
pletion (education >12 years), smoking status (ever/never),
drinking status (current drinking yes/no), and higher than
median iAs exposure (measured by the sum of inorganic and
methylated arsenic species in urine; not corrected for urine cre-
atinine). Sensitivity analysis indicates that adjustment for urine
creatinine prior to dichotomization of the urine sum of species
would have little impact on our final results (data not shown).
Residuals from preliminary heritability analyses controlling for
covariates were inverse-normalized and carried forward for
linkage analyses.

We used the LOD score (negative log of the P value) thresh-
olds set by Lander and Kruglyak (1995) for suggestive (>1.9) or
significant (>3.3) evidence of linkage. We also stratified each
logit-transformed % arsenic species linkage analyses by study
center for secondary analyses to examine possible heterogene-
ity across study centers.

We examined the contribution of AS3MT variants to a link-
age signal anticipated on chromosome 10 by including 2 SNPs
rs17878846 and rs10509760 from that gene region in a condi-
tional linkage analysis. We summarized the linkage disequili-
brium between these SNPs and other 10q24 locus variants
measured on the Cardio-Metabo DNA Analysis BeadChip
through pair-wise r>. There were 24 persons in our sample with-
out genotypes available for rs17878846 and rs10509760 who
were excluded from the conditional linkage analysis.

RESULTS

Arsenic Metabolism Biomarkers and Participant Characteristics

The demographic characteristics of the study participants are
summarized in Table 1. Mean age in the sample was 34.3 (SD
14.8) years, 59% were female, and mean body mass index was
31.5 (SD 7.8) kg/m?.

In this sample, median (interquartile range) urine arsenic
species patterns were 10 (7, 14) %iAs, 14 (11, 18) %MMA, and 75
(68, 81) %DMA (Table 1). These patterns varied by sex, age, study
center, body mass index, education, smoking, alcohol consump-
tion, and iAs exposure. The arsenic species pattern measure
showing the most variability across groups was %DMA. The
sample Spearman correlation of total urine arsenic with %iAs
was —0.16, with %MMA was —0.23, and with %DMA was +0.22.
The heritability of these urine arsenic species patterns,
conditional on demographics and high versus low arsenic,
varied slightly by study center, ranging from 0.33 for
%iAs in Oklahoma to 0.57 for %DMA in Arizona (Supplementary
Table 1).

The first principal component appeared mainly to distin-
guish more versus less DMA in urine relative to the other spe-
cies, and explained ~80% of the phenotypic variability in urine
arsenic species patterns. The second principal component
explained 19% of the phenotypic variability and appeared to dis-
tinguish %iAs versus %MMA after accounting for differences in
%DMA (Supplementary Table 2). The first principal component
score had a negative Spearman correlation with total urine
arsenic (—0.22), was positively correlated with logit %iAs (0.87)
and logit %MMA (0.80) and negatively correlated with logit
%DMA (—0.998). The second principal component score had a
weak negative Spearman correlation with total urine arsenic
(—0.08), and it was negatively correlated with logit %iAs (—0.42),
positively correlated with logit %MMA (+0.56), and essentially
uncorrelated with logit %DMA (—0.02, P value = 0.48).
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TABLE 1. Demographics and Urine Arsenic Species Patterns of n=2189 Study Population

Demographic N (%) Median urine  Median %iAs %MMA %DMA PC 1 Median PC 2 Median

total arsenic arsenobetaine median median  Median (IQR) (IQR)

(IQR) (ug/) (IQR) (ug/) (1QR) (IQR) (IQR)
Overall 2189 10.4 (6.5, 17.9) 0.5(0.3,1.1) 10(7,14) 14(11,18) 7568, 81) 0.07 (—0.99, 1.07) 0.06 (—0.38,0.49)
Sex
Male 901 (41) 10.5(6.4,17.9)  05(0.3,1.0) 12(8,16) 16(12,19) 72(65,78) 0.53(-0.44,1.39)  0.09 (—0.36, 0.53)
Female 1,288 (59) 10.3(6.6,180)  05(03,1.1)  9(7,13) 13(10,17) 77(71,83) —0.26(~1.37,0.67)  0.05 (—0.40, 0.46)
Age
<35 years 1,217 (56) 10.6 (6.7, 18.3) 0.5(0.3,0.8) 11(8,16) 15(12,18) 73(66,79)  0.28(-0.62,1.25)  0.04 (—0.42, 0.46)
>35 years 972 (44) 10.2(6.3,17.1)  05(0.3,14)  9(6,13) 13(10,17) 77(70,82) —0.29(-1.34,0.79)  0.11(—0.33,0.55)
Study center
Arizona 683 (31) 15.2(9.4,25.6) 0.5(0.3,1.2) 11(8,15) 13(10,16) 75(69,81)  0.01(-1.04,0.91) —0.16(—0.67,0.25)
Oklahoma 684(31) 89(5.9,13.2)  0.6(0.4,1.2)  9(7,13) 14(11,18) 76(69,82) —0.10(-1.20,0.92)  0.18 (~0.21,0.56)
North or South Dakota 822 (38) 9.0(5.7,15.3)  0.5(0.3,0.9) 10(7,15) 15(12,19) 74(67,80) 0.24(—0.81,1.22)  0.15(—0.27,0.59)
Body mass index
<30kg/m? 1,027 (47) 95(6.0,16.0)  05(0.3,09) 11(8,16) 16(12,19) 72(65,78) 0.46 (—0.54,1.39)  0.17 (—0.26, 0.62)
>30kg/m? 1,162 (53) 11.1(7.0,19.9)  05(0.3,1.2) 10(7,13) 13(10,16) 77(71,82) —0.30(~1.27,0.66) —0.01(—0.46,0.39)
Education attained
<12 years 1,071 (49) 10.6(64,19.3)  05(0.3,09) 11(8,15) 14(11,18) 74(67,80) 0.20(—0.84,1.18)  0.03 (—0.46, 0.46)
>12 years 1,118 (51) 10.3(6.6,16.5  05(0.3,1.2) 10(7,14) 14(11,18) 76(69,82) —0.05(-1.17,0.93)  0.11(-0.32,0.52)
Alcohol consumption
Current abstainer 778 (36) 10.3 (6.4, 16.3) 0.5(0.3,1.2) 10(7,13) 14(11,18) 76(69,82) —0.15(—1.22,0.89) 0.12 (-0.31,0.52)
Current drinker 1,411 (64) 104 (6.6,188)  05(0.3,1.0) 11(8,15) 14(11,18) 74(67,80) 0.15(—0.85,1.13)  0.04 (—0.44, 0.47)
Smoking status
Never smoker 968 (44) 10.5(6.5,17.8)  05(0.3,1.1) 10(7,14) 14(11,18) 75(69,81) 0.01(-1.05,1.00)  0.09 (~0.32,0.51)
Ever smoker 1,221 (56) 10.3(6.5,182)  05(0.3,1.0) 10(7,15) 14(11,18) 74(68,80) 0.13(-0.93,1.10)  0.04 (—0.44, 0.47)
Inorganic as exposure?®
Lower than median 1,092 (50) 6.5 (4.7, 8.3) 0.4(0.3,0.8) 11(8,15) 15(12,18) 74(67,79) 0.27(-0.68,1.19)  0.14 (—0.28,0.58)
Higher than median 1,097 (50) 17.3(12.5,25.9) 0.6(0.4,1.4) 10(7,14) 13(10,17) 76(69,82) —0.15(—1.24,0.90)  0.00 (—0.46, 0.38)

*iAs exposure measured by the sum of urine iAs, MMA, and DMA.

Linkage Disequilibrium for AS3MT Index SNPs

Considering a pair-wise r> between SNPs of >0.8 to be indicative
of linkage disequilibrium, the linkage disequilibrium block for
rs17878846 ranges at least from 104 584 497 to 104 783 894. The
region in linkage disequilibrium with rs10509760 ranges at least
from 104 624 464 to 104 793 052. As a point of comparison,
according to the UCSC Genome Browser hgl8 assembly, the
AS3MT gene extends 104 619 200 to 104 651 645, so each of these
2 index SNPs is tagging a broader region extending a bit beyond
the AS3MT gene boundaries in our sample. Pair-wise SNP r? for
the linkage disequilibrium blocks are presented in
Supplementary Tables 4 and 5.

Linkage Analysis of Arsenic Metabolism Biomarkers
In our linkage analyses (n=2189), we localized a quantitative
trait locus (QTL) on chromosome 10 near the AS3MT gene (Figs.
1-3), with LOD scores exceeding 4 for both logit- %MMA and
%DMA phenotypes, as well as the first principal component of
logit % arsenic species (Fig. 4). After conditioning for rs17878846
and rs10509760 at AS3MT (n=2165), the conditional LOD score
was attenuated by approximately half (Fig. 5). The %DMA LOD
score decreased from 4.61 at 124 cM to 2.49 at 116 cM and the
first principal component LOD score decreased from 4.84 at 121
cMto 2.73 at 116 cM.

There was a suggestive linkage peak on chromosome 6 (Fig.
1 and Supplementary Fig. 1) for %iAs largely driven by a signal
in Arizona (LOD 3.06, 1-LOD support interval from 0 to 35 cM). A
small overall population peak in this region was also visible for
%DMA (LOD 1.01) and to a lesser extent %MMA (LOD 0.37); how-
ever, those peaks did not meet the threshold for suggestive

evidence of linkage (Figs. 2 and 3). There was no visible peak on
chromosome 6 for either of the principal components (Fig. 4).

The 2 principal components showed very distinct linkage
signals (Fig. 4). The first principal component’s main signal on
chromosome 10 was not observed for the second principal com-
ponent. In contrast, the second principal component’s largest
linkage signal was localized to chromosome 5 (LOD 4.21, 1-LOD
support interval 111 to 120 cM), in a region not showing sugges-
tive linkage signal for any individual % arsenic species bio-
marker nor for the first principal component (Supplementary
Fig. 2). Similarly, there appeared to be a signal on chromosome
14 for the second principal component (LOD 3.20, 1-LOD support
interval 46 to 67 cM) that was stronger than in the % arsenic
species analyses.

Center-stratified analyses revealed potential locus heteroge-
neity, with some loci appearing suggestive or significant at 1
center but not at the other 2, and not in the combined analysis.
In particular, Arizona showed a significant linkage signal (LOD
3.74, 1-LOD support interval from 39 to 57 cM) on chromosome
11 for %MMA but this was absent in the other 2 study centers

(Fig. 2).

DISCUSSION

This study identified possible genetic determinants of arsenic
toxicokinetics and illustrated a novel approach explicitly con-
sidering the inter-relationships among the % arsenic species.
The strongest evidence for QTL in our study was with the first
principal component on chromosome 10 (LOD 4.71), a compo-
nent that reflected how %DMA levels were inversely related to
%iAs and %MMA levels. Smaller peaks on chromosome 10 were
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Linkage Signals for % inorganic As: Overall and by Study Center
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FIG. 1. Multipoint LOD scores for logit-transformed %iAs: overall, and from center-stratified analyses. Black line represents the multipoint LOD score from the com-
bined analysis. Tangerine line is Arizona-restricted analysis, green line is Oklahoma-restricted analysis, and gray line is North or South Dakota-restricted analysis.
Adjusted for age, age squared, sex, linear, and quadratic interactions between age and sex, study center (Arizona, Oklahoma, and North or South Dakota), obesity (body
mass index >30kg/m?), high-school completion (education >12 years), smoking status (ever/never), drinking status (current abstainer yes/no), and higher than median
iAs exposure (measured by the sum of inorganic and methylated arsenic species in urine).
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Linkage Signals for % MMA: Overall and by Study Center
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FIG. 2. Multipoint LOD scores for logit-transformed %MMA: overall, and from center-stratified analyses. Black line represents the multipoint LOD score from the com-
bined analysis. Tangerine line is Arizona-restricted analysis, green line is Oklahoma-restricted analysis, and gray line is North or South Dakota-restricted analysis.
Adjusted for age, age squared, sex, linear and quadratic interactions between age and sex, study center (Arizona, Oklahoma, and North or South Dakota), obesity (body
mass index >30kg/m?), high-school completion (education >12 years), smoking status (ever/never), drinking status (current abstainer yes/no), and higher than median
iAs exposure (measured by the sum of inorganic and methylated arsenic species in urine).
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FIG. 3. Multipoint LOD scores for logit-transformed %DMA: overall, and from center-stratified analyses. Black line represents the multipoint LOD score from the com-
bined analysis. Tangerine line is Arizona-restricted analysis, green line is Oklahoma-restricted analysis, and gray line is North or South Dakota-restricted analysis.
Adjusted for age, age squared, sex, linear and quadratic interactions between age and sex, study center (Arizona, Oklahoma, and North or South Dakota), obesity (body
mass index >30kg/m?), high-school completion (education >12 years), smoking status (ever/never), drinking status (current abstainer yes/no), and higher than median
iAs exposure (measured by the sum of inorganic and methylated arsenic species in urine).

observed for %iAs (LOD 2.21), %MMA (LOD 4.12), and %DMA
(LOD 4.61). The second principal component, which distin-
guished the balance of %iAs and %MMA independent of the
level of %DMA, localized a QTL to chromosome 5 (LOD 4.27).
This QTL did not pass the suggestive threshold for the % arsenic
species when modeled separately.

Principal component scores in the context of arsenic species
have several advantages compared with the conventional sepa-
rate analysis of % arsenic species measures. First, it simplifies
the interpretation by consolidating 3 inter-related measures
into 2 independent measures. Second, the principal compo-
nents may be reflecting biological processes more directly. The
first component might be reflecting methylation broadly or
even the second methylation step specifically, as these would
lead to higher DMA relative to the other species. The evidence
for a QTL near the AS3MT gene seen with the first principal
component was stronger than the evidence for a QTL seen with
any % arsenic species biomarker, consistent with the principal
component score having less measurement error as an indica-
tor of the underlying biological processes. The second compo-
nent could be reflecting a transport process that would only
influence the inter-relationship between iAs and MMA in urine
independent of the DMA, or another unknown biological
process.

Despite the value of these principal component scores for
characterizing inter-individual variability in urine arsenic spe-
cies patterns, there are limitations to this approach. The orien-
tation of the principal component axes depends on the sample,
so principal component scores from different study populations
are not directly comparable. Also, the value of an individual’s

score depends on their compatriots in the study sample.
Nevertheless, loci identified by studies using principal compo-
nent scores can be compared across studies.

This study extends previous arsenic species pattern research
in the Strong Heart Family Study (Tellez-Plaza et al., 2013). We
confirmed the QTL found in chromosome 10 in our preliminary
analysis, which at the time was only suggestive (Tellez-Plaza
et al., 2013). Although we failed to replicate earlier findings of
suggestive linkage of %iAs on chromosomes 9 and 11 in the
overall analyses, on chromosome 11 we found significant evi-
dence for a QTL for %MMA in Arizona. For chromosome 5, our
second principal component QTL was in a different part of the
chromosome than a suggestive peak for %iAs in the preliminary
analysis (1-LOD support interval 29-57 cM). The discrepant find-
ings for chromosomes 5 and 9 might be due to our restriction to
diabetes-free participants if the preliminary findings, which
included persons with diabetes, were partially informed by
genes expressed differently under the conditions of diabetes.
We were unable to test for locus-diabetes interactions as
arsenic was not measured in participants with diabetes at base-
line due to the study design. However, this interaction is possi-
ble, as co-morbid disease status can sometimes affect linkage
signals (Colilla et al., 2003), diabetes may have epigenetic conse-
quences (Reddy and Natarajan, 2013), and even the earliest
arsenic genetic epidemiology research suggested that the
genetic determinants of urine arsenic species may be context
(ie, age) dependent (Chung et al., 2002).

The field of arsenic genetic epidemiology has heretofore
emphasized the role of common genetic variants in explain-
ing population-level variability in arsenic kinetics and
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FIG. 4. Multipoint LOD scores signal for principal components of the logit-transformed % arsenic species. Red line is the first principal component and orange line is
the second principal component. Adjusted for age, age squared, sex, linear, and quadratic interactions between age and sex, study center (Arizona, Oklahoma, and
North or South Dakota), obesity (body mass index >30kg/m?), high-school completion (education >12 years), smoking status (ever/never), drinking status (current
abstainer yes/no), and higher than median iAs exposure (measured by the sum of inorganic and methylated arsenic species in urine).

susceptibility. The heterogeneity across study centers, and
residual heritability unexplained by the AS3MT SNPs included
in the conditional linkage model, may suggest an important
role for private or population-specific mutations as well. This
would have implications for regulatory policies designed to pro-
tect the public from arsenic health effects, as “uncertainty
factors” for non-cancer risk assessments (Alexeeff et al., 2002;
Gaylor and Kodell, 2002) that consider only common modifiers
such as common AS3MT SNPs, sex, body mass index, or smok-
ing status would underestimate the extent of inter-individual
variability, and could result in regulatory standards inadequate
to protect sensitive subpopulations. Quantifying the frequency
of rare mutations conferring an impact on arsenic kinetics and
susceptibility, and their relative importance for arsenic kinetics
and for clinical outcomes, is an important and novel direction
for future arsenic susceptibility genetic research. Exploring the
role of rare variants in arsenic susceptibility is consistent with
the broader push in modern genetic epidemiology to under-
stand the role of low frequency and rare genetic variation in
explaining phenotypic variance (Agarwala et al., 2013; Cooper
et al., 2010; Kiezun et al., 2012; Ng et al., 2010; Sobreira et al.,
2010). The family design of the Strong Heart Family Study may
be an asset in further exploring the role of rare genetic variation
in explaining inter-individual variability in arsenic kinetics
(Cheunget al., 2013; Saad and Wijsman, 2014). Lastly, we did not
detect any suggestive peaks on chromosome 12, where we
recently identified SNPs in the liver transporter SLCO1B1
explaining a substantial proportion of the phenotypic variance
in %MMA and %DMA in a small (n=157) convenience sample
(Gribble et al., 2013b). The discrepancy in findings for chromo-
somes 11 and 12 may be due to the complementary strengths of

linkage and association designs to detect different kinds of
genetic signals (Ott et al., 2011). It may also be in part due to a
spurious finding in our earlier study related to the small sample
size or to locus heterogeneity across study center. Apparent
locus heterogeneity across study centers might also be due to
differential power to detect linkage signals across study centers
if measurement error is different across study centers. We did
estimate higher heritabilities for %MMA and %DMA (residuals)
in Arizona than the other study centers (Supplementary Table
1) which could be consistent with less phenotypic measurement
error in that study center (Almasy and Blangero, 2010); or it
could reflect a true difference in heritability across study cen-
ters, for example if there is an exposure-by-gene interaction
observable in the study center with highest arsenic exposure
levels. An arsenic exposure-by-locus interaction is plausible as
arsenic exposure has epigenetic effects across the genome
(Bailey and Fry, 2014) and many genes may have differential
expression by arsenic exposure (Chavan et al.,, 2011; Hou et al.,
2014; Jutooru et al, 2010; Klei and Barchowsky, 2008;
Tchounwou et al., 2003).

Localization of these broad linkage peaks is challenging due
to the presence of multiple potentially relevant genes in these
regions, and limited understanding of the biology of arsenic
absorption, distribution, metabolism, and elimination in
humans. The chromosome 6 linkage signal, suggestive for %iAs
but not the other % arsenic species, is near several methyltrans-
ferase genes including the euchromatic histone-lysine
N-methyltransferase EHMT2 (Kim et al., 2013), threonylcarba-
moyladenosine tRNA methylthiotransferase (CDKALI) (Okada
et al.,, 2012), and cap-specific mRNA (nucleoside-2’-O-)-methyl-
transferase 1 (CMTR1) (Smietanski et al.,, 2014). However, it is
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FIG. 5. Evidence from conditional linkage analysis for QTL on chromosome 10. Outcomes: purple line is logit-transformed %iAs, blue line is logit-transformed %MMA,
black line is logit-transformed %DMA, and red line is principal component #1. Covariates: solid lines show results from models adjusted for age, age squared, sex, lin-
ear, and quadratic interactions between age and sex, study center (Arizona, Oklahoma, and North or South Dakota), obesity (body mass index >30kg/m?), high-school
completion (education >12 years), smoking status (ever/never), drinking status (current abstainer yes/no), and higher than median iAs exposure (measured by the sum
of inorganic and methylated arsenic species in urine). Dashed lines show further adjustment for rs17878846 and rs10509760 genotypes.

also possible that the linkage peak is not due to a methyltrans-
ferase but to some other part of the arsenic kinetic machinery,
known to include reduction enzymes and transporters as well
(Hernandez and Marcos, 2008). Transporters near the linkage
peak include HFE, which has been previously associated with
kinetics of metals including iron (Hanson et al,, 2001), lead
(Hopkins et al., 2008), and manganese (Claus Henn et al., 2011);
and ABCB2, which is important for antigen processing (Lankat-
Buttgereit and Tampe, 2002) and may be relevant to the emerg-
ing research on arsenic immunotoxicity (Ahmed et al., 2011,
Farzan et al., 2013). It is thought that arsenic metabolism may be
related to creatinine pathways (Gamble and Hall, 2012; Thomas,
2009), and there is some toxicological evidence for an arsenic
association with renal elimination of uric acid (Jauge and Del-
Razo, 1985) although the epidemiological evidence is scarce
(Kuo et al., 2015). We cannot exclude the possibility that some of
the chromosome 10 evidence for linkage is explained by rare
variants within AS3MT not tagged by the haplotype index SNPs.
The principal components’ linkage analyses suggested that
there may be distinct genetic determinants for %DMA versus
other species, than for the balance of %iAs and %MMA after
accounting for %DMA. The chromosome 5 region associated
with principal component 2 includes many genes possibly

relevant for arsenic kinetics, including solute carrier anion
transporter family 4, member C1 (SLCO4C1) (Toyohara et al.,
2009), and solute carrier anion transporter family 6, member Al
(SLCO6A1) (Lee et al., 2004) which both are in the same trans-
porter super-family as the SLCO1B1 gene preliminarily associ-
ated with % arsenic species patterns in a sample from the
Strong Heart Family Study (Gribble et al., 2013b; Roth et al., 2012).
The chromosome 14 peak for principal component 2 is near
potential candidate genes including tRNA methyltransferase 5
(TRMTS5) (Christian et al., 2013), valosin-containing protein lysine
(K) methyltransferase (VCPKMT) (Kernstock et al., 2012), and the
transporter solute carrier family 38, member 6 (SLC38A6)
(Sundberg et al., 2008). Linkage fine-mapping studies are needed
to further evaluate the signals from this study.

This study has numerous strengths but also several limita-
tions. Information on arsenic in drinking water for the study
participants was not available, although arsenic in drinking
water has been historically >10pg/l in the communities from
Arizona and in some of the communities from North and South
Dakota. In the communities from Oklahoma arsenic levels in
drinking water is <10pg/l, and food is suspected as the main
source of arsenic. The interpretation of % arsenic species as a
biomarker of iAs metabolism and elimination is strengthened


.
above 
inorganic arsenic

by the result that arsenobetaine was a small proportion of the
total urine arsenic, consistent with little seafood intake in the
population. There was a large sample size with rich family rela-
tionships allowing stable estimation of the co-segregation of
genetic loci with arsenic species phenotypes. This study was
restricted to participants without diabetes at baseline as it was
nested within an incident diabetes risk factor study; future
work should characterize these genetic relationships among
persons with diabetes. Findings from this population may or
may not generalize to other populations with different distribu-
tions of variables, such as body mass index, predictive of urine
arsenic species patterns.

In conclusion, this study identified major loci likely involved
in arsenic kinetic processes, located on chromosomes 5, 6, and
10. These loci, together with a few loci that might be relevant for
Arizona communities, should be followed up in fine-mapping
studies. The evidence for linkage differed by study region, and
was only partly explained by common variation in AS3MT, indi-
cating that rare variation may be an important part of inter-indi-
vidual variability in arsenic susceptibility, or perhaps that
additional genes on chromosome 10 are important for arsenic
processing. The novel approach of considering the inter-relation-
ship of the % arsenic species through principal components anal-
ysis provided additional insights by detecting a strong linkage
signal on chromosome 5, and may be a fruitful approach for
future arsenic susceptibility genetics research. Arsenic exposure
has been associated with incident cardiovascular disease (Moon
et al., 2013), cancer mortality (Garcia-Esquinas et al., 2013), and
diabetes prevalence (Gribble et al., 2012) in the Strong Heart
Study. Further evaluating the role of genetic determinants of
arsenic dose and toxicity and of gene-environment interactions
may contribute to the prevention and control of arsenic-related
disease (Flanders, 2006; Rothman and Greenland, 2005).
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