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Metrics of Mobility: Assessing the Impact
of COVID-19 on Travel Behavior

Rachael Thompson Panik1 , Kari Watkins1 , and David Ederer1

Abstract
The COVID-19 pandemic disrupted typical travel behavior worldwide. In the United States (U.S.), government entities took
action to limit its spread through public health messaging to encourage reduced mobility and thus reduce the spread of the
virus. Within statewide responses to COVID-19, however, there were different responses locally. Likely some of these varia-
tions were a result of individual attitudes toward the government and health messaging, but there is also likely a portion of
the effects that were because of the character of the communities. In this research, we summarize county-level characteris-
tics that are known to affect travel behavior for 404 counties in the U.S., and we investigate correlates of mobility between
April and September (2020). We do this through application of three metrics that are derived via changepoint analysis—initial
post-disruption mobility index, changepoint on restoration of a ‘‘new normal,’’ and recovered mobility index. We find that
variables for employment sectors are significantly correlated and had large effects on mobility during the pandemic. The state
dummy variables are significant, suggesting that counties within the same state behaved more similarly to one another than to
counties in different states. Our findings indicate that few travel characteristics that typically correlate with travel behavior
are related to pandemic mobility, and that the number of COVID-19 cases may not be correlated with mobility outcomes.

Keywords
planning and analysis, traveler behavior and values

� The COVID-19 pandemic disrupted typical travel
patterns in the United State (U.S.)

� Mobility metrics derived from cell phone GPS
traces provide insight into changing travel behavior.

� Employment statistics are significantly correlated
with mobility during the pandemic.

� Stay-at-home orders and case numbers are largely
not related to mobility outcomes.

The COVID-19 pandemic disrupted typical travel across
all of the U.S. As the first cases of the virus were reported
in the U.S., government entities began acting to limit its
spread. Governmental responses to the pandemic varied
from state to state, ranging from stay-at-home orders to
non-essential business closures to—in some cases—nearly
no response (1). In addition, authorities at all levels dis-
tributed public health messaging to help people make
educated choices about their behaviors. The ‘‘flatten the
curve’’ campaign, for example, was a widespread public
health education effort; the message encouraged people

to take immediate action to quell the spread of the dis-
ease so that the number of cases did not exceed local hos-
pitals’ capacities to care for COVID-19 patients (2, 3).
Likely both emergency governmental action and public
health campaigns changed trip-making behavior.

Thanks to technological advancements, we can now
track and analyze the changes in travel which resulted
from the pandemic in new ways. Location intelligence
companies now track travel patterns via aggregated and
anonymized cell phone data, a practice that has
expanded since the beginning of the pandemic. Google,
for example, released data that captured changes in visits
to common destinations (grocery stores, parks, work,
etc.) (4). Similarly, Descartes Labs, a geospatial
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thinktank, released mobility index metrics measuring the
furthest distance traveled from a starting point (via
device triangulation) to create a mobility score (5, 6).

These data showed that the responses to the COVID-
19 pandemic were heterogeneous both across states and
within states. Descartes data showed that Georgia’s
Fulton County (which contains much of Atlanta proper)
traveled less than 4% of ‘‘typical’’ mobility in early
April, 2020. Other Georgia counties, such as Lowndes
and Bibb Counties, maintained 34% and 28% of their
typical mobility, respectively (6). Different mobility
scores may be because of inconsistent health messaging
about the risks of the pandemic, or concentrations of
jobs that are amenable to teleworking. Alternatively,
some counties may have more people who were espe-
cially vulnerable to the pandemic and thus chose to
travel less. Assessing the community characteristics that
are associated with changes in trip-making during the
pandemic can help us understand which characteristics
may be the most powerful in shaping mobility in future
crisis situations.

In this research, we create a dataset of county-level
characteristics that are known to affect travel behavior
for a cross-section of counties in the U.S., and we investi-
gate which characteristics are significantly correlated
with mobility between April 2020 and November 2020.
Results include analyses of counties in five states:
California, Georgia, Minnesota, New York, and Ohio.

Literature Review

Given the recency of the COVID-19 pandemic, the litera-
ture on travel behavior changes because of the pandemic
is limited. The first confirmed cases of COVID-19 pre-
sented in the U.S. in mid-January 2020 (7). In May 2020,
DeVos predicted that typical travel patterns would
change, and that mobility would decrease as a response
to social distancing requirements, stay-at-home orders,
and other policies intended to slow the virus’s spread (8).
Even though voluntary changes in travel behavior are
difficult to measure and even more challenging to pre-
dict, the pandemic’s effect was extreme. Virtual school-
ing, teleworking, and policies limiting out-of-home
activities forced dramatic shifts from typical trip-making
behavior (9, 10).

Early investigations of travel changes resulting from
COVID-19 centered on mode shifts, attitudinal changes,
and teleworking preferences—but few of these studies
have been based in the U.S. Bucksy found that the pan-
demic induced more driving trips and walking/biking
trips and fewer transit trips in Budapest (11). Transit
trips require people to share space with others, so it may
be perceived as a ‘‘riskier’’ form of transportation (8).
An online survey of people in Germany, Austria, and

Switzerland (n=1,158) across two time periods showed
that increasing age correlated with decreased perception
of travel risk, but that the perceived risk of traveling
increased for all respondents over time (12).

In the U.S., research on travel change in response to
the pandemic focused on perceptions and trip-taking on
local scales. The findings parallel those from interna-
tional studies. Shamshiripour et al. measured changing
opinions of teleworking, shopping, and mode of travel in
the Chicago area via stated and revealed preferences (9).
Results (n=915) showed that participants perceived
shared transportation options (transit, ride hailing, etc.)
as riskier than solo forms of traveling, such as driving,
walking, and biking. Concerning modal shifts, Brough
et al. found that King County, Washington, experienced
decreases in transit trips and that people with lower
incomes had lower travel intensity (measured via cell
phone data) than those with higher incomes, indicating
economic disparities often seen in travel behavior
research (13).

While pandemics and world-wide disruptions are not
unprecedented, what is unprecedented are the vast
amounts of data available to quantify this pandemic’s
impact. Several entities provided regularly updated, pub-
licly available mobility data during 2020 (4, 14–16). The
datasets used in this research are those created from
aggregated cell phone GPS traces. Cell phone data is use-
ful for tracking changes in population-level mobility
trends, which is of particular interest for measuring
population-level behavior changes in response to the
pandemic (17).

Despite such accessible data, there is a gap in the liter-
ature on mobility during the pandemic and its relation-
ship to community characteristics. Gao et al. used
Descartes’ data to map changes in mobility in early
April 2020, showing drastic decreases in mobility in most
counties in the U.S. (18). Much of the pandemic-related
research that uses mobility data does so to predict the
spread of COVID-19 (19–25). The basis of this approach
is that the virus spreads through airborne droplets (and
thus is easily transmitted through proximity to others in
enclosed spaces) (7). Mobility data was operationalized
as a proxy for exposure and used to model potential
spread of the virus. In these studies, mobility measure-
ments provided the basis for modeling potential infection
or for measuring social distancing (19). In general, the
studies (arguably) measure the potential for disease
exposure, but they do not consider mobility itself to be
the object of interest.

While the literature shows that mobility data has been
used to estimate exposure to COVID-19 and to assess
changes in travel on local scales, with the exceptions
listed previously, there are no peer-reviewed studies
(to the authors’ knowledge) that systematically relate
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mobility to changes in community characteristics across
different areas of the U.S.

There is even less research on using mobility metrics
as a measurement of response to public health messa-
ging, with two exceptions. A paper from the University
of Madison at Wisconsin modeled 3,142 counties’ mobi-
lity while controlling for perceived risk and restriction
orders, where the measurement of perceived risk is based
on age, political bias, and population density (26). Engle
et al. find that mobility is significantly correlated with
stay-at-home orders and a rise in COVID-19 case num-
bers; stay at home orders correspond to a decrease in
8% of mobility. They also find that increases in the num-
ber of COVID-19 cases correlates to a smaller but signif-
icant decrease in mobility. These effects differ depending
on the population’s political affiliations (as measured by
voting in the 2016 election). While they do not frame
their findings in the form of response to health commu-
nications and interventions, they are essentially capturing
the effect in their models. A notable limitation is that
they do not include other variables in their model that
may more fully account for variations in mobility, such
as income, car ownership, or employment status at the
time of measurement.

A second exception is a study of the response to non-
voluntary governmental actions in Tokyo, which showed
that mobility decreased by nearly half of typical rates
(which correlated with a decrease in infection) (7). It
would be worthwhile to explore if there are similar
responses to government interventions in the U.S., a
population with markedly different cultural structure
and respect for authority/institutions (27).

Our research fills two gaps in the literature. First, we
investigate general mobility as the variable of interest,
while controlling for community characteristics that may
affect the way people move. We design and assess mobi-
lity metrics at the county level across five states repre-
senting a diverse cross-section of regions of the country.
Second, we attempt to measure the impact of stay-at-
home orders on mobility, in which we consider these gov-
ernmental interventions as health communications, and
mobility metrics as the populations’ response to those
communications.

Materials and Methods

In this work, we investigate correlates of generalized
mobility using novel metrics. For the control variables,
we created a dataset through amalgamation of existing
county-level data from various sources, including
American Community Survey (ACS) demographic data
from 2018, employment data from the Bureau of Labor
Statistics, COVID-19 risk levels, and governmental
responses consolidated to the county level, and political

leanings (28–34). We considered variables for this analy-
sis based on conceptual models; each variable we tested
is known to correlate to travel behavior generally. Note
that, while individual-specific variables such as attitudes
are also known correlates of travel behavior, we cannot
include individually measured variables at the county-
level unit of analysis.

The variable of interest—mobility—is also reported at
the county level from Descartes Labs (14). Mobility is
measured through a sample of cell phone GPS trace
data, where the mobility score for each county is the
median of the sample’s distribution of maximum
(Euclidean) distance from a device’s starting point (29).
The starting points are determined temporally as the
location of the mobile device at midnight local time. The
GPS traces have a median accuracy of 15 to 20m, and
those traces that have a position accuracy of greater than
50m were removed from the data before its publication
by Descartes.

Mobility scores are indexed back to more ‘‘typical’’
mobility values for each county before the pandemic, where
a county’s ‘‘typical’’ values are the median values from a
sample of cell phone data collected between February 17,
2020, and March 7, 2020 (29). Each of the community
characteristics, mobility metrics, and other control variable
that we tested in our models is shown in Table 1 below.

These statistics were gathered for all counties in five
states: California, Georgia, Minnesota, New York, and
Ohio. These states were selected purposefully to repre-
sent a diverse cross section of the U.S. in relation to geo-
graphical region, political tendencies, and governmental
interventions. These states were also chosen initially
because of their varying degrees of infection spread but,
by the time this research concluded, cases of COVID-19
had grown quickly in each of these states (33). The first
iteration of the dataset consisted of n=454, with each
case representing a county within one of the five states.
Cases with null values, too few cases, and cases with
clearly error-ridden mobility data were removed, reduc-
ing the number of cases in the final dataset to n=404.

All of the variables are continuous, with two excep-
tions: the COVID-19 case variable, which was originally
reported in average number of cases normalized by
county population per 100,000 people but were ulti-
mately binned into three categories for simplicity, and
the political affiliation variable, which is a binary vari-
able. Additionally, we augmented the variable for gov-
ernment response to COVID-19 variable. The dataset
contains various stay-at-home order dates in relation to
proleptic Gregorian ordinal of the date. To make the
scale more interpretable, we convert the variable to a dis-
crete value representing the number days between March
1 and the date that county/state governments implemen-
ted stay-at-home orders.
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Table 1. Data Sources Considered in Models and Variable Operationalization

Variable Source Operationalization

Population density American Community Survey
(ACS) Table B01003 (2018 5-
year estimates); TIGER line
shapefiles used to determine
county area

Total population per county, normalized by county
area

Transit users ACS Table S0801 (2018 5-year
estimates)

Percent of workers 16 years or older by mode who
use transit for their commute per county

Work from home ACS Table S0801 (2018 5-year
estimates)

Percent of workers 16 years or older who
telecommute per county

Household income ACS Table B19001 (2018 5-year
estimates)

Median household income per county

Poverty ACS Table B08122 (2018 5-year
estimates)

Percent of people living below 100% of the poverty
level per county

Vehicles available ACS Table S0801 (2018 5-year
estimates)

Percent of county with 0, 1, 2, 3+ vehicles available
per county

Age ACS Table B01002 (2018 5-year
estimates)

Median age per county

Work in county of residence ACS Table B01002 (2018 5-year
estimates)

Percent of employed people who work in the
county in which they live

Employment Bureau of Labor Statistics
quarterly census of employment
and wages (2020, Quarter 1)

Location quotient (LQ) per four-digit North
American Industry Classification System (NAICS)
code for each county (35, 36):

- 1011: Natural resources and mining
- 1012: Construction
- 1013: Manufacturing
- 1021: Trade, transportation, and utilities
- 1022: Information
- 1023: Financial activities
- 1024: Professional and business services
- 1025: Education and health services
- 1026: Leisure and hospitality
- 1027: Other services

Government response to COVID-19 ‘‘A county-level dataset for
informing the United States’
response to COVID-19.’’ (29)

Number of days taken to institute a stay-at-home
order, referenced from March 1, 2020

COVID-19 cases Brown School of Public Health
COVID19 Risk Dashboard
(January 1 through November
24, 2020)

Average of daily number of cases, normalized by
county population per 100 k people, categorized
into three bins following Center for Disease
Control categorization of risk:

- Low: \10 per 100,000
- Medium: 10–20 per 100,000
- High: .20 per 100,000

Mobility index Descartes Lab mobility data
(March 15 through November
24, 2020)

Daily mobility scores for each county indexed for
comparison with more typical travel behavior

State NA Dummy variable for each of the five states:
California, Georgia, Minnesota, New York, and
Ohio, where Minnesota is the reference variable

Political trend MITelection labs (34) Binary variable, where 1 = the largest percentage of
voters for the Democratic candidate in the 2020
election, and 0 = the largest percentage of voters
for the Republican candidate in the 2020 election
(there were no counties in the sample where the
largest percentage of voters voted for another
political party)

NA = not available.
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For the variable of interest, we create mobility metrics
that together characterize mobility responses to COVID-
19. We calculated these metrics based on mobility scores
from Descartes data between March 15 and November
24, 2020. Creating singular metrics to represent a time
series presents a challenge; meaningful nuance can be lost
by reducing an entire trend to a single value.

We address the challenge by conducting a (single)
changepoint analysis (37, 38). The ‘‘changepoint’’ in a
time series is defined as the time at which the ‘‘properties
of a sequence of observations change,’’ such that the
observations before and after the change point are differ-
ent in some measurable way (37). Simply put, change-
points are points in time series when there is a
statistically significant difference in the ‘‘before’’ and
‘‘after’’ of that point. In this analysis, the changepoints
represent the time at which a county’s mobility began to
‘‘recover,’’ or return to more typical mobility, during the
early onset of the pandemic in 2020. Detecting a single
change point utilizes a hypothesis testing approach,
where H0=no change point (m=0), and HA=a single
change point (m=1). The hypothesis is tested by com-
paring the maximum log-likelihood of two parameters
(mean and variance) under both H0 and HA. The loca-
tion of a changepoint in a time series is considered
among all possible change points, which for this data is
255 possible points.

We illustrate the method by applying it to two coun-
ties (Bibb County, GA, and Huron County, OH) in
Figure 1. Note that the two counties used in this

illustrative example appear to have different mobilities,
as shown by the fluctuating mobility index. The change-
point analysis captures the differences between the trends
with metrics: the changepoint (day 59 for Bibb County
and day 79 for Huron County) and the pre- and post-
changepoint means.

We calculated a single changepoint for each county in
the sample. The histograms in Figure 2 show the distribu-
tion of each state’s county-level changepoints, where the
changepoints represent the time at which each county’s
mobility began to return to pre-pandemic levels. The x-
axis indicates the day at which the changepoint occurred,
and the y-axis shows the percent of counties in each state.
The distributions of changepoints are different between
states, showing a heterogenous mobility response to
COVID-19. For example, in Georgia many of the coun-
ties’ mobility began to return to pre-pandemic levels
around the same time, as shown by the clustering of
changepoints around 40 to 50 days after March 1, 2020.
The changepoints in Ohio, however, are more spread
out, which shows heterogeneity among the counties’
mobility patterns over time. Table 2 provides descrip-
tive statistics for each of the variables used in our
models.

Using these data, we generate linear regression mod-
els for the following dependent variables obtained from
the changepoint analysis:

1) Mobility Changepoint (MCP), which is the num-
ber of days after March 15, 2020, a change point

Figure 1. Changepoint analysis applied to two counties, Bibb (left) and Huron (right), showing different changepoints and pre- and post-
changepoint means.
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occurred and captures the initial travel response
to the pandemic.

2) Mobility Mean 1 (MM1), which is the average
mobility index before the changepoint and cap-
tures the time taken to begin to increase mobility.

3) Mobility Mean 2 (MM2), which is the average
mobility index after the changepoint and repre-
sents the value at which mobility reached a ‘‘new
normal’’ in 2020.

Before modeling, we reviewed correlation tables for all
variables considered for the model, removing highly cor-
related variables to avoid multicollinearity. Variable
selection for the final models followed a multistep pro-
cess. First, we created conceptual models for each of the
regressions, choosing variables we suspected correlated
significantly with each metric. We then created multiple
iterations of each model, considering the interactions
among variables and their significance levels in each

Table 2. Summary Statistics for Variables of Interest, n = 404

Statistic Mean SD Min. Max.

Descriptive statistics
Median Age* 40.26 4.33 27.70 55.10

% commuters using a car* 89.77 7.97 7.90 98.40
% commuters driving alone* 80.36 7.96 6.00 91.60
% commuters carpooling* 9.41 2.55 1.90 21.90
% commuters using transit* 1.73 5.75 0.00 61.00
% commuters walking* 2.56 2.11 0.00 20.30
% commuters biking* 0.39 0.76 0.00 8.00
% commuters walking* 1.17 0.87 0.00 8.70
% commuters working from home* 4.39 2.07 0.20 14.00
% commuters working in their county of residence* 60.84 18.07 11.50 98.20
% commuters with a travel time \10 min* 17.73 8.18 2.80 53.10
% commuters with a travel time .60 min* 8.30 5.19 2.00 35.70
Mean travel time* 25.07 5.12 11.80 44.50
% population with 0 car ownership* 3.18 4.90 0.40 72.30
% population below poverty level* 7.22 3.03 2.00 21.00
Average mobility index 70.78 22.25 18.14 215.08
Maximum mobility index 151.01 79.94 101.00 893.00
Minimum mobility index 1.24 3.10 0.00 23.00
Mobility index recovery rate 135.09 45.07 24.00 233.00

Location quotient (LQ #)
Natural resources and mining (1011) 2.30 3.58 0.00 35.20
Construction (1012) 0.89 0.54 0.00 4.42
Manufacturing (1013) 1.60 1.12 0.00 5.98
Trade, transportation, utilities (1021) 1.02 0.29 0.28 2.74
Information (1022) 0.45 0.58 0.00 5.98
Financial services (1023) 0.60 0.31 0.00 2.76
Professional, business services (1024) 0.51 0.34 0.00 1.84
Education, health services (1025) 0.92 0.40 0.00 3.02
Leisure and hospitality services (1026) 0.90 0.36 0.00 3.20
Other services (1027) 0.86 0.35 0.00 3.11
Quarter 2 cases** 4.16 2.49 1.00 9.00
Quarter 3 cases** 6.70 2.61 1.00 9.00
Quarter 4 cases** 8.18 1.53 3.00 9.00
Stay-at-home order date*** 11.03 5.62 3.00 19.00
No gatherings greater than 50 people*** 19.62 4.11 11.00 23.00
First school closure date*** 20.10 0.56 19.00 21.00
Restaurant closure date*** 20.73 2.14 18.00 23.00

Dependent variables
Mobility mean 1 (MM1) 34.75 17.22 0.79 78.23
Mobility mean 2 (MM2) 79.18 25.11 20.22 248.15
Mobility changepoint (MCP) 55.70 16.41 13.00 249.00

Note: SD = standard deviation; Min. = minimum; Max. = maximum.
*Based on American Community Survey (ACS) data, 2018 5-year estimates.
**Case rates of COVID-19 are reported in a nine-bin categorical variable, based on Brown School of Public Health COVID-19 Risk Dashboard.
***Number of days from March 1 to the date at which local/county governments implemented the public health measure, based on Killeen et al. (28).
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iteration. We selected final versions of the models based
on conceptual validity and variance explained. We ulti-
mately pruned these final models, removing most of the
variables that were insignificant.

Results

Figure 3 shows the trend of mobility indexes averaged
for each of the five states in our study from March 1 to
November 24, 2020. Mobility indexes for the state were
aggregated at the state level. For clarity in this figure,
the indexes reported in Figure 3 have been averaged over
7 days, allowing trends to present more clearly. We also
show the daily new cases per 100,000 people averaged
over 7 days in Figure 4. Comparing these graphics shows
that the trends of mobility did not necessarily follow the
trends of new cases. Note that we only use state-level
averages in these graphics; the rest of the analysis uses
county-level mobility metrics.

In calculating MCP, MM1, and MM2, the first
15days (March 1–March 15, 2020) are not included. We

excluded these dates as we wanted the MM1 value be
more representative of the ‘‘trough’’—the lower average
before the change point, not including the peaks in mobi-
lity before the ‘‘trough.’’ When we included dates before
March 15, 2020, our changepoint analysis captured local
maximums in mobility that captured sudden increases in
mobility that were likely the result of people preparing for
the first lockdowns, which we did not want to capture in
our models.

As shown in the figures, mobility dramatically
decreases in all five states starting in early March 2020,
corresponding to the first cases of COVID-19 discovered
in the U.S. Each state’s minimum mobility scores, or the
‘‘troughs,’’ appear at different times temporally. New
York experienced a lower minimum score than the other
states, and it lasted much longer than the other states’
minimum scores. After the states’ mobility indices
reached their lowest points, all mobility scores increased
at varying rates. Each state appears to reach an ‘‘equili-
brium’’ after the trough in which they maintain a

Table 3. Linear Regression Models of the Mobility Mean 1 (MM1) Metric

Dependent variable

MM1

States model Political affiliation model

Intercept 52.730*** p = 0.000 56.653*** p = 0.000
Mean travel time 20.784*** p = 0.000 20.563*** p = 0.0001
Natural resources and mining location quotient (LQ) 0.212 p = 0.252 0.208 p = 0.357
Construction LQ 0.415 p = 0.697 0.527 p = 0.693
Manufacturing LQ 0.570 p = 0.372 0.308 p = 0.684
Trade, transportation, utilities LQ 0.629 p = 0.748 4.169* p = 0.082
Information LQ 23.126*** p = 0.004 24.613*** p = 0.001
Financial services LQ 27.054*** p = 0.0005 24.319* p = 0.084
Professional, business services LQ 22.831 p = 0.133 2.788 p = 0.238
Education, health services LQ 20.573 p = 0.726 27.027*** p = 0.0004
Leisure and hospitality services LQ 3.141* p = 0.073 7.540*** p = 0.0004
Other services LQ 23.821** p = 0.030 214.378*** p = 0.000
Ref. COVID-19 cases: Low
COVID-19 cases: Medium 23.651** p = 0.019 0.846 p = 0.657
COVID-19 cases: High 0.263 p = 0.848 8.362*** p = 0.00000
Ref. Minnesota
California 20.242 p = 0.915 NA NA
Georgia 22.195*** p = 0.000 NA NA
New York 29.280*** p = 0.00001 NA NA
Ohio 6.737*** p = 0.0002 NA NA
Largest share voted democrat (%) NA NA 210.707*** p = 0.00000
Observations 404 404
R2 0.673 0.470
Adjusted R2 0.659 0.451
Residual standard error 10.079 (df = 386) 12.782 (df = 389)
F statistic 46.712*** (df = 17; 386) 24.624*** (df = 14; 389)

Note: *p\0.1; **p\0.05; ***p\0.01.

Bold variables are significant at p\0.01 in the states model.

Italicized variables are significant at p\0.01 in the political party model.

NA = not available.
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relatively constant mobility index (generally between
July and October, 2020). Each state’s ‘‘equilibrium’’
occurred at a different time and at different average val-
ues. Both the recovery trends and the equilibrium trends
were not uniform among states; the data seem to indicate
that there is no singular trend to return to more typical
mobility scores. In the following section, we investigate
correlates of these trends using the three metrics
described previously—MM1, MCP, and MM2.

Model of Mobility Mean 1 (MM1)

We modeled correlates of the MM1 for each of the 404
counties in our sample, shown in Table 3. We created

two separate models for this metric: one that included
the dummy variable for states, and one that included the
dummy variable for political trend. We could not include
both variables in the same model, as they were too highly
correlated. We only report significant variables here, but
we ran iterations of both models with many other vari-
ables, including median age, income metrics, travel mode
variables, and population density, none of which were
significant or created better model fits.

The model including the state variables has an
adjusted R2 value of 0.659, and the model including
political trend has an adjusted R2 value of 0.451. The
states model also has a larger F-statistic and a standard
error that is closer to zero than the political affiliation
model, indicating a better fit overall.

Six of the variables in the states model have p-values
that indicate a very likely significant relationship (plus a
significant intercept). Mean travel time is negatively
associated with the MM1 metric, meaning that higher
mean travel times (in 2018, our closest estimate) are asso-
ciated with lower MM1 values but with small effect.
Two employment variables—Information and Financial
Services location quotients (LQs)—are also negative,
indicating that higher shares of these sectors are associ-
ated with lower MM1 values. Also, the dummy variable
for states indicates significant (or at least likely signifi-
cant) differences in several states compared with
Minnesota, including Georgia, New York, and Ohio.

Model of Mobility Changepoints (MCPs)

Results of a model in which the changepoint, MCP, is
the variable of interest are shown in Table 4. For this
metric, we present only one model, as the political trend
variable was not significant in any of the iterations of
modeling this metric.

The R2 value for the MCP model is 0.373 and the
adjusted R2 value is 0.344—lower than the other models
in our study. It is also of interest that more community-
specific variables are significant in this model than the pre-
vious model. Median age is again significant and negative;
higher median ages in counties are associated with lower
changepoint values (i.e., an earlier changepoint in time).
The percent of people living in poverty per county is also
negatively associated with the county’s changepoint, mean-
ing that a higher number of people who are poor is associ-
ated with lower changepoint values. The employment
variable Natural Resources and Mining LQ is also positive
and significant. Again, all the states are significantly differ-
ent fromMinnesota at least at the p\ 0.05 level.

Model of Mobility Mean 2 (MM2)

Finally, we model correlates of the MM2, which is the
mean for the remaining data after the selected

Figure 2. The distribution of county-level mobility changepoints
(MCPs) reported as the percentage of counties in each state.

Figure 3. Mobility index 7-day average by state.
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changepoint. The number of days included in that mean
vary with the corresponding MCP. Like the MM1
metric, we present two different models: one with the
states variable and one with the political trend variable.
As with the previous models, we showed the pruned
results in Table 5.

In these models (adjusted R2=0.539 and adjusted
R2=0.414, respectively), we again find that the model
containing the states variable better describes the varia-
tion in the data than the model containing political trend.
In the states model, more community-specific variables
are significant than in any of prior models; for example,
the percent of people commuting by walking per county
is associated positively with MM2, indicating that coun-
ties with higher numbers of people commuting by walk-
ing in 2018 is associated with higher MM2 values. Ohio,
New York, and California are significantly different
from the reference state, Minnesota, with large effects.
Interestingly, this is the only model in which the share of
employment in the Health and Education sectors is sig-
nificant; here, it is negatively associated with the MM2
values for each county (and with a notable effect size).

Discussion

The analysis presented in this paper has two major con-
tributions. First, we show that three mobility metrics—
MM1, MCP, and MM2—effectively describe the

Figure 4. Daily new cases, 7-day moving average per 100,000
people.

Table 4. Linear Regression Model of Mobility Changepoints (MCPs)

Dependent variable

MCP

Intercept 79.328*** p = 0.000
Median age 20.807*** p = 0.00002
Below poverty level (%) 21.215*** p = 0.00004
Natural resources and mining location quotient (LQ) 0.530** p = 0.030
Construction LQ 21.137 p = 0.405
Manufacturing LQ 0.680 p = 0.425
Trade, transportation, and utilities LQ 3.342 p = 0.199
Information LQ 1.366 p = 0.332
Financial services LQ 20.789 p = 0.762
Professional and business services LQ 2.704 p = 0.309
Education, health services LQ 3.636* p = 0.100
Leisure and hospitality services LQ 2.390 p = 0.301
Other services LQ 21.992 p = 0.394

Ref. COVID-19 cases: Low
COVID-19 cases: Medium 5.012** p = 0.015
COVID-19 cases: High 6.684*** p = 0.0003

Ref. Minnesota
California 17.477*** p = 0.000
Georgia 25.544** p = 0.033
New York 12.972*** p = 0.00000
Ohio 7.863*** p = 0.001
Observations 404
R2 0.373
Adjusted R2 0.344
Residual standard error 13.288 (df = 385)
F Statistic 12.745*** (df = 18; 385)

Note: *p\0.1; **p\0.05; ***p\0.01.

Bold variables are significant at p\0.01 in the states model.

Italicized variables are significant at p\0.01 in the political party model.
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variation in mobility trends caused by COVID-19.
Changepoint analysis could easily be applied to future
events that disrupt travel. Together, our models create a
simply derived yet meaningful picture of U.S. counties’
reaction to COVID-19. We find the MCP metric via
changepoint analysis to be particularly useful. It seems
that mobility recovery, which is signaled by the change-
point, is a good indicator for some kinds of economic
and travel recovery. Second, the explanatory variables
that were significant (and the ones that were not) explain
much about what influences people to travel even amid a
pandemic.

It is interesting to review our results through a tem-
poral lens, first considering the MM1 metric since it rep-
resents the average mobility measurement before the
changepoint. We will first focus on the models which
contained the state control variables instead of models

with political trend variables, since they are better models
generally. Average travel time (using 2018 estimates as a
proxy), as well as the information on the financial ser-
vices sectors, are powerful predictors of the MM1 regres-
sion model. Counties with more long commuters had
lower MM1 metrics. This could mean a non-negligible
number of people who typically commute long distances
transitioned to working from home. It also makes sense
that the significant employment sectors also had negative
associations with the MM1 metric; these jobs also seem
to be easily convertible to working from home, allowing
people to reduce travel.

Next, in the MCP model, the significant variables are
different from the MM1 model. It seems intuitive that
the low-income variable is negative and highly signifi-
cant, given that people with lower incomes may have
returned to work earlier and may more often be essential

Table 5. Linear Regression Models of the Mobility Mean 2 (MM2) Metric

Dependent variable

MM2

States model Political party model

Intercept 113.518*** p = 0.000 123.070*** p = 0.000
Walk (%) 3.464*** p = 0.00000 2.811*** p = 0.00003
Work in county of residence (%) 0.234*** p = 0.005 20.106 p = 0.200
Mean travel time (minutes) 20.778*** p = 0.004 21.724*** p = 0.000
Below poverty line (%) 0.884** p = 0.029 1.608*** p = 0.00004
Natural resources and mining location quotient (LQ) 20.029 p = 0.928 20.484 p = 0.157
Construction LQ 20.551 p = 0.766 20.688 p = 0.739
Manufacturing LQ 22.926*** p = 0.010 20.908 p = 0.439
Trade, transportation, utilities LQ 21.757 p = 0.606 5.142 p = 0.169
Information LQ 22.256 p = 0.234 20.315 p = 0.882
Financial services LQ 27.219** p = 0.041 1.769 p = 0.651
Professional, business services LQ 27.813** p = 0.021 25.493 p = 0.142
Education, health services LQ 29.425*** p = 0.002 24.369 p = 0.154
Leisure and hospitality services LQ 0.003 p = 1.000 21.794 p = 0.583
Other services LQ 22.797 p = 0.351 24.463 p = 0.174
Ref. COVID-19 cases: Low
COVID-19 cases: Medium 26.606** p = 0.013 21.851 p = 0.527
COVID-19 cases: High 23.914* p = 0.094 2.791 p = 0.249
Population density 20.004*** p = 0.0002 20.003*** p = 0.004
Ref. Minnesota
California 245.605*** p = 0.000 NA NA
Georgia 25.000 p = 0.176 NA NA
New York 227.065*** p = 0.000 NA NA
Ohio 29.856*** p = 0.002 NA NA
Largest share voted democrat (%) NA NA 218.295*** p = 0.000

Observations 404 404
R2 0.563 0.441
Adjusted R2 0.539 0.414
Residual standard error 17.075 (df = 382) 19.243 (df = 385)
F Statistic 23.434*** (df = 21; 382) 16.846*** (df = 18; 385)

Note: *p\0.1; **p\0.05; ***p\0.01.

Bold variables are significant at p\0.01 in the states model.

Italicized variables are significant at p\0.01 in the political party model.

NA = not available.
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workers than higher income people. Also, California,
New York, and Ohio have MCPs that are significantly
later than Minnesota at baseline. In contrast, Georgia’s
MCP is significantly earlier than Minnesota at baseline.
Together, this shows that what caused variations in
travel is state-specific, but it is not related to the dates or
political leanings of large shares of the population, since
neither of those variables were meaningful in our analy-
sis. We also found that counties with high numbers of
COVID-19 cases had later changepoints (i.e., a slower
mobility ‘‘recovery’’) compared with those with low case
numbers. This makes sense, and it perhaps reflects that
people, on average, altered their mobility in response to
high volumes of COVID-19 cases in their communities.
It should be noted, however, that the MCP model has a
lower R2 value than our other models; clearly there is
more affecting travel changes than what is captured here.

Additionally, we notice that median age is negatively
correlated (albeit with small effects) with MCP in this
model; counties with higher median ages had earlier
changepoints. It struck us that counties with an older
population would be more cautious in increasing mobi-
lity because older people are more vulnerable to the virus
and thus may choose to reduce travel for longer. It is
possible that this finding is simply an artifact of aggrega-
tion: just because we see this relationship with median
age at the county level does not mean that this translates
to the individual level. Alternatively, these results could
actually indicate that communities with more older peo-
ple increased travel more quickly than others. More deli-
neated analysis is needed here. But since that is not
possible in our work, we can only say that age seems to
have some relationship with MCP, or, at the least, that
some other variable combined with age does.

Finally, considering the MM2 model, the percent of the
county that commutes by walking is important with a pos-
itive effect, and mean travel time is important with a nega-
tive effect. This implies that counties with more walking
and shorter travel times had a higher average mobility
after their changepoint than other counties. The percent of
people who walk for their commute is not significant in
the MM1 model; if we assume that people walk in places
where it is convenient to do so, then we can say that these
results imply that walkable communities had higher levels
of activity during mobility recovery—a potentially interest-
ing finding and policy implication. Also, Georgia is the
only state that is not significantly different from
Minnesota. A possible reason for this could be that the
counties within Georgia differ from one another enough
that the effect of the state is not significant, or it could be
that the counties within Georgia behaved similarly to the
counties within Minnesota. We think that either is possi-
ble. Since Georgia and Minnesota are notably politically
different from one another, and since our models show

that the political affiliation is relevant, we are inclined to
believe the former—that the counties within Georgia are
different enough from one another to mitigate the effect of
the state variables.

In the MM2 model, all states except Georgia were sig-
nificantly different from Minnesota with relatively large
effects. Large effects because of state differences is a com-
mon theme across all three models. This makes sense;
counties within a state should be, on average, more alike
than counties in other states. Perhaps this does point to
the effectiveness of state-level guidance as it affected tra-
veling, even though our variable for stay-at-home order
variable was not particularly meaningful in any of the
models. There could be other public health communica-
tion efforts that are not captured here.

Because the states are powerful variables, we devel-
oped iterations of our models in which we varied the ref-
erence state. When using California as the reference, the
intercepts of the MM1 and MM2 models (64.84 and
48.56, respectively) were unexpected. With all other vari-
ables at zero, we expected the mobility index to be higher
in the MM2 model as travel returned to the new normal.
In all other iterations, the intercepts were as expected,
where the MM2 intercept was higher. However, the pan-
demic response was different in California, with most
counties experiencing two major changepoints after
March 15, 2020, the first of which reduced mobility even
further and the second of which restored it. This is an
interesting finding, suggesting that California is unique
compared with other states. This indicates the need for
multiple changepoints to be integrated in some cases.

Interestingly, the MM2 model is the only model using
state control variables in which the Health and
Education LQ is significant at the 0.01 significance level
(negatively associated). A challenge of using LQs cate-
gorized by NAICS codes for this research is that health
jobs and education jobs are grouped in the same occupa-
tional category. Trip-making during the pandemic has
been different for people in the health compared with
education workforces. For example, school districts
around the country became partially or fully remote, but
healthcare jobs may have required more trips as the pan-
demic worsened. Even though the health and education
services LQ is significant in the MM2 model, we suspect
the cumulative impact of these sectors would be larger if
they were separately measured. These findings may indi-
cate a need to recategorize the NAICS codes, since these
industries seem to be characteristically different from
each other in these circumstances.

Across all three metrics of mobility, we find that,
when employment variables are correlated, they have
large effects (although less so than states). We find that
jobs that presumably can be done at home influence the
MM1 metric, and jobs that more likely need to be done
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in person (natural resources, mining, healthcare, and
some educational services) influence the MM2 metric—
which makes sense. Large shares of jobs that can be done
at home likely drive the drop in mobility, and large
shares of jobs that must be done in person likely drive
the ‘‘recovered’’ mobility.

To our surprise, the variable we used for measuring
health communication and governmental response to the
pandemic does not seem to be significant in any of our
models. Our results indicate that mobility was largely not
affected by government health messaging, which could
indicate failures of health messaging in general or in this
instance. Alternatively, it could mean that, even if people
wanted to stay at home because of health messages, they
could not because of employment or other commitments.

All models in which we included a variable for politi-
cal affiliation instead of the state dummy variable were
poorer fits. The political party variable, however, was
highly significant in both the MM1 and MM2 models,
which indicates that it is not negligible. The counties
where the largest share of people voted for the demo-
cratic candidate in the 2020 election had lower pre- and
post- changepoint average mobilities than counties in
which the largest share of voters voted for the republican
candidate; said another way, counties that were more left
leaning in the 2020 election traveled less as the pandemic
began in the U.S. and as mobility began to increase after
the changepoint. This indicates that travel during the
pandemic was far from politically neutral. Future
research should consider using alternative measurements
of political affiliation, such as continuous variables along
political spectrums instead of a binary variable.

Limitations

Our research has limitations that are relevant for inter-
pretation of our models. First, it is important to compare
our unit of analysis and the interactions that spread
COVID-19. The virus is not spread at the county level
but through individual interactions of infected people.
The nuances of those interactions, the attitudes of indi-
vidual people, work responsibilities, and even some of
the messaging that people receive, cannot be described
completely at the county level (9). We suspect that such
variables are potent, and, if they could be included in
these results, they might have altered our findings.
Rather, this study attempts to model overarching trends
of travel behavior in response to the pandemic. We
eagerly await the results of ongoing survey efforts to bet-
ter understand individual trip-making behavior in 2020.

An additional shortcoming of mobility data is that it
is only representative of people who have cell phones
and is not completely representative of even those popu-
lations. Given the completely anonymous nature of the
data and the limitations of using data from a third party

that did not disclose the market share covered or the
demographic representativeness of the data, we cannot
know the degree to which the data is unrepresentative.
Grantz et al. noted this shortcoming well: ‘‘Using aggre-
gate mobility flows to estimate population-level reduc-
tions in travel will fail to capture increased risk among
essential workers that are unable to stay home.’’ (17).
We agree, and we would extend the notion to even more
vulnerable populations, such as the very poor and the
unhoused. Future work should seek to describe the
representativeness of this data and to inform the inter-
pretations of the findings using this kind of data.

Conclusions, Policy Implications, and Future Research

In summary, our research shows that mobility data com-
bined with changepoint analysis is a useful source to
describe travel patterns during a major travel interrup-
tion. The three metrics we have delineated—initial post-
disruption mobility index, changepoint on restoration of
a ‘‘new normal,’’ and recovered mobility index—are all
useful to explain the phases of the travel disruption.

Some of the most significant variables relate to com-
mute travel times and employment sectors. In particular,
the longer the commute, the more willing people are to
initially work from home or perhaps pressure their
employer to allow them to do so. Information workers
are most easily able to transition to work-from-home;
however, our results indicate a need to recategorize
NAICS codes to ensure that division of employment sec-
tors by likelihood of ability to work-from-home is taken
into account for disaster response purposes. Perhaps
most critically, some workers are unable to transition to
work-from-home no matter what public health guidelines
suggest, and those workers must have transportation to
their jobs, including the provision of public transporta-
tion, which often serves lower-income workers.

We have chosen five states to be representative of the
U.S. experience more broadly. Although significant dif-
ferences in mobility metrics are experienced between the
states, travel behaviors appeared to have little to do with
stay-at-home orders or the number of cases of COVID-
19, indicating the need for better health messaging.
Although the cultural and social context differs, govern-
ment declarations were more closely correlated with
behavioral changes in Japan (39). Japan’s ‘‘3 C’s’’ com-
munications campaign—emphasizing avoiding closed
environments, crowded conditions, and close contact
settings—was evidence-based, clearly communicated,
and easy to remember (40).

Given the limitations and our findings, we see ample
space for more research on pandemic travel trends. An
area to explore is additional methods and metrics to
compare the trends among counties and states. While we
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stand by our analysis of MCP, it led us to think that
there are more ways of comparing county responses. In
future research we hope to apply other methods, such as
advanced cluster analyses. We also see the need for mod-
els that can delineate by mode and trip purpose, as peo-
ple may have walked, biked, or driven more than they
would have normally. Changes in mobility may reflect
different commute patterns, but they may also capture
non-commute mobility changes. Given the increase of
people staying at home more than they normally would,
there may be a stronger urge to ‘‘just to get out and go
somewhere (another form of variety-seeking)’’ (41). It
would be interesting to see how a mode variable would
interact with other variables related to travel behavior.
We look forward to seeing these needs addressed in an
increasing literature of COVID-19 impact assessment.
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