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Abstract 
Treatment systems for wastewater and agricultural runoff serve to protect environmental 

water quality. However, with the proliferation of new compounds in consumer products and 

growing acknowledgment of the environmental implications of transformation products of parent 

compounds, conventional targeted mass spectrometry approaches are no longer sufficient in 

assessing the efficacy of these systems. Therefore, broad-scope methods such as suspect 

screening and nontarget analysis must be employed to gain a better understanding of the complex 

processes occurring within these systems. 

This dissertation considers both a municipal wastewater catchment and a scaled-down 

version of a woodchip bioreactor, and finds that both are comprised of competing physical, 

chemical, and biological processes. In the first chapter, suspect screening is used to find many 

different classes of compounds within a set of samples collected at seven different time points 

and eight different locations within a sewer catchment and at the wastewater treatment plant. In 

the second chapter, the same set of samples is considered in terms of the bulk nontarget features. 

However, due to the duration of the sampling campaign, wastewater samples had been run on the 

LC-QTOF-MS in multiple batches, which then required implementation of an empirical Bayes 

method to correct for batch effects. The success of this method is explored. Finally, the third 

chapter uses time-series data from microcosm-scale versions of woodchip bioreactors for 

agricultural run-off to identify examples of key processes that occur within the system. 
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CHAPTER 1 INTRODUCTION 

Despite the fact that 140,000 new chemicals have been synthesized since 1950, we do not 

have a clear understanding of their effects on human health or environmental health [1]. In the 

United States, only 126 chemicals are regulated by the Clean Water Act, whereas thousands of 

chemicals have been detected in the environment and many have yet to be detected [2]. To 

improve our knowledge of these emerging contaminants (ECs), more environmental monitoring 

studies and the advancement of detection capabilities through analysis of high-resolution mass 

spectrometry (HRMS) data is key. Significant sources of anthropogenic chemicals in 

environmental waters include treated wastewater effluent and agricultural run-off, and thus this 

dissertation will examine both a municipal wastewater catchment and a treatment system for 

agricultural run-off through the lens of HRMS. 

As one would expect, pharmaceuticals and personal care products abound in wastewater, 

along with food and beverage-related compounds such as caffeine and sucralose. But consider 

the other inputs of wastewater—the dishwasher, the laundry machine—and then you get an even 

greater range of chemicals, including benzotriazole [3] and organophosphate esters [4], 

compounds which are also subject to variable removal during wastewater treatment. Wastewater 

treatment plants were not designed to remove these compounds, which are now being detected in 

surface waters at significant concentrations around the world [5]. Not only is this of concern for 

aquatic ecosystems, but also for communities that find their drinking water downstream of 

someone else’s wastewater treatment, especially when it comes to persistent and mobile ECs [6].  

Agricultural run-off also contains substituents such as nutrients and pesticides that are 

harmful to the receiving environments, but woodchip bioreactors have shown promise as a 

potential best management practice to mitigate the discharge of these pollutants [7]. The primary 
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function of these bioreactors is to leverage the microbial reduction of nitrate (NO3
-) to nitrogen 

gas while the microbial community uses the woodchips as a carbon source, thus reducing the 

nutrient load that is released to the environment [8]. One added benefit may also be the removal 

of pesticides [9], but measuring reactor efficacy can be challenging with changing patterns in 

pesticide use and the presence of pesticide transformation products. For example, toxicity 

identification evaluation studies on agricultural areas of California identified organophosphate 

pesticides as the main contributors to ambient aquatic toxicity and linked pyrethroid insecticides 

to both surface water and sediment toxicity in 2010 [10]. However, with increased regulation of 

organophosphate pesticides, surface water monitoring studies have seen an increase in the 

frequency of neonicotinoid and pyrethroid detections [11]–[13]. Additionally, environmental 

transformation of the parent compounds may result in the accumulation of possibly toxic 

byproducts, rather than the complete mineralization of the parent [14]–[17]. For both these 

reasons, it is important to consider more broad-scope approaches than the traditional targeted 

analysis of chemicals.  

While conventional targeted screening of liquid chromatography (LC) and gas 

chromatography (GC) mass spectral (MS) data relies on comparison against analytical standards 

to identify compounds, limiting analysis to only the chemicals the researcher chooses to 

consider, “nontarget” approaches rely on first aligning peaks across samples and subsequently 

attempting to assign molecular formulae and structures. Opting for this broad-screen approach is 

not without sacrifices, because targeted analysis allows compounds to be identified with the 

highest degree of confidence [18], has higher sensitivity, and allows for quantification. 

Additionally, suspect screening, which can compare experimental MS1 and MS2 data against 

structure and spectral libraries, exists on the spectrum between target and nontarget analysis [19]. 
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Therefore, all approaches will remain important and be used in this research. Nontarget analysis 

and suspect screening will be beneficial when an analytical standard for a transformation product 

is not commercially available, or the product is unknown. Furthermore, development of 

nontarget screening methods will be more broadly applicable to other systems where biological 

transformation of complex compounds may occur, such as in bioremediation scenarios or 

wastewater treatment. 

This dissertation focuses on two different treatment systems at the interface of the built and 

natural environments, with insights that may improve our understanding of chemical 

contributions to natural waters. Chapters 2 and 3 take two different approaches to analyzing a 

unique set of wastewater samples that were collected at seven timepoints from six sub-sewershed 

locations and at the WWTP influent and effluent. Chapter 2 begins with an overview of the 

sewer system through the lens suspect screening to find anthropogenic chemicals reflecting 

different use classes and down-the-drain pathways. Chapter 3 of this dissertation then looks at 

the same dataset through a nontarget lens, which requires the evaluation of a statistical method 

for the removal of analytical batch effects, as the obscuring variation of multiple analytical 

batches presents a major challenge in identifying true spatiotemporal trends in nontarget features 

within complex environmental datasets. Chapter 4 focuses on the complex system contained in 

woodchip bioreactors used for the treatment of agricultural run-off, applying some of the same 

tools from the previous two chapters to examine time-series data from small-scale batch studies. 

Finally, Chapter 5 closes with discussion, recommendations for future research, and reflection. 
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CHAPTER 2 SPATIAL AND TEMPORAL VARIABILITY OF MICROPOLLUTANTS 

WITHIN A WASTEWATER CATCHMENT SYSTEM 

Introduction 

While the utility and benefits of anthropogenic chemicals are undeniable, it is also a fact that 

these compounds have infiltrated the natural environment [1], to the detriment of environmental 

and human health. One source of chemical pollution in the environment is from treated 

wastewater, as not all micropollutants are effectively removed during treatment. Those 

pharmaceuticals, personal care products, flame retardants, plasticizers, and even pesticides 

inevitably find their way down the drain and at the wastewater treatment plant [2]–[5].  

An example of a single, highly-studied compound can be found in fipronil, a common spot-

on flea and tick treatment for pets, which was found to be dislodged by bathing up to 28 days 

post-application [6]. Furthermore, fipronil and its degradates were found to disperse throughout 

the home presumably via dust and dander [7], which may lead to down-the-drain transport via 

laundering or showering. Especially in drier climates such as California, where the influence of 

wastewater effluent on receiving surface waters is largest, these contaminants can have 

significant effects on aquatic life [8]. 

Application of broad-scope screening methods such as suspect and nontarget analysis of 

high-resolution mass spectrometry (HRMS) data can be valuable in environmental monitoring, 

where changing consumer use patterns and the introduction of new compounds make 

conventional targeted screening challenging. These approaches have been used to isolate 

“fingerprints” of human activity, indicating whether a waterway is influenced by agricultural, 

industrial, or municipal wastewater pollution [9], [10]. Many studies have also trained these tools 

on understanding removal of compounds across treatment processes [11], [12], which may help 

to improve the treatment of wastewater before it enters the environment [13]–[15]. 
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However, another option is to look further upstream, to the wastewater catchment system 

itself, to isolate the sources of these pollutants. Understanding patterns of contaminant loads in 

time and space may allow for improved management practices such as source control or 

pretreatment. Few studies have examined the patterns in contaminants within the wastewater 

catchment system [16]. In this study, wastewater treatment plant (WWTP) influent and effluent 

plus sites within the catchment system were sampled seven times over a 9-month period. These 

samples were screened against a library of water contaminants to find spectral matches, which 

were later confirmed with analytical standards or structure elucidation. Comparison of 

contaminant patterns between sampling months and sampling sites reflected the complexity of 

the system. 

Experimental 

Sampling 

Detailed descriptions of the sample collection, preparation, and data acquisition methods 

applied to this sample set have been previously reported [17] and are summarized in Appendix 2. 

This includes Figure A2-1, which is a schematic of the connections within the sewer system: 

trunkline sites A, B, C, D, E, and G all connect separately to the influent of the WWTP. All 

samples were collected with 15-minute sampling intervals as 24-hour time weighted composite 

samples using ISCO (model) autosamplers, with the exception of the June 2016 samples which 

were collected at 30-minute intervals.  In July and September, three additional “specialty” sites 

were sampled to capture wastewater from anticipated contributors of pesticides to wastewater: a 

laundromat, a pet groomer, and a pest control operation (PCO). These sewer laterals were 

sampled in such a way that the wastewater would be from the single targeted source.  
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Suspect Screening 

To support subsequent processing in MS-DIAL, raw data files from GC– and LC–QTOF-MS 

were converted from the vendor format to the analysis base file format (Reifycs Analysis Base 

File Converter v. 4.0.0). All data were then deconvoluted and aligned using MS-DIAL (v. 3.90). 

Tentative identifications of aligned features were established by searching against the NIST17 

database for GC-EI data, an NCI-specific pesticide database for GC-NCI, and combined library 

of the Agilent Water Contaminants, Pesticides, and Forensic Toxicology libraries LC-ESI+. 

Parameter selection and workflow performance evaluation are described in detail in the 

Supporting Information (Table A1-2 for MS-DIAL alignment parameters; Table A4-2 for 

detection performance of LC targets in standards and spikes; Table A3-1 for detection 

performance of GC targets in standards and spikes). For GC suspect screening, the use of 

retention-index dictionaries added an additional level of confidence, and additional identification 

steps were not taken.  

LC-ESI+ data was also screened using the Find by Formula workflow in MassHunter 

Qualitative Analysis against the same library used in MS-DIAL, where a “qualified” 

identification required mass error less than 15 ppm, an intensity greater than 1000 counts, 

confirmation with at least one coeluting fragment ion (with a coelution score > 80%), an overall 

match score of >80% (weighted score of accurate mass, isotopic spacing and isotopic 

abundance). As in the MS-DIAL alignment, [M + H]+, [M + Na]+, and [M + NH4]
+ adducts were 

searched. Qualified library hits were compared against library identifications made by MS-DIAL 

as separate lines of evidence. For each compound that was found by the Qualitative Analysis 

software, which does not perform alignment, there was a range of retention times (RT) and mass-

to-charge ratios (m/z) if it was detected in multiple samples. The median, 25th and 75th 
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percentiles of RT and m/z were used to compare against MS-DIAL aligned features (as each 

feature is represented by an average RT and m/z). Some compounds identified in Qualitative 

Analysis had quite large interquartile ranges (IQR) of RT, large enough for these ions to be 

considered different features in the MS-DIAL alignment. Compounds that had a RT IQR greater 

than 0.7 minutes and were detected in fewer than five samples were omitted from the dataset. 

Those with RT IQR greater than 0.7 minutes but five or more detections were split apart based 

on RT. The filtered MS-DIAL alignment was searched for an aligned feature that was within 0.3 

minutes of the median RT and ±10 ppm mass error (using median m/z) for each compound from 

the Qualitative Analysis set. Additionally, a Pearson correlation coefficient was computed using 

the peak height in samples as reported by Qualitative Analysis and MS-DIAL and was used to 

filter out features that did not show a significant correlation in sample abundance. Features were 

manually inspected in MS-DIAL for peak shape and library hits that were below the score 

threshold, which indicated that MS-DIAL’s deconvolution had identified some qualifying 

fragments.  Suspect identified compounds were selected for targeted MS/MS experiments based 

on peak height and detection frequency in wastewater samples (rather than spikes, standards, or 

blanks), compound class, and if there was a standard on-hand.  

Quantification of Suspect Compounds 

Compounds identified as probable structures by library spectrum match in LC samples that 

were on-hand as standards were included in a 13-point calibration curve ranging from 0.1 ng/mL 

to 1000 ng/mL. The calibration curve was run with the LC extracts so that RT and coeluting 

fragments could be used to confirm the identifications. Data analysis was carried out in 

MassHunter Quantitative Analysis software (v. 10.1), using the internal standard that was closest 

in retention time. Internal standards that had been added to the extracts were originally used for 
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target pesticide quantification (listed in Table A1-3). The volumes of the extracts had changed 

since the original processing, due to reinjection for multiple analyses, and as such, we did not 

want to add any additional spikes (such as matrix spikes), since the concentration would be 

unknown. Finally, concentrations were multiplied by the concentration factor for the samples: 1 

mL extract/L sample for effluent and 5 mL extract/L sample for influent and trunkline. 

Structure Confirmation  

For library spectrum-matched LC compounds not currently in the lab inventory, targeted 

MS/MS experiments were used to gain further insight on the structure. Samples containing high 

abundances of these compounds were run with a list of precursors to isolate (exact masses and 

retention times) where collision cell voltages again cycled through 0, 10, and 40 eV. 

Instrumental parameters are included in Table A1-1. Again, the data were deconvoluted using 

MS-DIAL (parameters in Table A1-2), and results were exported to both MS-FINDER (v. 3.24) 

and SIRIUS CSI:FingerID for identification using in silico fragmentation approaches [18], [19]. 

Additionally, at the end of each targeted MS/MS run, a mix of RTI compounds was run in All 

Ions made for input into an RTI prediction platform (http://rti.chem.uoa.gr/) [20], which was 

then used to evaluate the top-ranked structure options for a suspect using experimental RT. 

Computation of Mass Loads 

Quantified concentrations in wastewater extracts for confirmed structures was both left- and 

right- censored, due to relative responses below the limit of quantification as well as above the 

highest calibration point. To create boxplots, the function ros(), from R package NADA (ver. 

1.6-1.1) was used [21] to impute non-detect values. For points exceeding the calibration curve 

range, the highest calibration point was used. Censored values in mass load per capita box-and-

whisker plots are differentiated by shape from un-censored values. Flow data was available for 

http://rti.chem.uoa.gr/
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trunkline sampling points, and the sum of these was used as an estimate of population for 

influent and effluent samples. To calculate the mass load (mg/d*person), the concentration of the 

sample (ng/L) was multiplied by the corresponding flow and divided by the population.  

Statistical Analysis for Significant Difference 

To determine if mass loads per capita were statistically significantly different between 

sampling months and sites, a pairwise Wilcox rank-sum test with a Benjamini-Hochberg 

correction was implemented for compounds with ≥50% un-censored data points. For annotated 

GC compounds, the raw peak height was divided by the peak height of an internal standard, 4,4’-

dibromooctafluorobiphenyl (DBOFB), to obtain a scaled peak height. This was used in a similar 

pairwise Wilcox rank-sum test. A similar approach was used for the three annotated LC features, 

using instead the peak height of the internal standard, simazine-d10, for scaling.  

Compound Correlation Test 

Some compounds were observed following similar monthly or site-wise patterns, and so we 

obtained a correlation matrix, using function rcorr() from package Hmisc (v. 4.7-0) [22], 

consisting of correlation coefficients and p-values of the Spearman rank correlation of each 

compound against the other. A Spearman correlation was used rather than Pearson because 

relationships between compounds were not necessarily expected to be linear. Finally, p-values 

were adjusted for multiple tests to control the false discovery rate using p.adjust() with method 

“fdr”. 

Results and Discussion:  

Quantification of micropollutants 

In the LC data, there were 63 library hits corresponding between MS-DIAL and Qualitative 

Analysis. 14 of these were available in the lab inventory as standards and were quantified. 
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Additionally, the fungicide diethofencarb was identified by suspect screening, but when 

compared against an analytical standard, was not confirmed. This might be due perhaps to 

degradation of the already infrequently detected peaks in the original sample analysis (2016-

2017), although others have found that a peak originally thought to be diethofencarb was in fact 

metoprolol acid, a metabolite of metoprolol and atenolol [23]. Additionally, a feature annotated 

as 8-hydroxyquinoline and one as benzotriazole were detected with moderate frequency 

(approximately 40% of samples) but were not confirmed when compared against standards. 

Benzotriazole is commonly detected in wastewater, owing to its application as a corrosion 

inhibitor in dishwashing machines [24], [25]. Table A3-2 presents the list of suspect hits, the 

frequency of feature detection, use class, and level of identification confidence (if confirmed) 

[26]. Table 2-1 summarizes the detection frequency of the compounds that were confirmed with 

analytical standards.  

Table 2-1: Detection frequency in trunkline, influent, and effluent samples of quantified 

micropollutants 
 Detection 

frequency 

 Detection 

frequency 

Caffeine 87.5%  Metoprolol 7.14% 

Carbamazepine 1.79% O-Desmethytramadol 5.36% 

DEET 92.9% Oleamide 89.3% 

DEHP 58.9% Sulfamethoxazole 44.6% 

DEP 75% Tris(2-butoxyethyl) phosphate 

(TBEP) 

92.9%  

Fexofenadine 12.5%  Trimethoprim 14.3% 

Iohexol 85.8% Valsartan 58.9% 

 

Among the list of compounds that were tentatively identified via suspect screening, many of the 

common use-classes of chemicals detected in wastewater were included, with the notable 

exception of any sweeteners. Other food-related compounds including caffeine, caffeine 

metabolites, and piperine were suspect-hits, with caffeine then being confirmed at a confidence 
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level 1, and piperine at 2a. In previous studies of wastewater treatment plants and surface water, 

sweeteners are detected with a ubiquity to even lend the artificial sweetener, acesulfame, the 

proposed role as indicator of anthropogenic load on surface waters [27].  

Compounds detected at high frequencies and at high concentrations represent a range of use 

classes and potential down-the-drain routes. This group included caffeine, DEET, bis(2-

ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), iohexol, oleamide, and tris(2-

butoxyethyl) phosphate (TBEP). This is reflective of the high frequency of use of these 

compounds among the population, or in the case of iohexol, the dosage at which it is 

administered. Iodinated x-ray contrast media (ICM), such as iohexol, are consumed in large 

dosages, with one hospital studied by Weissbrodt et al. (2009) reporting iohexol  as the ICM with 

the largest amount consumed per day. DEP and DEHP, although both phthalates, have different 

uses and thus may have different pathways to the wastewater system: DEP is used as a solvent 

and in multiple kinds of personal care products, whereas DEHP is primarily employed in soft 

plastics such as toys, food containers, and food packaging [29]. TBEP (also abbreviated as 

TBOEP) is a organophosphate ester flame retardant, a class that has seen an increase in use with 

the phase-out of brominated flame retardants [30]. A study of the San Francisco Bay, to which 

the WWTP of this study discharges, found a 100% detection  frequency of TBEP in bay water 

samples [31]. TBEP and DEHP can enter the wastewater system via laundering of fabrics, which 

have been found to accumulate TBEP and similar semi-volatile compounds from air and dust 

[32]. Oleamide is a polymer lubricant used in plastics such as food and medicine containers, and 

has also been found to leach out of these plastics [33]. Sewer sampling that occurred at the sites 

of a groomer, laundry, and pest control operation (PCO) found a similar subset of compounds 

that were detected with high frequency, as detailed in Table 2-2.  
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Table 2-2: Detection frequency of quantifiable micropollutants in specialty sampling sites 
Compound Groomer (n = 4) Laundry (n = 4) PCO (n = 2) 

Caffeine 100% 100% 100% 

DEET  100% 100% 

DEHP 25% 100% 100% 

DEP 100% 100% 100% 

Iohexol  75%  

O-Desmethyltramadol 50%   

Oleamide 25%  100% 

TBEP 100% 100% 100% 

Valsartan   50% 

 

Compounds that were quantified less frequently or at lower concentrations were all 

pharmaceuticals or metabolites of pharmaceuticals (Table 2-3). Multiple classes of 

pharmaceuticals were represented: two antibiotics, sulfamethoxazole, and trimethoprim; one 

antihistamine, fexofenadine; a beta-blocker, metoprolol; an anti-seizure medication, 

carbamazepine; and the metabolite of an opioid painkiller, o-desmethyltramadol. Additionally, 

valsartan, an anti-hypertensive, was detected most frequently of the quantified pharmaceuticals. 

Valsartan and o-desmethyltramadol were the only pharmaceuticals detected at the specialty sites, 

reflecting the relatively small catchment served by these sampling locations. The higher 

frequency of detection of these compounds in WWTP effluent samples is most likely due to the 

higher sample volume and less-complex matrix. All pharmaceuticals quantified here have been 

documented in other studies of wastewater and surface water. A report of seven different WWTP 

in the San Francisco Bay area found valsartan to be among the top ten highest concentration 

pharmaceuticals in influent samples, with valsartan, metoprolol, carbamazepine, and 

sulfamethoxazole included in the top ten for effluent samples [34]. 
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Table 2-3: Concentrations of infrequently detected quantifiable compounds 

Month Site S
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May C 43.83      
May Effluent 6.54 59.64     
June D 28.95      
June C 25.26      
June A 28.98      
June Effluent 6.62 52.79     
July D 32.09      
July C 51.61  102.00    
July Influent 26.37      
July Effluent 22.48 195.53  23.05   
Aug D 25.38      
Aug C 35.65      
Aug Influent 25.47  68.06    
Aug Effluent 79.25 > Cal 21.66 174.34 63.26 54.15 

Sep G      155.90 

Sep A 40.88  69.97    
Sep Effluent 19.23 365.42 12.28 74.52  32.69 

Nov D 33.60      
Nov C 132.40      
Nov E 28.39      
Nov A 43.47  60.34    
Nov B  137.87     
Nov Influent 31.81      
Nov Effluent 15.47 117.86  42.28   
Jan E 181.54  414.57    
Jan B 27.32  66.12    
Jan Effluent 5.37      
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Detection frequency of LC annotated compounds 

Of the suspect hits in the LC dataset, that were not quantified, 23 were selected for targeted 

MS/MS experiments due to peak height, sample detection frequency, and use class. However, 

only 3 structures were confirmed with tMS/MS experiments.  These compounds were 

acetaminophen, mycophenolic acid, and piperine. In trunkline, influent, and effluent samples, 

corresponding MS-DIAL aligned features had detection frequencies of 57%, 54%, and 25%, 

respectively, where a detection was counted as a peak with height greater than 3000 counts. A 

study of seven different Bay Area WWTP found acetaminophen among the top-ten 

pharmaceutical compounds in WWTP influent [34]. Mycophenolic acid is an 

immunosuppressant drug developed for prevention of organ transplant rejection [35] and is also 

used in cancer treatment [36]. One study found mycophenolic acid in 6 out of 6 WWTP effluents 

[37]. Piperine is an alkaloid present in black pepper, is excreted in the feces, and thus has been 

found to be ubiquitous in wastewater [38]. 

The aligned EI dataset returned 1,470 annotated features. The subset considered herein was 

created by choosing a mix of use-classes and variable patterns within sampling dates and sites. 

Similarly, the NCI aligned dataset yielded 48 annotated features, most of which were pesticides, 

largely those covered by targeted analysis in Teerlink et al. [17]. Again, MS-DIAL aligned peaks 

with heights greater than 3000 counts were counted as detections, and the detection frequencies 

of a subset of suspect-identified compounds is included in Table A3-3. Of these, the most 

frequently detected compound in the trunkline, influent, and effluent samples was oxybenzone, a 

UV filter. Equally ubiquitous was 3-methyl phenol, a human urinary metabolite of toluene. 



 

 

17 

 

Comparison of LC compound loads across months and sites 

Concentrations of quantified compounds were converted to mass loads per capita to gain a 

better understanding of contributions from different sections of the wastewater catchment system 

and throughout the year. Table 2-4 details the comparisons found to be significantly different (p 

< 0.05) using a Wilcox rank sum test.  

Table 2-4: Per capita load (mg person-1 day-1) comparisons found to be statistically significant 

using a Wilcox rank-sum test with a Benjamini-Hochberg test for multiple comparisons (p < 

0.05) 

Caffeine May, Jun < Jul, Aug, Sep, Nov Effluent < B, C, D, G 

DEET Jul, Aug, Sep > May, Jun, 

Nov, Jan 

Jan > May 

DEHP May, Jun < Jul, Aug, Sep, 

Nov, Jan 

 

DEP May, Jun < Nov, Jan < Jul, Aug, Sep 

Iohexol May, Jun < Aug C > D, E, Eff 

Oleamide Eff < Inf < A, B, C, D, E, G  

TBEP May, Jun < Jul, Aug, Sep, 

Nov, Jan 

 

 

One interesting pattern that emerged was the significantly lower loads in the months of May 

and June for caffeine, DEET, DEHP, DEP, Iohexol, and TBEP. Alternatively, oleamide and 

valsartan do not show any significant monthly variation in load. In the case of caffeine, this 

difference in mass loads is unexpected, if one were to assume that caffeine consumption would 

remain consistent throughout the year (Figure 2-1). Although caffeine was proposed as a proxy 

for population, it is also susceptible to biodegradation by biofilms within the sewer system, a 

process which can vary depending on a number of variables [39]. Bis(2-ethylhexyl) phthalate 

and tris(2-butoxyethyl) phosphate have a similar pattern to caffeine, with May and June both 

lower than the other five months. The load per person of tris(2-butoxyethyl) phosphate measured 
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here is greater than that reported by O’Brien et al. [30], which was a cumulative 

organophosphate flame retardant load of 0.8 – 2.6 mg person-1 day-1, with TBEP making up the 

greatest share, the quantifiable loads here varied from 0.01 mg person-1 day-1 to as high as 12.01 

mg person-1 day-1.  

 
a. 

Figure 2-1. Mass 

load per capita of 

(a.) caffeine, (b.) 

bis(2-ethylhexyl) 

phthalate, and 

(c.) tris(2-

butoxyethyl) 

phosphate across 

the sewer system, 

arranged by 

month, shows 

significantly 

lower amounts in 

the months of 

May and June. 
 

 

b. 
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c. 

 

For the X-ray contrast agent, iohexol, per capita loads in May and June are only significantly 

lower than the August load (Figure 2-2). The sampling site C had significantly higher loads than 

D, E, and WWTP effluent (Figure 2-2b).  

 
a. 
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b. 

Figure 2-2. Mass load per capita of iohexol across the sewer system, arranged by (a.) month and 

(b.) site, shows that May, June are lower than August and site C is greater than D, E, and WWTP 

effluent. 

 

However, in the case of DEET, the summer months of July, August, and September show 

significantly higher loads than all other months, which may correspond with times of mosquito 

prevalence (Figure 2-3a). Diethyl phthalate follows a similar pattern to DEET (Figure 2-3b): 

highest in July through September, with January and November greater than June and May. This 

similar pattern may be linked to the similar applications of products containing the two 

compounds. 
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a. 

 

b. 

Figure 2-3. Mass load per capita of (a.) DEET across the sewer system and (b.) diethyl 

phthalate, arranged by month, shows significantly highest amounts in the summer months of 

July, August, and September. 
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Because the samples were collected as time-weighted composites, rather than flow-weighted, 

there is an associated uncertainty with the load patterns presented here [40]. Ort et al. [41] show 

that a pulse of anthropogenic gadolinium (an x-ray contrast agent) can occur over the span of 15 

to 20 minutes at the influent of a WWTP; such pulses may be narrower upstream in the system at 

the sub-sewershed sampling sites. Samples were collected as 24-hour composites, with a 

sampling frequency of 15 minutes. Additionally, greater flows occurred in January, despite the 

fact that the system normally receives negligible inflows from non-sanitary sources [17]. 

Comparison of GC annotated  compounds by month and site 

For compounds annotated from the GC-EI and NCI datasets, absolute peak heights were 

scaled by the height of DBOFB internal standard in the sample before comparison. 2-

Naphthalenol is a human xenobiotic metabolite (Phase 1) of naphthalene; the most likely routes 

human of exposure are through fuels, moth repellents, and cigarette smoke [42]. Phenol, 3-

methyl (also known as m-cresol), is a urinary metabolite and used as a biomarker for human 

exposure to toluene, which may be found in fuels as well [43]. Presumably the general 

population could be exposed to naphthalene and toluene from vehicle exhaust. These two 

compounds show different patterns by month, with higher levels of 2-naphthalenol in May and 

June, and a majority of non-detects in later months (Figure 2-4). 3-methyl-phenol was detected 

consistently across the months, although January and November are significantly lower than 

May, June, August, and September. 
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a. 

 

b. 

Figure 2-4. Different monthly patterns in two human biomarkers for exposure to xenobiotics (a.) 

2-naphthalenol and (b.) phenol, 3-methyl- (m-cresol). 

 

2-Propanol, 1-chloro-, phosphate (3:1) (TCPP) is a chlorinated organophosphate flame 

retardant that is now frequently used in flexible polyurethane foam products and can be found in 
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house dust [44]. The most probable down-the-drain route for this compound would be from 

laundry water [32], [45]. Compound abundance in September is significantly higher than in May, 

July, November, and January (Figure 2-5). January is also significantly lower than June and 

August, and November lower than May, June, and August. 

 

Figure 2-5. Scaled peak height of TCPP in sewershed, arranged by sampling month. 

Correlations between micropollutants 

Cholestan-3-ol, (3.beta.,5.beta.)1 is a breakdown product of cholesterol by gut bacteria, and has 

been used as an indicator of fecal contamination of environmental waters [46]. The scaled peak 

abundance is higher in November and January with all other sampling months having detections 

below the 3000-count cut-off. This compound was found to be positively correlated with five 

other compounds and negatively correlated with two compounds, shown in Figure 2-6. The 

increased abundance in November and January is more intuitive for the expectorant, guaifenesin, 

which might see increased use during winter months, due to the seasonality of cold and flu-like 

 
1 Other names used in literature include 5β-coprostanol, 5β-cholestan-3β-ol. Cholestan-3-ol, 

(3.beta.,5.beta.) is the name used in the NIST spectral library. 
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illnesses. Two negatively correlated compounds are isobutyl 4-hydroxybenzoate (isobutyl 

paraben) and 2-naphthalenol. 

 
Figure 2-6. Correlation matrix showing statistically significant correlations between 

micropollutants identified in the sewer system. Compound names in black text were measured on 

the GC in EI mode, blue on the GC in NCI, and red on the LC in ESI positive.  

Most correlations were observed between compounds measured with the same instrument. 

This could be due in part to the molecular properties of compounds that make them amenable to 

GC versus LC. For example, compounds that tend to sorb to suspended solids in the sewer 

system may vary in the same ways, depending on the TSS present. However, performing a 

Spearman’s correlation with TSS and all annotated compounds in the GC data revealed that only 

hexadecamethyl heptasiloxane and 3-methyl phenol had a corrected p-value < 0.05, with ρ = 
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0.50 and 0.48, respectively. However, given the differences in physicochemical properties 

between LC- and GC- amenable compounds, this separation is not surprising. There are many 

parameters within the sewer system that might influence these groups of chemicals differently. 

Conclusions 

There have been many studies addressing the wide range of contaminants that find their way 

from the built environment, down the drain, and for some, into environmental waters. The 

dynamics of these compounds within the sewer system have been found in other studies to vary 

with physical, chemical, and biological parameters, not even considering the many 

anthropogenic processes that could drive variation. For these reasons, considering sub-sewershed 

contaminant patterns becomes even more complex. Ultimately, for the compounds considered 

here, all of which are fairly commonplace within wastewater, it does not seem that the 

geographical area captured by each trunkline sampling site is distinct. However, this may be 

because the sub-sewershed sites are quite similar in land-use patterns. Rather, seasonal variation 

in product use or within-sewer processes seems to be responsible for the overall system 

variation. However, there were many chemical features that went unidentified or undiscussed 

because the scope of chemicals within a sewer is so great. 
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CHAPTER 3 BATCH CORRECTION METHODS FOR NONTARGET CHEMICAL 

ANALYSIS DATA: APPLICATION TO A MUNICIPAL WASTEWATER 

COLLECTION SYSTEM 

Abstract 

Nontarget chemical analysis using high resolution mass spectrometry has increasingly been 

used to discern spatial patterns and temporal trends in anthropogenic chemical abundance in 

natural and engineered systems. A critical experimental design consideration in such 

applications, especially those monitoring complex matrices over long time periods, is a choice 

between analyzing samples in multiple batches as they are collected, or in one batch after all 

samples have been processed. While datasets acquired in multiple analytical batches can include 

the effects of instrumental variability over time, datasets acquired in a single batch risk 

compound degradation during sample storage. To assess the influence of batch effects on the 

analysis and interpretation of nontarget data, this study examined a set of 56 samples collected 

from a municipal wastewater system over seven months. Each month’s samples included 6 from 

sites within the collection system, one combined influent, and one treated effluent sample.  

Samples were analyzed using liquid chromatography high resolution mass spectrometry in 

positive electrospray ionization mode in multiple batches as the samples were collected and in a 

single batch at the conclusion of the study. Data were aligned and normalized using internal 

standard scaling and ComBat, an empirical Bayes method developed for estimating and 

removing batch effects in microarrays. As judged by multiple lines of evidence, including 

comparing principal variance component analysis between single and multi-batch datasets and 

through patterns in principal components and hierarchical clustering analyses, ComBat appeared 

to significantly reduce the influence of batch effects.  
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Introduction 

High resolution mass spectrometry (HRMS) has been applied to an increasingly diverse set of 

environmental problems extending far beyond its well-known ability to establish the presence of 

previously unmonitored compounds via suspect screening against mass spectral databases. Even 

without database matches or confident structural annotations, ions of particular mass-to-charge 

ratio (m/z) and chromatographic retention time (RT) observed across numerous samples can 

provide critical information about environmental processes, and such approaches fall within the 

domain of nontarget chemical analysis. A number of such applications rely on the comparison of 

ion abundances of unidentified compounds between samples collected at different times, 

monitoring locations or points in a treatment process [1]–[5].  Most of these studies have used 

patterns in feature abundance across samples to group and prioritize features for further 

identification efforts (e.g., features that decrease or increase across a treatment process or are 

present at higher abundance in particular types of sources). When the inverse question is posed—

how samples may be grouped according to abundance profiles of multiple features (i.e., a 

chemical fingerprint)—the temporal or spatial differences in chemical composition under 

investigation may be masked by “obscuring variability” [6], or unintentional variability added 

during analysis.  

Obscuring variability can come from a variety of sources that cannot always be controlled, 

such as operator effects, variations in the ion source, recent instrument maintenance, and  

sample-specific matrix effects [6], [7]. Effects of these variables can become the major driving 

factor in separation of sample groups in a method such as principal components analysis (PCA), 

rendering it less informative about chemical similarities and differences among samples  [8]. 

Furthermore, in environmental monitoring applications that span periods of months to years, 
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there will be batch effects regardless of whether samples are run in a single batch at the end of 

the study (due to differential degradation of compounds within extracts stored for varying 

periods) or in multiple batches as they are collected and processed (due mostly to instrumental 

variation). The ability to disentangle potential “batch effects” from the true chemical differences 

between samples is critical to drawing proper conclusions from the data. 

While these challenges have already been addressed extensively in the fields of DNA 

microarrays, metabolomics, lipidomics, and others, environmental samples pose a unique set of 

challenges, delineated by Boysen et al. (2018). For example, complex and variable matrices can 

affect the ionization efficiency of compounds in inconsistent ways. In nontarget analysis of 

environmental samples, while there may be a group of constituents that are consistently detected, 

“contaminants of concern” may only appear sporadically or only at a specific site. This differs 

from a DNA microarray study, which employs a predetermined number of probes. The large 

proportion of sparse features in an environmental dataset can also make statistical analysis 

challenging. Environmental contaminants span a vast range of structural classes and are subject 

to significant fluctuation and alteration given changing consumption patterns and the advent of 

new compounds. Many environmental monitoring studies, mostly focusing on wastewater-

impacted surface waters, have employed clustering methods on nontarget features to separate 

features into groups defined by spatial, temporal, or usage trends [2], [9]–[11]. Alternatively, 

studies aiming to identify new or site-specific contaminants focus on features with high intensity 

and low frequency [4], [12]. Of these six particular studies, only two reported employing 

intensity normalization to isotopically-labelled internal standards. Furthermore, an in-depth 

review of study reporting in eight nontarget papers found that despite the sensitivity of nontarget 
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analysis to analytical sequence, this aspect of data acquisition was “not adequately emphasized” 

[13]. 

Methods of correcting for batch effects have been categorized as quality-control (QC) based, 

isotopically-labelled, internal standard-based (ISTD), or sample-data driven [14]. QC-based 

methods rely on QC samples created from aliquots of all samples within a batch, which are 

injected multiple times throughout the course of a run. Then, models are used to find 

relationships between the QC peak intensities and injection order to separate batch effects from 

the biological/chemical differences [15], [16]. ISTD-based approaches employ a robust suite of 

isotopically labelled internal standards added to each sample, and feature peak intensities are 

scaled according to the corresponding ISTD. The method developed by Boysen et al. (2018) is a 

combination of both QC- and ISTD- methods, using replicate injections of pooled QC samples to 

determine the ISTD to best minimize the coefficient of variation for each feature. Compared to 

QC- or ISTD-based approaches, sample data-driven approaches have the benefit of avoiding the 

extra cost of internal standards and the need for additional instrument time [14]. One example of 

a sample data-driven method is ComBat, an empirical Bayes method that estimates the 

hyperparameters for the distribution of batch effects by pooling information across features 

within a batch, and then adjusts intensities accordingly [17]. Selection of the method of 

correction should be made based on the type of data collected and the nature of subsequent 

analyses to be performed. PCA, which performs a change of basis using variables explaining the 

greatest variation within the dataset, may become scrambled, whereas the results of a 

hierarchical cluster analysis, which considers the similarities between samples or features, may 

become clearer [18]. 
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Because batch correction can introduce bias and variance, it is also necessary to identify 

measures of the “success” of batch correction approaches. These measures are borrowed from 

the ‘omics fields that have addressed this issue previously, although they require special 

considerations when applied to environmental samples. For example, a visualization technique 

such as relative log abundance (RLA) plots, which centers features either by the within- or 

across-group median and uses boxplots to assess the “tightness” of features around zero must 

presume that metabolites will be present in every sample [19]. This method would not 

necessarily be applicable to sparse environmental datasets, especially ones geared towards the 

discovery of contaminants of concern unique to a site or sampling date. If we were to assume 

that (high quality) features that are detected in more than 85-90% of samples are part of a 

consistent background metabolome, then those features may be visualized via RLA plots for 

comparison between correction methods. Both De Livera et al. [19] and Drotleff & Lämmerhofer 

[20] recommend use of multiple methods to assess batch correction efficacy, combined with a 

holistic evaluation rather than quantitative thresholds. A method known as principal variability 

component analysis (PVCA) estimates the variability within the dataset that is associated with 

analytical batches by fitting a linear mixed model to the first few principal components [21], 

[22]. With this method, seeing a decrease in the variability associated with analytical batch from 

the uncorrected to the corrected data would suggest a successful correction. 

Given the challenge posed by “obscuring variation” for nontarget studies that monitor complex 

environmental matrices over extended periods of time, this study aims to assess the applicability 

of batch-correction techniques and the measures of their success. While there is not a one-size-

fits all approach for different datasets, this can still serve as a relevant example of the process. To 

this end, we used multiple datasets: 1) Wastewater treatment plant (WWTP) influent and effluent 
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samples plus sites within the catchment system collected 7 times over a 9-month period and 

analyzed in four different analytical batches as the samples were processed (multi-batch; MB), 

and 2) the same wastewater samples run in a single analytical batch (single batch; SB), after all 

the samples had been collected and processed (Table 3-1).  ComBat correction, an empirical 

Bayes technique, was applied to the MB dataset and the results (MB-C) were compared to the 

uncorrected MB (MB-unC) and SB datasets using principal variation components analysis 

(PVCA), principal components analysis (PCA), and hierarchical clustering analysis (HCA). 

Additionally, a conventional approach of using sample median internal standard (ISTD) peak 

heights to scale raw peak heights of features was employed on the same MB dataset to obtain 

MB-IS, which was compared to MB-unC through PVCA and PCA.  

Table 3-1: Description of datasets and processing applied to each 

Sample description 
Dataset 

name 

Analytical 

batches 

Analytical 

Run Date 

Samples per 

analytical 

batch 

Processes applied 

− Sub-sewershed 

(n=42) 

− WWTP influent 

(n=7) 

− WWTP effluent 

(n=7) 

SB 1 7/17/17 56 

− Feature filtering 

− Log2 Transform 

− Quantile 

Normalization 

MB-unC 4 

5/22/16 8 

“” 
6/17/16 8 

9/26/16 24 

3/3/17 
16 

MB-IS “” “” “” 

− Feature filtering 

− Scaled by median 

ISTD peak height 

MB-C “” “” “” 

− Feature filtering 

− Log2 Transform 

− Quantile 

Normalization 

− ComBat correction 
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Experimental 

This is the same sample set as described in the previous chapter. Detailed descriptions of the 

sample collection, preparation, data acquisition methods and quality assurance/quality control 

measures applied to this sample set are reported elsewhere [23] and are briefly described in 

Appendix 2. 

Nontarget Alignment 

First, raw data files were converted from instrument vendor format (Agilent .d files) to the 

analysis base file format (Reifycs Analysis Base File Converter v. 4.0.0). These files were then 

deconvoluted and aligned in MS-DIAL (v. 3.90) using internal standards for retention time 

correction. The data files included in the MB alignment were: 7 method blanks (one per month), 

10 wastewater matrix spikes (one each month plus three extra), 4 100-ppb calibration standards 

(one per batch), 7 influent samples, 7 effluent samples, and 75 sub-sewershed samples. The data 

files included in the SB alignment were: 8 method blanks, 12 wastewater matrix spikes, 7-100 

ppb calibration standards, 7 influent samples, 7 effluent samples, and 74 sub-sewershed samples. 

For SB, conventional LC-MS parameters were used, whereas for MB-unC/C, an All-Ions 

experiment file was included. Alignment parameters are detailed in the supporting information, 

Tables A4-1 and A1-3.  

Data Pre-Processing  

To remove low abundance background features, feature filtering rules were applied. A 

standard signal-to-noise cut-off of ten was used. Blank “subtraction” filters required that the 

maximum signal in wastewater samples be greater than ten times the average signal in the 

method blanks. Features with retention times below 4.5 minutes were excluded due to the poor 
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chromatographic quality of early-eluting peaks that results in unreliable alignment of these 

features.  

To further reduce the number of features, Mass Spectral Feature List Optimizer (MS-FLO), 

which was designed as post-processing step to be used with MS-DIAL alignments [24], was 

implemented to join ammonium and sodium adducts to their matching molecular ion. Parameters 

used are included in Table A1-4.  Next, features that were not detected at a height of 3,000 

counts or more in at least one of the 56 WW samples were eliminated, as some features were 

only present in blank, standard, or spiked wastewater samples that were included in the 

alignment set for quality control purposes. The phenomenon of split features, which can occur 

during alignment despite the use of retention time correction from labelled internal standards, 

was handled by joining features that met the following three criteria: 1) retention times within ± 

15 seconds, 2) m/z within 10 ppm, and 3) MS1 isotopic abundance ratios with coefficient of 

variation of 20% or less. Finally, features that occurred in 60% or more of samples from at least 

one month or site were retained, as the study goal was to find patterns of chemical profiles in 

space and time. After all feature filtering steps, the sample set was reduced to only include 56 

wastewater samples: 7 influent, 7 effluent, and 42 trunkline samples, to enable better comparison 

between SB, MB, and the work done by Teerlink et al. [23]. 

To obtain the dataset MB-IS, every peak height was divided by the median ISTD peak height 

of the sample, using the labelled ISTDs that were also used for retention time correction in the 

MS-DIAL alignment (Table A1-3). This was used rather than a retention-time specific ISTD 

correction, because of the uneven distribution of ISTDs throughout the duration of the 

chromatographic run. 



 

 

39 

 

Additionally, raw height values were transformed by applying 𝑦′ = log2(𝑦 + 1), since ion 

abundances for over 90% of features in this data set range over more than six orders of 

magnitude. Then, for all datasets quantile normalization was applied to adjust the distributions of 

feature heights [25]. Quantile normalization was implemented in R using normalize.quantiles 

from the package preprocessCore (v. 1.54.0) [26]. 

Batch Correction 

Briefly, ComBat assumes that the additive and multiplicative batch effects on each feature are 

part of a distribution of batch effects. These distributions are assumed to follow a Normal and 

Inverse Gamma distribution, respectively, when using the parametric version, as was used here. 

The hyperparameters of these two distributions (additive and multiplicative) are estimated 

empirically from the data for each batch, such that the method can pool information across 

features. These are then used to adjust intensities accordingly. 

The parametric ComBat batch correction method [17] was applied to MB-unC to create MB-C. 

Covariates indicating experimental factors for site and sampling date were not applied. ComBat 

was applied in R using ComBat, part of the sva (v. 3.40.0) package [27]. 

Data Analysis (PCA, HCA, PVCA, and Differential Abundance) 

The script for conducting PVCA was adapted from Boedigheimer et al. (2008). Experimental 

factors included in the model were: sampling location, sampling date, and analytical batch 

number (all variables as factors). The script first calculates the correlation matrix for the dataset, 

then uses lme (from package lme4 v. 1.1.27.1) [28] to fit a linear mixed effects model using the 

experimental factors for each principal component, up to 60% of overall variance, where pcn is 

the number of principal components required to account for 60% of overall variance. For the 

three multi-batch datasets, the model formula used was as follows: 
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𝑝𝑐𝑖~(1| 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑚𝑜𝑛𝑡ℎ) + (1|𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) + (1|𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑏𝑎𝑡𝑐ℎ)      (Eq. 3-1) 

Where the mean of each sampling month, sampling location, and analytical batch was assumed 

to be randomly distributed with a center of zero and an unknown variance. For the single-batch 

dataset, the analytical batch term in Eq. 3-1 was omitted. For The mixed effects model pools 

information within each factor to compute an unbiased estimation of the variance. The weighted 

average of variance for each experimental factor is then computed using eigenvalue of each pci 

as the weight.  

Matrices of the final 56 samples containing features that had been filtered, joined, quantile 

normalized, and (for MB-C only) ComBat corrected, were visualized using PCA. For 

hierarchical clustering, the same pcn components used to account for 60% of the dataset variance 

used in PVCA were included, using Euclidean distance and the Ward’s agglomeration algorithm 

[2], [10]. Number of clusters was selected after consideration of silhouette [29] and gap-statistic 

[30] plots, commonly used to determine optimal number of clusters. 

Differential abundance of features compared across sampling months and sites was analyzed 

with the limma (v. 3.48.3) package [31] in R, using a similar approach to differential expression 

analysis for DNA microarrays [31], [32]. This method uses the function lmFit to compute a 

model for each feature according to experimental design groups. Modelling interactions between 

month and site was not possible since a single sample was taken for each month-site 

combination. Contrasts were defined to determine fold change and significance between 

experimental groupings of month, site, and cluster (as defined by HCA). For example, the 

contrast “Influent – Effluent” compares the abundances of features between influent and effluent 

samples. To compute statistical significance, the eBayes function was used, which employs an 

empirical Bayes approach to shrink standard errors of features toward a pooled estimate [33]. 
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The Benjamini-Hochberg correction was used to control the false discovery rate , such that 

features with an adjusted p-value less than 0.05 were retained for analysis.  

Results & Discussion 

Feature filtering and joining 

After applying filtering rules, the number of features decreased from 63,259 to 3,108 in SB and 

136,938 to 25,822 in MB (Table A4-3).  

One possible reason for this discrepancy may be the degradation of some features during 

sample storage before the acquisition of the single-batch data. The extent of this degradation may 

depend on the types of compounds present in samples, as it has been found that illicit drugs, 

pharmaceuticals, and their metabolites are stable when stored on SPE cartridges at -20°C [34], 

[35], whereas some antibiotics degrade in extracts at -20°C after four weeks [36]. Another 

possible explanation is that the SB dataset contains only MS1 information, whereas the MB 

dataset was acquired in All-Ions mode. This could lead to MS-DIAL misidentifying fragments as 

molecular ions. Finally, the use of multiple analytical batches could simply lead to more 

misalignment of features due to greater mass error and contamination from samples run between 

batches. 

In addition to adducts making it through the alignment algorithm, “split features” are also often 

observed. These can take one of two forms: duplicate features and alternating features. Duplicate 

features have identical abundance values for most of the samples, but the algorithm missed the 

abundances for one of the features in a handful of samples so these are reported as two features 

(Table 3-2a). MS-FLO incorporates a duplicate feature joining tool, but duplicate features are not 

always consolidated by this application. The second form of split features, alternating features, 

result in abundances of the same magnitude being reported for every other feature across samples 
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(Table 3-2b). These “split features” are hypothesized to be artifacts from the retention time 

correction step in alignment, which should affect single-batch date less than multiple-batch data. 

The reduction in feature number after the process of joining split features was 6.7% (2,126 

features) for SB and 5.5% (3,847 features) for MB.  

Table 3-2. Example application of split feature joining algorithm 
 Abundance  

  
Alignment 

ID 

Average 

m/z 

Average 

RT 

M:M+1 Sample 

1 

Sample 

2 

Sample 

3 
Sample 4 Sample 5 

Sample 

6 
(or M+2) 

(a) 
141 83.0501 5.82 0.0607 119320 114649 166851 149155 108584 56291 

142 83.0502 5.7 0.0579 119320 114649 166851 149155 108584 56291 

(b) 
185 89.06 6.07 0.0457 0 938614 877930 0 0 699778 

187 89.0601 5.85 0.0501 141085 938614 568 715556 1375229 530 

 

Ultimately, joined split-features made up 5.1% (about 1316 features) of MB and 24% (about 

746 features) of SB. The existence of split features or similar alignment artifacts is a challenge 

that is not unique to our lab group or users of MS-DIAL. For example, Schollée et al. (2021) 

employed a similar algorithm of joining features when they faced the issue of peak tailing being 

identified as unique features when using enviPick for alignment.  

Comparison of principal variance component analysis 

PVCA allows for visualization of the contributions of experimental factors (sampling location, 

sampling date, and analytical batch) as well as the proportion of residual, or unexplained 

variance, to overall variance within the dataset (Figure 3-1). For SB, we included a simulated 

analytical batch, which assigned SB samples to the analytical batch number in which it was 

analyzed in the MB data sets.  The weighted average proportion variance of 0.15 computed for 

batch is slightly higher than for sampling date, but lower than for sampling location or residual. 

With this sample set, it is difficult to separate the factors of sampling date and analytical batch, 

because samples from the same month are always in the same batch, and this collinearity is 
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likely the reason for the variability attributed to simulated analytical batch here. For MB-unC, 

analytical batch is associated with the greatest proportion of the variance, which then decreases 

after ISTD scaling is applied (MB-IS) and goes away completely with the application of ComBat 

correction (MB-C). Instead, for MB-C, much of the variability in the dataset is “residual”, 

meaning it cannot be attributed to sample date or location alone.  

 

Figure 3-1. PVCA plots show contributions to the overall variance for three experimental factors 

plus unexplained (residual) variance for single-batch (SB), uncorrected multi-batch (MB-unC), 

ISTD-scaled multi-batch (MB-IS), and ComBat corrected multi-batch (MB-C). * The analytical 

batch factor was omitted for SB.   

Comparison of principal components analysis and hierarchical clustering analysis 

The change seen in the PVCA plots is consistent with the way that samples rearrange after 

PCA and HCA. For set SB, the plot of the first two principal components (Figure A4-2a) shows 

effective separation of effluent samples from influent and trunkline samples in PC1. Further 

inspection via HCA (pcn = 16) reveals separation of six effluent samples plus July influent from 

* 
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the rest of the sample set (Figure A4-2b) in clusters one and two, while the July effluent sample 

is found in cluster four. Mixing of months is observed in all clusters. There is some grouping by 

sampling site, for example in cluster three, there are five samples from site E and four from site 

G grouped together. Examination of principal component pair plots of PCs one through five 

(Figure A4-4a) shows a consistent mix of samples from different sampling dates and analytical 

batches (where a simulated analytical batch variable is included for the sake of comparison).  

For the MB-unC PCA plot, apart from a cluster of effluent samples, there is clear evidence of 

separation of samples by batch (Figure 3-2a): samples from batches 1 and 3 group in the top-left 

corner, batch 2 in the bottom-left, batch 4 in the top-right, and effluent samples in the lower 

middle. Although they do form a relatively distinct cluster, the effluent samples are not clearly 

distinguished from influent/trunkline samples along either the first or second principal 

component axes, which account for the greatest percentage of overall variance. This indicates 

that before batch correction, analytical batch differentiates samples more than whether they were 

treated or untreated. November and January, the fourth analytical batch, group together, making 

up the entirety of cluster one in the HCA (Figure 3-2b). June, the second analytical batch, is also 

on its own, comprising the entirety of cluster five in Figure 3-2b. Interestingly, the third batch, 

consisting of months July, August, and September, groups close with the first batch (May), 

forming clusters two, three, and four. While cluster two is comprised entirely of May samples, 

two May lateral sites, E and G, mix with E and G samples from August, July, and September in 

cluster four. Higher-order principal components show the separation of May samples from other 

months, in Figure A4-4b. The only variation from the batch-wise segregation of samples can be 

seen in the clustering of September D, November G/E, and January D/G trunkline samples with 
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June effluent (Figure 3-2b, cluster six), and a group of May, July, August and September 

samples of only sites E and G (Figure 3-2b, cluster four). 

a.   

 
b. 

Figure 3-2. For MB-unC, a) plotting of first two principal components revealed clustering was 

driven by analytical batch, with effluent samples delineated by the drawn black oval, and b) 

HCA (pcn = 4), divided into seven clusters, numbered one through seven for ease of discussion. 

The colored bar to the right of the dendrogram is colored according to analytical batch of each 

sample: blue for batch 1, green for 2, orange for 3 and red for 4. Cluster one is entirely batch 4 

one 

two 

three 

four 

five 

six 

seven 

Batch 
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samples, two 100% batch 1, three is 100% batch 3, four a mix of 1 and 3, five 100% batch 2, six 

is combination of batches, and seven is all effluents except June (batch 2). 

In the MB-IS dataset, feature peak-heights were scaled by the median internal standard peak 

height in each sample. The resulting plot of the first two principal components (Figure A4-3a) 

shows that the influent and trunkline samples are grouped again by batch, with batch 3 on the 

left, batch 1 in the middle, batch 4 in the upper right corner and batch 1 in the lower right corner. 

On the first principal component axis, the treated effluent samples are in line with the untreated 

samples from batches 1 and 4. This is also seen in Figure A4-3b, where only 2 clusters, six and 

seven, contain samples from different batches. For this dataset, the conventional remedy for 

batch effects, scaling by internal standards, is not enough. 

After applying the ComBat batch effect correction method to MB-unC, the grouping of 

samples through PCA and HCA changed (Figure 3-3a and 3-3b). In the graph of the first three 

principal components, now most samples group together, although the group of effluent samples 

is clearly separated primarily by PC1. Additionally, the clustering of analytical batches that was 

observed previously in HCA is less apparent: cluster one has a mix of previously separated 

batches 3 and 4 and cluster two has a mix of batch 2 and 3, where batch 2 was previously very 

different from other samples. The same September D, November G/E, and January D/G trunkline 

samples that made up cluster six in Figure 3-2b are still grouped close to the effluent samples 

(clusters six and seven, Figure 3-3b). Cluster two now only contains the E trunkline samples that 

were previously with G trunkline samples in cluster four for MB-unC. Additional principal 

components bear out this increased mixing of samples between months, in Figure A4-5d. 

Interestingly, when a non-linear dimensionality reduction method, t-SNE, was  used to visualize 

the MB-unC and MB-C datasets, a shift from organized clusters organized by treatment status 

(raw vs. treated effluent) and analytical batch (Figure A4-4a) to a complete absence of clusters 
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(Figure A4-4b) demonstrates the diverging effects on interpretation that occur after ComBat is 

applied.  

 
a. 

 
b.                                                                                                                                   Batch 

Figure 3-3. For MB-C (ComBat corrected MB-unC), a) plotting the first three PCs shows 

absence of batch-wise separation observed in Figure 2b (again with effluent samples circled) and 

b) HCA (pcn = 13) shows more mixing of samples of different batches in the same cluster: 

one 

two 

three 

four 
five 

six 

seven 
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cluster three contains samples from batches 1, 2, and 3. Analytical batch is indicated by colored 

bar to the right of the dendrogram as in Figure 3-2.  

As a final point of comparison, the same sample set was clustered according to concentrations 

of target pesticides as reported by Teerlink et al. (in review) [23]. While the dataset of quantified 

target pesticides considers a significantly smaller subset of compounds (nineteen pesticides) than 

the nontarget features, this data has been matrix corrected, which is difficult to achieve with 

nontarget data. Only two of the target compounds can be measured via LC-MS (fipronil and 

imidacloprid), while the rest were measured via GC-MS. However, we hypothesized that the 

adjuvants used in commercial formulations could create an LC-detectable source signature of the 

pesticide. 

From this analysis, August G, November A and E, and January B and D all were differentiated 

from the bulk of the samples (Figure A4-6). Clearly the August G sample is unique, because it is 

the only sample with a quantifiable amount of chlorothalonil. November A is the only sample in 

the set with quantifiable esfenvalerate, while November E is unique for the significantly higher 

concentrations of the pyrethroids, cypermethrin, deltamethrin, and permethrin, which were 

frequently detected across sites and months. January D contained a higher concentration of 

cyfluthrin, also frequently detected across sites and months, and January B and D both had much 

higher concentrations of fipronil amide. 

Similarly, in the nontarget MB-unC/C analyses, November E and January D were 

distinguished in HCA, which would suggest that the nontarget approach is also able to pick out 

unique samples despite the higher background noise of nontarget features. Recall that for both 

MB-unC/C, November G, and January G samples were included in a distinct cluster with 

November E and January D, perhaps indicating an additional chemical similarity between these 
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samples. For SB, there was some correspondence with the target data with some separation of 

“distinctive” samples, with the distinctive groups made up of five E (including November) and 

four G samples (including August, November, and January). A different grouping of four E 

samples was observed in both the MB-unC (cluster 4) and MB-C (cluster 2) datasets. The site E 

catchment area has a much higher percentage of high-density residential zoning than other sites, 

which Teerlink et al. (in review) [23] connected with this site’s significantly higher loadings of 

pyrethroids. Presumably the higher density of people could lead to a distinct nontarget signature 

from associated with higher loadings of pharmaceutical and personal care products as well.  

However, other samples that were unique in their target pesticide concentrations were not 

found to be as unique when considering nontarget features. January B was grouped near January 

influent, A, and C in HCA for SB, MB-unC and MB-C, perhaps indicating that the bulk of the 

nontarget features for this sample outweighed whatever differences result from the high 

concentrations of target pesticides. This may be true for November A and August G as well, 

which were distinguished from the target data as the single quantifiable detections of 

esfenvalerate and chlorothalonil, respectively, do not show consistent separation in the nontarget 

datasets.  

Comparison of differential abundance 

Evaluation of features found to be significantly different between sampling dates or sampling 

sites was carried out for MB-unC and MB-C. There was a total of 21 contrasts for comparing 

abundance by month, and 28 by site. Additionally, 21 contrasts were created by dividing samples 

according to clusters determined using HCA (Figure 3-2b and 3-3b). Using the within-cluster 

sum of squares and gap-statistic methods, the optimal number of clusters was between 7 and 10, 

so the number of 7 clusters was selected (Figures A4-8 through A4-11). It is important to note 
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that the “one-two” contrast for MB-unC does not consist of the same samples as the “one-two” 

contrast for MB-C (and so on) because of different HCA results.  

In set MB-unC, features with an adjusted p-value < 0.05 were found for all 21 contrasts 

comparing months. Only 5 comparisons of months had significantly different features for MB-C: 

August – July, September – July, January – November, September – August, and January – July. 

Table A4-4 summarizes the number of significantly different features found for each dataset and 

contrast. As illustrated in Figures A4-12 and A4-15, p-value distribution shapes differed 

considerably between MB-unC and MB-C. The sharp drop-off from the left to right in many of 

the contrasts in the MB-unC set indicates a higher number of significantly different features. A 

small subset of features was found to be significant before and after ComBat correction: 14 

features for January – November,  4 for September – August, 127 for August – July, 2 for 

January – July, and 79 for September – July. 

While 23 out of the 28 site-wise contrasts returned significantly different features for MB-unC, 

only 2 had significant results for MB-C: 1 feature for In – G and 5 for G – Eff. The 1 feature for 

In – G and 4 features for G – Eff were also significant in MB-unC. While some studies have 

found that a drawback of applying ComBat is the generation of false positive data [37], [38], we 

found that applying ComBat in this study may have actually lessened differences between 

samples. Indeed, others have found that applying ComBat with an unbalanced experimental 

design can deflate significance [39], but in an environmental monitoring application, the 

relationship between sampling date and run date is intractable. Furthermore, the assumption of 

the algorithm itself that “phenomena resulting in batch effects often affect many genes in similar 

ways (i.e. increased expression, higher variability, etc),” [17] may be appropriate for DNA 

microarrays, but not for the behavior of compounds with unknown physicochemical properties 
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analyzed by the LC-QTOF-MS. It is also possible that many of the features that collectively 

constitute the “wastewater metabolome” simply do not vary much between months and sampling 

sites. 

Comparison of the HCA clusters for the ComBat corrected dataset was slightly more 

successful than comparison by month or site. Indeed, in the analysis of target pesticides, it is 

evidenced that there can be considerable variation within sampling dates and sampling locations. 

For example, there were many significantly different features within the effluent samples, 

contained in clusters four, five, and seven. Creating an m/z vs RT plot of features significant to 

each cluster (Figures A4-20 and A4-21) revealed a large swath of features that could be 

composed of homologous series that were significant to cluster seven (July Effluent and 

September D). No features were found to be significant to the largest cluster, three, perhaps 

because there was still too much variability between the samples (22 out of the 56 samples). As 

was the case with comparison by site and by month, many more features were found to be 

significant for MB-unC clusters. The swath of (possible) homologous series in the effluent 

samples was present in this dataset as well (Figures A4-18 and A4-19).  

Recommendations 

We have shown with these datasets that batch effects from multiple analytical runs can be 

examined through PVCA, PCA, and HCA, and the novel application of ComBat can reduce the 

obscuring effect on the overall spatial and temporal differences in the data. Given the choice 

between analyzing samples in multiple analytical batches or a single analytical batch over the 

course of a long-term environmental monitoring study, we would recommend the use of multiple 

batches with the application of a method such as the one demonstrated here.  Further 

recommendations would include additional QA/QC measures that we did not have at the time of 



 

 

52 

 

data acquisition for this study, such as replicate injections of pooled matrix spikes for each class 

of matrix (for example, the trunkline/influent would be a separate matrix spike from the 

effluent). Furthermore, a more robust standard mix of labelled internal standards with improved 

coverage of the range of retention times and physicochemical properties could enable ISTD-

based batch correction approaches, which may be more appropriate for MS data. Finally, a 

controlled study using synthetic wastewater and surface water matrices spiked with a suite of 

compounds covering a range of physicochemical properties would be useful to compare effects 

of ComBat on samples with matrices of differing complexity.  
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CHAPTER 4 IDENTIFICATION OF SUSPECTED AGROCHEMICALS AND 

TEMPORAL PATTERNS OF NONTARGET FEATURES IN BATCH-SCALE 

WOODCHIP BIOREACTORS 

Introduction 

Woodchip bioreactors have shown promise as a potential best management practice to 

mitigate the harmful effects of agricultural run-off on environmental waters [1]. The primary 

function of these bioreactors is to leverage the microbial reduction of nitrate (NO3
-) to nitrogen 

gas while the microbial community uses the woodchips as a carbon source, thus reducing the 

nutrient load that is released to the environment [2]. One added benefit may also be the removal 

of pesticides [3]. However, in such a complex reaction system, the exact mechanism and extent 

to which the parent compounds are mineralized is unknown. Of the pesticides that adsorb to 

woodchips, some fraction will be irreversibly bound, while another portion could desorb, some 

of which may be available for biodegradation by the resident microbial community into 

transformation products (TPs). Even in a simplified microcosm of the system, variables such as 

redox conditions, composition of the microbial community, and unidentified organic matter 

create a complex interplay of processes. Understanding the relative contributions of abiotic and 

biotic processes and the importance of particular removal processes is essential for confident 

application of these systems in the field.  

When pesticides were spiked into batch microcosms of these woodchip bioreactors, sorption 

was found to be the main pathway for removal from the aqueous phase, occurring mostly within 

the first 24 hours, although desorption from the woodchips also occurred in a bench-scale flow-

through system when there was a greater mass of imidacloprid already sorbed to the woodchips 

[4]. This does not rule out the possibility of microbial degradation, which may only be observed 

from measuring the woodchip-sorbed fraction or by extending the duration of the trial. Indeed, 
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the half-life of imidacloprid in a sediment-water system was found to be 27 days, with the 

formation of bound residues of metabolite desnitro-imidacloprid [5], while diuron was found to 

be completely degraded by an anaerobic sediment culture after about 20 days [6]. 

Nontarget analysis of high-resolution mass spectral (HRMS) data from these systems can be 

used to untangle the many processes at play, given its broad scope approach which can capture a 

diverse set of parent compounds and TPs. Furthermore, application of statistics with time-series 

data can elucidate the significant patterns of chemical changes within the system. For example, 

application of multivariate statistics to nontarget features in a riverbank filtration system 

uncovered different classes of contaminants defined by their travel throughout the system [7]. 

Screening can be focused by comparing the aligned MS1 data against a curated, open source list 

of known agrochemicals [8] and their associated environmental transformation products 

predicted by  a program such as Envipath, which uses functional group-specific 

biotransformation rules to predict TPs [9]. 

The purpose of this work was to gain a greater insight into the varied physicochemical and 

biological processes at work within a woodchip bioreactor system through the application of 

HRMS methods. We hypothesized that temporal trends of nontarget features within the 

biologically active and control microcosms would arise, depending on the dominant process at 

play, and that a curated suspect list of agrochemicals combined with a pathway prediction model 

would improve identification of environmentally relevant compounds. The nontarget dataset 

used here is aligned from three separate trials that examined the kinetics of imidacloprid and 

diuron removal from the water phase in a simplified batch-scale woodchip bioreactor system. 

Although only a single pesticide (imidacloprid or diuron) was intentionally spiked into the 

systems, the woodchips were collected from an operational field bioreactor that is exposed to a 
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variety of agrochemicals. Evidence obtained from different pesticides and TPs offers a window 

into the complexity of these systems and their potential for use as a best management practice. 

Experimental 

Preparation of small-scale batch woodchip reactors 

Three trials were conducted with the same experimental structure, with differing variables 

noted in Table 4-1. Three treatment conditions were applied: an unmodified woodchip treatment 

batch (TB), an microbially-suppressed woodchip control (MC), and a no-woodchip control 

(NWC). Synthetic tile drainage was formulated with MgSO4, KNO3, NaCl, and NaHCO3 to 

maintain electrical conductivity [4]. This was added to a 40 mL Teflon tube, and woodchip-

containing groups (TB and MC) had 3 or 5 g of woodchips, depending on the experiment. Tubes 

were filled completely to eliminate headspace. Woodchips had been obtained from the 

multichannel bioreactor located in the central coast region of California, such that they were 

already “aged”, and were stored at 4 °C airtight buckets. Woodchips for all three trials were from 

different collection batches.  Both control groups (NWC and MC) were dosed with NaN3 to 

suppress microbial activity. All groups were dosed with the same starting concentration of 40 

ng/mL of imidacloprid or diuron. Samples were made in triplicate for 6 time points. The reactors 

were tumbled until sacrificed and analyzed. 

Table 4-1: Structure of batch-scale woodchip bioreactor experiments 
Experiment Mass of 

woodchips (g) 

Woodchip collection 

batch 

Days until near-complete 

NO3
- removal (d) 

Imidacloprid-1 (I-1) 3 1 Not reached 

Diuron (D) 5 2 2 

Imidacloprid-2 (I-2) 5 2 8 
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Sample extraction 

All water samples were extracted within 24 hours of collection. Extraction and analysis of 

water samples for pesticide content were carried out following Moschet et al. (2016), with some 

modifications: the filtration step was omitted due to the small sample volumes. Instead, the tubes 

containing synthetic tile drainage water and woodchips were centrifuged, then the supernatant 

was pipetted directly onto Oasis HLB SPE cartridges (Waters, Massachusetts, USA) that had 

been preconditioned with ethyl acetate, methanol, and ultrapure H2O. Cartridges were dried and 

then eluted with ethyl acetate and methanol, which were evaporated under gentle N2, combined, 

and evaporated to 0.2 mL. Extracts were then brought up to 1 mL with ultrapure H2O, and 200 

ng/mL of labelled internal standards were added to every extract. Extracts were stored at -20°C 

until acquisition. Water samples from the field bioreactors were extracted as described in 

Appendix 2 and Wrightwood et al. [4]. 

LC-QTOF-MS analysis 

Extracts were analyzed by Agilent 1260 Infinity HPLC coupled to an Agilent 6530 QTOF-

MS with a Zorbax Eclipse Plus C18 column (100 mm, 2.5 mm, 1.8 μm, Agilent Technologies, 

Inc.). Briefly, 20 μL of extract was injected with the following mobile phases used in a 23 min 

run at a flow rate of 0.35 mL/min in electrospray ionization (ESI) positive mode: (A) deionized 

water plus 0.1% formic acid, (B) acetonitrile plus 0.1% formic acid. For initial data independent 

acquisition (DIA), All-Ions fragmentation mode was used, meaning all ions with m/z 50−1050 

were fragmented in the collision cell with collision energies (CE) of 0, 10, 20, and 40 eV. CE = 0 

means no fragmentation and is equivalent to a full MS scan. The standard mix of LC-amenable 

compounds included 13 positively ionizing compounds.  LC-QTOF-MS parameters for All Ions 

acquisition are included in Table A1-1. Extracts from experiments I-1 and D were run in a single 
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batch, and I-2 in a separate batch, with randomized sample order and blank and QC injection 

every 10 to 15 sample injections. 

Data dependent acquisition (DDA) of prioritized features was then run using targeted 

MS/MS (tMS/MS) methods with a list of exact mass targets and retention times where collision 

cell voltages again cycled through 0, 10, and 40 eV once a precursor was isolated. Full scan data 

(CE 0 eV) were acquired at a rate of 4 spectra s–1 and high energy scans at 6 spectra s–1. 

Additional parameters are included in Table A1-1. A 100 ng/mL mix of the ESI+ retention time 

index (RTI) calibrants for RTI prediction of candidate structures [10] after the tMS/MS 

experiments were run.   

Nontarget alignment and feature filtering 

MSDIAL (v. 3.66) alignment software was used for nontarget feature alignment because it is 

open source, works with data acquired in All-Ions mode, and allows aligned feature sets to be 

exported in formats that are amenable to subsequent statistical analysis [11]. This program has 

the added benefit of executing a retention time correction using the retention times of internal 

standards, which makes it possible to align samples that were acquired during different runs, as 

exact retention times can vary across runs on the LC. A list of labelled internal standards used for 

this correction can be found in Table A1-3, along with other alignment parameters in Table A1-

2.  

Due to the large number of features generated during alignment, multiple feature filtering 

parameters were applied. A standard signal-to-noise cut-off of ten was used. To further reduce 

the number of features, Mass Spectral Feature List Optimizer (MS-FLO), which was designed as 

a post-processing step to be used with MS-DIAL alignments [12], was implemented to join 

ammonium and sodium adducts to their matching molecular ion. Parameters used are included in 
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Table A1-4.  The phenomenon of split features, which can occur during alignment despite the 

use of retention time correction from labelled internal standards, was handled by joining features 

that met the following three criteria: 1) retention times within ± 15 seconds, 2) m/z within 10 

ppm, and 3) MS1 isotopic abundance ratios with coefficient of variation of 20% or less. Blank 

“subtraction” filters required that the maximum signal in reactor samples be greater than ten 

times the average signal in the blanks. Features with retention times below 4.5 minutes were 

excluded due to the poor chromatographic quality of early-eluting peaks that results in unreliable 

alignment of these features. Finally, any feature that did not appear in two out of three of at least 

one set of replicates was eliminated. 

Suspect screening and feature prioritization 

Figure 4-1 outlines the workflow of the feature prioritization process. This relied on the 

suspect screening that occurs simultaneously with nontarget alignment in MSDIAL and was used 

to generate a list of possible “parent” compounds from the Agilent Pesticide and Water 

Contaminants and the Massbank of North America (MoNA) libraries. Suspect hits that appeared 

in multiple sets of replicates and were agriculturally relevant were prioritized, and parent 

compounds were input to the Envipath pathway prediction model. Additionally, the suspect list 

PubChemLite (October 31, 2020) was filtered for compounds with agrochemical information (a 

category in the PubChem Compound Table of Contents and metadata column within 

PubChemLite) and was used to find exact-mass matches within the filtered feature set (neutral 

mass within +/- 10ppm). As with the suspect hits, any matched parent compounds were input to 

Envipath to generate a list of possible transformation product structures [9]. Exact masses of 

Envipath-predicted TPs were then searched for within the features (neutral mass within +/- 

10ppm). 
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Figure 4-1. Flow diagram of feature prioritization process, beginning from filtered feature list, 

for identification of agrochemicals and transformation products. Suspect hits of parent pesticides 

from the Agilent PCDL and PubChemLite were run through Envipath to generate possible 

environmental TPs, which were searched for in the filtered feature list. 

 

After the suspect screening step, a statistical test was used to categorize the time pattern 

observed for the matched features. For each treatment group (TB, MC, and NWC) within each 

batch (D, I-1, and I-2), a Spearman rank correlation test with a Benjamini-Hochberg correction 

was applied to determine if the feature abundance showed a significant relationship with time. 

For every feature, this resulted in 9 correlation coefficients (rho) values and 9 p-values. 

Theoretically, if a feature showed a significant decrease with time in both the MC and the TB 

treatment groups, it could plausibly be adsorbing, whereas if it showed a significant decrease 

Filtered feature list 

Suspect hits 

• Agilent PCDL 

• MoNA   

• Exact-mass match: 

PubChemLite 

Envipath pathway 

prediction 

products 

• Exact-mass match 

predicted TPs 

Spearman rank 

correlation for time 

pattern 

DDA of prioritized 

features 
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with time in only the TB batch, it may be degraded microbially. Table 4-2 outlines the definition 

for each time pattern. One unexpected pattern that was found by investigating some suspect-

identified compounds was an evolution of a compound over time in only MC treatment set, since 

it was presumed that increasing abundance of a feature would indicate production via 

metabolism. However, this pattern indicates that there may be compounds desorbing from the 

woodchips that are rapidly degraded in the microbially-active treatment group (TB) and thus are 

only observed in the microbially inactive group (MC). 

Features that were a suspect hit or exact-mass match as a “parent” agrochemical and showed 

a significant pattern with time and features that were an exact-mass match with a predicted TP of 

a parent agrochemical were considered for tMS/MS experiments. Features that had a maximum 

peak height less than 50,000 counts were discarded, because the potential for successfully 

acquiring good MS/MS results is lower for low-abundance peaks. This shortened the list from 

171 features to 29 features. 

Table 4-2: Spearman rank correlation conditions for inclusion in feature prioritization lists 

 

 
Correlation in MC Correlation in NWC Correlation in TB 

Microbially degraded 

(deg) 

p > 0.05 p > 0.05 rho < 0 & p < 0.05 

Microbially formed 

(met) 

p > 0.05 p > 0.05 rho > 0 & p < 0.05 

Adsorbed to 

woodchips (ads) 

rho < 0 & p < 0.05 p > 0.05 rho < 0 & p < 0.05 

Desorbed from 

woodchips (des) 

rho > 0 & p < 0.05 p > 0.05 rho > 0 & p < 0.05 

Evolution in 

microbial control 

(MC) 

rho > 0 & p < 0.05 p > 0.05 p > 0.05 
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Structure determination from DDA spectra 

Acquisition of spectra from prioritized precursor ions was impaired by changes in retention 

times, which occurred because of the time elapsed between initial DIA and subsequent DDA 

analyses. For those that were acquired, multiple lines of evidence were employed to determine 

molecular formula and structure when possible. First, raw instrument data files from tMS/MS 

experiments (Agilent .d format) were converted to .abf files and aligned in MS-DIAL 

(parameters available in Table A1-2). Most aligned features were considered “high-quality”- that 

is, the apex of the peak was within the window of fragmentation and the peak itself was of good 

quality. However, some “low-quality” features were also aligned, seen in poorly shaped and 

noisy peaks or a peak with only the tail in the window of fragmentation.  

All aligned features were exported to MSFINDER and SIRIUS/CSI:FingerID, two open-

source formula and structure generation software programs. MSFINDER relies on MS1 isotopic 

spacing and abundance to generate formula candidates, and then scores the known structures 

based on whether the measured mass spectral peaks can be explained by fragmentation rules 

[13]. Parameters used are included in Table A4-5. Alternatively, SIRIUS/CSI:FingerID takes a 

“ground-up” approach by generating fragmentation trees for calculated molecular formulas, 

which are then used to construct a “molecular fingerprint” [14], [15] The molecular fingerprint 

predicts the presence of functional groups, bonds, and heteroatoms that may be present in the 

compound of interest. Structural candidates are scored on their similarity to the predicted 

molecular fingerprint.  

The resulting lists of candidate structures from MSFINDER and SIRIUS/CSI:FingerID were 

merged for each feature to find the common compounds. Compounds were ranked according to a 
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combination of the scores provided by the two software programs, as described in Appendix 5, 

Equation A1-A3. 

 Suspect structures were run through a retention time index prediction model available at 

http://rti.chem.uoa.gr/ to confirm that the structure was plausible, given the experimental 

retention time [10]. When the suspect structure was the highest scoring and had a plausible RT, 

that was reported. When the highest scoring structure was not the suspect compound, this was no 

longer investigated, being outside the scope of the study. For some features, where there was no 

overlap between the two programs and/or structures returned had very low scores (<5 for 

MSFINDER and <-100 for CSI:FingerID), if the structure was plausible given the RT, 

experimental spectra were compared against library spectra of the suspect. If there was no 

available spectrum for the suspect, it was generated using CFM-ID. CFM-ID is an in silico 

fragmentation tool that used machine learning from collision induced dissociation datasets to 

score potential fragment probabilities [16]. 

Results & Discussion 

Overview of targeted MS/MS experiment results 

Of the 29 features that were chosen for tMS/MS experiments, 21 were exact-mass matches 

from PubChemLite, including 7 known transformation products. One feature was a suspect hit 

from the MoNA library. The other 7 features were exact mass matches with Envipath-predicted 

TP’s generated from the parent suspect hits and exact mass matches. Suspected parent 

compounds that were input to Envipath for TP prediction are listed in Table 4-3. However, not 

all parent compounds could be confirmed: 5 were omitted from tMS/MS experiments due to low 

peak intensity. Additionally, some TPs of parents that were not suspect hits in the system were 

included in the tMS/MS list due to documentation on PubChem, and thus PubChemLite. 
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Interestingly, there were no exact-mass matches to any TPs predicted from imidacloprid or 

diuron, despite these compounds being used in the fields that drain to the woodchip bioreactor 

system and being spiked during the bench-scale experiments. The results of the Spearman 

correlation test with time for exact-mass hits are included in the appendix: Table A4-1 for the 

first imidacloprid batch, Table A4-2 for the diuron batch, and Table A4-3 for the second 

imidacloprid batch.  

Table 4-3: Inputs to Envipath pathway prediction program 
Parent compound Matched via tMS/MS 

inclusion** 

InChIKey 

Aldimorph Exact mass  1 SBUKOHLFHYSZNG-

UHFFFAOYSA-N 

Antimycin A1 Exact mass  1 UIFFUZWRFRDZJC-

UHFFFAOYSA-N 

Atrazine Library* 0 MXWJVTOOROXGIU-

UHFFFAOYSA-N 

Butopyronoxyl Exact mass  0 OKIJSNGRQAOIGZ-

UHFFFAOYSA-N 

Chlorantraniliprole Exact mass  1 PSOVNZZNOMJUBI-

UHFFFAOYSA-N 

Cyantraniliprole Exact mass  1 DVBUIBGJRQBEDP-

UHFFFAOYSA-N 

DEET Exact mass; 

Library  

1 MMOXZBCLCQITDF-

UHFFFAOYSA-N 

Diuron Target  XMTQQYYKAHVGBJ-

UHFFFAOYSA-N 

(Z,Z)-Gossyplure Exact mass  0 BXJHOKLLMOYSRQ-

QOXWLJPHSA-N 

Imidacloprid Target  YWTYJOPNNQFBPC-

UHFFFAOYSA-N 

MCPA-2-ethylhexyl Exact mass  0 IDGRPSMONFWWEK-

UHFFFAOYSA-N 

MCPA-isooctyl Exact mass  0 PDIYKJRLQHHRAG-

UHFFFAOYSA-N 

Prallethrin Exact mass  1 SMKRKQBMYOFFMU-

UHFFFAOYSA-N 

* Suspect screening in MS-DIAL found TP’s of atrazine, so atrazine was input to Envipath 

** 1: indicates inclusion in tMS/MS list; 0: indicates exclusion from tMS/MS list due to low 

abundance (<50,000) 

After the tMS/MS experiments, 21 of the annotated features were successfully captured 

within the retention time window and had a well-shaped extracted ion chromatogram (EIC), 2 
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were measured within the RT window but had a noisy EIC, 3 were missed due to changed RT, 

and 3 were missed due to RT shift and had a poor EIC peak shape. From the 21 acquired targeted 

mass spectra, an unequivocal formula was generated for 17. Of the 4 spectra without clear 

formulae, one was not aligned by MSDIAL and could not be processed by MSFINDER and 

SIRIUS CSI:FingerID, while the other three did not show clear agreement. Six compounds were 

then identified with confidence level 2a, included 3 parent pesticides, 2 pesticide TPs, and 

indole-3-carboxylic acid. Additionally, there were two spectra for which the molecular formula 

matched the suspected identity, but a level 2a identification could not be reached. These results 

are explained in the following sections and are summarized in Table A5-4.  

Level 2a: Parent Pesticides 

Three parent pesticides were confirmed against library spectra (level 2a confidence): 

chlorantraniliprole, cyantraniliprole, and DEET. Chlorantraniliprole and cyantraniliprole are both 

synthetic anthranilic diamines (or “ryanoid”) insecticides, derived from the naturally occurring 

alkaloid ryanodine, much in the way that pyrethroid insecticides were derived from the natural 

product, pyrethrin [17]. The application of the three main synthetic ryanoids, which includes 

these two, has been steadily increasing since 2008 [17], and inspection of the California 

Department of Pesticide Regulation (CDPR) Pesticide Use Reporting (PUR) from 2016-2018 

shows their use in the areas draining to the multichannel woodchip bioreactor [18]. 

Cyantraniliprole showed contrasting patterns with time in the two imidacloprid-spiked 

experiments. The first imidacloprid experiment showed the feature decreasing with time in the 

microbially-active woodchips only, with low abundance in both the control groups (Figure 4-2a), 

suggesting microbial degradation as a potential removal mechanism (Table A5-1). The second 

imidacloprid batch showed an increase with time in both the microbially-active woodchips and 
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microbially-suppressed woodchip groups (Figure 4-2b), indicating both sorption and microbial 

removal mechanisms (Table A5-3). These experiments differed both in the mass of woodchips 

used, as well as the date the woodchips were collected from the field, which was reflected in the 

differing rates of nitrate removal (Table 4-1). While we did not take sulfate or ORP 

measurements, it is not unreasonable that redox conditions within these two experiments might 

have been different as well. Cyantraniliprole was found to have high Kd values in an anaerobic 

water-sediment system with sediment residues increasing initially due to sorption, then 

decreasing due to microbial breakdown or formation of nonextractable residues [19]. 

Cyantraniliprole was not present above the intensity cut-off in the samples from the diuron-

spiked experiment. 

 

a. 

 
b. 

Figure 4-2. Patterns in batch-scale reactors with time for the feature identified as 

cyantraniliprole in a) first and b) second imidacloprid spiked batches. 

The feature identified as chlorantraniliprole demonstrated less striking temporal patterns: 

seen in Figure 4-3, the majority of peaks are below 3000 counts in all treatment groups, with one 

outlier sample from the second imidacloprid-spiked batch in the TB group at the day 0 time point 

having a peak of about 80,000 counts. Although the results of the Spearman test determined that 
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this feature had the pattern of increasing through time only in the MC samples in the second 

imidacloprid spiked test (Table A5-3), the peak heights are rather low, and not that different 

from the other two treatment groups. This shows the limitations of this screening method, as 

some results can be spurious. 

 
a. 

 
b. 

 
c. 

Figure 4-3. Box-and-whisker plot showing 

peak height for feature identified as 

chlorantraniliprole, in a) diuron, b) first 

imidacloprid, and c) second imidacloprid-

spiked batch experiments compared between 

treatment groups, across all time points.  

 

The presence of DEET in the woodchip samples was unexpected. DEET is not typically used 

in agriculture, rather it is used as an insect repellant applied on the skin of humans or animals. 

However, DEET is ubiquitous in surface water and groundwater in the U.S. and other countries, 
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so it could have been present in the irrigation water [20]. As with chlorantraniliprole, the results 

of the Spearman test determined that this feature had the pattern of increasing through time only 

in the MC samples in the diuron spiked test, which alone suggests desorption from the 

woodchips that would be microbially degraded (Table A5-2). However, the peak heights are 

rather low, and not that different from the other two treatment groups, as seen in Figure 4-4. 

 
a. 

 
b. 

 
c. 

Figure 4-4. Box-and-whisker plots of raw peak 

height for feature identified as DEET across all 

time points, in a) diuron, b) first imidacloprid, and 

c) second imidacloprid-spiked batch experiments 

compared between treatment groups.  

 

Level 2b-2a: Pesticide TPs 

Azoxystrobin acid was one of the pesticide TPs identified, at a level 2a, which is defined as a 

library spectrum match [21]. Greater detail on the match is included in the appendices: Figure 
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A5-6 for the MS2 and Table A5-8 for the fragment masses. As seen in Figure 4-5, this feature 

shows in increasing pattern with time in the TB and MC treatments during all three trials, but 

only was labelled with the “desorption” pattern for the second imidacloprid-spiked experiment, 

in which it is present at much higher abundance (Table A5-3). Azoxystrobin is a strobilurin 

fungicide with documented use in the PUR [18] and was measured in quantifiable amounts in the 

influent and treated effluent of the field bioreactors (Figure 4-6) [4]. Azoxystrobin acid is a 

major but nonspecific microbial degradation product of azoxystrobin, as it can be formed in both 

anaerobic and aerobic soils, as well as water and water-sediment systems [22], any of which 

would have been possible in this case. Additionally, it is subject to leaching, at variable rates 

depending on soil properties [23]. 

 
a. 

 
b. 

 

    

    

    

     

      

        

 
 

 
 
  

 
  

 
 

         

  

   

  

 

     

     

     

      

        

 
 

 
 
  

 
  

 
 

         

  

   

  



 

 

72 

 

 
c. 

Figure 4-5. Raw peak height for feature 

identified as azoxystrobin acid, in a) diuron, b) 

first imidacloprid, and c) second imidacloprid-

spiked batch experiments compared between 

treatment groups shows increasing pattern with 

time in both MC and TB groups. 

 

 

Figure 4-6. Measurements 

of azoxystrobin 

concentrations in influent 

and treated effluent (no-

woodchip control, 

pennywort, and woodchip) 

from field bioreactors. 

 

Additionally, the m/z = 455.0034 was identified at a 2a confidence level as IN-J9Z38, a 

documented transformation product of cyantraniliprole. While other identifications were 

accomplished through structure generation and scoring in both MSFINDER and SIRIUS-

CSI:FingerID, that was not possible for m/z = 455.0034. This might have been due to the many 

molecular formulae possible at such a high m/z, combined with lack of fragmentation at the 
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lower two collision energies. However, comparison of the fragments seen at higher collision 

energies (Figure 4-8a) with a spectrum acquired by Huynh et al. [24] (Figure 4-8b) showed 

similar fragments with an average mass error less than 15 ppm (Table 4-4) and the RTI 

prediction model accepted the structure given the measured RT. Furthermore, the formula is 

supported by the MS1, with relative abundance of M-2 = 73%; M = 100%; M+2 = 22%. The 

combination of halogens this most closely corresponds to is a single Cl and Br, seen in Figure 4-

7. 

 

Figure 4-7. MS1 isotopic abundance patterns for m/z = 455.0023 corresponds to with a single Cl 

and Br. 
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b. 

Figure 4-8. a) MS2 at 20 and 40 eV for m/z = 455.0023 measured in present study, compared to 

b) MS1 and MS2 measured by Huynh et al. for IN-J9Z38 [24] 

 

Table 4-4: Fragment mass errors calculated from 20 and 40 eV collision energies for IN-J9Z38 
Fragment 

molecular 

formula 

Fragment 

exact mass 
Average mass 

error (ppm) 

C5H5N3Br 185.9666 -11.56 

C10H7BrClN4 296.9542 0.17 

C18H10N6OCl 361.0604 -13.16 

C19H12BrClN6O 455.0023 -3.96 

Like azoxystrobin acid, IN-J9Z38 is similarly nonspecific, as it can be formed from 

cyantraniliprole in aerobic and anaerobic soil and sediment, during hydrolysis, and as a plant 

metabolite [25]. Evaluation by the European Food Safety Authorization categorized 

cyantraniliprole as moderately to highly mobile in soil and IN-J9Z38 as immobile [25], thus it is 

likely that this TP formed somewhere in the field bioreactor system. The increasing peak heights 

with time in both the MC and TB treatments suggests desorption from the woodchips (Figure 4-
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9), rather than formation during the trial. Other bench-scale studies using woodchips from this 

system have been influenced by the presence of pesticides sorbed to the woodchips: Wrightwood 

et al. [4] found that a batch of woodchips with particularly high sorbed imidacloprid led to higher 

effluent concentrations of imidacloprid. 

 
a. 

 
b. 

 
c. 

Figure 4-9. Peak height of feature identified as 

IN-J9Z38 in a) diuron, b) first imidacloprid, 

and c) second imidacloprid-spiked batch scale 

experiments over time, compared between 

treatment groups. 

 

M/z = 208.0992 was prioritized as an exact mass match to metabolite CGA 50720 of S-

Metolachlor, and while the formula generated from the targeted mass spectrum is consistent with 

this, and although the structure was predicted to match with the measured retention time, the 
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structure was not among the highest scoring in SIRIUS CSI:FingerID or MSFINDER. By 

inspecting the individual collision energies in Qualitative Navigator (B.08.00), more fragments 

were observed than were included in MSFINDER. Because there was no available library 

spectrum for this structure and very little literature regarding it,  CFM-ID was used to generate 

an in-silico spectrum. Using this diagnostic evidence (Figure A5-5, Table A5-7), this 

identification is classified with a 2b level of confidence [21]. 

 
a. 

 
b. 

Figure 4-10. Peak height of feature identified tentatively as metochlor metabolite CGA 50720 in 

a) diuron and b) first imidacloprid spiked experiments. 

 

This feature showed a significant correlation with time in the MC samples of the first 

imidacloprid-spiked experiment, and an increase-then-decrease pattern with time in the MC 

samples of the diuron-spiked experiment (Figure 4-10). Again, there is not much literature on 

this metabolite, so information such as its mobility and persistence in soil or water. It was 

included in the suspect list used by Reemtsma et al. [26], but was not identified. This metabolite 

can form from metolachlor by aqueous photolysis, metabolism in aerobic and anaerobic soil, and 

metabolism in aerobic and anaerobic aquatic systems [27], [28]. Metolachlor is a broad-spectrum 

herbicide and PUR from 2017 indicates a single application in the area near the bioreactors [18]. 
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Level 3-2a: Indole Compounds 

The feature with m/z = 162.055 was identified as indole-3-carboxylic acid (ICA), with a 2a 

confidence level. An additional indole-containing compound may be the feature with m/z = 

176.0705, but the precise structure cannot be determined. For this feature, the highest scoring 

structure in MSFINDER and SIRIUS-CSI:FingerID was indole-3-acetic acid (IAA), but the RTI 

prediction for this structure returned “Predicted/Expected retention times are not reliable (Box 

3)”. However, another structural isomer is methyl indole-3-carboxylate, which scored lower in 

the structure generating programs, but returned an acceptable RTI prediction result (Box 2). For 

these reasons, it is difficult to choose either structure without an analytical standard, resulting in 

a confidence level of 3.  

Both features were striking examples of the “MC” time pattern, seen in plots of peak height 

over time for ICA (Figure 4-11) and m/z = 176.0705 (Figure 4-12). IAA, one of the candidate 

structures of m/z = 176.0705, has agrochemical information on its PubChem entry due to its 

activity as a plant growth hormone. IAA, ICA, and other indole compounds can also be formed 

by rhizobacteria [29]  (although this specific study did not measure methyl indole-3-carboxylic 

acid) under anaerobic to micro-aerobic conditions [30]. Sodium azide was the agent used in the 

microbial control samples to suppress microbial activity, as it disrupts the function of the 

electron transport chain. Generation of these compounds in the microbial control but not in the 

microbially active batches suggests that these compounds desorb from the woodchips and are 

degraded in microbially active bioreactors.  
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a. 

 
b. 

 
c.  

Figure 4-11. Peak height of feature identified 

as ICA in a) diuron, b) first imidacloprid, and c) 

second imidacloprid-spiked batch scale 

experiments over time (days), compared 

between treatment groups. 
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a. 

 
b. 

 
c. 

Figure 4-12. Peak height of feature m/z = 

176.0705 in a) diuron, b) first imidacloprid, 

and c) second imidacloprid-spiked batch scale 

experiments over time (days), compared 

between treatment groups. 

 

 

Conclusions 

One important component of predicting the efficacy of woodchip bioreactors in the treatment 

of pesticide-contaminated agricultural run-off is understanding the contributions of 

physicochemical versus biological processes to removal of pesticides. By using woodchips 

collected from field bioreactors in a more controlled study, it was observed that adsorbed 

compounds could pose a risk for desorption, while compounds that get removed by degradation 

shift the concern to transformation products. Of course, this will depend on a range of variables, 

including the lignin and cellulose content of the woodchips themselves [31], the molecular 
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structures of the pesticides in the system [32], as well as the microbial community and other 

environmental factors. Future studies could gather woodchip samples from multiple bioreactor 

sites and compare the effects of lignin/cellulose content and microbial community composition 

on degradation processes. Even a small-scale, controlled study such as this comprises a 

surprisingly complex system. Compounds such as cyantraniliprole, its metabolite IN-J9Z38, and 

azoxystrobin acid appear to be re-mobilizable from the woodchips and not subject to microbial 

degradation under these conditions. In a flow-through reactor such as those in the field system, 

this may pose a risk to receiving waters [33], or it may indicate that compounds are becoming 

bioavailable again for further breakdown [34].  
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CHAPTER 5 DISCUSSION AND CONCLUSION 

While the main conclusions have been stated in Chapters 2-4, this final chapter is intended to 

integrate conclusions from all three chapters, discuss regulatory applicability and outline 

potential directions for future research. 

Conclusions 

Chapter 2 used suspect screening to explore a wastewater catchment system across space and 

time. Suspect-identified anthropogenic contaminants that were then quantified did not reveal 

much spatial variability. This may be because land use between the catchment areas sampled 

does not vary greatly, except that site E has a greater percentage of high-density residential 

zoning. Instead, greater variability was observed between the sampling months for a selection of 

the identified compounds: DEET showed a pattern consistent with presence of mosquitoes 

outdoors; caffeine unexpectedly showed significantly lower levels in May and June. Compounds 

measured by the GC-QTOF-MS included human metabolites of xenobiotics, which indicate 

exposure to compounds found in cigarette smoke and vehicle exhaust. This is illustrative of the 

wealth of information to be gleaned from wastewater data; biomarkers such as these could be 

used as proxies to compare exposures to air pollution, an important variable in public health 

applications. However, exposures could not be accurately back calculated without knowing that 

the compounds wouldn’t arise in the system from other sources or are not degraded in the sewer 

system.  

Chapter 3 focused on the challenges associated with nontarget analysis of the same 

wastewater dataset, because samples had been collected many months apart and LC-MS data was 

acquired in multiple analytical batches. An empirical Bayes method (ComBat) for estimation and 

subtraction of analytical batch effects was applied to the dataset, which was then compared to 
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three common alternatives: the same data acquired in a single analytical batch (with varying 

holding times), the multi-batch dataset before application of ComBat, and the multi-batch dataset 

scaled by the median internal standard peak height. When using principal variance component 

analysis, there was a clear removal of  variance associated with analytical batch after the 

application of ComBat, which was not seen with internal standard scaling. Additionally, PCA of 

the corrected dataset grouped samples according to treatment status (treated effluent versus raw 

wastewater) along the first principal component, rather than according to the analytical batch as 

in the uncorrected data. Furthermore, fewer features were found to be significantly different 

between sample sites and dates after the application of ComBat, compared to the uncorrected 

dataset. This was especially true of the site-wise comparisons: almost no features were found to 

be significantly different between the group of all seven effluent samples and the raw 

wastewater, except for the group of all seven samples from site G. The lack of differentiation 

between sites was similar to that seen with the suspect-identified compounds in Chapter 2. 

Chapter 4 demonstrated how to leverage time-series data for pattern identification of 

nontarget features. Like wastewater treatment systems, woodchip bioreactors are the sites of 

many biological and physicochemical processes, occurring in series or parallel. By identifying 

features displaying trends indicative of microbial degradation or adsorption, we can get a better 

understanding of the treatment efficacy of the bioreactors. For example, multiple compounds 

were observed to desorb from the woodchips, including cyantraniliprole and its transformation 

product, IN-J9Z38. This means that desorption of pesticides and TPs into bioreactor effluent 

could also happen in the field reactors, although the specific conditions that cause this are 

unclear. Suspect screening in woodchip bioreactors can be more focused than in wastewater, 

because only chemicals used in agriculture are of concern, and curation efforts of chemical 
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metadata enables this, as in the creation of the PubChemLite database. Using a curated suspect 

list has been found to yield more accurate identifications [1]. 

The lens through which a system is viewed (i.e., target, suspect, and nontarget) has an effect 

on our understanding of that system, due to the advantages and disadvantages of each approach. 

For example, there was greater spatial variability observed within the wastewater dataset when 

specific target pesticides were considered [2] than when a broad scope nontarget method was 

used in Chapter 2. In wastewater, nontarget screening may make it difficult to pull out low-level 

contaminants of concern, unless toxicity can be used as an orthogonal data source, due to the 

much greater abundance of endogenous metabolites and commonly used components of 

consumer products. However, the ability to isolate chemical features with a pattern of interest, 

without having to know their identity, can afford greater levels of insight into the processes 

occurring within complex treatment systems. 

Discussion 

It has been argued that anthropogenic chemicals should also be considered “agents of global 

change”, along with CO2 emissions, nutrient pollution, and biodiversity loss, because of their 

rate of proliferation, utilization, and diversification [3], [4]. This growth is not likely to slow with 

a growing population, a changing climate, and improved chemical discovery pipelines. As we 

continue to discover these chemicals and their transformation products in environmental water 

and other matrices, and observe the toxic outcomes, it will be important to implement treatment 

systems at the interfaces of the built and natural environments. For example, N-(1,3-

Dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-quinone) was determined to be 

the culprit of acute mortality events in coho salmon after storm events; this highly toxic 

ozonation product of 6PPD in tire wear particles was washed from roads into urban streams [5]. 
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However, bioretention beds were found to eliminate the toxicity of urban stormwater, and 

represent a low-cost and scalable solution that effectively removes a variety of toxic components 

of stormwater runoff [6].  

When it comes to measuring the efficacy of treatment systems, whether they are large, 

centralized wastewater treatment plants or low-tech bioreactors, monitoring for single or a 

handful of compounds will no longer be sufficient. Suspect screening and nontarget analysis 

should be implemented as a key first step, to establish the presence of important compounds, 

which could then be measured in exact quantities by target screening [7]. However, successful 

nontarget studies begin with thoughtful experimental design.  

Every decision node in an un-targeted study represents a trade-off. First, as noted in Chapter 

2, collecting flow-weighted wastewater samples provides the most accurate measurement of 

contaminant loads. In Chapter 4, by measuring only the aqueous phase of the reactors, time and 

materials were saved, but the exact mechanism of diuron or imidacloprid removal could not be 

determined. Next, sample clean up can affect what chemicals are ultimately detected: solid phase 

extraction was found to affect to recovery of source-specific feature fingerprints, especially with 

increasing dilution and matrix complexity [8]. However, forgoing SPE with raw wastewater 

samples would not be an option, thus the extraction medium will define the “chemical space” 

that can be assessed [9]. This chemical space will be further narrowed by the choice of 

instrument and ionization method used. Consider the lack of correlation between compounds 

measured on the GC with those measured on the LC in chapter 3: completely different 

conclusions about the nature of the system might be reached if only one or the other was used. 

Other choices that come with data acquisition include whether to run in a single batch or in 

multiple batches when samples are received and processed over a long span of time, as seen in 
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chapter 2. The choice to collect in data-dependent (DDA) versus data-independent acquisition 

(DIA) mode will also affect the features that are ultimately identified: DDA is appropriate if only 

high-abundance features are to be considered and eliminates the need for reacquisition of 

MS/MS later, but DIA fragments all ions, retaining a broader scope but making it necessary to 

rerun samples in targeted MS/MS mode to determine structures.  

These are just a handful of decisions that must be made in these studies, not even considering 

the data-processing steps. Fortunately, there has been a great deal of work done to create 

guidelines for replicability and making studies supportive of regulatory action [10]–[12]. On the 

front of identifying pesticide transformation products, there are two main roadblocks: first, while 

studies of parent and transformation products are required for pesticide reregistration, this 

information exists in “gray literature” that is not readily available, and second, reference material 

and library spectra of transformation products are frequently not commercially available. While 

tools such as the EnviPath pathway prediction model and CFM-ID have been developed to fill 

these gaps, an alternative is the European Crop Protection Association (ECPA), which is 

committed to providing reference materials for transformation products of the chemicals it 

produces [7]. Additionally, information on chemical usage should be made available by 

regulatory agencies for improved suspect screening; for example, the California Department of 

Pesticide Regulation’s Pesticide Use Reporting database is extremely valuable in documenting 

agricultural pesticide applications, but currently the most recent year available is 2018. A 

proactive approach would be to require chemical manufacturers to be able to publicly produce 

chemical data such as risk assessments and reference material as a condition of market access. 
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APPENDIX 1 GENERAL SUPPLEMENTARY EXPERIMENTAL 

Table A1-1: LC-QTOF-MS parameters for All Ions acquisition and targeted MS/MS (tMS/MS) 

acquisition 
Agilent 6530 QTOF 

Injection volume (µL) 20 

LC settings  

Mobile phase   

A (pos) milliQ water + 0.1% formic acid 

B (pos) Acetonitrile + 0.1% formic acid 

Solvent flow (µL/min) 350  

Gradient  

 2% B for 1.5 min 

 2-100% B for 15 min 

 100% B for 5 min 

 Equilibration to initial conditions for 3 min 

Column Zorbax Eclipse Plus (2.5 mm ID, 1.8 µm particle 

size) 

Guard-column Zorbax Eclipse Plus (2.5 mm ID, 1.8 µm particle 

size) 

Column temperature (°C) 30 

Source parameters  

Gas temperature (°C) 300 

Gas flow rate (L/min) 12 

Nebulizer (psi) 25 

Sheath gas temperature (°C) 350 

Sheath gas flow rate (L/min) 11 

Capillary (V) 3000 

Nozzle voltage (V) 1500 

Fragmentor (V) 110 

Skimmer (V) 65 

Cell RF (eV) 0,10, 20, 40 

Octopole RF (V) 750 

MS Settings  

Gas temperature (°C) 300 

Drying gas flow rate (L/min) 12 

Nebulizer (psig) 25 

Sheath gas temperature (°C) 350 

Sheath gas flow rate (L/min) 11 

Vcap 3500 

Fragmentor (V) 110 

Reference mass correction 121.0509, 922.0098 

All Ions Data independent acquisition (DIA)  

Scan range 50-1050 m/z 

Scan speed 4 spectra/s 

Collision energies (eV) 0, 10, 20, 40 

Targeted MS/MS Data dependent acquisition 

(DDA) 

 

MS1  
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Scan range 30-1050 m/z 

Scan speed 4 spectra/s 

Collision energies (eV) 0 

Maximum time between MS (s) 3 

MS2  

Scan range MS2 30-1050 M/Z 

Scan speed 6 spectra/s 

Collision energies (eV) 0, 10, 20, 40 

Retention time window (min) 0.8  

Isotopic width Narrow (1.3 m/z) 

Z 1 

 

Table A1-2: General MS-DIAL alignment parameters for tMS/MS and All Ions data 

 tMS/MS All Ions 

Project   

MS1 Data type Profile Profile 

MS2 Data type Centroid Profile 

Ion mode Positive Positive 

Target Metabolomics Metabolomics 

Mode ddMSMS diMSMS 

Data collection 

parameters   

Retention time 

begin 4 0 

Retention time 

end 100 100 

Mass range begin 0 0 

Mass range end 2000 5000 

MS2 mass range 

begin 0 0 

MS2 mass range 

end 2000 0 

Centroid parameters   

MS1 tolerance 0.01 0.01 

MS2 tolerance 0.025 0.025 

Isotope recognition   

Maximum 

charged number 2 2 

Data processing   

Number of 

threads 5 5 

Peak detection 

parameters   

Smoothing LinearWeightedMovingAverage LinearWeightedMovingAverage 
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method 

Smoothing level 3 3 

Minimum peak 

width 5 5 

Minimum peak 

height 3000 3000 

Peak spotting 

parameters   

Mass slice width 0.1 0.1 

Exclusion mass list (mass & tolerance) 

Deconvolution 

parameters   

Sigma window 

value 0.5 0.5 

MS2Dec 

amplitude cut off 0 0 

Exclude after 

precursor TRUE TRUE 

Keep isotope 

until 0.5 0.5 

Keep original 

precursor 

isotopes FALSE FALSE 

MSP file and MS/MS 

identification setting   

MSP file 

MergedPCDL_AllSpectra_Positive.

msp 

MergedPCDL_AllSpectra_Positive.

msp 

Retention time 

tolerance 100 100 

Accurate mass 

tolerance (MS1) 0.01 0.01 

Accurate mass 

tolerance (MS2) 0.05 0.05 

Identification 

score cut off 80 80 

Using retention 

time for scoring FALSE TRUE 

Using retention 

time for filtering FALSE FALSE 

Text file and post 

identification (retention 

time and accurate mass 

based) setting   

Text file   
Retention time 

tolerance 0.1 0.1 
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Accurate mass 

tolerance 0.01 0.01 

Identification 

score cut off 85 85 

Advanced setting for 

identification   

Relative 

abundance cut off 0 0 

Top candidate 

report FALSE TRUE 

Adduct ion setting   

[M+H]+   
[M+NH4]+  
[M+Na]+   
Alignment parameters 

setting   

Reference file (varies for alignment) (varies for alignment) 

Retention time 

tolerance 0.05 0.05 

MS1 tolerance 0.015 0.015 

Retention time 

factor 0.5 0.5 

MS1 factor 0.5 0.5 

Peak count filter 0 0 

N% detected in at 

least one group 0 0 

Remove feature 

based on peak 

height fold-

change FALSE FALSE 

Sample max / 

blank average 5 5 

Sample average / 

blank average 5 5 

Keep identified 

and annotated 

metabolites TRUE TRUE 

Keep removable 

features and 

assign the tag for 

checking TRUE TRUE 

Gap filling by 

compulsion FALSE TRUE 

Tracking of isotope 

labels   

Tracking of FALSE FALSE 
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Table A1-3: Labelled internal standards used for retention time alignment in MS-DIAL 

Compound 

Rt 

(min) 

Rt tol. 

(min) m/z 

m/z tol. 

(Da) 

Min. 

Height Use 

Methomyl-D3 6.65 0.2 166.0721 0.025 5000 T 

Simazine-D5 9.5 0.2 207.1163 0.025 5000 T 

Dimethoate-D6 8.16 0.2 236.0443 0.025 5000 T 

Diuron-D6 10.89 0.2 239.0618 0.025 5000 T 

Imidacloprid-D4 8.01 0.2 260.0858 0.025 5000 T 

Pendimeth-D5 15.9 0.2 287.1775 0.025 5000 T 

Boscalid-D4 12.69 0.2 347.0651 0.025 5000 T 

 

Table A1-4: Parameters used for MS-FLO for adduct feature joining 

Sodium adduct joining Ammonium adduct joining 

[0. Global Parameters] [0. Global Parameters] 

row merging delimiter = _ row merging delimiter = _ 

[1. Contaminant Ion Removal] [1. Contaminant Ion Removal] 

enabled = False enabled = False 

[2. Duplicate Removal] [2. Duplicate Removal] 

enabled = True enabled = True 

mz tolerance = 0.01 mz tolerance = 0.01 

retention time tolerance = 0.1 retention time tolerance = 0.1 

peak height tolerance = 1.0 peak height tolerance = 1.0 

minimum peak match ratio = 0.85 minimum peak match ratio = 0.85 

[3. Isotope Detection] [3. Isotope Detection] 

enabled = True enabled = True 

mz tolerance = 0.01 mz tolerance = 0.01 

retention time tolerance = 0.02 retention time tolerance = 0.02 

minimum r^2 to match = 0.0 minimum r^2 to match = 0.0 

mass shift = 1.003355 mass shift = 1.003355 

[4. Adduct Joiner] [4. Adduct Joiner] 

enabled = True enabled = True 

mz tolerance = 0.01 mz tolerance = 0.01 

retention time tolerance = 0.02 retention time tolerance = 0.02 

adduct = ['M+H', 'M+Na', 21.98187, 

0.0, 0.8] 

adduct = ['M+H', 'M+NH4', 17.026547, 

0.0, 0.8] 

 

isotopic labels 

Ion mobility   

Ion mobility data FALSE FALSE 
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Table A1-5: MSFINDER Settings 

Formula finder parameters 
 

LEWIS and SENIOR CHECK Yes 

Ms1 Tolerance 10 

Isotopic Abundance Tolerance 20 

Mass tolerance type ppm 

Element Ratio Check Common Range 

Extended Range FALSE 

Extreme Range FALSE 

Element Probability Check Yes 

Element selection O, N, P, S, F, Cl, Br, I 

Structure finder parameters 
 

TreeDepth 2 

MS2 tolerance 20 

Relative Abundance Cut Off 5% 

Data source 
 

MINEs (Metabolic In Silico Network Expansions) 

setting 
Never use it 

PubChem Online setting Only use when there is no query in local 

databases 
Local Databases 

 

HMDB (Human) 
 

YMDB (Yeast) 
 

PubChem 
 

SMPDB (Human) 
 

UNPD (Natural Product) 
 

ChEBI (Biomolecules) 
 

PlantCyc (Plant) 
 

KNApSAcK (Natural Product) 
 

BMDB (Bovine) 
 

FooDB (Food) 
 

ECMDB (E.coli) 
 

DrugBank (Drug) 
 

T3DB (Toxin) 
 

STOFF (Environment) 
 

NANPDB (Natural Product) 
 

LipidMAPS (Lipids) 
 

Urine (Human) 
 

Saliva (Human) 
 

Feces (Human) 
 

Serum (Human) 
 

CSF (Human) 
 

User Defined DB: PubChemLite 
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APPENDIX 2 ADDITIONAL EXPERIMENTAL (CHAPTERS 2 AND 3) 

Sample Collection 

Briefly, samples were collected as twenty-four-hour time-weighted composites at the wastewater 

treatment plant influent, effluent, and six sub-catchment locations before the treatment plant.  

 

Figure A2-1. Schematic of connections within sewer system. Trunkline sites A, B, C, D, E, G, plus 

combined influent and treated effluent of the WWTP were sampled monthly. 

 

Sample Preparation 

Samples (200 mL of raw wastewater or 1 L of treated effluent) were filtered through a GF/F 

filter (0.45µm) which was extracted separately. Filtered samples were spiked with of a stable 

isotope labeled surrogate solution (Table A), and passed over an Oasis HLB cartridge (Waters, 

Massachusetts, USA), then eluted ethyl acetate followed by methanol, which were collected 

separately. Jars were rinsed with 3:1 hexane: acetone, which was combined with the ethyl acetate 

eluate and concentrated to 1 mL. Methanol eluate was also concentrated to 1 mL. Filters were 

air-dried and then extracted in a sonicating bath with 1:1 hexane/acetone, then concentrated to 1 

mL. One LC extract for each sample was created from 0.5 mL of the ethyl acetate, methanol, and 

G 

A 

B 

C 

D 

E 

WWTP 
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hexane-acetone extracts, then concentrated to 0.2 mL and reconstituted to 1 mL with ultrapure 

water and spiked with the stable isotope labeled internal standard mix. Additionally, a GC extract 

was made from 0.5 mL of the ethyl acetate and hexane-acetone extracts, which was concentrated 

to 0.2 mL dibromooctafluorobiphenyl (DBOFB). 

Liquid Chromatography and Mass Spectrometry 

Data was acquired using an Agilent 1260 Infinity HPLC coupled to an Agilent 6530 QTOF-

MS. Chromatographic separation was achieved with a Zorbax Eclipse Plus C18 column (100 

mm, 2.5 mm, 1.8 µm, Agilent Technologies, Inc.) Ultra-pure water plus 0.1% (v/v) formic acid 

(A), and acetonitrile plus 0.1% (v/v) formic acid (B) were used as mobile phases for positive 

electrospray ionization. The initial gradient was held at 2% B for 1.5 minutes, followed by a 

linear increase to 100% B at 16.5 min and held for 4 min. A postrun column equilibrium time of 

3 minutes was used resulting in a total run time of 23.5 minutes. Instrumental parameters are 

included in Table A1-1. For the single batch set (SB), only MS1 data was collected. For the 

multi-batch set (MB-unC/C), acquisition was done using All-Ions fragmentation method. 

Gas Chromatography Mass Spectrometry 

Extracts prepared for analysis on the GC-QTOF-MS (Agilent 7890B GC coupled to an 

Agilent QTOF/MS 7200B with a HP-5MS 30 m × 0.25 mm, 0.25 μm column, Agilent 

Technologies, Inc.) were run once in negative chemical ionization (NCI) mode using methane as 

collision gas and a second time in electron ionization (EI) mode.  

Method Evaluation, Quality Assurance, and Quality Control Measures 

Prior to applying this analytical method to the wastewater samples tested here, the 

performance of the method was evaluated for 22 pesticides in wastewater influent samples 

analyzed in positive electrospray ionization mode. Recoveries of spiked compounds ranged from 
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57-120% with an average of 89% recovery, and method detection limits were between 4 and 34 

ng/L. Quality assurance and quality control measures applied during the study included 

preparation and analysis of one method blank sample and one matrix spike duplicate in each 

monthly batch of 8 samples. Performance of the overall method for nontarget feature extraction 

was evaluated by assessing the ability to align, recover spectra, and identify compounds in the 

matrix spike samples.  When spiked at 100 ppb into wastewater influent, the alignment and 

deconvolution algorithms correctly isolated and identified 100% of the spiked compounds in 

both single and multi-batch data sets for 19/23 compounds, with high detection frequencies for 

most of the remaining compounds and was over 50% effective for 18/23 compounds spiked at 20 

ppb in both data sets (Table A1-3).  

Table A2-1: GC-QTOF-MS instrumental parameters 

GC-NCI-MS Method  
Injection Volume 2.5 µL 

Injection Mode splitless 

Purge Flow to Split Vent 33 mL/min at 0.75 min 

Inlet Temperature 280 °C 

  

GC Settings  
Column HP-5MS (30m x 0.25mm, 025 µm) 

Initial Oven Temperature 100 °C, hold 1 min 

Ramp 1 15°C/min to 200 °C 

Ramp 2 3.8 °C/min to 290 °C 

Ramp 3 10 °C/min to 300 °C, hold 4 min 

He Flow 1.35 mL/min, constant flow 

Transfer Line Temperature 300 °C 

  

MS Settings  
N2 Collision Gas 1.5 ml/min 

Reactant Gas (Methane) 40% 

  

Source Temperature 200 °C 

Emmission Current Filament 90 µA 

Electron Energy 70 eV 
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Scan Range 35-1000 m/z 

Scan Speed 3 spectra/sec 

Reference Mass Correction internal mass correction after every second sample 

  

  

GC-EI-MS Method  
Injection Volume 2.5 µL 

Injection Mode splitless 

Purge Flow to Split Vent 33 mL/min at 0.75 min 

Inlet Temperature 280 °C 

  

GC Settings  
Column HP-5MS (30m x 0.25mm, 025 µm) 

Initial Oven Temperature 60 °C, hold 1 min 

Ramp 1 40 °C/min to 120 °C 

Ramp 2 5 °C/min to 310 °C 

Optimized He Flow for RT locking 0.776 mL/min, constant flow 

Transfer Line Temperature 280 °C 

  

MS Settings  
N2 Collision Gas 1.5 ml/min 

Source Temperature 300 °C 

Emmission Current Filament 35 µA 

Electron Energy 70 eV 

Scan Range 35-1000 m/z 

Scan Speed 4 spectra/sec 

Reference Mass Correction internal mass correction after every second sample 
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APPENDIX 3 SUPPORTING RESULTS CHAPTER 2  

Table A3-1: GC Target Compounds Detection in Standards and Spikes 

Compounds Ion 

Mode 

Detection Frequency in 250 

ppb Standards (%) 

Detection Frequency in 

100 ppb Spikes1 (%) 

Detection Code2 

Non-pyrethroid pesticides 

Chlorothalonil GC-EI 67 0 C 

Chlorpyrifos GC-EI 100 30 C 

Pyriproxyfen GC-EI 100 903 C 

Pyrethroid Insecticides 

Bifenthrin GC-EI 0 0 N 

Bioallethrin GC-EI 0 0 N 

Cyhalothrin GC-EI 100 20 C 

Cypermethrin GC-EI 67 0 C 

Deltamethrin GC-EI 0 0 N 

Esfenvalerate  GC-EI 100 0 C 

Etofenprox GC-EI 0 0 N 

Imiprothrin GC-EI 0 0 N 

Permethrin GC-EI 100 70 C 

Phenothrin GC-EI 100 50 C 

Prallethrin GC-EI 0 0 N 

Resmethrin GC-EI 100 50 C 

Tetremethrin GC-EI 0 0 N 
1Pyriproxyfen concentration: 600 ppb. 
2C: Compounds identified correctly. N: Compounds that are not identified. 
3More than one entry. Summed the numbers detected in all entries. (Total: 3 standards, 10 

spikes) 

 

Table A3-2: Suspect-annotated LC compounds and level of identification confidence, if 

achieved 

Compound Use Category 

ID Level 

of 

Confidenc

e 

Detection 

frequency1  

(n = 56) 

DEET / Diethyltoluamide Pesticide 1 89% 

Valsartan 

Pharmaceutical- anti-

hypertensive 1 73% 

Caffeine Food 1 68% 

Paraxanthine Metabolite- caffeine  66% 

Prasterone enantate Hormone  66% 

Oleamide Multi- food packaging; 1 61% 
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lubricatns 

Ajmaline 

Pharmaceutical- anti-

arrythmic  59% 

Atenolol 

Pharmaceutical- beta 

blocker  59% 

Acetaminophen Pharmaceutical- NSAID 2a 57% 

Mycophenolic acid 

Pharmaceutical- 

immunosuppressant 2a 54% 

Theobromine Food- flavoring agent  48% 

Tryptophan Endogenous metabolite  45% 

Hydrocortisone (Cortisol) Pharmaceutical  43% 

BTA / Benzotriazole Cleaning product  41% 

8-Hydroxyquinoline antiseptic  38% 

Benzoylecgonine Metabolite- cocaine  36% 

1-(3-

Trifluoromethylphenyl)piperazin

e Drug  32% 

DEP / Diethyl phthalate Plasticizer 1 32% 

Octamylamine 

Pharmaceutical- 

antispasmondic  30% 

Gabapentin Pharmaceutical  29% 

Fexofenadine 

Pharmaceutical- 

antihistamine 1 25% 

Iohexol Iodinated Xray Contrast 1 25% 

Piperine Natural product 2a 25% 

Phenethylamine Metabolite  21% 

2,6-Xylidine Metabolite  20% 

TBEP / Tris(2-butoxyethyl) 

phosphate Flame retardant 1 16% 

Octyl methoxycinnamate Fragrance  14% 

Bis(2-ethylhexyl) phthalate 

(DEHP) Plasticizer 1 13% 

Ivabradine 

Pharmaceutical- cardiac 

therapy  13% 

Sulfamethoxazole 

Pharmaceutical- 

antibiotic 1 13% 

Metoprolol 

Pharmaceutical- beta 

blocker 1 11% 

Trimethoprim 

Pharmaceutical- 

antibiotic 1 9% 

Ivermectin B1a Vet  7% 

Diethofencarb Fungicide  5% 

Carbamazepine 

Pharmaceutical- anti-

seizure 1 4% 
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O-DT / O-Desmethyltramadol Metabolite 1 2% 

TEP / Triethyl phosphate Flame retardant  2% 
1 In trunkline, WWTP influent and effluent 

Table A3-3: GC suspect-identified compounds and detection frequencies 

Compound Use Category Mode Detection 

frequency1 

(n = 56) 

Groomer 

(n = 4) 

Laundry 

(n = 4) 

PCO  

(n = 4) 

Phenol, 2,2'-

methylenebis[6-(1,1-

dimethylethyl)-4-

methyl- 

Consumer 

product 

antioxidant 

EI 39.3% 25% 0% 25% 

Indole, 3-methyl- Endogenous EI 91.1% 25% 25% 0% 

p-Cresol Endogenous EI 60.7% 25% 0% 0% 

Hippuric acid Endogenous EI 44.6% 0% 25% 0% 

Allopregnane-

3.alpha.,20.alpha.-diol 

Endogenous EI 35.7% 0% 25% 75% 

Cholestan-3-ol, 

(3.beta.,5.beta.)- 

Endogenous EI 30.4% 100% 75% 75% 

TCPP Flame retardant EI 75.0% 50% 75% 0% 

Oxybenzone Flavoring; 

Fragrance; 

Personal care 

EI 96.4% 25% 0% 0% 

Benzoic acid Flavoring; 

Fragrance; 

Personal care 

EI 76.8% 25% 0% 0% 

Heptasiloxane, 

hexadecamethyl- 

Flavoring; 

Fragrance; 

Personal care 

EI 75.0% 50% 100% 50% 

Triclosan Flavoring; 

Fragrance; 

Personal care 

EI 64.3% 0% 25% 0% 

o-Cymene Flavoring; 

Fragrance; 

Personal care 

EI 60.7% 0% 0% 0% 

Methylparaben Flavoring; 

Fragrance; 

Personal care 

EI 50.0% 0% 25% 0% 

Dimethyl phthalate Flavoring; 

Fragrance; 

Personal care 

EI 44.6% 25% 25% 50% 

Methyl tetradecanoate Flavoring; 

Fragrance; 

Personal care 

EI 44.6% 100% 100% 50% 

Benzene, 1-(1,1-

dimethylethyl)-2-

methoxy-4-methyl- 

Flavoring; 

Fragrance; 

Personal care 

EI 37.5% 0% 25% 0% 
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Benzoic acid, 2-

hydroxy-, pentyl ester 

Flavoring; 

Fragrance; 

Personal care 

EI 37.5% 25% 0% 0% 

Tetrasiloxane, 

decamethyl- 

Flavoring; 

Fragrance; 

Personal care 

EI 33.9% 25% 0% 25% 

Isobutyl paraben Flavoring; 

Fragrance; 

Personal care 

EI 32.1% 0% 0% 0% 

Ethanol, 2-(4-

chlorophenoxy)- 

Flavoring; 

Fragrance; 

Personal care 

EI 30.4% 25% 75% 50% 

1H-Indene, 2,3-

dihydro-1,1,3-

trimethyl-3-phenyl- 

Flavoring; 

Fragrance; 

Personal care 

EI 25.0% 50% 50% 25% 

2(3H)-Furanone, 5-

heptyldihydro- 

Flavoring; 

Fragrance; 

Personal care 

EI 21.4% 0% 25% 25% 

D-Limonene Food EI 94.6% 25% 50% 0% 

aR-Turmerone Food EI 35.7% 100% 75% 50% 

Stigmasta-5,24(28)-

dien-3-ol, 

(3.beta.,24Z)- 

Food EI 25.0% 25% 0% 0% 

Phenol, 3-methyl- Human 

xenobiotic 

metabolite 

EI 96.4% 75% 100% 75% 

2-Naphthalenol Human 

xenobiotic 

metabolite 

EI 30.4% 0% 50% 0% 

1,2-Dichlorobenzene Industrial NCI 39.3% 50% 50% 50% 

Lilial Pesticide EI 55.4% 0% 75% 0% 

o-Hydroxybiphenyl Pesticide EI 50.0% 0% 0% 0% 

Dichlorvos Pesticide NCI 48.2% 100% 100% 75% 

Parathion-methyl Pesticide NCI 21.4% 25% 0% 25% 

Etiracetam Pharmaceutical EI 82.1% 75% 100% 25% 

Iminostilbene Pharmaceutical EI 76.8% 25% 25% 0% 

Ibuprofen Pharmaceutical EI 51.8% 100% 100% 75% 

Gabapentin Pharmaceutical EI 41.1% 0% 0% 0% 

Guaifenesin Pharmaceutical EI 28.6% 0% 0% 0% 

Stigmastanol Pharmaceutical EI 26.8% 0% 0% 0% 

9,12,15-

Octadecatrienol 

Plastics EI 69.6% 50% 50% 25% 

1 Trunkline, influent, & effluent 
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Targeted MS/MS structure results 

Acetaminophen 

 

 

Figure A3-1. tMS/MS at collision energies of 0, 10, 20, and 40 eV for the feature identified at 2a 

confidence level as acetaminophen. 

 

Table A3-4: Acetaminophen: library fragments and average mass error 

Library Fragment 

m/z* 
Average mass 

error (ppm) 
152.0716 -6.58 

110.0622 -23.62 

65.0389 -6.15 

*from MassBank Europe: https://massbank.eu/MassBank/Result.jsp?inchikey=RZVAJINKPMORJF-

UHFFFAOYSA-N 
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Mycophenolic acid 

 

 

Figure A3-2. tMS/MS at collision energies of 0, 10, 20, and 40 eV for the feature identified at 2a 

confidence level as mycophenolic acid. 

 

Table A3-5: Mycophenolic acid: library fragments and average mass error 

Library 

Fragment m/z* 
Average mass 

error (ppm) 
321.1299 6.066082 

303.1225 -6.48913 

207.0644 -3.97461 

159.0397 16.9266 

*Library spectrum from Human Metabolome Database: 
https://hmdb.ca/metabolites/HMDB0015159#spectra 
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Piperine 

 

Figure A3-3. tMS/MS at collision energies of 0, 10, 20, and 40 eV for the feature identified at 2a 

confidence level as piperine. 

 

Table A3-6: Piperine: library fragments and average mass error 

Library Fragment 

m/z* 
Average mass 

error (ppm) 
286.1437 -4.71791 

201.054 2.238205 

135.0431 -2.22151 

*Library spectrum from MassBank Europe: 
https://massbank.eu/MassBank/Result.jsp?inchikey=MXXWOMGUGJBKIW-YPCIICBESA-N 
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APPENDIX 4 SUPPORTING INFORMATION FOR CHAPTER 3 

Table A4-1: MS-DIAL alignment parameters for SB and MB datasets 

 SB MB-C; MB-UnC 

Project   

MS1 Data type Profile Profile 

MS2 Data type Centroid Profile 

Ion mode Positive Positive 

Target Metabolomics Metabolomics 

Mode ddMSMS diMSMS 

Data collection parameters   

Retention time 

begin 4 0 

Retention time end 100 100 

Mass range begin 0 0 

Mass range end 2000 5000 
MS2 mass range 

begin 0 0 

MS2 mass range end 2000 0 

Centroid parameters   

MS1 tolerance 0.01 0.01 

MS2 tolerance 0.025 0.025 

Isotope recognition   

Maximum charged 

number 2 2 

Data processing   

Number of threads 5 5 

Peak detection parameters   

Smoothing method LinearWeightedMovingAverage LinearWeightedMovingAverage 

Smoothing level 3 3 
Minimum peak 

width 5 5 
Minimum peak 

height 3000 3000 

Peak spotting parameters   

Mass slice width 0.1 0.1 

Exclusion mass list (mass & tolerance) 

Deconvolution parameters   
Sigma window 

value 0.5 0.5 
MS2Dec amplitude 

cut off 0 0 
Exclude after 

precursor TRUE TRUE 

Keep isotope until 0.5 0.5 

Keep original FALSE FALSE 
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precursor isotopes 

MSP file and MS/MS 

identification setting   

MSP file MergedPCDL_AllSpectra_Positive.msp MergedPCDL_AllSpectra_Positive.msp 
Retention time 

tolerance 100 100 
Accurate mass 

tolerance (MS1) 0.01 0.01 
Accurate mass 

tolerance (MS2) 0.05 0.05 
Identification score 

cut off 80 80 
Using retention time 

for scoring FALSE TRUE 
Using retention time 

for filtering FALSE FALSE 
Text file and post 

identification (retention 

time and accurate mass 

based) setting   

Text file   
Retention time 

tolerance 0.1 0.1 
Accurate mass 

tolerance 0.01 0.01 
Identification score 

cut off 85 85 
Advanced setting for 

identification   
Relative abundance 

cut off 0 0 

Top candidate report FALSE TRUE 

Adduct ion setting   

[M+H]+   
[M+NH4]+  
[M+Na]+   
Alignment parameters 

setting   

Reference file 170717_QC1.abf 160522_10_pos_Pest-STD-100.abf 
Retention time 

tolerance 0.05 0.05 

MS1 tolerance 0.015 0.015 
Retention time 

factor 0.5 0.5 

MS1 factor 0.5 0.5 

Peak count filter 0 0 
N% detected in at 

least one group 0 0 
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Table A4-2: Target compound detection in standards and spiked wastewater after MS-DIAL alignment 

Compound Detection Frequency in 

100 ppb Standards1 (%) 

Detection Frequency in 

20 ppb Spikes2 (%) 

Detection Code3 

 MB 

(n = 4)  

SB 

(n = 7) 

MB 

(n = 10) 

SB 

(n = 12) 

MB SB 

Azoxystrobin 100 100 90 100 C C 

Boscalid  100 100 90 100 U C 

Chlorantraniliprole 100 0 80 0 C  

Clomazone 100 100 90 92 C I 

Cyprodinil 1004 100 1004 100 U C 

DEET  100 100 90 100 C I 

Difenoconazole 100 100 90 100 C C 

Dimethoate 100 100 90 58 U C 

Diuron 100 86 90 50 U C 

Hexazinone 100 100 90 92 C C 

Imidacloprid 100 100 90 83 U C 

Methomyl 100 0 60 8 U C 

Methoxyfenozide  75 100 60 25 U C 

Metolachlor 100 100 90 100 C C 

Pendimethalin  100 100 40 33 U C 

Propanil 100 100 90 75 C C 

Propoxur 100 100 80 67 C C 

Pyriproxyfen  100 100 80 100 C C 

Simazine 100 100 90 67 C I 

Thiacloprid 100 100 90 92 U C 

Remove feature 

based on peak 

height fold-change FALSE FALSE 
Sample max / blank 

average 5 5 
Sample average / 

blank average 5 5 
Keep identified and 

annotated 

metabolites TRUE TRUE 
Keep removable 

features and assign 

the tag for checking TRUE TRUE 
Gap filling by 

compulsion FALSE TRUE 

Tracking of isotope labels   
Tracking of isotopic 

labels FALSE FALSE 

Ion mobility   

Ion mobility data FALSE FALSE 
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Thiamethoxam 100 100 80 83 U C 

Thiobencarb 100 100 70 58 I C 

Triclocarban 100 100 40 67 U C 
1 Triclosan concentration: 10 ppb. 
2 Fipronil concentration: 4 ppb. Pyriproxyfen concentration: 24 ppb. Triclosan concentration: 2 ppb. 
3 C: Compounds Identified correctly; I: Compounds identified as isomers; U: Compounds identified as 

Unknown but the correct compounds are in the top five hits under Compound Search. 

 

Table A4-3: Results of feature filtering rules 

Filter Features in SB Features in 

MB-unC/C 

No filter 63,259 136,938 

S/N Ratio 58,007 92,056 

Blank  52,399 88,871 

Retention time 51,934 85,697 

Adduct joining 43,139 82,171 

Detections in WW 

samplesa 

31,989 70,637 

Split feature joining 29,772 66,790 

Detection frequency at 

60% cut-off 

3,108 25,822 

a Many samples were included in the alignment for the purpose of alignment quality control, 

such as blanks, standards, and spiked wastewater. As a result, some features were present only in 

these samples and not in the 56-sample subset that was ultimately considered. 

 

 

a. 

 

b. 
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c. 

 

d. 

Figure A4-1. PCA scree plots for a) single batch (SB), b) uncorrected multi-batch (MB-unC), c) 

median-ISTD scaled peak height (MB-IS), and d) ComBat-corrected multi-batch (MB-C) show good 

representation by first three principal components, although suggest that PC’s 4 and 5 might be worth 

investigating as well. 

 

a.  
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b.  

Figure A4-2. For SB, a) PCA showed little separation based off sampling month though effluent 

samples did form their own cluster in PC1 (denoted by oval) from raw WW samples, and b) 

HCA also shows that effluent samples are very different from influent and trunkline samples. 

a.  

one 

two 
three 

four 

five 

six 

seven 
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b.                                                                                                                   Batch 

Figure A4-3. For MB-IS, a) PCA showed the grouping of effluent samples (circled), which were not 

entirely distinct in either PC1 or PC2, while raw-WW sample groupings by batch are conserved, and b) 

HCA shows almost exclusive clustering by batch (denoted by colored bar to right), except for treated 

effluent samples and cluster six. 

 

 
a. 

 
b. 

Figure A4-4. t-SNE plots (perplexity = 18) for a) MB-unC and b) MB-C show the organization of 

samples that becomes scrambled after the application of the ComBat correction method. 

one 

two 

three 

four 

five 

six 

seven 
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a. 

 

 

 

 
b. 
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c. 

 

 
d. 

Figure A4-5. Matrix pair plots for principal components 1-5 for a) SB, b) MB-unC, c) MB-IS, and d) 

MB-C.  
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a. 

Figure A4-6. Using 

only quantified target 

pesticides, a) showed 

approximately a 

similar explanation 

of variance as using 

nontarget features, b) 

plotting the first two 

PC’s of wastewater 

samples primarily 

showed the 

separation of 

November and 

January samples 

from the rest, c) little 

separation in PC’s 4 

and 5. 

 

b. 
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c. 

 

 

 

Figure A4-7. Conducting HCA with the first 5 principal components indicates (from left to right) one 

large cluster including trunkline, influent and effluent; a cluster containing a single August trunkline 

sample (the only detection of chlorothalonil); a cluster of six January and four November samples; and a 

cluster of four EPA 5-1 plus two other trunkline samples.  
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a. 

Figure A4-8. Top-ten 

highest variable 

contributions to principal 

components for PCA of 

wastewater set using only 

target-quantified pesticides 

in a) the first dimension, b) 

second dimension, and c) 

third dimension. The red 

line denotes the predicted 

value if variable 

contribution were uniform 

(Kassambra & Mundt, 

2020). 

 

 
b. 

 
c. 
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Figure A4-9. Gap-statistic 

plot for MB-unC to 

determine optimal number 

of clusters at about 10 

clusters 

 

 

Figure A4-10. Total 

within cluster sum of 

squares for MB-unC to 

determine optimal number 

of clusters, about 7 or 8. 

 

 

Figure A4-11. Gap-

statistic plot for MB-C to 

determine optimal number 

of clusters at about 10 

clusters 
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Figure A4-

12. Total 

within 

cluster sum 

of squares 

for MB-C to 

determine 

optimal 

number of 

clusters at 

about 10 

clusters 

 

 

Figure A4-

13. 

Histograms 

of p-values 

from 

contrasts by 

months of 

MB-unC 

shows many 

features are 

significantly 

different 

between 

months 
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Figure A4-14. 

Histograms of p-

values from 

contrasts by 

sampling site of 

MB-unC shows 

significant 

differences between 

sampling sites, but 

also that samples 

such as C, D, and E 

are more like 

effluent, and C – D 

and D – E are 

similar. 

 

 

Figure A4-15. 

Histograms of p-values 

from contrasts by HCA 

cluster shows high 

numbers of significantly 

different features for 

MB-unC. 

 

 

Figure A4-16. 

Histograms of p-

values from contrasts 

by month of MB-C 

shows only a few 

months with a large 

number of 

significantly 

different features, 

unlike for MB-unC 

(Figure S7). 

 



 

 

122 

 

 

Figure A4-17. 

Histograms of p-

values from 

contrasts by site 

for MB-C shows 

very few 

significantly 

different features, 

dissimilar from 

MB-unC (Figure 

S8). 

 

 

Figure A4-18. 

Histograms of p-

values from 

contrasts by HCA 

cluster shows high 

numbers of 

significantly 

different features 

for MB-C. 
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Table A4-4. Counts of features with padj < 0.05 for MB-unC and MB-C, by HCA cluster, Site, and Month 

Contrast MB-unC MB-C Contrast MB-unC MB-C 

In - A 1434  January - November 179 14 

In - B 1658  January - September 917  
In - C 1016  January - August 821  
In - D 837  January - July 1062 2 

In - E 486  January - June 1677  
In - G 42 1 January - May 1300  
In - Eff 691  November - September 1012  
A - B 1155  November - August 931  
A - C 353  November - July 1286  
A - D 353  November - June 1823  
A - E 403  November - May 1471  
A - G 1245  September - August 8 5 

A - Eff 556  September - July 98 88 

B - C 530  September - June 1275  
B - D 856  September - May 498  
B - E 948  August - July 154 136 

B - Eff 1092  August - June 1276  
C - E 61  August - May 519  
C - G 1714  July - June 1071  
C - Eff 43  July - May 457  
D - G 643  June - May 1290  
E - G 529  

 

  
G - Eff 755 5 

 

  
Contrast MB-unC MB-C Contrast MB-unC MB-C 

one - two 1825 123 four - five 1620 761 

one - three 1509 464 four - six 1898 1524 

one - four 1699 2046 four - seven 1856 1177 

one - five 2191 1243 five - six 2412 945 

one - six 1949 1782 five - seven 2166 1198 

one - seven 2220 1406 six - seven 1513 760 

two - three 848 7    

two - four 613 1687    

two - five 1607 628    

two - six 2031 656    

two - seven 1941 1077    

three - four 492 2052    

three - five 1804 816    

three - six 2212 1011    

three - seven 2143 1508    
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Figure A4-19. M/z to RT plot of features found to be significantly lower in a single cluster (denoted by 

color) in MB-unC dataset. 

 

 

Figure A4-20. M/z to RT plot of features found to be significantly higher in a single cluster (denoted by 

color) in MB-unC dataset. 
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Figure A4-21. M/z to RT plot of features found to be significantly higher in a single cluster (denoted by 

color) in MB-C dataset. 

 

 

Figure A4-22. M/z to RT plot of features found to be significantly lower in a single cluster (denoted by 

color) in MB-C dataset. 
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APPENDIX 5 SUPPORTING INFORMATION FOR CHAPTER 4 

Equations 

𝑅𝑎𝑛𝑘 𝑆𝑐𝑜𝑟𝑒 = 0.5 (
1

𝑀𝑆𝐹𝑖𝑛𝑑𝑒𝑟 𝑅𝑎𝑛𝑘
) + 0.5 (

1

𝑆𝐼𝑅𝐼𝑈𝑆 𝑅𝑎𝑛𝑘
)   Eq. A1 

𝑀𝑎𝑡𝑐ℎ 𝑆𝑐𝑜𝑟𝑒 =  0.5 (
𝑀𝑆𝐹𝑖𝑛𝑑𝑒𝑟 𝑆𝑐𝑜𝑟𝑒

10
) + 0.5 (

10

|𝐶𝑆𝐼 𝑆𝑐𝑜𝑟𝑒|
)   Eq. A2 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =  0.4(𝑀𝑎𝑡𝑐ℎ 𝑆𝑐𝑜𝑟𝑒) + 0.6(𝑅𝑎𝑛𝑘 𝑆𝑐𝑜𝑟𝑒)   Eq. A3 

Abbreviations: 

Experiments 

I-1: first imidacloprid-spiked microcosm; I-2: second imidacloprid-spiked microcosm; D: 

diuron-spiked microcosm 

Experimental groups 

NWC: no-woodchip control; MC: microbially suppressed control with woodchips; TB: 

microbially active woodchips 

Statistically determined patterns 

Ads: Adsorbed; Deg: degraded microbially; Des: desorbed; Met: microbial metabolite; MC: 

chemical that desorbs but would be degraded microbially in TB 

Table A5-1: Spearman’s rho and p-values for PubChemLite and Envipath-matched features, I-1 

  NWC MC TB  

Average 

Mz 
Average 

Rt (min) 
ρ p ρ p ρ p Pattern 

100.0765 5.06 -0.46 0.06 0.95 0.00 0.19 0.44 MC 

102.0916 5.60 0.33 0.18 0.96 0.00 -0.29 0.25 MC 

130.1602 6.34 -0.12 0.63 -0.76 0.00 -0.77 0.00 Ads 

146.0586 8.38 
  

0.90 0.00 
  

MC 

162.0550 8.24 0.35 0.16 0.93 0.00 0.55 0.019 Des 

176.0705 8.69 0.27 0.29 0.97 0.00 -0.24 0.33 MC 

188.0706 5.98 -0.02 0.93 0.60 0.01 0.02 0.95 MC 

188.0707 5.71 -0.20 0.43 0.90 0.00 -0.23 0.37 MC 

192.1399 10.78 0.48 0.04 -0.24 0.35 -0.19 0.45 
 

193.122 7.26 -0.07 0.79 0.89 0.00 0.26 0.29 MC 

208.0992 7.72 -0.23 0.35 0.85 0.00 -0.20 0.43 MC 

209.1171 7.44 -0.01 0.98 0.92 0.00 0.00 0.99 MC 

227.1278 7.41 -0.09 0.72 0.92 0.00 -0.13 0.59 MC 

237.1118 9.15 -0.41 0.09 0.71 0.00 0.19 0.45 MC 

239.0597 10.87 -0.05 0.85 -0.47 0.05 -0.51 0.03 Ads 

256.0603 8.10 0.03 0.89 -0.77 0.00 -0.74 0.00 Ads 

281.2484 15.86 0.20 0.42 0.59 0.01 0.01 0.97 
 

281.2484 15.90 0.63 0.01 0.73 0.00 -0.32 0.19 MC 
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284.2958 18.23 -0.45 0.06 -0.54 0.02 -0.49 0.04 Ads 

299.2589 15.88 0.69 0.00 0.76 0.00 -0.37 0.13 MC 

301.1823 12.44 0.04 0.86 0.56 0.02 0.37 0.13 MC 

313.1548 12.90 0.17 0.50 0.67 0.00 0.70 0.00 Des 

321.2407 15.88 -0.01 0.97 0.57 0.01 -0.22 0.37 MC 

334.238 12.35 -0.35 0.15 -0.72 0.00 -0.58 0.01 Ads 

347.2218 11.50 0.16 0.53 0.03 0.89 -0.08 0.77 
 

390.1091 11.11 0.14 0.58 0.40 0.10 0.42 0.08 
 

403.2469 15.89 0.06 0.82 -0.08 0.76 -0.17 0.50 
 

454.9981 13.07 -0.30 0.22 0.15 0.54 0.71 0.00 Met 

473.013 10.99 0.21 0.40 -0.03 0.91 -0.88 0.00 Deg 

481.9777 11.67 -0.23 0.35 0.36 0.14 0.42 0.09 
 

549.281 19.7 -0.34 0.17 0.72 0.00 0.65 0.00 Des 

549.2865 19.62 0.03 0.90 0.56 0.01 -0.36 0.15 MC 

 

Table A5-2: Spearman’s rho and p-values for PubChemLite and Envipath-matched features, D  

  NWC MC TB  

Average Mz 
Average Rt 

(min) 
ρ p ρ p ρ p Pattern 

73.0648 4.91   0.25 0.33 -0.15 0.55  

73.0654 5.81   -0.19 0.47 0.04 0.87  

73.0659 5.02   0.00 0.99 -0.08 0.74  

100.0765 5.06 0.27 0.29 0.04 0.88 0.24 0.35  

102.0916 5.60 0.25 0.33 -0.10 0.70 0.03 0.91  

130.1602 6.34 0.37 0.14 0.44 0.08 -0.69 0.00 Deg 

146.0586 8.38 -0.28 0.27 0.90 0.00 0.49 0.04 Des 

162.0550 8.24 -0.11 0.67 0.94 0.00 0.14 0.58 MC 

176.0705 8.69 -0.02 0.93 0.97 0.00 0.24 0.33 MC 

188.0693 5.24   0.34 0.18 -0.25 0.32  

188.0705 5.84   0.26 0.32 -0.06 0.81  

188.0706 5.98 0.34 0.18 0.52 0.03 -0.17 0.49 MC 

188.0707 5.71 -0.66 0.00      

188.0714 4.97   0.24 0.35 0.30 0.23  

192.1399 10.78 0.04 0.89 0.63 0.01 0.07 0.78 MC 

193.122 7.26 -0.46 0.06 0.47 0.06 0.22 0.37  

208.0992 7.72 -0.03 0.91 0.32 0.21 -0.16 0.52  

209.1171 7.44 -0.28 0.27 0.66 0.00 -0.01 0.98 MC 

227.1263 7.27   -0.26 0.31 0.06 0.80  

227.1278 7.41 -0.24 0.35 0.82 0.00 0.45 0.06 MC 

227.1287 7.18   0.36 0.15 -0.23 0.37  

237.1118 9.15 -0.38 0.13      

239.0597 10.87 0.23 0.37 -0.36 0.16 0.27 0.29  

256.0603 8.1 0.04 0.89 -0.64 0.01 -0.48 0.04 Ads 
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281.2484 15.86 -0.09 0.72 0.74 0.00 -0.55 0.02  

281.2484 15.9 -0.15 0.57 0.44 0.08 -0.46 0.06  

284.2958 18.23 -0.28 0.27 -0.20 0.43 -0.27 0.29  

293.1727 9.68   0.24 0.36 0.36 0.14  

299.2589 15.88 -0.03 0.92 0.74 0.00 -0.62 0.01  

301.1823 12.44 0.65 0.00      

313.1548 12.9 0.18 0.49 0.66 0.00 0.34 0.17 MC 

321.2407 15.88 -0.04 0.89 0.74 0.00 -0.05 0.83 MC 

334.238 12.35 0.09 0.73 -0.53 0.03 -0.25 0.32  

347.2218 11.50 0.07 0.79 0.59 0.01 -0.10 0.69 MC 

390.1091 11.11 0.21 0.41 0.97 0.00 0.91 0.00 MC 

403.2469 15.89 0.02 0.95 0.80 0.00 0.38 0.12 MC 

454.9981 13.07 0.52 0.03 0.28 0.27 0.61 0.01 Met 

473.013 10.99 0.21 0.43 0.64 0.01 0.70 0.00 MC 

481.9777 11.67 0.26 0.32 0.53 0.03 0.45 0.06 MC 

549.281 19.7 0.25 0.33      

549.2865 19.62 0.23 0.37 -0.29 0.26 0.06 0.82  

 

Table A5-3: Spearman’s rho and p-values for PubChemLite and Envipath-matched features, I-2  

  NWC MC TB  

Average 

Mz 
Average Rt 

(min) 
ρ p ρ p ρ p Pattern 

100.0765 5.06 -0.16 0.55 0.89 0.00 0.10 0.70 MC 

102.0916 5.6025 -0.16 0.55 0.94 0.00 -0.15 0.56 MC 

130.1602 6.34 -0.19 0.47 -0.07 0.78 0.30 0.23  

162.0550 8.24 0.11 0.68 0.99 0.00 0.32 0.20 MC 

176.0705 8.69 0.15 0.56 0.79 0.00 0.35 0.15 MC 

188.0706 5.98 0.17 0.52 0.86 0.00 0.53 0.02 Des 

188.0707 5.7125 0.09 0.73 0.94 0.00 0.40 0.10 MC 

192.1399 10.775 0.30 0.25 0.19 0.45 0.44 0.07  

193.122 7.26 0.06 0.83 0.92 0.00 -0.40 0.10 MC 

208.0992 7.72 -0.21 0.43 0.39 0.11 0.12 0.65  

209.1171 7.44 -0.08 0.77 0.92 0.00 0.36 0.15 MC 

227.1278 7.41 -0.15 0.57 0.92 0.00 0.39 0.11 MC 

239.0597 10.87 -0.06 0.83 -0.04 0.87 0.30 0.22  

281.2484 15.86 0.14 0.60 0.29 0.25 -0.29 0.24  

281.2484 15.9 -0.20 0.44 0.69 0.00 -0.04 0.86 MC 

284.2958 18.23 0.35 0.17 0.40 0.10 0.44 0.07  

293.1727 9.68 0.31 0.22 0.30 0.22 0.53 0.02 Met 

297.1448 12.32 -0.18 0.49 0.67 0.00 0.38 0.12 MC 

299.2589 15.88 0.26 0.32 0.98 0.00 -0.26 0.31 MC 

313.1548 12.9 0.11 0.67 0.56 0.02 0.74 0.00 Des 

321.2407 15.88 0.31 0.23 0.97 0.00 0.04 0.87 MC 
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390.1091 11.11   0.73 0.00 0.85 0.00 Des 

403.2469 15.89 0.25 0.34 0.19 0.45 -0.19 0.46  

454.9981 13.07 -0.08 0.75 0.76 0.00 0.35 0.15 MC 

473.013 10.99 -0.08 0.76 0.47 0.05 0.29 0.25 MC 

549.281 19.7 -0.17 0.51 0.20 0.43 0.35 0.15  

 

Table A5-4: Prioritized features for tMS/MS and results 
Avg Mz Avg 

Rt 

(min) 

Source1 Exact-mass match 

name 

Suspect 

description 

tMS/

MS2 

Identification 

Level3 

PUR 

2016-

20184 

RTI 

Pred 

Box5 

73.0659 5.02 E Butanone Predicted TP: 

Butopyronoxyl 

A 
 

No  

100.0765 5.06 P 1-methyl-2-pyrrolidine inert A 
 

NA  

102.0916 5.60 P 4,4-

dimethyloxazolidine 

microbiocide B 
 

No  

130.1602 6.34 P Dibutylamine TP (carbosulfan) A 
 

No  

146.0586 8.38 E 
 

Predicted TP: 

Aldimorph 

A  No  

162.055 8.24 MoNA Indole carboxylic acid  A 2a NA 2 

176.0705 8.69 P Indole-3-acetic acid Growth 

hormone 

A 3 NA 3 

188.0714 4.97 E 
 

Predicted TP: 

Atrazine 

A 
 

No  

192.1399 10.78 P DEET Insecticide A 2a No 2 

193.122 7.26 P 4-tert-

Butylphenylacetic acid 

TP (fenazaquin) C 
 

No  

208.0992  7.72 P S-Metolachlor 

Metabolite CGA 

50720 

TP 

(metolachlor) 

A 2b Yes 1 

209.1171 7.44 P SCHEMBL7753233 TP (etofenprox) A  No  

227.1287 7.18 E 
 

Predicted TP: 

Butopyronoxyl 

C  No  

237.1118 9.15 P Fenazaquin metabolite 

NN4 

TP (fenazaquin) D 
 

No  

281.2484 15.9 P (Z,Z)-Gossyplure Insect attractant B 
 

No  

284.2958 18.23 P Aldimorph Fungicide A 
 

No  

293.1727 9.68 E 
 

Predicted TP: 

MCPA-isooctyl 

B 
 

No  

297.1448 12.32 P 2,4-dinitro-6-(1-

methylheptyl)phenol 

TP 

(meptyldinocap) 

D  No  

299.2589 15.88 P Ricinoleic acid inert 

(emulsifying) 

A 
 

NA 2 

301.1823 12.44 P Prallethrin Insecticide A 
 

No  

313.1548 12.9 P MCPA-isooctyl Herbicide A  No  

334.238 12.35 P Fenpropimorphic Acid TP 

(fenpropimorph) 

A  No  

347.2218 11.5 P AKM 18 TP 

(acequinocyl) 

A  Yes  

390.1091 11.11 P Azoxystrobin acid TP 

(azoxystrobin) 

A 2a Yes 1 
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Avg Mz Avg 

Rt 

(min) 

Source1 Exact mass match 

name 

Suspect 

description 

tMS/

MS2 

Identification 

Level3 

PUR 

2016-

20184 

RTI 

Pred 

Box5 

403.2469 15.89 E  Predicted TP: 

antimycin A1 

D  No  

454.9981 13.07 E IN-J9Z38 Predicted TP: 

Cyantraniliprole 

A 2a Yes 2 

473.013 10.99 P Cyantraniliprole Insecticide A 2a Yes 1 

481.9777 11.67 P Chlorantraniliprole Insecticide A 2a Yes 2 

549.2865 19.62 P Antimycin A1 Piscicide A  No  

 
1 E = Envipath predicted; P = PubChemLite with Agrochemical information; MoNA = Mass Bank of 

North America (http://mona.fiehnlab.ucdavis.edu), used for suspect screening during alignment step 
2 Success of tMS/MS experiment: peak captured with good shape (A), peak captured but noisy or poor 

peak shape (B), peak missed but good shape (C), or peak missed with bad shape (D) 
3 As described in (Schymanski et al., 2014) 
4 Reported applications in fields draining to the PG&E bioreactor, from CDPR Pesticide Use Reporting 

Database, 2016-2018 (Pesticide Use Reporting, Annual 2016-2018, n.d.) 
5 Using RTI prediction tool, accepting “Exp. & Pred. tR are accepted for this candidate (box1)” and 

“Although there is error, exp. & pred. tR are accepted for this candidate (box2)” (Aalizadeh et al., 2021) 
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MS/MS and Weight of Evidence Confirming Structures of Prioritized Features 

m/z = 162. 055 (Indole carboxylic acid) 

 

 

Figure A5-1. Targeted MS/MS results for m/z = 162.055 at collision energies 0, 10, 20 and 40 

eV. 

Table A5-5: Fragment m/z and average mass error 

Fragment 

m/z* 
Average mass error 

(ppm) 

162.06 -25.3 

144.045 -7.4 

118.068 -25.4 

*from indole-3-carboxylic acid spectra recorded in MassBank Europe 
(https://massbank.eu/MassBank/Result.jsp?inchikey=KMAKOBLIOCQGJP-UHFFFAOYSA-N) 
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m/z = 176.0705 (Indole acetic acid or methyl indole-3-carboxylic acid) 

 

 
Figure A5-2. Targeted MS/MS results for m/z = 176.0705 at collision energies 0, 10, 20 and 40 

eV. 
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m/z = 192.1388 (DEET) 

 

 

Figure A5-3. Targeted MS/MS results for m/z = 192.1388 at collision energies 0, 10, 20, and 40 

eV. 

 

Table A5-6: Fragment m/z and average mass error 

Fragment 

m/z* 
Average mass 

error (ppm) 
192.1388 4.42 

119.049 3.36 

91.0543 5.49 

* Fragments from 500 ng/mL DEET standard, Figure A5-4 
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Figure A5-4. Targeted MS/MS results for 500 ng/mL DEET standard at collision energies 0, 10, 

20, and 40 eV. 
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m/z/ = 208.0973 (S-Metolachlor metabolite CGA 50720) 

 

 

Figure A5-5. Targeted MS/MS results for m/z = 208.0973 at collision energies 0, 10, 20, and 40 

eV 

 

Table A5-7: Fragment m/z and average mass error, CGA 50720 (SAWXESXDACFEPC-

UHFFFAOYSA-N) 

CFM-ID 

fragment m/z 
Average mass 

error (ppm) 
208.0968 1.35 

190.0863 3.37 

162.0913 -1.48 

120.0808 -1.08 

103.0542 2.13 
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m/z = 390.1090 (Azoxystrobin acid) 

 

 
Figure A5-6. tMS/MS for m/z = 390.1090 at 0, 10, 20, and 40 eV collision energies. 

Table A5-8: Fragment m/z and average mass error for azoxystrobin acid 
Library 

fragment m/z* 
Average mass 

error (ppm) 
390.1086 -7.43 

372.0981 -3.96 

344.1026 -13.95 

*Library spectrum from MassBank Europe: 
https://massbank.eu/MassBank/Result.jsp?inchikey=IKCXDZCEWZARFL-FOWTUZBSSA-N 
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m/z = 473.0130 (Cyantraniliprole) 

 

Figure A5-7. tMS/MS for m/z = 473.0130 at 0, 10, and 20 eV collision energies. 

 

Table A5-9: Previously reported fragment m/z and experimental mass error 

Fragment m/z* Average mass 

error (ppm) 
475.0102 -2.11 

443.9686 -3.15 

285.9204 -2.91 

*Fragments reported by (Zhang et al., 2021) 
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m/z = 481.9786 (Chlorantraniliprole) 

 

 

Figure A5-8. tMS/MS for m/z = 481.9786 at 0, 10, and 20 eV collision energies. 

 

Table A5-10: Library fragment m/z and mass errors for chlorantraniliprole 
Library 

fragment m/z* 
Average mass 

error (ppm) 
450.9384 -8.42 

283.9208 0.24 

205.0041 -13.04 

193.9998 -11.07 

177.0091 -11.91 

*Library spectrum accessed through Massbank of North America: 
https://mona.fiehnlab.ucdavis.edu/spectra/browse?query=compound.metaData%3Dq%3D%27name%3D%3D

%22InChIKey%22%20and%20value%3D%3D%22PSOVNZZNOMJUBI-UHFFFAOYSA-N%22%27 
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