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Investment Efficiency in Competitive Electricity Markets
With and Without Time-Varying Retail Prices

Severin Borenstein and Stephen P. Holland1

November 2002

Abstract: The standard economic model of efficient competitive markets relies on the
ability of sellers to charge prices that vary as their costs change. Yet, there is no restruc-
tured electricity market in which most retail customers can be charged realtime prices
(RTP), prices that can change as frequently as wholesale costs. We analyze the impact of
having some share of customers on time-invariant pricing in competitive electricity mar-
kets. Not only does time-invariant pricing in competitive markets lead to outcomes (prices
and investment) that are not first-best, it even fails to achieve the second-best optimum
given the constraint of time-invariant pricing. We then study a number of policy interven-
tions that have been proposed to address the perceived inadequacy of capacity investment.
We show that attempts to correct the level of investment through taxes or subsidies on
electricity or capacity are unlikely to succeed, because these interventions create new ineffi-
ciencies. We demonstrate that the most common proposal, a subsidy to capacity ownership
financed by a tax on retail electricity, is particularly problematic. In contrast, an increase
in the share of customers on RTP improves efficiency, though it does not necessarily reduce
capacity investment. We demonstrate that the analysis is robust to inclusion of a simple
form of reserve capacity.

1 Borenstein: Director of the University of California Energy Institute (www.ucei.org) and E.T. Grether
Professor of Business Administration and Public Policy at the Haas School of Business, U.C. Berkeley
(www.haas.berkeley.edu). Email: borenste@haas.berkeley.edu. Holland: Visiting Researcher, Uni-
versity of California Energy Institute. Email: sholland@uclink.berkeley.edu. Our thinking on this
topic has benefitted a great deal from discussions with Jim Bushnell and Erin Mansur.



In many industries, retail prices do not adjust quickly to changes in costs or market

conditions. Restaurants keep stable menu prices even when ingredient prices fluctuate.

Service providers, from house cleaners to veterinarians, regulate fluctuating demand with

non-price mechanisms (usually queuing) rather than by adjusting price to clear the market

in times of excess demand.

Perhaps nowhere is the disconnect between retail pricing and wholesale costs so great

as in restructured electricity markets. In the last decade, it has become apparent that

wholesale electricity price fluctuations can be extreme, but retail prices have in nearly all

cases adjusted only very gradually. Typically, wholesale electricity prices vary hour by

hour, while retail prices are adjusted two or three times per year. Because electricity is

not economically storable and fixed retail prices create price inelastic demand, it is not

uncommon for wholesale prices within one day to vary from five cents to twenty-five cents

or more per kilowatt-hour while retail prices do not adjust at all.

Economists, recognizing the potential inefficiencies when prices do not reflect produc-

tion or wholesale acquisition costs, have been among the most vocal proponents of realtime

pricing (RTP) of electricity, under which retail prices can change very frequently, usually

hourly. With the 2000-01 California electricity crisis, many market participants also ex-

pressed support for more responsive retail prices. RTP has been explored in economics in

what is commonly referred to as the peak-load pricing literature.2 That literature, how-

ever, has focused almost entirely on time-varying pricing in a regulated market. Much of

what is known from that literature carries over immediately to a deregulated market if all

customers are on RTP, but that situation is unlikely to occur in any electricity system in

the near future.

While many deregulated (and some regulated) electricity markets are considering im-

plementing RTP for some customers, nowhere is RTP likely to encompass all, or even

most, of the retail demand. In all cases, the outcome is likely to be a hybrid in which some

customers see realtime prices and others see time-invariant prices, more commonly called

flat-rate service. In this paper, we examine such a structure under deregulation, where

competitive generation markets develop time-varying wholesale prices, but competitive

retail sellers still charge some customers flat retail rates.

Closely tied to time-invariant retail pricing is the issue of investment adequacy. Many

participants in the electricity industry have argued, generally without an economic ex-

planation, that deregulated electricity markets will result in inadequate investment in

2 See Steiner (1957), Boiteaux (1960), Wenders (1976) and Panzar (1976).
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production capacity. While this clearly is not the case with peak-load pricing under regu-

lation — as explored by Steiner (1957), Boiteaux (1960), Wenders (1976) and Panzar (1976)

— and similarly does not result from a model of competitive electricity markets in which

all customers are on RTP, we show that capacity investment is not efficient when some

customers are on flat retail rates. Not only is the level of investment not the first-best level

that results when all customers are on RTP, it is not even the second-best optimal level of

capacity investment given the constraint that some customers cannot be charged realtime

prices.

Those who have argued that capacity investment will be suboptimal under deregu-

lation have generally then advocated for capacity subsidies in order to support greater

capacity investment. We analyze a number of possible proposals for capacity subsidies and

demonstrate the very limited cases in which such payments might be able to overcome the

inefficiency caused by suboptimal investment.

We focus in this paper on the electricity industry, but the results have implications well

beyond electricity. Due to technologies or institutions, retail prices in many markets are

smoothed representations of underlying wholesale costs. Our results demonstrate that this

sort of pricing has significant implications for capital investment and long-run efficiency,

particularly in service industries and others with little or no ability to carry inventories.

We begin in section I by presenting a model of competitive wholesale and retail elec-

tricity markets in which some share of customers is able to be charged realtime electricity

prices. We demonstrate the short-run pricing and long-run investment inefficiency that

results from the inability to charge all customers realtime prices. In section II, we explore

the possible use of subsidies or taxes to overcome the inefficiency from such “inaccurate”

retail pricing. In section III, we examine the effect of changing the proportion of cus-

tomers on RTP and derive a somewhat surprising result that increasing this proportion

does not necessarily reduce the equilibrium investment in capacity. The model we use for

the analysis thus far does not incorporate a demand for reserve capacity, capacity paid

to stand by for use in case it is needed to equilibrate supply and demand. This increases

the complexity of the analysis, but we present a simplified model with reserve capacity in

section IV. We conclude in section V.

I. Competition in wholesale and retail electricity markets

In deregulated electricity markets, wholesale prices are envisioned to result from com-

petition among generators and retail prices from competition among retail service providers

who serve final customers. To understand these competitive interactions, consider the fol-

2



lowing simple model of electricity markets.

Since electricity cannot be stored economically, demand must equal supply at all

times. Assume there are T periods per day with retail demand in period t given by Dt(p)

where D′

t
< 0.3 A fraction, α, of the customers pay realtime prices, i.e., retail prices

that vary hour to hour. The remaining fraction of customers, 1 − α, pay a flat retail

price p̄. We assume that α ∈ (0, 1] is exogenous and that customers on realtime pricing

do not differ systematically from those on flat-rate pricing.4 Aggregate demand from the

customers is then D̃t(p, p̄) = αDt(p)+ (1−α)Dt(p̄) which implies that D̃t is decreasing in

p̄ and p. Note that D̃t(p̄, p̄) = Dt(p̄). For p > p̄, the flat-rate customers do not decrease

consumption in response to the higher realtime price so D̃t(p, p̄) > Dt(p), and for p < p̄,

the flat-rate customers do not increase consumption in response to the lower realtime price

so D̃t(p, p̄) < Dt(p). Finally, D̃t(p, p̄) is decreasing in α for p > p̄, and D̃t(p, p̄) is increasing

in α for p < p̄. That is, increasing alpha increases the elasticity of wholesale demand by

rotating D̃t around the point (Dt(p̄), p̄).

Figure 1 illustrates the demand curves Dt and the aggregate demand curves D̃t where

there are only two periods: peak, p, and off-peak, op. Note that the less elastic curves

are the aggregate demand of the realtime and flat-rate customers. For prices above p̄,

aggregate quantity demanded is greater than the quantity demanded if everyone were on

realtime prices since the flat-rate customers do not decrease consumption in response to

the higher realtime price. Similarly, for prices below p̄, aggregate quantity demanded is

less than the quantity demanded if everyone were on realtime prices since the flat-rate

customers do not increase consumption in response to the lower realtime price.

Generators install capacity and sell electricity in the wholesale market. Assume that

each identical generator is small relative to the market and can produce up to capacity at

constant marginal cost c. Further assume that generators can install incremental capacity

at constant cost r per unit of capacity per day. Let K be the total installed generation

capacity. Thus, the short-run supply curve for electricity is L-shaped. In the long run,

generators can add or retire capacity. Profits for the generators are then
∑

T

t=1
(wt −

c)D̃t(pt, p̄)− rK per day where wt is the wholesale price in period t.

Figure 2 illustrates the L-shaped, short-run supply curve with capacity K and shows

3 Following the literature on peak-load pricing, we also assume that cross price elasticities between
demands in different periods are zero.

4 Incorporating cross-elasticities among periods and endogenizing the choice of pricing system for a
customer are both areas for further research, but we believe that the basic insights from our analysis
carry over to those cases.
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demand curves for six different time periods. In the four low-demand periods, capacity

is not fully utilized so a market-clearing price would equal marginal cost. At capacity,

a market-clearing price can be determined by the intersection of the supply and demand

curves. Capacity would be fully utilized in the two high-demand periods.

The retail sector purchases electricity from generators in the wholesale market and

distributes it to the final customers. Firms in the retail sector are assumed to have no costs

other than the wholesale cost of the electricity that they buy for their retail customers.

The retail firms choose realtime retail prices, pt, and the flat retail rate, p̄, engaging in

Bertrand competition over these prices. Bertrand competition represents quite accurately

the competition among retail electricity providers, because they would be price takers

in the wholesale market, would be selling a nearly homogeneous product in the retail

market, and would face no real capacity constraints. Profit of the retail sector is given

by
∑

T

t=1
(p̄ − wt)(1 − α)Dt(p̄) + (pt − wt)αDt(pt) per day. Since electricity cannot be

stored economically, demand greater than capacity in any period would require non-price

rationing. The flat retail price, p̄, is feasible if there exists some p such that D̃t(p, p̄) ≤ K

for all t, i.e., if rationing is not necessary. In other words, p̄ is feasible if enough customers

are on RTP to allow the wholesale market to clear at some price.

A. Competitive equilibrium in wholesale and retail markets

Equilibrium prices in the retail sector are determined by competition among retail-

ers. First, consider the customers on RTP. If a realtime price, pt, were greater than the

wholesale price, a competitor could make profits by undercutting pt and attracting more

customers. Since charging a price less than wt would imply losses, the equilibrium short-

run wholesale and retail realtime price is pe
tSR

= wt for every t. In other words, competition

among retailers drives retail prices for RTP customers to be equal to wholesale prices in

each period.

Similarly, competition forces the flat retail rate to be set to cover exactly the cost

of providing electricity to the flat-rate customers. Since this implies zero profits for the

retail sector, the condition
∑

T

t=1
(p̄e
SR

− wt)(1 − α)Dt(p̄
e

SR
) = 0 determines the short-

run equilibrium flat retail price p̄e
SR

. Note that this zero profit condition can be written

p̄e
SR

=
∑T

t=1
wtDt(p̄

e

SR
)/

∑T

t=1
Dt(p̄

e

SR
). In other words, the equilibrium flat retail price is

a weighted average of the realtime wholesale (and retail) prices where the weights are the

relative quantities demanded by the customers facing a flat retail price. Thus, competition

among retailers drives p̄e
SR

to be equal to the demand-weighted average wholesale price.5

5 Existence of the equilibrium can be shown since (i) retail profits are continuous in p̄, (ii) retail profits
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In the short run, equilibrium prices in the wholesale market are determined by the

intersection of the demand curve and the L-shaped supply curve in each period. If

D̃t(c, p̄) ≤ K, then the equilibrium wholesale price, wt, is c. If D̃t(c, p̄) > K, then the

equilibrium price is such that D̃t(wt, p̄) = K. As in standard peak-load pricing models, the

generators make positive short-run profits (scarcity rents) when capacity is fully utilized

but make no short-run profits when capacity is not fully utilized. Thus, we have:

Result 1: Short-run Competitive Equilibrium – For a given capacity, K, and

share of customers on RTP, α, the short-run competitive equilibrium is characterized by

realtime retail prices pet = we
t and flat retail price p̄e =

∑T

t=1 w
e
tDt(p̄

e)/
∑T

t=1Dt(p̄
e). The

equilibrium wholesale prices are determined by (we
t − c) · (D̃t(p

e
t , p̄

e)−K) = 0.

The equilibrium characterized in Result 1 is illustrated in Figure 3 for two demand

periods: peak and off peak. Since capacity is not fully utilized off peak, the equilibrium

wholesale price pop is c. On peak, capacity is fully utilized, so the equilibrium wholesale

price pp is determined by the intersection of the aggregate demand D̃p and the L-shaped

supply curve. The equilibrium flat rate p̄e is the demand-weighted average of pp and pop.

The demand-weighted average p̄e is closer to pp than to pop since the flat-rate customers

demand more in the peak than off peak.

In the long-run, generation capacity will enter (exit) the wholesale market as long as

profits are positive (negative). Thus, competition drives long-run profits to zero. The zero

profit condition on the wholesale sector is
∑T

t=1(wt− c)D̃t(pt, p̄) = rK. Since competitive

margins are positive only when capacity is fully utilized, the long-run equilibrium condition

can be written
∑T

t=1(wt − c) = r. Thus,

Result 2: Long-run Competitive Equilibrium – For a given share of customers

on RTP, α, the long-run competitive equilibrium wholesale prices are characterized by the

conditions in Result 1 and
∑T

t=1(wt − c) = r.

Figure 2 also illustrates the long-run competitive equilibrium for the case in which

there are two periods and only one period has positive scarcity rents, so the long-run peak

price is pp = c+ r.

A question remains about the feasibility of this competitive equilibrium in the short

and long run. To see that the equilibrium flat price is always feasible in the short run,

define p̄min(K) as the smallest feasible flat retail price for installed capacity K. Assume

are negative for p̄ = c, and (iii) retail profits are positive if p̄ is equal to the highest wholesale price
that occurs during the time period.
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each Dt has a choke price and T̂ is the period with highest demand.6 Thus p̄min(K)

is defined implicitly by K = (1 − α)D
T̂
(p̄min(K)). If any flat retail price greater than

p̄min(K) has zero profit for the retail sector, then that price is a short-run equilibrium

price and the equilibrium price is feasible. If every price greater than p̄min(K) has positive

profit, then p̄min(K) is the equilibrium price. To see this, note that the equilibrium

realtime price in T̂ is not uniquely defined by the short-run supply and demand curves,

both of which are vertical at K, i.e., any price exceeding the choke price could be the

equilibrium realtime price in period T̂ . Therefore, competition between retailers will bid

up the equilibrium wholesale price in period T̂ until there are no retail profits in the

short-run. In other words, if there could be excess retail profits by charging p̄min(K),

retail competition would force up the wholesale price in period T̂ and transfer the excess

profit to the generators.7 Therefore p̄min(K) is the equilibrium flat rate and the short-run

equilibrium price is always feasible. Feasibility of the long-run equilibrium price is implied

by feasibility of the short-run equilibrium price.8

B. (In)efficiency of competitive equilibrium

The conditions of the First Welfare Theorem ensure efficiency of competitive equi-

librium. However, the requirements of the welfare theorems are not met if α < 1, since

there is a missing market. Customers on flat retail prices cannot trade with customers on

realtime prices or with producers since all electricity transactions must occur at the same

price for flat-rate customers. This missing market implies that the competitive equilibrium

discussed above may not be efficient.

Result 3: Efficiency When All Customers Are on RTP (α = 1) – If all customers

are on realtime prices, i.e., α = 1, then the competitive equilibrium is Pareto efficient, i.e.,

attains the first-best electricity allocation and capacity investment.

Result 3 follows immediately once α = 1, because there is no missing market and all

of the conditions of the First Welfare Theorem are satisfied. This implies that there is

short-run allocative efficiency and long-run efficiency of capacity investments.

6 If each Dt does not have a choke price, then a similar argument holds where p̄min(K) is the infimum
of the feasible flat retail prices.

7 If retail competition forces the flat price to p̄min(K), the realtime prices can be higher than the choke
price. This implies that realtime prices may not be an accurate measure of willingness to pay for
electricity in periods of binding capacity.

8 If demand does not have a choke price, equilibrium realtime prices can still serve to transfer potential
excess profits from the retail sector to the generators by being bid up arbitrarily high.
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To see this in our particular application, consider first the short-run equilibrium. For

each period t if Dt(c)
< K, then the competitive price for period t is wt = pt = c, and if

Dt(c) > K, then the competitive price will clear the market, so it is defined implicitly by

Dt(pt) = K. These competitive outcomes are also the welfare maximizing prices for each

period.

For the long run, define γt as the marginal social value of capacity in period t. The

marginal social value of capacity, γt, is equal to the marginal value of output minus the

marginal cost of variable inputs. The social optimum would dictate building capacity so

long as
∑T

t=1
γt > r and stopping when

∑T

t=1
γt = r. This, however, mirrors the private

incentive to construct capacity if all customers are on realtime pricing. When all customers

face the realtime prices, utility maximization implies that pt(= wt) is the marginal value

of output in period t. Since the marginal cost is c, the profit margin reflects the marginal

social value of capacity in each period, i.e., wt − c = γt. Thus, a price-taking firm will

find it profitable to build one more unit of capacity, i.e., if
∑

T

t=1
(wt − c) > r, precisely

when it is socially optimal to build one more unit of capacity, i.e., if
∑T

t=1
γt > r. Thus,

private incentives for investment accurately reflect social incentives when all customers are

on realtime pricing.

If α < 1, however, the efficient outcome is lost.

Result 4: Inefficiency with Some Flat-Rate Customers (α < 1) – If some cus-

tomers do not face the realtime prices, i.e., α < 1, the competitive equilibrium is not Pareto

efficient, i.e., does not attain the first-best electricity allocation and capacity investment.

Consider the short run in which K is fixed, and the short-run supply function is L-

shaped. Recall that competition among retailers drives retail prices for RTP customers

to be equal to wholesale prices in each period and drives p̄ to be equal to the demand-

weighted average wholesale price. Equilibrium wholesale prices are determined by supply

and demand (D̃t) in every period.

This short-run equilibrium is clearly not first best because in almost all hours flat-

rate customers are not charged a price equal to the wholesale price. If D̃t(pt, p̄) = K, then

the inefficiency on the margin manifests as a misallocation of the fixed quantity between

RTP and flat-rate customers, who face different prices and therefore have different marginal

benefits of consumption. In periods in which production is less than capacity, the marginal

inefficiency is simply from underconsumption by the flat-rate customers because they face

a price greater than marginal cost.

While it is clear that first-best resource allocation will not occur when some customers
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are charged a flat rate, regardless of the level of that rate, there is still a question of what

flat rate minimizes the deadweight loss that results. In particular, does the competitive

equilibrium flat rate, p̄e
SR

, minimize the deadweight loss associated with having flat-rate

customers and, if not, could government policy improve resource allocation? To answer

this question, consider the flat retail rate, p̄∗
SR

, and realtime prices p∗tSR that minimize

deadweight loss in the short run. p̄∗
SR

and p∗
tSR

can be found from the optimization:9

max
pt,p̄

T∑

t=1

[Ũt(pt, p̄)− cD̃t(pt, p̄)]− rK s.t. D̃t(pt, p̄)
< K ∀ t [1]

where the consumer surplus measure Ũt is defined by Ũt(p, p̄) ≡ αUt(Dt(p)) + (1 −

α)Ut(Dt(p̄)) and Ut maps quantities into the usual consumer surplus.10,11 Let λt be the

Lagrange multiplier of the capacity constraint in period t. The optimization yields two

first-order conditions.

For the optimal realtime price in period t, the first-order condition is

α{U ′

t(Dt(pt)) ·D
′

t(pt)− c ·D′

t(pt)− λt ·D
′

t(pt)} = 0, [2]

which, since U ′

t(Dt(pt)) = pt, implies that pt − c = λt. The complementary-slackness

conditions, (pt − c)(K − D̃t(pt, p̄)) = 0 for every t, determine the optimal realtime prices,

and show that λt is non-zero only if the capacity constraint is binding. Note that the

shadow value of capacity, λt, reflects the marginal value of output to the realtime customers

since they would benefit directly from additional capacity.

For the optimal flat rate, the first-order condition is

T∑

t=1

[p̄∗SR − c− λt](1− α)D′

t(p̄
∗

SR) = 0. [3]

Substituting p∗tSR − c for λt for all t in [3] yields

T∑

t=1

[p̄∗SR − p∗tSR ]D
′

t(p̄
∗

SR) = 0 [4]

9
This optimization is equivalent to a social planner’s problem where the planner is constrained to
choose a vector of quantities which satisfies the demands of both the flat-rate and realtime customers
at the chosen prices.

10 As usual, the marginal utility and demand are inverse functions, i.e., U ′

t
(Dt(p)) = p.

11 This optimization is the sum of consumer surplus,
∑

Ũt(pt, p̄) − αptDt(pt) − (1 − α)p̄Dt(p̄), retail

profits,
∑

αptDt(pt)+(1−α)p̄Dt(p̄)−wtD̃t(pt, p̄), and generator profits,
∑
(wt− c)D̃t(pt, p̄)− rK.

Note that wt is simply a transfer and does not affect deadweight loss.
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which implies

p̄∗SR =
T∑

t=1

p∗tSRD
′

t(p̄
∗

SR)/
T∑

t=1

D′

t(p̄
∗

SR). [5]

We refer to the result of this optimization as the second-best optimal allocation. Thus,

the flat retail price that minimizes the deadweight loss is a weighted average of the re-

altime prices where the weights are the relative slopes of the demand curves.12 Re-

call that the equilibrium flat rate is a weighted average of the realtime prices where

the weights are the relative quantities demanded by the flat-rate customers, i.e., p̄eSR =∑T

t=1 p
e
tSR

Dt(p̄
e
SR)/

∑T

t=1Dt(p̄
e
SR). Since both p̄eSR and p̄∗SR are weighted averages of the

realtime prices but their weights are not necessarily equal, comparison of the two weighted

averages implies that p̄eSR does not necessarily equal p̄∗SR. Thus,

Result 5: Non-attainment of the Second Best in the Short Run – The short-

run competitive equilibrium does not attain the second-best optimal electricity allocation.

Furthermore, the equilibrium flat rate, p̄eSR, can be either higher or lower than optimal.

To see that the equilibrium flat retail price may be either too high or too low, consider

a simple example with two time periods, peak and off-peak, where realtime prices, pp and

pop, are such that pp > pop = c. If the off-peak demand is steeper than the peak demand,

the second-best flat retail price is closer to pp than to pop.
13 In fact, for a steep off-

peak demand, p̄∗SR can be arbitrarily close to pp.
14 Since the equilibrium flat retail price is

between the peak and off-peak prices, p̄∗SR > p̄eSR when off-peak demand is sufficiently steep

relative to peak demand. Conversely, if peak demand is relatively steep, then p̄∗SR < p̄eSR.

Thus the equilibrium flat retail rate can be either too high or too low.

Figure 4 illustrates the case where off-peak demand is perfectly inelastic and p̄∗SR >

p̄eSR. The equilibrium flat price, p̄eSR, is a demand-weighted average of the peak wholesale

price pep and off-peak wholesale price peop = c. Since off-peak demand is perfectly inelas-

tic, there is no inefficiency off-peak since the prices peop = c and p̄eSR induce customers to

consume the same amounts. Because customers are not price sensitive off-peak, increasing

12 For example, if the demands all have the same slope, p̄∗
SR

is simply the arithmetic mean of the

wholesale prices.

13 This follows since the consumption distortion is greater when demand is flatter. Thus the consump-
tion distortion (and deadweight loss) is minimized by a flat retail price close to the realtime price in
the time period with flatter demand. Mathematically, if demand is flatter, D′

t is large so the weighted

average puts more weight on the price with flatter demand.

14 If off-peak demand were perfectly inelastic, there would be no consumption distortion off peak, and
the second-best flat price would equal pp.
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or lowering the flat rate does not affect consumption (or efficiency) off-peak. Note, how-

ever, that increasing the flat rate in this case improves efficiency since it does not affect

consumption off-peak but improves the peak-period misallocation between flat-rate and

RTP customers. Clearly, setting p̄∗SR = p∗p eliminates the peak-period misallocation since

flat-rate and RTP customers both face the same prices.15 Note also that increasing the

flat rate from p̄eSR to p̄∗SR decreases the peak demand from D̃p to D̃′

p and lowers the peak

realtime price.

Although competition distorts the consumption of the flat-rate customers relative to

the second best, competition does not introduce additional distortions into the realtime

market for a given flat rate. For a given p̄, the optimal realtime prices are determined by

the first-order and complementary-slackness conditions from the planner’s problem, which

imply that (pt − c)(K − D̃t(pt, p̄)) = 0 for every t. Note that these optimal prices are

exactly the realtime prices that would result from competition, given a p̄, namely, pt = c

if D̃t(c, p̄) < K and, otherwise, pt is defined implicitly by D̃t(pt, p̄) = K. Thus, if a

regulator were to force the retail sector to charge p̄∗SR to flat-rate customers, the realtime

prices resulting from retail competition would be second-best optimal. In this manner, the

second-best optimal allocation could be achieved in the short run.

C. Inefficiency in the long run

In the long run, supply and demand are equated by the realtime wholesale prices;

retail competition forces pt = wt for every t; the equilibrium flat retail price, p̄eLR, is de-

termined by retail competition; and equilibrium capacity, Ke
LR is determined by wholesale

competition. Because of the flat retail price, the first-best outcome is not achieved in

either capacity investment or production. Given our short-run results from the previous

subsection, it is not surprising that the long-run outcome is not second-best optimal given

the existence of flat-rate customers. This raises the question as to whether regulatory

intervention could improve investment.

To determine the second best in the long run, consider the flat retail rate, p̄∗LR,

realtime prices, p∗tLR , and capacity, K∗

LR, that minimize deadweight loss. The optimum

can be found from the maximization in equation [1] where now optimization is also with

respect to capacity.16 The first-order conditions for pt and p̄ are given by [2] and [3] and

15 In this special case, the first-best and second-best optimal allocations are identical.

16 As above, the planner regards the wholesale prices as transfers which do not affect efficiency.
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the first-order condition for K is
T∑

t=1

λt = r [6]

Since [2] implies λt = pt − c, the first order conditions can be solved in terms of the

realtime prices. As in the short run, the second-best price, p̄∗
LR

, is a weighted average of

the realtime prices where the weights are the relative slopes of the demand curves. The

complementary slackness condition, which determines optimal realtime prices, is (p∗
tLR

−

c)(K∗

LR
− D̃t(p

∗

tLR
, p̄)) = 0 for every t. Since λt is equal to the margin that competitive

generators would earn in each period, equation [6] implies that the second-best optimal

capacity yields daily operating profits on the margin that are just equal to the daily cost

of capital, or zero profits net of capital costs.

As in the short run, p̄e
LR

and p̄∗
LR

, are different weighted averages of the realtime

prices. Therefore, p̄e
LR

is not generally equal to p̄∗
LR

, and the equilibrium flat price can be

either too high or too low relative to the second best. This implies that the competitive

equilibrium may lead to suboptimal installation of capacity as well. Therefore,

Result 6: Non-attainment of the Second Best in the Long Run – The long-run

competitive equilibrium does not attain the second-best optimal electricity allocation and

capacity investment. Furthermore, the equilibrium flat rate, p̄e
LR

, can be either higher or

lower than optimal, and the equilibrium capacity investment, Ke

LR
, can be either larger or

smaller than optimal.

To see that Ke

LR
, can be either larger or smaller than K∗

LR
, suppose that demand

elasticities are such that p̄∗
LR

> p̄e
LR

, i.e., the equilibrium flat price is too low. Further

suppose that the market is in long-run equilibrium, and the regulator tries to improve

efficiency by increasing the flat retail price to p̄∗
LR

. In the short run, this will simply shift

consumption from the flat-rate customers to the realtime customers in periods in which

capacity is binding. Since consumption of the realtime customers has increased, their

marginal benefit of consumption has decreased in these periods. This implies that the

shadow value of capacity has strictly decreased in all periods for which it was positive.

Since the shadow values of capacity in the long-run equilibrium, pt − c, were such that∑
T

t=1
pt − c = r, the sum of the shadow values now must be less than r. Therefore, in

the long run, the regulator would increase surplus by decreasing capacity. This implies

that the equilibrium long-run capacity was too large relative to the second-best optimal

long-run capacity given that p̄∗
LR

> p̄e
LR

. A symmetric argument shows that K∗

LR
> Ke

LR

if p̄∗
LR

< p̄e
LR

.

As in the short run, the distortion in the competitive equilibrium stems from the flat
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retail price. In particular, if a regulator were to impose the optimal flat rate, p̄∗
LR

, then

competition would lead to the second-best optimal realtime prices and capacity investment,

K∗

LR
. As above, the complementary slackness conditions insure that the competitive real-

time prices are optimal given p̄∗
LR

. In addition, the condition
∑T

t=1
pt − c = r =

∑T

t=1
λt

insures that competitive investment is optimal provided that the regulator imposes the

optimal flat retail price.

II. Subsidies/Taxes on Capacity or Electricity

In restructured wholesale electricity markets, many parties have suggested that in

order to assure sufficient investment in generation, “capacity payments” to producers are

necessary. These payments directly subsidize the holding of capacity, generally without a

commitment on the producer’s part to offer any certain quantity of energy or any certain

price.17 Such payments can be seen as part of a general category of market interventions

designed to move the equilibrium outcome closer to the (constrained) social optimum. In

this section, we consider such policies.

Among such interventions, there are two characteristics that are central to the eco-

nomic analysis of the policy. First, the subsidy/tax can be directed at the retail price of

electricity or it can be directed at capacity. Second, the revenues from a subsidy/tax can

flow to or from an external source (such as the government’s general fund) or the scheme

can operate on a balanced-budget basis with all revenues flowing to or from electricity

customers. Finally, for any adjustment to retail rates, RTP and flat-rate customers may

be treated symmetrically or the tax/subsidy can apply to only one group, generally the

flat-rate group because the RTP group begins from a second-best optimum.

Analytically, the simpler cases are those in which no balanced-budget requirement is

imposed; all net funds flow to/from an external source. We begin with those.

A. Subsidies or taxes on retail electricity with external financing

The very simplest policy intervention to analyze is a tax or subsidy on flat-rate retail

electricity prices. Such a tax would drive up the retail price paid by the flat-rate customers

thereby decreasing wholesale demand during all periods. The decrease in wholesale quan-

tity demanded would cause wholesale prices to decrease, generators to exit in the long run,

and industry generation capacity to decrease. A subsidy to the flat-rate retail price would

have the opposite effect.

17 In some markets, capacity payments are contingent on a minimum level of capacity availability.
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We can characterize the long-run competitive equilibrium with a retail tax τ on the

flat-rate customers. As in Result 2, realtime customers pay the wholesale prices, i.e.,

pt = wt; wholesale demand equals supply, i.e., (wt − c)[K − D̃t(pt, p̄)] = 0; and wholesale

profits cover capacity costs, i.e.,
∑T

t=1
(wt− c) = r. In the flat-rate retail market, however,

there is now a tax wedge between the flat-rate price paid by the customers p̄ and the flat

rate received by the retail sector, p̄− τ . Thus, the equilibrium flat rate is determined by

p̄− τ =
∑T

t=1
wtDt(p̄)/

∑T

t=1
Dt(p̄).

Given this characterization of the equilibrium, it is straightforward to show that the

optimal tax or subsidy will be τ∗ = p̄∗
LR

−
∑

T

t=1
p∗tDt(p̄

∗

LR
)/

∑
T

t=1
Dt(p̄

∗

LR
) charged to all

customers paying a flat retail rate. The second term is the quantity-weighted average price

of buying wholesale power for flat-rate customers when the flat rate is p̄∗
LR

. Thus, τ∗ is the

tax or subsidy that allows the retailer to break even while charging p̄∗
LR

and, therefore, p̄∗
LR

will be the competitive equilibrium flat rate when a tax of τ∗ is imposed on all electricity

consumption by flat-rate customers. τ∗ may be positive or negative depending on whether

p̄∗
LR

is greater or less than p̄e
LR

.18 As was the case earlier, if the flat-rate is optimal (now

including the tax/subsidy), competition does not introduce any additional distortions in

consumption of the realtime customers or in investment. Thus the second-best optimum

can be attained with a retail tax or subsidy τ∗ charged to the flat-rate customers.19

Result 7: Optimality of Retail Tax/Subsidy on Flat-Rate Retail Customers –

With external financing, a tax/subsidy τ∗ = p̄∗
LR

−
∑T

t=1
p∗
t
Dt(p̄

∗

LR
)/

∑T

t=1
Dt(p̄

∗

LR
) on the

flat-rate customers achieves the second-best optimal allocation and capacity investment.

The optimal policy may be a tax or a subsidy.

Result 7 can be illustrated with Figure 4 in the short-run. If the retail sector were

to charge the flat rate p̄∗
SR

, profits would be positive since its margin on the flat-rate

customers is positive in the off-peak, but its margin (loss) is zero in the peak. Taxing

the flat-rate customers forces the equilibrium flat rate up which improves efficiency. Note

that in the short run, this would decrease wholesale demand so capacity will exit in this

example.

While a tax/subsidy on flat-rate customers can achieve the second-best optimal price,

a tax/subsidy on all retail customers (flat-rate and RTP) cannot. If all retail customers

18 It is worth pointing out that the optimal tax/subsidy is not, in general, equal to the difference
between the second-best optimal flat rate and the equilibrium flat rate, p̄e

LR
− p̄

∗

LR
.

19 The tax or subsidy, τ∗, is like a Pigouvian tax or subsidy on an externality. However, τ∗ only allows
the second best to be attained by competition.
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are taxed, there are tax wedges in both the realtime and flat-rate markets. The equilib-

rium is then characterized by the equality of wholesale demand and supply, i.e., (wt −

c)[K − D̃t(pt, p̄)] = 0; and wholesale profits covering capacity costs, i.e.,
∑

T

t=1
(wt −

c) = r; plus the two conditions on the distorted markets: pt − τ = wt and p̄ − τ =∑
T

t=1
wtDt(p̄)/

∑
T

t=1
Dt(p̄).

A tax/subsidy on all retail customers cannot achieve the second best because the

RTP customers are served optimally absent the tax/subsidy, as was shown in the previous

section. Setting τ to achieve the optimal second-best optimal price for flat-rate customers

distorts the prices for RTP customers away from the second-best optimal level for them

that is achieved if no tax/subsidy is applied to RTP customers.20

Result 8: Non-optimality of Retail Tax/Subsidy on All Retail Customers –

With external financing, a tax/subsidy on all flat-rate customers cannot achieve the second-

best optimal allocation and capacity investment.

Result 8 is illustrated in Figure 5. Without the retail tax, the equilibrium flat rate

is p̄e
LR

, the peak price is c + r, and the off-peak price is c. A tax on all electricity can

increase the equilibrium flat rate to p̄∗
LR

which decreases wholesale demand and causes

capacity to exit. If the tax were applied only to flat-rate retail customers, as in Result 7,

the long-run peak price would be c + r and the off-peak price would be c and capacity

investment would be at the second-best optimal level K∗

LR
. However, taxing the realtime

customers τ implies that in the long run the realtime prices must rise to c+r+τ and c+τ

so that the wholesale prices are c+ r and c. The tax τ introduces deadweight loss (shown

by the shaded triangles) into the realtime market so the second-best optimal electricity

allocation is not attained. Note also that the reduction in realtime consumption from the

tax implies that additional capacity exits, i.e., K ′ is less than K∗

LR
.

B. Capacity subsidies/taxes with external financing

Though retail taxes/subsidies may seem the natural policy instrument to address the

efficiency problem caused by flat retail pricing, the public policy debate has focused on

taxes or subsidies (actually, just subsidies) for capacity. A policy of subsidizing generation

capacity can affect efficiency, by lowering the capital cost of new generation and inducing

new entry, thereby driving down wholesale prices. This would increase profits of the

retailers which would drive down the equilibrium flat retail rate. As above, this could

20 An optimal retail tax/subsidy on all customers would not equate the flat rate with p̄
∗

LR
, but would

instead allow some distortion in the flat-rate market in order to lessen the distortion in the realtime
market.
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improve efficiency if the equilibrium flat retail price were too high, i.e., p̄e > p̄∗.

To see if the second-best allocation can be attained in competitive equilibrium, con-

sider a capacity subsidy (or tax, if negative), σ, from the general fund that changes the

producer’s cost of capital from r to r−σ. The long-run competitive equilibrium can be char-

acterized by: pt = wt; p̄ =
∑T

t=1
wtDt(p̄)/

∑T

t=1
Dt(p̄); and (wt−c)[K−D̃t(pt, p̄)] = 0; plus

the tax-distorted condition in the generation capacity market, i.e.,
∑

T

t=1
(wt − c) = r− σ.

Since both p̄∗
LR

and p̄e
LR

are weighted averages of realtime prices (with non-negative

weights), it is straightforward to show that there is a σ that would yield an equilibrium

p̄e
LR

= p̄∗
LR

.21 At that equilibrium, σ = Tc + r −
∑T

t=1
p∗
t
where

∑T

t=1
p∗
t
is such that

p̄∗
LR

=
∑T

t=1
p∗tDt(p̄

∗

LR
)/

∑T

t=1
Dt(p̄

∗

LR
). That is, the σ that yields p̄∗

LR
is equal to the

operating plus capital costs less the sum of the wholesale prices where the wholesale prices

are such that p̄∗
LR

is the average wholesale price weighted by the quantities demanded at

p̄∗
LR

. Thus, the second-best optimal flat price can be attained with a capacity subsidy (or

tax) from the general fund.

Note, however, that a capacity subsidy σ will lower some wholesale prices below the

second-best optimal levels since
∑

T

t=1
wt − c = r − σ < r. This implies that customers

paying the realtime prices are consuming more than their efficient amounts in some periods.

In periods in which capacity is not fully utilized, the price is c with or without the capacity

subsidy. In these periods, the capacity subsidy does not distort realtime consumption.

However, if capacity is fully utilized, the capacity subsidy decreases the wholesale price,

and realtime consumption is distorted above the second-best optimum. Thus, the capacity

subsidy σ from the general fund can reduce the deadweight loss from the customers on

the flat rate to zero but it will create deadweight loss in the consumption of the realtime

customers in some periods.22 This implies that

Result 9: Non-optimality of Capacity Tax/Subsidy – With external financing,

a capacity tax/subsidy cannot achieve the second-best optimal allocation and investment.

Result 9 is illustrated in Figure 6. Let s be the capacity tax which results in p̄∗
LR

as an equilibrium flat rate. Without the capacity tax s (σ is negative here), the long-run

equilibrium flat rate is p̄e
LR

, the peak price is c + r, and the off-peak price is c. The

21 From the previous section, p̄e
LR

is continuous in σ, is equal to c if σ is sufficiently positive and

increases as σ grows more negative over the relevant range of prices.

22 An optimal capacity subsidy would not equate the flat rate with p̄∗
LR
but would allow some distortion

in the flat-rate market in order to lessen the distortion in the peak realtime market. Clearly, the
optimal capacity subsidy does not attain the second best.
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capacity tax raises the cost of capital to c+r+s. This implies that the peak realtime (and

wholesale) price must rise to c+ r+ s. This induces deadweight loss (the shaded triangle)

in the realtime peak consumption so the capacity tax s does not achieve the second-best

optimal consumption or capacity investment. Note, however, that the off-peak realtime

price remains c so there is no additional inefficiency in the off-peak realtime market from

the capacity tax.

C. Capacity subsidies/taxes financed by retail taxes/subsidies

Most of the public policy debates regarding investment in electricity markets have

not actually considered capacity subsidies from outside the industry. Instead, the recom-

mended policy tool has usually been capacity subsidies financed by fees collected from

retail electricity providers. In most cases, the collection mechanism suggested has been a

retail electricity tax that does not vary over time.

The retail electricity tax used to fund the capacity payments can be administered in a

number of ways. First, we analyze the simpler case where the tax is levied only on the flat-

rate customers. Combining the analyses above, the long-run competitive equilibrium can

be characterized by: pt = wt; p̄−τ =
∑

T

t=1
wtDt(p̄)/

∑
T

t=1
Dt(p̄); (wt−c)[K−D̃t(pt, p̄)] =

0; and
∑

T

t=1
(wt−c) = r−σ. The balanced-budget condition is τ

∑
T

t=1
(1−α)Dt(p̄) = σK.

The balanced-budget condition ensures that the tax revenue collected by the retail sector

exactly funds the capacity payments made to the wholesale sector.23

Such a capacity payment has two off-setting effects. The scheme includes a tax on the

retail sector, which increases the equilibrium flat retail price, and a capacity subsidy to the

wholesale sector, which decreases wholesale prices and, thereby, decreases the equilibrium

flat retail price. Though at first it may seem that these effects would be offsetting, that

isn’t generally true. It is true, however, in the special case where there are no customers

on RTP.

If there are no customers on RTP, then the realtime prices are irrelevant, and capacity

is determined by the highest demand period. Let T̂ be the highest demand period. The

equilibrium with capacity payments is then characterized by D
T̂
(p̄) = K; w

T̂
= c+ r − σ

and wt = c for all other periods; p̄ − τ =
∑

T

t=1
wtDt(p̄)/

∑
T

t=1
Dt(p̄); and the balanced-

23 In what follows, we assume that σ is the policy instrument and that τ is determined endogenously
such that the capacity payments are fully funded. Clearly, τ could be the policy instrument and σ

could be determined endogenously.
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budget condition τ
∑

T

t=1
Dt(p̄) = σK. Note, however, that this implies that

p̄ = τ +

T∑

t=1

wtDt(p̄)/
T∑

t=1

Dt(p̄)

= τ + c+ (r − σ)D
T̂
(p̄)/

T∑

t=1

Dt(p̄) = c+ rD
T̂
(p̄)/

T∑

t=1

Dt(p̄). [7]

[7] implies that the flat rate that results from competition under any level of capacity

payments is exactly the flat rate that would result with no capacity payments, i.e., the

flat rate is a weighted average of wholesale prices c + r in the highest peak period and

c in every other period. Thus the capacity payments have no effect on the competitive

equilibrium.

Result 10: Neutrality of Capacity Payments With No RTP Customers – If

all customers are on flat-rate pricing, then a capacity payment σ funded by an excise tax

on electricity has no effect on the equilibrium prices, allocation or capacity investment.24

When some customers face the realtime prices, the effects of the capacity payments

do not in general offset one another since the capacity payment lowers prices in the whole-

sale market. The lower wholesale prices increase consumption of the customers facing

the realtime price. Effectively, the capacity payment raises the flat retail price (harming

customers facing the flat price) but lowers the wholesale prices (benefiting customers fac-

ing the realtime price). If the flat-rate market is distorted the former effect may improve

efficiency.

With the above characterization of the equilibrium, it can be shown that the second-

best optimal price p̄∗
LR

is the equilibrium outcome from a capacity payment of σ∗ =

(1 − α)/K · [p̄∗
LR

∑T

t=1
Dt(p̄

∗

LR
) −

∑T

t=1
p∗
t
Dt(p̄

∗

LR
)] where

∑T

t=1
p∗
t
= Tc + r − σ∗ and

(p∗t−c)[K−D̃t(p
∗

t , p̄)] = 0.25 Note that this implies that σ∗ should be positive if p̄e
LR

< p̄∗
LR

,

24 A capacity payment, σ, which is funded by the flat-rate customers, also has no effect if α is small
and Dt(c + r − σ) = 0 ∀t, i.e., demand has a choke price. If α is sufficiently small then capacity

only binds in one peak period, defined as period T̂ . This implies that w
T̂
= c + r − σ and that

wt = c for all other periods. Since realtime demand is choked off in period T̂ , capacity is determined
by (1 − α)D

T̂
(p̄) = K. The equilibrium is then fully characterized by the additional conditions

pt = wt; (wt− c)[K− D̃t(pt, p̄)] = 0; p̄− τ =
∑

T

t=1
wtDt(p̄)/

∑
T

t=1
Dt(p̄); and the balanced-budget

condition τ
∑

T

t=1
(1 − α)Dt(p̄) = σK. As in [7], it is easy to show from this characterization that

p̄ = c + rD
T̂
(p̄)/

∑
T

t=1
Dt(p̄). This implies that the equilibrium flat rate with capacity payment σ

is exactly the flat rate that would result if there were no capacity payment.

25 Since σ∗ is defined implicitly by highly non-linear equations, it is difficult to prove that a general

17



i.e., if the equilibrium flat price is too low. This is equivalent to the effect of a tax on

retail electricity. However, note also that although σ∗ minimizes the deadweight loss in the

flat-rate market, it leads to deadweight loss in the realtime market since
∑

T

t=1
(p∗

t
− c) =

r − σ∗ < r implies that some of the realtime prices are too low.26 As in the analysis of

a capacity subsidy, this implies a distortion in the realtime market in periods in which

capacity is fully utilized. This distortion implies,

Result 11: Non-optimality of Capacity Payments from Flat-rate Customers

– Capacity payments, funded by an excise tax on electricity sold to the flat-rate retail

customers, cannot achieve the second-best optimal allocation and investment.

Policy makers have generally proposed capacity payments to be funded by payments

from all retail customers and not just the flat-rate customers. Combining the analyses of

a retail tax on all customers from above with a capacity subsidy, the long-run competitive

equilibrium can be characterized by: pt − τ = wt; p̄ − τ =
∑

T

t=1
wtDt(p̄)/

∑
T

t=1
Dt(p̄);

(wt − c)[K − D̃t(pt, p̄)] = 0; and
∑

T

t=1
(wt − c) = r − σ. The balanced-budget condition

is now τ
∑

T

t=1
D̃t(pt, p̄) = σK. As above, the balanced-budget condition ensures that the

revenue collected exactly covers the capacity subsidy where now revenue is collected from

all customers.

Capacity payments funded by all retail customers have a number of effects. Consider

a positive capacity payment. The capacity payment has two components: a tax on all

retail electricity customers and a subsidy to capacity. If the equilibrium flat rate was

too low, the tax on the flat-rate customers may improve efficiency. However, it distorts

RTP consumption in all periods by driving up the realtime prices. The capacity subsidy

decreases the cost of capital which drives down the wholesale prices in periods in which

capacity is fully utilized. This lessens the inefficiency of the realtime tax during peak

periods but does nothing to lessen the inefficiency when capacity is not fully utilized. It

follows that

Result 12: Non-optimality of Capacity Payments from All Customers – Ca-

pacity payments, funded by an excise tax on electricity sold to all retail customers, cannot

achieve the second-best optimal allocation and capacity investment.

solution exists to the system of equations. Examples can be shown where σ∗ can be easily derived.
For example, if α is small such that capacity is only fully utilized in one period and the choke price
is such that DT (c+ r) is positive, σ∗ can be derived.

26 Alternatively some of the realtime prices would be too high if σ were positive.
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III. Changing Proportion of Customers on Realtime Pricing

This section examines the effect of changing the proportion of customers that are on

RTP. There are three ways in which such a change might occur. First, policy makers could

simply change the proportion of customers on RTP without regard to characteristics of the

customers. Second, policy makers could treat heterogenous customers differently, e.g., by

putting the customers with the most elastic peak demand on RTP. Third, policy makers

could allow customers to choose whether to purchase electricity at realtime prices or at a

flat rate. We address only the first of these policies by analyzing an exogenous change in

α.27

As shown above, if all customers are on RTP, allocation and investment are efficient.

When some customers are not on RTP, electricity is allocated inefficiently between the

flat-rate and RTP markets. Decreasing the proportion of customers on RTP worsens

this misallocation and decreases efficiency. To see this, note that the social planner’s

problem in [1] allowed the planner to charge any prices to the RTP customers. If the

planner were constrained to charge a flat rate to a portion of the RTP customers, efficiency

would decrease. Conversely, increasing the proportion of customers on RTP improves the

efficiency of both the electricity allocation and investment.28 Therefore, we have:

Result 13: Efficiency of Increasing Share of Customers on RTP – Increasing

α improves the efficiency of the electricity allocation and improves investment efficiency.

Since current policy proposals call for increasing the proportion of customers on real-

time pricing, the remainder of this section is devoted to understanding how the equilibrium

prices and investment change with an increase in α.

A. The Effect of Increasing RTP Customers on Prices

Increasing the proportion of customers on RTP increases the elasticity of demand by

rotating D̃t around p̄e. This has two effects on wholesale demand. For periods in which the

wholesale price is above the flat rate, increasing α decreases demand since more customers

face the higher realtime price. Because capacity is fully utilized in these periods, decreased

27 Such a change might be appropriate if the costs of metering or billing RTP customers changed
exogenously. Borenstein (2002) discusses the possible impact of an RTP program open to voluntary
participation.

28 This argument can be made rigorous by dividing customers into three groups: customers on RTP,
customers on the flat rate, and customers who can be either on RTP or the flat rate. The first-
order conditions for [1] imply that the social planner would always charge the realtime prices to the
third group of customers. This means that increasing the proportion of customers on RTP increases
efficiency.
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demand drives down the wholesale price. Conversely, for periods in which the wholesale

price is below the flat rate, demand increases with α since more customers face the lower

realtime price. When the wholesale price is low, capacity may or may not be fully utilized.

If capacity is not fully utilized, the increased demand does not affect the wholesale price.

However, if capacity is fully utilized, the increased demand increases the wholesale price in

these periods. Thus, increasing α decreases some wholesale prices (i.e., in peak periods)

while increasing or not changing others (i.e., in off-peak periods).

Since wholesale prices are increasing and/or decreasing, the change in the short-run

equilibrium flat rate is not immediately obvious. We have developed examples in which the

flat rate declines or stays constant. Though we have not yet found an example in which the

flat rate rises with an increase in α, we have not been able to rule out that result. First,

consider again the simple two-period model where pp > pop = c. Increasing α marginally

will decrease pp but will have no effect on pop. If p̄ did not change, retail sellers would then

be earning a profit on flat rate customers, so competition forces the short-run equilibrium

flat rate to fall.29

Next consider a two-period linear model in which capacity is fully utilized in each

period and Dt(pt) = At −Btpt. Since K = D̃t(pt, p̄) implies that pt =
1

α
[At−K

Bt

− (1−α)p̄]

the retail profits can be written:

πR = (1− α)
2∑

t=1

[p̄− pt]Dt(p̄) =
1− α

α

2∑

t=1

[p̄−
At −K

Bt
]Dt(p̄). [8]

This implies that for a given flat rate the profits are proportional in (1−α)/α. Therefore,

if retail profits are zero for a given flat rate, profits remain zero when more customers are

put on RTP. Thus, in this linear model, the short-run equilibrium flat rate does not change

with α.

B. The Effect of Increasing RTP Customers on Capacity

In the long run, investment in generation capacity will occur if profits are positive.

Since increasing α causes wholesale prices to increase, decrease, and/or stay the same, it

should not be surprising that the equilibrium effect on capacity of changing α is indeter-

minate. To illustrate a capacity decrease, return to the simple two-period model in which

pp > pop = c and assume that D̃op(c, p̄) < K. Recall that the long-run equilibrium requires

that pp = c+r. Marginally increasing α has two effects on peak demand. First, since more

29 Alternatively, the equilibrium flat rate must fall since it is a weighted average of pp (which decreases)

and pop (which remains constant) where the weights do not depend on α.
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customers face the higher realtime price, peak demand decreases. Second, since, as argued

above, the short-run equilibrium flat rate must decrease, peak demand increases. However,

the first effect must dominate–otherwise p̄eSR would increase–so that pp falls.
30 Since the

peak price falls, and the off-peak price remains constant, increasing α decreases wholesale

profits. Therefore wholesale profits are negative in the short run, and equilibrium capacity

decreases in the long run.

To show that increasing the proportion of customers on RTP can lead to increased

investment, consider the two-period linear model in which capacity is fully utilized in both

periods. Recall from above that increasing α does not affect the short-run equilibrium flat

rate. However, increasing α does decrease the peak wholesale price and increase the off-

peak wholesale price. Since the quantity-weighted average of the peak and off-peak prices

does not change (i.e., the flat rate does not change) and the average puts more weight on

the peak price than the off-peak price, the off-peak price must change more than the peak

price. This implies that the price increase off peak must be greater than the price decrease

on peak, i.e., the sum of the two prices has increased. Since investment incentives depend

on the wholesale profits, which depend on the sum of the wholesale prices, the increase in

α leads to an increase in investment.

Result 14: Indeterminant Effect of Increasing RTP Customers on Capacity –

An increase in the proportion of customers on RTP can increase or decreases long-run

equilibrium capacity Ke
LR.

Result 14 is illustrated in Figure 7. As shown above, the short-run equilibrium flat rate

does not change when the proportion of customers on RTP increases for linear demands.

With a small number of customers on RTP, the aggregate demands are given by D̃t, and

the peak price is c + r while the off-peak price is c. Starting from an initial capacity of

K1, charging more customers the realtime prices decreases peak demand and decreases

the peak wholesale price. Since capacity is not fully utilized off-peak, the price does not

increase so wholesale profits decrease, and capacity decreases from K1 due to exit. When

sufficient customers are on RTP such that demands are D̃′

t
, equilibrium capacity is K2.

Now putting more customers on RTP drives down the peak wholesale price but increases

the off-peak wholesale price. These two offsetting effects on wholesale profits may imply

that profits are positive. As argued above, wholesale profits will increase for linear demands

30 A simple proof by contradiction shows that pp falls. Starting from a long-run equilibrium, i.e.,

pp = c+r, increase α. Let p̃p be the short-run peak price after increasing α. Suppose that p̃p ≥ c+r.
This implies that retail losses from serving the peak flat-rate customers would weakly increase which
implies that p̄ must weakly increase in the short run. But this contradicts the result from above that
p̄e must strictly decrease in the short run from increasing α. Therefore, p̃p < c+ r.
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so capacity will increase above K2. As drawn in Figure 7, the first-best capacity, attained

in equilibrium if all customers are on RTP, lies between K1 and K2.

To summarize, a policy increasing the proportion of customers on RTP improves the

efficiency of both electricity allocation and investment in generation capacity. The policy

increases the elasticity of the wholesale demand which leads to decreases in peak prices

and possibly to increases in off-peak prices. Equilibrium capacity may increase or decrease

under the policy.

IV. Reserves in Peak-Load Pricing Analysis

Thus far, we have assumed that the market can be relied upon for instantaneous price

adjustment that matches supply and demand in each period. This is an important issue,

because instantaneous supply/demand balancing is necessary to prevent destabilizing the

grid, which would cause costly service disruptions. This concern arises because of the

stochastic natures of demand and available supply, which are not modeled in our analysis,

and the non-storability of electricity. In response to these realities, independent system

operators (ISOs) carry operating reserves, capacity that is paid to standby to be available

for production on short notice. A complete model of a deregulated market with operating

reserves under stochastic supply and demand is beyond the scope of the current analysis,

but a simple model of reserves demonstrates why we believe that the basic insights of our

analysis would apply to such a model.

A first step towards incorporating reserves is as an augmentation to demand. Assume

that the ISO decides to hold reserves equal to a fraction v of quantity demanded, so

effectively demand for production capacity is (1 + v)D̃t(p, p̄). With a minor modification,

the analysis then goes through as in the previous sections. The modification is necessary

because generation owners must be paid for some capacity that is not actually producing

power. In effect, the reserves requirement means that a unit of production requires 1 + v

units of capacity.31

If each capacity owner “self-provided” reserves, by simply using only 1

1+v
of its capac-

ity, leaving the remaining capacity as reserve, then the analysis of the previous sections

goes through without further modification. In periods in which D̃t(c, p̄) <
K

1+v
, the whole-

sale and retail realtime price are wt = pt = c. If D̃t(c, p̄) >
K

1+v
, the wholesale and retail

realtime price are defined by D̃t(wt, p̄) = K

1+v
. In the long run, capacity adjusts until

31 Alternatively, every unit of capacity that previously cost r per day could now be considered to cost
r · (1 + v) per day.
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∑T

t=1 wt − c = r · (1 + v). The additional scarcity rent for each unit of capacity that gets

used would be exactly sufficient to cover the cost of the extra capacity that is never used.

In reality, reserves are not provided by operating every generating unit at less than full

capacity. Because of startup costs and differential fuel costs, some generators operate at

full capacity while others sit idle but ready to operate as backup if necessary. Owners of the

units that provide reserves need not be the same as owners of the units that generate power.

In this situation, a single price for power is not sufficient to compensate all generation

owners. Instead, generators receive one payment for generating power and a different

payment for being available as standby capacity. We’ll call the payment for providing one

unit of reserve capacity θt.

Applying this structure to our simple model, which has homogeneous capacity and

no startup costs, one can derive the short-run equilibrium by recognizing that (1) retailers

must cover their costs of power and reserve capacity, (2) generators must always be indiffer-

ent between generating power and providing reserve capacity, and (3) demand must never

exceed K
1+v

. Thus, for a given K, if D̃t(c, p̄) < K
1+v

in a given period, then pt = wt = c

and θ = 0.

If D̃t(c, p̄) > K
1+v

, the capacity constraint is binding and the retail realtime price is

defined by D̃t(pt, p̄) =
K
1+v

. If it were the case that wt = pt and θ = 0, then all generators

would want to provide power and none would provide reserves. This would drive down

the wholesale price of power and drive up the price of reserve capacity (which the retailer

is required to have in proportion v of the power it is providing) until we
t = c + pe

t
−c

1+v
and

θet =
p
e

t
−c

1+v
. This would satisfy generator indifference between providing power or reserves,

because either way they earn
pe
t
−c

1+v
. It would also allow retailers to exactly cover their

costs, because their cost of providing one unit of power at retail would be we
t + vθet =

c +
pe
t
−c

1+v
+ v

pe
t
−c

1+v
= c+ (pet − c) = pet . The equilibrium retail price to flat-rate customers

would be the quantity-weighted average of the cost of providing the power, we
t + vθet = pet ,

so p̄e is defined implicitly by p̄e =
∑T

t=1 p
e
tDt(p̄

e)/
∑T

t=1Dt(p̄
e).

In the long run, capacity adjusts until
∑T

t=1wt− c = r which, by construction, occurs

at the same K that results in
∑T

t=1 θt = r. Generators are indifferent between providing

power or reserve capacity and exactly cover their costs of capital regardless of which they

do. So we have,

Result 15: Competitive Equilibrium with Reserves – If reserves are modeled

as unused capacity that must be held in proportion v of power production, then the com-

petitive equilibrium is characterized by (1) if D̃t(c, p̄
e)< K

1+v
in a period, realtime retail
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and wholesale price is pet = we
t = c and reserve capacity payment is θet = 0, (2) if

D̃t(c, p̄
e) > K

1+v
, realtime retail price is determined by D̃t(p

e
t , p̄

e) = K
1+v

, realtime wholesale

price is we
t = c +

pe
t
−c

1+v
, and realtime reserve capacity payment is θet = pt−c

1+v
, (3) a flat-

rate retail price defined implicitly by p̄e =
∑T

t=1 p
e
tDt(p̄

e)/
∑T

t=1Dt(p̄
e), and (4) long-run

adjustment of capacity so that
∑T

t=1w
e
t − c =

∑T

t=1 θ
e
t = r.

Given the characterization of the equilibrium in Result 15, all the results of the preced-

ing analysis can be applied to the equilibrium with reserves. In particular, if all customers

are on RTP, then investment, electricity allocation, and provision of reserves are all effi-

cient. However, if some customers do not face the realtime prices, then neither the efficient

allocation nor the second-best optimum is attained.

V. Conclusion

Electricity deregulation has proceeded with support from many economists on the

belief that competitive electricity markets will produce more efficient outcomes than reg-

ulation. That still may turn out to be true, though in many locations, most notably

California, there is significant evidence that the markets have not been sufficiently com-

petitive. Even if market changes succeed in making the markets competitive, however,

we have shown that flat-rate pricing of a significant share of retail customers will remain

a barrier to achieving efficient outcomes. Not only does flat-rate retail pricing have the

obvious problem of preventing hour-by-hour prices that reflect wholesale costs, flat-rate

pricing in a competitive market fails to achieve even the second-best optimum of the

welfare-maximizing flat-rate price. As a result, we have shown that capacity investment

will in general differ from the second-best optimal level.

In order to assure adequate capacity investment, many market participants and ad-

visors have argued for “capacity payments,” which are effectively subsidies that reduce

the cost of owning capacity and, thus, increase equilibrium investment. We have demon-

strated that capacity subsidies (or taxes) cannot achieve the second-best optimum, because

they create other distortions as they address the distortion caused by flat-rate customers.

Furthermore, capacity investment distortion under flat-rate pricing can lead to either ex-

cessive or insufficient investment. We also examine taxes or subsidies on retail electricity

as a policy response to the inefficiency caused by flat-rate pricing. A tax or subsidy on the

flat-rate customers alone can indeed achieve the second-best optimal flat-rate price and

capacity investment, but a tax or subsidy that applies to all customers–flat-rate and those

on RTP–will distort the RTP market, so it will not achieve the second-best optimum.

Many economists and some industry participants have argued strongly for increasing
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the proportion of customers on RTP. We have shown that increasing the proportion of

customers on RTP always increases market efficiency. While that is not surprising, the

effect of such increases on capacity investment may be. Though increasing the use of

RTP can, as many have suspected, decrease equilibrium investment in capacity, it can also

increase equilibrium capacity. Which will occur depends on the specific parameters of the

market, in particular whether demand at peak times is more or less elastic than demand

during hours of lower demand.

The argument in favor of capacity payments is often supported by pointing out the

need for excess capacity to provide operating reserves in case prices cannot instantaneously

balance supply and demand. We have demonstrated in a simple model that the need for

reserve capacity does not alter the basic insights of our analysis. The need for a given

proportional capacity reserve changes optimal prices and capacity, but the problems raised

by flat-rate pricing remain and the inability of capacity subsidies to correct these problems

is unchanged.

We’ve modeled the flat-rate retail price problem in the context and institutions of

deregulated electricity markets, but the application is much broader. In many markets,

retail prices cannot or at least do not fluctuate to reflect changes in market and cost

conditions. This is broadly recognized, but there seems to be a view that competitive

determination of some sort of smoothed or average retail price allows the welfare analysis

of competitive markets to go through at least approximately. Our results suggest that this

isn’t the case, that competitive determination of retail prices that are constrained not to

adjust as frequently as costs will not achieve a second-best optimum.

Like much of the peak-load pricing literature, we have made certain restrictive as-

sumptions to simplify this analysis. We have assumed that there is no cross-elasticity

of demand across periods, that all generation technology is identical, that all customers

have identical distributions of demands across periods, and that demand has no stochastic

component. In future work, we intend to relax these restrictive assumptions, but at this

point we see no reason that such changes to the model will alter the basic insights of the

analysis.
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