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Abstract 

Background: Several deep learning-based techniques have been developed for prostate cancer 

(PCa) detection using multi-parametric MRI (mpMRI), but few of them have been rigorously 

evaluated relative to radiologists’ performance or whole-mount histopathology (WMHP). 

Purpose: To compare the performance of a previously proposed deep learning algorithm, 

FocalNet, and expert radiologists in the detection of PCa on mpMRI with WMHP as the reference. 

Study type: Retrospective, single-center study. 

Subjects: 553 patients (development cohort: 427 patients; evaluation cohort: 126 patients) who 

underwent 3 T mpMRI prior to radical prostatectomy from October 2010 to February 2018.  

Field Strength/Sequence: 3 T, T2-weighted imaging and diffusion-weighted imaging.  

Assessment: FocalNet was trained on the development cohort to predict PCa locations by 

detection points, with a confidence value for each point, on the evaluation cohort. Four fellowship-

trained genitourinary (GU) radiologists independently evaluated the evaluation cohort to detect 

suspicious PCa foci, annotate detection point locations, and assign a five-point suspicion score 

(1:least suspicious, 5:most suspicious) for each annotated detection point. The PCa detection 

performance of FocalNet and radiologists were evaluated by the lesion detection sensitivity versus 

the number of false-positive detections at different thresholds on suspicion scores. Clinically 

significant lesions: Gleason Group≥2 or pathological size≥10 mm. Index lesions: the highest 

Gleason Group and the largest pathological size (secondary). 

Statistical tests:  Bootstrap hypothesis test for the detection sensitivity between radiologists and 

FocalNet. 
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Results: For the overall differential detection sensitivity, FocalNet was 5.1% and 4.7% below the 

radiologists for clinically significant and index lesions, respectively; however, the differences were 

not statistically significant (P=0.413 and P=0.282, respectively). 

Data Conclusion: FocalNet achieved slightly lower but not statistically significant PCa detection 

performance compared to GU radiologists. Compared with radiologists, FocalNet demonstrated 

similar detection performance for a highly sensitive setting (suspicion score≥1) or a highly specific 

setting (suspicion score=5) while lower performance in between. 

Keywords: Deep learning; prostate cancer; automatic cancer detection; multi-parametric MRI. 
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Introduction 

Multi-parametric MRI (mpMRI) acquired at 3 T has been shown to be highly sensitive for the 

detection of high-grade and index prostate cancer (PCa) (1). The main prostate mpMRI sequences 

for PCa detection include T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and 

dynamic contrast enhanced imaging (DCE). Prostate mpMRI is commonly interpreted by a 

combination of anatomical (T2WI) and functional (DWI and DCE) information, relying on a 

zonal-based subjective scoring of qualitative characteristics, as specified by the current iteration 

of Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) (2). This subjective 

system has inter- and intra-reader variability (3–5) and has a finite range of sensitivity due to the 

qualitative scoring.  

Artificial intelligence for automatic prostate cancer detection from mpMRI has shown 

promise to overcome such limitations of subjective and qualitative interpretation (6–14). An 

automatic detection system locates regions of suspicion and assesses their levels of suspiciousness 

from the input volumetric imaging of mpMRI. In particular, deep learning methods can recognize 

target patterns after training (15) and have achieved promising prostate cancer detection 

performance (9). However, the performance of these deep learning algorithms with respect to 

diagnostic accuracy in comparison to genitourinary (GU) radiologists has not been well studied. 

FocalNet is a previously proposed deep learning system that detect PCa from volumetric 3 

T mpMRI (16). Thus, the aim of our study was to evaluate and compare the performance of 

FocalNet with GU radiologists experienced in the interpretation of 3 T mpMRI for PCa detection.  

 

 

Materials and Methods 
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This study was approved by the local institutional review board with a waiver for written informed 

consent and compliant with the 1996 United States Health Insurance Portability and 

Accountability Act. 

 

Patients 

The evaluation cohort for the study cohort included 126 patients from 184 patients who underwent 

robotic assisted laparoscopic radical prostatectomy (RALP) from July 2016 to February 2018 at a 

single academic medical center. The excluded patients had MRI from outside provider (n=37), 

hormonal, chemo or radiation treatment prior to prostatectomy (n=7), 1.5 T MRI (n=4), incomplete 

MRI imaging sequence (n=3), no WMHP (n=2), no MRI (n=2), or other reasons (n=3, Figure 2). 

The development cohort included 427 patients from October 2010 to June 2016, using the same 

exclusion criteria as the evaluation cohort, for the training and validation of FocalNet. Of the total 

553 included patients in either cohort, 417 had been previously included in a pilot study describing 

the technical development of FocalNet (16). The development cohort was split into five folds for 

cross-validation, and the model parameters and optimization settings were tuned using the 5-fold 

cross-validation. After the model and parameter settings were determined, we tested the FocalNet 

algorithm with the evaluation cohort (Figure 1). The mean age for the 427 patients in the 

development cohort was 61.1±7.1 (mean±std) years (IQR: 56-66), and the mean age for the 126 

patients in the evaluation cohort was 62.4±6.4 years (IQR: 58-68). The median duration between 

pre-operative MRI and radical prostatectomy was 63 days (IQR: 23-101) and 86 days (IQR: 45-

130) for development and evaluation cohorts, respectively. 

MR Imaging 
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We included one pre-operative 3 T mpMRI scan for each patient in this work. All images 

were acquired with one of four 3 T MR scanners (Trio, Verio, Skyra, Prisma; Siemens Healthineers, 

Erlangen, Germany). T2WI, DWI, and DCE MRI in the transverse plane were acquired using a 

standardized protocol following ESUR PI-RADS guidelines (2). The pelvic phased-array coil was 

used for all patients, and endorectal coil was used for a partial cohort (Table 1). The same protocol 

was applied in the whole cohort regardless of the coil. T2WI was acquired using axial turbo spin-

echo (TSE) imaging with 3,800-5,040 ms repetition time (TR) and 101 ms echo time (TE). T2WI 

had the in-plane resolution of 0.625 x 0.625 mm2 with a matrix size of 320 x 310 for a field of 

view (FOV) of 20 x 20 cm2. The slice thickness was 3 mm with no gap between slices. DWI was 

acquired using echo-planar imaging (EPI) with 4800 ms TR and 80 ms TE using four different b-

values (0/100/400/800 s/mm2). DWI had the in-plane resolution of 1.6 x 1.6 mm2 with a matrix 

size of 160 x 94 for a FOV of 26 x 21 cm2. The slice thickness of DWI was 3.6 mm with no gap 

between slices. Apparent diffusion coefficient (ADC) maps were calculated by linear least-square 

fitting with all b-values.  

Whole-mount histopathology  

RALP was performed on average 79.7 (interquartile range (IQR): 27 - 107) days after the 

3 T mpMRI. The resected prostate specimens were sectioned in the axial plane from the inked 

basal margin to the apex in approximately 5 mm intervals and mounted on large slides. The sliced 

WMHP specimen were examined by GU pathologists (with 12, 6, and 3 years of experience in 

clinical prostate histopathology interpretation) independent of radiological findings, and each PCa 

lesion was contoured and received a Gleason Score (GS) as a part of clinical routine. At a separate 

matching meeting with at least one GU radiologist and one GU pathologist, individual lesions 

detected on WMHP were matched on a slice-by-slice basis with MRI as a part of the standard of 



 7 

care. After the matching meeting, GU radiology research fellows led by GU radiologists (S.R., 

E.F.) retrospectively identified and contoured MRI-visible lesions on T2WI. We defined 

prospectively missed lesions (i.e., false negatives) as MRI-visible lesions. The remaining MRI 

non-visible lesions, retrospectively unidentifiable in MRI with WMHP, were not included nor 

contoured for this study as we were unable to locate them or to confirm their presence at the time 

of MRI. The characteristics of MRI non-visible lesions are in Supplement Table S1.  

 

 

Image Processing  

The ADC map was resized and aligned to the T2WI using the field-of-view coordinates. An 80 

mm x 80 mm window, centered at the prostate, was cropped in the transverse plane. The intensity 

of the T2WI was clipped and normalized linearly with a lower threshold of zero and an upper 

threshold determined by the bladder’s intensity to account for significant intensity variations 

between mpMRI scans with and without an endorectal coil.  

 

Deep learning: training and lesion detection  

FocalNet took a slice of 3 T mpMRI as the input and predicted the cancer probability map for that 

slice. The T2WI and ADC of that slice were passed into FocalNet as two image channels, and the 

predicted probability maps for individual slices were stacked together to create a volumetric 

prediction probability map. For training, FocalNet was optimized by the stochastic gradient 

descent for the cancer probability map with binary lesion masks from the groundtruth lesion 

contours. For evaluation, detection points to localize PCa lesions were identified by searching for 

local maxima from the volumetric prediction probability map, and each detection point is 
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associated with a confidence value which is the predicted probability value at the detection point 

(16).   

We made two modifications to the original FocalNet model (16) to accommodate full 

volumetric imaging. First, for the prediction of a given slice, that slice and its two adjacent slices 

were used as input into FocalNet. When the given middle slice is the first/last slice, the middle 

slice was duplicated as the missing adjacent slice. We expect this to help FocalNet utilize inter-

slice information to promote or reject cancer prediction and to suppress false positive detections 

for non-prostate regions (e.g., bladder just outside of prostate gland base). Second, the model was 

trained using focal loss (17) only to alleviate the GPU memory consumption due to the additional 

slices as input. 

 

Radiologists: lesion detection 

Four board-certificated GU radiologists (19, 12, 10, and 5 years of experience in clinical prostate 

MRI interpretation) independently evaluated every case of the 126 cases in the evaluation cohort 

using Osirix MD 10.0 (Pixmeo SARL, Geneva, Switzerland). Each radiologist was instructed to 

place detection points to localize PCa lesions on T2WI after reviewing the T2WI and ADC map 

only, blinded to all clinical information or pathology reports. The radiologists scored each 

detection point using a 5-point Likert score from suspicion score 1 (least suspicious to be a PCa 

lesion) to suspicion score 5 (most suspicious to be a PCa lesion) based on their own experience.   

In a session before the reading, the radiologists were instructed the general working principles of 

FocalNet and the detailed evaluation setup; e.g., multiple detection points on a single lesion or 

detection points on indolent prostate cancer (defined as a lesion with Gleason Group (GG) 1 and 
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pathological size less than 10mm) would not be penalized, nor would they improve the detection 

sensitivity.  

 

Evaluation of Lesion Detection  

We evaluated the overall detection accuracy of both FocalNet and GU radiologists using the free-

response receiver operating characteristics analysis (FROC) (11). The FROC analysis measured 

detection sensitivity versus the number of false positives by thresholding on the confident value 

(FocalNet) or suspicion score (radiologist). For each radiologist and each threshold score, we 

found the matching point on the FROC curve of FocalNet based on the number of false positives 

per patient, and we computed the difference in detection sensitivity between a radiologist and 

FocalNet. The overall differential detection sensitivity was obtained by averaging the difference 

detection sensitivity between each radiologist and FocalNet at five suspicion score thresholds. 

A  detection point in or within a 5 mm margin of an annotated lesion contour was considered as a 

true positive and detection points outside of the 5 mm margin of any lesion contours were 

otherwise considered as false positives (16,18). The margin was assessed in 3 dimensions. More 

than one true-positive detection point on a single lesion did not affect the detection sensitivity. 

False-positive detection points were counted individually. Lesions with Gleason Group equal to 

or greater than 2 (GS 3+4) or pathological size larger than or equal to 10 mm were defined as 

clinically significant PCa (csPCa) (19), and the csPCa lesion with the highest Gleason Group and 

the largest pathological size (in the case of multiple lesions with the same Gleason Group) was 

considered as the index lesion for a patient (20,21). For the evaluation of a specific group (e.g., 

csPCa and index lesion), only lesions in the group were counted for detection sensitivity, and the 

detection of lesions outside of the specific group would contribute to neither detect sensitivity nor 
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the number of false-positive detection. The detection performance of FocalNet for lesions grouped 

by size and Gleason Group was also investigated. For size, all csPCa lesions were placed into three 

groups based on their pathological sizes (diameter): less than or equal to 10mm, 10–20mm, and 

greater than 20mm. Similarly, for Gleason Group, all csPCa lesions were placed into 3 groups: 

Gleason Group 1, Gleason Group 2, and Gleason Group 3 or above. 

Statistical analysis 

We used the non-parametric bootstrap to obtain inferences on this mean difference in 

sensitivity adjusting for number of false positives per patient. 10,000 bootstrap samples were 

obtained by resampling both patients and radiologists. We hypothesized that the radiologists’ 

detection sensitivity was statistically different from the detection sensitivity of FocalNet. Two-

tailed t-test (p=0.05) was performed on the differential detection sensitivity by inverting the 

bootstrap confidence interval. 

 

 

 

 

Results  

Lesion Characteristics 

A total of 883 and 224 lesions were defined in WMHP in the development and evaluation cohorts, 

respectively, of which 709 and 185, respectively, were identified as MRI-visible on radiology-

pathology review. Of the development cohort, at least one MRI-visible lesion was identified in 

97.2% (415 of 427) patients, and 98.4% (124 of 126) of patients in the evaluation cohort had MRI-

visible lesions. Overall 275 and 53 lesions in the development and evaluation cohorts, respectively, 
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that were prospectively missed on clinical MRI reports were identified on radiology-pathology 

review and included in this study. The detailed statistics for patients and their cancer characteristics 

are summarized in Table 1. 

 

Lesion Detection  

The FROC analysis results of our deep learning system, FocalNet, for the detection of prostate 

cancer index and clinically significant lesions in evaluation cohort are shown in Figures 4 and 5, 

respectively. The detection sensitivity of FocalNet was 50%, 80%, and 90% for index lesions at 

the cost of 0.24, 2.08, and 4.98 false-positive detections per patient on average, respectively. The 

detection sensitivity for clinically significant lesions was 50%, 80%, and 90% at 0.43, 3.39, and 

11.7 false-positive detections per patient, respectively.  

 

All readers evaluated the 3T mpMRI sequences after the development and evaluation of FocalNet 

were concluded. Each reader placed on average 9.0±2.2 detection points per patient. The detection 

performance of the radiologists and FocalNet for index prostate cancer lesions is reported in Figure 

4 and Table 3. For high specificity setting (detection points with suspicion score = 5), the detection 

sensitivity of the radiologists on average was 0.4%±12.2% (range: -11.5% – 20.5%) lower than 

the detection sensitivity of FocalNet at the same false-positive detections per patient. For detection 

points with suspicion score ≥ 4, the radiologists’ detection sensitivity was 8.4%±8.9% (range: -

4.1% – 19.7%) higher than FocalNet. For high sensitivity setting (detection points with suspicion 

score ≥ 1), the radiologists’ detection sensitivity was 0.4%±6.6% (range: -0.4% – 6.5%) lower than 

FocalNet. The overall differential detection sensitivity of radiologists for index lesions was 4.7% 

(95% CI: -4.9%–14.3%) over FocalNet, which was not statistically significant (p=0.413). 
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The detection performance of the radiologists and FocalNet for clinically significant 

prostate cancer lesions is reported in Figure 5 and Table 4. For high specificity setting (detection 

points with suspicion score = 5), the radiologists’ detection sensitivity was 0.9%±10.3% (range: -

15.7% – 10.6%) higher than FocalNet. For detection points with suspicion score ≥ 3, the 

radiologists’ detection sensitivity was 8.2%±5.5% (range: -0.7% – 13.6%) higher than FocalNet. 

For high sensitivity setting (detection points with suspicion score ≥ 1), the sensitivity of the 

radiologists was 0.9%±4.6% (range: -2.5% – 8.8%) higher than FocalNet. The overall differential 

detection sensitivity of radiologists for clinically significant lesions was 5.1% (95% CI: -3.4%–

13.2%) over FocalNet, which was not statistically significant (p=0.282). As shown in the last two 

columns of Table 4, on average 9.0% (range 5.0% – 23.6%) of total clinically significant lesions 

were missed by radiologists while detected by FocalNet at the same number of false-positive 

detections per patient, even though the radiologists’ overall detection sensitivity was slightly 

higher than FocalNet. At high sensitivity settings (suspicion score ≥ 1 or 2), on average 8.5% 

(range 5.0% – 10.6%) of clinically significant lesions can be additionally detected by FocalNet on 

top of the detected lesions by a radiologist.   

An example case is shown in Supplement Figure S3 to further illustrate that FocalNet’s 

potential of providing predictions complementary to radiologists’ output. The unifocal, transition 

zone prostate cancer lesion with GG1 and pathological size 20mm was detected by FocalNet with 

a 0.892 confidence value and no false-positive detection. In contrast, in radiologists’ reading, four 

radiologists marked this lesion by a suspicion score of 2, 1, 1, 3, respectively, and radiologists 

made 6, 9, 9, 1 false-positive detection, respectively, in order to identify this true lesion. 

 

Detection for Lesions Grouped by Size, Gleason Group 
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The detection sensitivity for lesions less than or equal to 10mm, 10–20mm, and greater than 20mm 

was 26.7%, 60.3%, and 73.2%, respectively, at 1 false-positive detection per patient and 40.0%, 

68.3%, and 84.2%, respectively, at 2 false-positive detections per patient (Supplemental Figure 

S1). Additionally, the detection sensitivity for lesions with Gleason Group 1, Gleason Group 2, 

and Gleason Group 3 or above was 55.6%, 62.3%, and 74.1%, respectively, at 1 false-positive 

detection per patient and 59.3%, 73.9%, and 81.5%, respectively, at 2 false-positive detections per 

patient (Supplemental Figure S2).  

 

Discussion 

In this study, FocalNet had a comparable detection performance for a high specificity setting, 

which provided evidence that the detection of highly suspicious PCa regions could be automated 

using the deep learning systems. While the benefits for the annotation and scoring of less 

suspicious regions are currently being established, the deep learning systems could be competent 

to detect and stratify less suspicious regions in an efficient and systematic way. 

We analyzed the sets of detected lesions and counted clinically significant lesions that were 

detected by either FocalNet or radiologists but missed by the other. FocalNet identified a subset 

of targets that might be difficult for expert radiologists to identify, which suggested that FocalNet 

may allow improved detection of clinically significant lesions when incorporated into radiologists’ 

workflow. 

Our results showed that the performance of FocalNet, after training, was comparable to 

that of experienced GU radiologists, especially in either a highly sensitive setting (suspicion score 

≥ 1) or a highly specific setting (suspicion score = 5). This finding potentially suggests that deep 

learning can be integrated into the clinical workflow, as an assistant tool, to identify all potential 
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PCa lesions (high sensitivity setting) or highly suspicious PCa lesions only (high specificity 

setting).  

Schelb et al. (7) developed a deep learning system to classify PCa with Gleason Group ³ 2 

from the biopsy sample and achieved comparable performance with clinically assigned PI-RADS 

scores of either 3 or 4. Similarly, Zhong et al. (22) reported similar classification performance of 

clinically significant PCa as PI-RADS scores either 3 or 4 with the WMHP reference.  

Unlike prior studies using labels from biopsy-based histopathology as reference standards 

(11,13,23), our study included all retrospectively identifiable lesions in MRI with WMHP as a 

reference standard. This minimized biases for the assessment of PCa detection performance of our 

deep learning system and radiologist readers based on the whole prostate pathology. Our definition 

of MRI-visible lesions included lesions that were missed in prospective MRI reading before RALP 

but retrospectively identified in MRI based on WMHP. While the matching meeting conducted by 

radiologists and pathologists ensured the accuracy of the MRI-histopathology correlation, a small 

number of WMHP lesion findings were not identifiable in MRI. These MRI non-visible lesions 

were not included in our study, as they could not be located or contoured in MRI.  

Limitations 

 Both the development and evaluation cohorts consisted of patients from a single medical 

center, and all the MRI scans were acquired using consistent imaging parameters by MRI scanners 

from a single manufacturer. Our deep learning system may need some adjustments to 

accommodate potential imaging heterogeneity caused by different MRI scanners and settings (12). 

Additionally, all data was retrospectively assessed. A prospective study, where the system is fixed 

and trained prior to data collection, is necessary to validate the system in the future study. This 

study population may not fully represent prostate cancer screening that contains a large percentage 
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of cancer-negative patients, as all patients in our study population later underwent radical 

prostatectomy due to prostate cancer positivity. 

 Our study focused on a comparison of prostate cancer detection performance between in-

house developed deep learning-based system, FocalNet, and expert GU-radiologists, in order to 

have a better understanding of the capability of deep learning-based detection systems. We 

considered the deep learning system as an independent tool to perform the detection on its own, 

which helped determine the system’s strength and weaknesses when compared with radiologists. 

However, the potential of deep learning detection systems as assistive tools to radiologists in the 

clinical workflow (24) was not fully explored in this study and left for future investigation.  

The radiologists were only provided with T2WI and ADC maps in axial orientation, which 

were the input for the deep learning system. While a previous study suggested that using T2WI 

and ADC maps together can achieve similar detection as using all the series (25), radiologists 

usually have more imaging series (e.g., DCE MRI, high b-value DWI, and imaging in different 

orientations) to look at for their clinical interpretation. Although we provided the same images to 

the radiologists as FocalNet for a fair comparison, the radiologists’ performance may be 

underestimated compared to the actual clinical setting where they would have access to additional 

image types.  

Finally, all four radiologists in this study were from academic medical centers and 

specialized in prostate MRI. The 5-point Likert suspicion scores assigned by our readers were 

based on their experience as the PI-RADS v2 scoring was not applicable for 1) DWI, DCE imaging 

was not provided and 2) PI-RADS score 1 or 2 was rarely used (PI-RADS score 1 indicated non-

suspicious area). For this reason, their outputs may not be fully representative of or reproducible 

by less experienced radiologists. Also, the relatively small number of recruited readers caused a 
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variation of performance, and future study may expand thhe reader recruitment to better 

understand the inter-reader variability.  

 

Conclusion 

On the evaluation cohort, FocalNet achieved slightly lower but not statistically significant PCa 

detection performance compared to GU radiologists. Compared with radiologists, FocalNet 

demonstrated similar detection performance for a highly sensitive setting (suspicion score ≥ 1) or 

a highly specific setting (suspicion score = 5) while lower performance in between. This suggested 

that the detection of highly suspicious PCa could be automated using the deep learning systems. 
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Table 1: Study cohort patient characteristics. 

Variable Development Cohort 
(n=427) 

Evaluation Cohort 
(n=126) 

Median age (years) 61 (IQR: 56-66) 62.5 (IQR: 58-68) 
Median PSA (ng/mL) 6 (IQR: 4.6-8.3) 6.2 (IQR: 4.9-9.5) 
Median PSA density  0.16 (IQR: 0.11-0.24) 0.17 (IQR: 0.11-0.25) 
Scanner    
    Skyra 255 118 
    Prisma 18 7 
    Trio 130 1 
    Verio 24 0  
With endorectal coil 234 23 
Without endorectal coil 193 103 
No. of pathological lesions 883 224 
No. of MRI-visible pathological 
lesions 

709 185 

No. of MRI-visible pathological 
lesions that were missed in prospective 
MRI reading before RALP 

257 57 
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No. of patients with pathological 
lesions (including not MRI-visible) 

  

    1 lesion 157 57 
    2 lesions 141 46 
    3 lesions 83 18 
    >= 4 lesions  46 5 
No. of patients with MRI-visible 
pathological lesions  

  

    No MRI-visible lesions 12 2 
    1 lesion 217 74 
    2 lesions 130 40 
    3 lesions 46 9 
    >= 4 lesions  22 1 
No. of patients with highest Gleason 
Group (Gleason Score) MRI-visible 
lesion 

  

    Gleason Group 1 (GS 3+3) 57 12 
    Gleason Group 2 (GS 3+4) 218 55 
    Gleason Group 3 (GS 4+3) 95 34 
    Gleason Group 4 and 5 (GS >=8) 45 23 

Note: data are reported as number of 427 (development) and 126 (evaluation) patients. IQR: 
Interquartile range. 
 

 

Table 2: MRI-visible prostate cancer lesion characteristics. 

Variable Development Cohort (n=709) Evaluation Cohort (n=185) 
Gleason Group (Gleason Score)   
    1 (3+3) 281 52 
    2 (3+4) 281 69 
    3 (4+3) 102 37 
    4 and 5 (>=8) 45 27 
Median pathological size (mm) 1.5 (IQR: 0.8-2.2) 1.8 (IQR: 1.18-2.6) 
Lesion size   
    <=10 mm 224 40 
    10-20 mm 269 63 
    >20 mm 209 82 

Note: data are reported as number of 427 (development) and 126 (evaluation) patients. IQR: 
Interquartile range. 
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Table 3: Index lesion detection performance results.  

Suspicion 
Score 

Radiologist FocalNet  
Sensitivity 

(%) 

Radiologist 
Sensitivity 

(%) 

FPPP Difference 
(%) 

Average 
Difference 

(%) 

5 

1 47.5 (58/122) 54.1 (66/122) 0.15 +6.6 

-0.4±12.2 2 34.4 (42/122) 45.9 (56/122) 0.06 +11.5 
3 48.4 (59/122) 27.9 (34/122) 0.18 -20.5 
4 24.6 (30/122) 25.4 (31/122) 0.01 +0.4 

≥ 4 

1 59.0 (72/122) 72.1 (88/122) 0.50 +13.1 

+8.4±8.9 2 57.4 (70/122) 77.1 (94/122) 0.44 +19.7 
3 54.1 (66/122) 50.0 (61/122) 0.33 -4.1 
4 48.4 (59/122) 53.3 (65/122) 0.19 +4.9 

≥ 3 

1 70.5 (86/122) 84.4 (103/122) 1.24 +13.9 

+9.4±6.9 2 65.0 (79/122) 81.2 (99/122) 0.90 +16.2 
3 60.7 (74/122) 59.0 (72/122) 0.56 -1.7 
4 62.3 (76/122) 71.3 (87/122) 0.63 +9.0 

≥ 2 

1 81.2 (99/122) 87.7 (107/122) 2.35 +6.5 

+5.1±7.3 2 81.2 (99/122) 86.1 (105/122) 2.43 +4.9 
3 89.3 (109/122) 83.6 (102/122) 4.56 -5.7 
4 73.8 (90/122) 88.5 (108/122) 1.43 +14.7 



 23 

≥ 1 

1 92.6 (113/122) 90.2 (110/122) 7.23 -2.5 

-0.4±6.6 2 92.6 (113/122) 89.3 (109/122) 7.15 -3.3 
3 92.6 (113/122) 86.1 (105/122) 7.15 -6.5 
4 78.7 (96/122) 89.3 (109/122) 1.90 +0.4 

Sensitivity (Sen.) in percent, number of false positive per patient (FPPP). Sensitivity difference = 

radiologists’ sensitivity – FocalNet’s sensitivity. 
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Table 4: Clinically significant lesion detection performance results.  

Suspicion 
Score 

Radiologist FocalNet 
Sensitivity 

(%) 

Radiologist 
Sensitivity 

(%) 

FPPP Difference 
(%) 

Average 
Difference 

(%) 

Detected by 
FocalNet but not 
by Radiologist  

(%) 

Detected by 
Radiologist but 
not by FocalNet  

(%) 

5 

1 40.6 (65/160) 48.7 (78/160) 0.15 +8.1 

+0.9±10.3 

10.6 18.8 
2 30.0 (48/160) 40.6 (65/160) 0.06 +10.6 6.9 17.5 
3 41.3 (66/160) 25.6 (41/160) 0.18 -15.7 21.9 6.3 
4 22.5 (36/160) 23.1 (37/160) 0.01 +0.6 5.6 6.3 

≥ 4 

1 52.5 (84/160) 65.0 (104/160) 0.50 +12.5 

+8.5±7.9 

8.1 20.6 
2 51.3 (82/160) 69.4 (111/160) 0.44 +18.1 5.6 23.7 
3 46.9 (75/160) 43.7 (70/160) 0.33 -3.2 13.8 10.6 
4 41.3 (66/160) 48.1 (77/160) 0.19 +6.8 8.8 15.6 

≥ 3 

1 65.6 (105/160) 77.5 (124/160) 1.24 +11.9 

+8.2±5.5 

5.6 17.5 
2 60.8 (97/160) 74.4 (119/160) 0.90 +13.6 5.6 19.3 
3 54.4 (87/160) 53.7 (86/160) 0.56 -0.7 13.8 13.1 
4 56.3 (90/160) 64.4 (103/160) 0.63 +8.1 6.9 15.0 

≥ 2 

1 75.6 (121/160) 80.6 (129/160) 2.35 +5.0 

+5.0±4.6 

8.8 13.8 
2 75.6 (121/160) 81.2 (130/160) 2.43 +5.6 8.1 13.8 
3 82.5 (132/160) 80.6 (129/160) 4.56 -1.9 10.6 8.8 
4 68.8 (110/160) 80.0 (128/160) 1.43 +11.2 6.3 17.5 

≥ 1 

1 87.5 (140/160) 85.6 (137/160) 7.23 -1.9 

+0.9±4.6 

9.4 7.5 
2 87.5 (140/160) 86.9 (139/160) 7.15 -0.6 8.8 8.1 
3 87.5 (140/160) 85.0 (136/160) 7.15 -2.5 10.6 8.1 
4 73.1 (117/160) 81.9 (131/160) 1.90 +8.8 5.0 13.8 

Sensitivity (Sen.) in percent, number of false positive per patient (FPPP). Sensitivity difference = radiologists’ sensitivity – FocalNet’s 

sensitivity.
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Figure 1: Illustration of the processes for FocalNet development (left) and the evaluation (right) of 

cancer detection performance by FocalNet and experienced genitourinary radiologists under the 

same setting. ADC: apparent diffusion coefficient. Confid: confidence value. 
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Figure 2: Flowchart for study inclusion for the evaluation cohort. 
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Figure 3: Examples of lesion detection. The left two columns show the input T2WI and ADC map, 

respectively. The right two columns show the FocalNet predicted lesion probability map and 

detection points (green crosses) with reference lesion annotation (red contours), respectively. a) 

patient at age 66, with a PCa lesion at left anterior peripheral zone with Gleason Group 5 (Gleason 

Score 4+5). b) patient at age 68, with a PCa lesion at left posterolateral peripheral zone with 

Gleason Group 2 (Gleason Score 3+4). c) patient at age 69, with a PCa lesion at right posterolateral 

peripheral zone with Gleason Group 3 (Gleason Score 4+3).  



 28 

 

Figure 4: Free-response receiver operating characteristics (FROC) analysis for index lesion 

detection for 126 patients in the evaluation cohort with detection sensitivity plotted as a function 

of the number of false-positive detections for each patient on average. The shaded area surrounding 

the FocalNet curve (blue) shows the 95% confidence interval for detection sensitivity by 

bootstrapping the patient population. Dots indicate each radiologist performance at suspicion score 

thresholds. 
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Figure 5: Free-response receiver operating characteristics (FROC) analysis for clinically 

significant lesion detection. The shaded area surrounding the FocalNet curve (blue) shows the 95% 

confidence interval for detection sensitivity by bootstrapping the patient population. Dots indicate 

each radiologist performance at suspicion score thresholds. 
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Supplement Table S1. MRI-invisible prostate cancer lesion characteristics. 

Variable Development Cohort (n=174) Evaluation Cohort (n=39) 

 Gleason Group (Gleason Score)   

    1 (3+3) 126 29 

    2 (3+4) 36 9 

    3 (4+3) 8 0 

    4 and 5 (>=8) 4 1 
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Supplement Figure S1. Free response receiver operating characteristics analysis for the 

FocalNet’s detection of clinically significant prostate cancer lesions grouped by their 

pathological sizes in diameter. 
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Supplement Figure S2. Free response receiver operating characteristics analysis for the 

FocalNet’s detection of clinically significant prostate cancer lesions grouped by their Gleason 

Group. 
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Supplement Figure S3: An example case in evaluation set. A GG1 (GS 3+3) lesion is on the 
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transition zone with a pathological size of 20mm. (a) 10 out of 20 slices of T2WI with 

FocalNet’s detection points (green cross) and the corresponding confidence values and the 

groundtruth lesion annotation (red contours). (b) The corresponding ADC slices. (c) FocalNet’s 

predicted lesion probability map on T2WI. 




