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ABSTRACT OF THE DISSERTATION

Cell morphology and cell-fluid interactions affects colony strategy
and propagation in Serratia marcescens swarms

by

Joshua Tamayo

Doctor of Philosophy in Bioengineering

University of California Merced, 2024

Professor Arvind Gopinath, Dissertation Advisor

Professor Victor Muñoz, Committee Chair

Swarming is a multicellular mode of motility common to flagellated bacteria species which
enables coordinated rapid surface translocation, expansion, and colonization. Swarming
typically follows bacterial cells changing phenotype from planktonic to elongated and
hyper-flagellated states and is triggered by the presence of soft elastic, and permeable
surfaces. These motile and multi-cellular bacteria colonies display characteristics uniquely
representative of wet active matter systems, including intense fluctuating vortices, self-emergent
long-ranged velocity fields, and persistent flocks. In this dissertation, I report on dense and
semi-dense suspensions of the canonical swarming species, Serratia marcescens under various
conditions when hydrodynamic interactions between bacterial cells is important. First, I present
experimental and computational studies of dense swarm front interacting with and moving
through domains of immotile bacteria that resist motion. I show that the active-passive swarm
interface in this system has unique morphological features that are critically dependent on the
relative importance of hydrodynamic interactions. The swarm region adjacent to the boundary
develops spatially periodic and transient vortices of alternating sense that continuously convect
immotile cells away from the interface, allowing for the active swarm to move into that territory.
Additionally, the roughness of the evolving interface exhibits partial self-similar features that
I compare with classical, continuum interface models. Motivated by the important role played
by hydrodynamics in dense swarms, I next present experimental and computational results
relevant to dilute systems such as the pre-swarming state or bacterial cells in the vicinity of
a free interface. Here the object is to focus on the role of cell length and hydrodynamics and
identify their individual and synergistic impacts on emergent collective motion. To complement
experimental data, and circumvent the difficulty in devising experiments that decouple these
effects, I explore the role of cell aspect ratio, cell-cell interactions, and hydrodynamics using a
minimal agent-based model that treats the swarm as a suspension of self-propelled active rods
(cells) moving in a plane. These in silico swarmers have tunable cell size, aspect ratio, cell-cell
interactions, and fluid mediated hydrodynamic interactions that allow for exploration of these
effects independently and in combination. I find that an increase in aspect ratio enhances
overall cluster size and cluster persistence time. Hydrodynamic effects have a mixed effect
and may either stabilize emergent structural features or weaken them. Strong hydrodynamic
interactions can destabilize large-scale structures, due to significant fluid and velocity gradients
that depress and prevent persistent clustering. I conclude this dissertation with a chapter
detailing the workflow to image, segment, and analyze immotile Serratia marcescens as they
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proliferate, elongate, and form motile multi-cellular forms ranging from small clusters to large
correlated swarming domains. This workflow will aid significantly in future investigations into
the physical mechanisms that initiate the swarming process, as well help quantity these living
active polar nematic systems.
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Chapter 1

Introduction
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1.1 Swarming motility allows for faster propagation

Bacteria species present themselves in many morphologies in nature, ranging from
spherical-shaped (cocci) to rod-shaped cells. Serratia marcescens is gram-negative, flagellated,
rod-shaped bacteria species that commonly presents itself in damp areas and may be identified
by its pink pigment in these types of environments [1]. The typical length of isolated cells
ranges from 0.5-4 µm with a width of approximately 1 µm as indicated by Table 1.1 and
illustrated in figure 1.1(a). The speeds of these cells are measured to be approximately 20
µm/s and comparable to other flagellated, rod-shaped bacteria species. Single, isolated cells
typically migrate through liquid environments by swimming. For these flagellated bacteria,
they propel themselves forward by rotating their flagella counter-clockwise at frequencies ≥
100 Hz to generate thrust [2, 3, 4]. This swimming behavior is commonly referred to as
run-and-tumble motility, where the bacteria propel themselves forward in a ”run”, then suddenly
reorient themselves in a random direction [5]. Measured run times are ≈ 1s and tumble times
are ≈ 0.1s [6, 7]. This type of motility does not allow for efficient transportation through a
medium or surface which colonies require for nutrient acquisition and proliferation.

To overcome this limitation, S. marcescens and other flagellated bacteria alter their
morphologies to initiate swarming migration or swarming for short. Swarming is a multicellular
mode of flagella-based motility [8, 9] featuring collective long-ranged flows that allows bacterial
colonies to rapidly and efficiently cover and subsequently colonize surfaces [1, 10, 11, 12, 13,
14, 15, 16, 17, 18]. Unlike swimming, which is a 3D movement in a fluid, swarming is a form of
surface translocation where a solid surface is a key requirement. The swarming response can
be initiated by transferring planktonic free-swimming bacteria in liquid media to soft agar gels.
Typically, this range is between 0.5-1.0% agar as anything below that range, cells penetrate
the large pores and swim through the substrate while above that range, colonies prefer to form
biofilms. This process results in a change to bacterial phenotypes that are morphologically
different from their swimming kin as swarmers elongate and hyperflagellate [1, 13]. The drastic
change in morphology is highlighted in figure 1.1(b).

1.1.1 Surface tension reduction and surfactant production in
swarmers

As a colony grows, its community collectively extracts fluid from the substrate by
releasing osmolytes into the substrate [19] in order to form a thin layer of fluid that lubricates
and reduces surface tension, allowing for rapid movement [9]. The secretion of osmolytes
alters the osmotic pressure of the substrate across distances much higher than the length of a
bacteria. Approximately 30 µm in front of the leading edge, the osmotic pressure draws fluid
from the substrate, which subsequently is drawn back in and delivered to the swarm ≈ 120
µm from the edge, in the direction of the center of the colony [20]. In addition to the fluid, S.
marcescens and a few other species can create surfacatants to further reduce surface tension and
aid in movement [21, 22]. S. marcescens creates its own surfactant, serrawettin [23, 24]. In E.
coli,surfactant production reduces cell speed to nearly stationary at the upper edge (air-liquid
interface) of the swarm [25]. Serratia utilize surfactant in a similar manner. With surfactant
present, cells are nearly non-motile at the air-liquid interface [26]. For Serratia in particular,
it has been suggested that its surfactant production reduces tumble bias [27]. The benefit of
surfactant production in Serratia is when antibiotics are present at the substrate surface. In the
presence of surfactant, bacteria migrate away from the antibiotic surface and form a protective
avoidance zone that minimizes their exposure to the antibiotic and increases colony fitness. The
addition of exogenous surfactant is also of interest, as it can restore swarming ability in mutants
defective of producing surfactant. Using a non-species specific surfactant in agar substrates,
the spread of P. aeruginosa was increased and the flagellated and pililated WT strain was able
to spread similarly to pili-less (∆PilA) mutants [21]. This particular mode of motility is highly
relevant to understanding infectious diseases caused by these bacteria [28, 29] and their ability



3

Figure 1.1: Morphological differences between swimming (a) and swarming (b) Serratia
marcescens. (c) In the swarming state, bacteria form rafts (indicated by red boxes) of aligned
cells and aid their rapid surface motility. The scale bar in (a) is 3 µm, (b) is 5 µm, and in (c)
is 10 µm. (a) and (b) were imaged at 40x magnification (NA = 0.6) on 0.5% agar on a Zeiss
Axioimager.A2. (c) was imaged at 30x magnification (NA = 0.45) on 0.6% agar on a Nikon
Eclipse Ti-U.
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to develop antibiotic resistance [30, 31, 32].

1.2 Morphological changes in bacteria swarmers

1.2.1 Bacteria elongate when transitioning to the swarming
phenotype

Elongation in bacteria species is hypothesized to be due to defects in cell division,
as seen in Kearns et al., where stains of swarming Bacillus subtilis (WT 3610) revealed some
morphological changes and forming of filaments of multinucleoid cells [33]. However, the exact
mechanism of elongation is unclear and may vary between different species of swarmers. To
better quantify these morphological changes, researchers describe the morphology of swarmers
by their aspect ratio. I define in this disseration the aspect ratio in this dissertation as the ratio
of length-to-width of the cell, A = L/λ where L is the length of a bacteria cell or rod along
its major axis and λ is the width of a cell. Table 1.1 gives an overview of the morphological
differences between swimming and swarming E. coli and S. marcescens. Cell width is typically
maintained as cells change phenotype while length increases, hence the use to aspect ratio to
describe morphology. Additionally, speeds of swarmers are dramatically increased compared
to swimmers which can explain swarmer’s ability to rapidly colonize surfaces. While these are
average values, swarm populations have a large variation of cell lengths ranging from 3-50 µm
[34] and careful consideration of density must be taken into account.

Elongation is known to influence swarm dynamics by increasing cell correlation times
and increasing cell speeds at aspect ratios higher than swimming cell lengths [34]. This has
the overall effect of increased fitness of the colony as the increased speeds allow for faster
territory acquisition. Due to the difficulty of study, published speeds and correlation times of
swarmers are associated with single sets of aspect ratios, e.g., we cannot trivially determine that
a bacterium moves with a certain speed independent of adjacent cells that may be of varying
lengths. Nonetheless, its clear from these studies that elongation shows an increase in mean
speed compared to swimming cells [36, 34]. But, it is of importance to also note that the fastest
swarmers are not the longest ones. Rather, the fastest swarmers are those of the mean WT
swarming lengths. This leads to an interesting question: What purpose do highly elongated
bacteria serve in a swarm?

A potential benefit to elongation aside from increased speeds is the possibility that
longer length swarmers promote clustering and rafting. Swarms possess a wide distribution of
bacterial lengths and have sub-populations of highly elongated bacteria. In one study by Peled
et al. [37], they were able to generate a system with only two, distinct cell length populations
of wild type cells (aspect ratio = 7 ± 2.2) and hyperelongated mutants (aspect ratio = 19 ±
5.6). In these systems, they found that the longer mutants act as nucleation sites for small

Swimming E.
coli

Swimming S.
marcescens

Swarming E.
coli

Swarming S.
marcescens
(WT 274)

Mean Length
[µm]

2 [6] 0.5-2 [1] 3-7.6 [13] 5-30 [27]

Mean Width
[µm]

1 [6] 1 [1] 1 [13] 1 [1]

Mean Speed
[µm·s−1]

8.3 [7] 20 [35] 40 [13] 28 [7]

Table 1.1: Literature values for swimming (state observed of single cells swimming in liquid
broth) and swarming E.coli and S. marcescens.
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cells to gather and formed align clusters. The mix of cell lengths and the effect of elongation
in natural swarms suggest that elongation and well as the heterogeneity of the swarms are of
key importance to the overall survival and spreading of swarming bacteria colonies.

1.2.2 Hyperflagellation in swarming species

The changes in morphology of swarming species allows for another addition to the
swarmer’s toolkit: An increase in the number of flagella present on the cell, also known as
hyperflagellation. As swarming only occurs in species that are flagellated, without flagella, an
inoculated colony is unable to spread across a surface [38, 39]. A swimming bacteria typically
has 1-7 flagella [2, 14] whereas swarming cells, upon hyperflagellating, increase their counts
to 10-100 flagella [1, 14]. To propel themselves with such a numerous amount of filaments,
the flagella bundle together and rotate CCW to generate torque. One might assume that the
increased number of flagella would generate additional torque, however, this is found to not
be true and the mean torque of both swimming and swarming bacteria strains of E. coli were
approximately 1100 pN/nm [40]. If the torques are similar between the two phenotypes, how
then are swarming cells faster than swimming cells? One key finding by Partridge et al. reports
that tumbling is suppressed in multiple swarming species [27]. This bias’ the cells to do longer,
faster runs which enable their observed rapid motility. While much is reported and observed in
regards to hyperflagellation, it is currently unclear on how the increase in flagella benefits the
swarm and aids in the fitness of the colony if it does not increase the torque generated.

1.3 Factors affecting swarming ability

1.3.1 Density dependence in swarming colonies

While fully grown colonies are highly dense, multilayered communities, it is still of
interest to study how swarmers at different densities interact and how their dynamics change. As
swarming is a collective form of motion, density may play a crucial role in the ability to swarm.
Depending on the aspect ratio, densities can induce swarming and influence the formation of
small, local clusters, or larger clusters that are comprised of several dozen bacteria. A mapping
of the effect of density and aspect ratio on B. subtilis was conducted, mapping a wide range
of aspect ratios from planktonic length to hyper elongated cells at very low and very high
densities (Ψ = 0.1− 0.7) in monolayered systems [34]. At low bacterial densities, cells exhibit
the aforementioned run-and-tumble motion. In this state, prior to swarming, no collective
motion takes places as cells randomly explore their surroundings in search of nutrients. When
swarming cells are diluted to densities where they can be observed in small groups, the cells
exhibit collective motion, clustering, and rafting. Very low densities may inhibit swarming
motion as there will be lower frequency of cell-cell interactions which are required for bacteria
to cluster and move together. Very high densities, across all measured aspect ratios in the
study can induce jammed states that hinder bacteria motility. This finding contracts what can
be observed in actual colonies where cells are packed into multilayers, suggesting that while
density does play a role, it does not completely contribute to swarming.

1.3.2 Light sensitivity of S. marcescens

A study by Yang et al. reported that swarm S. marcescen colonies can be affected
by standard brightfield imaging depending on exposure time and light intensity. Regions of
the active swarming colony were exposed to wide-spectrum light generated by a mercury lamp.
Intensities measured were reported at a wavelength of 535 nm. Three regimes were reported
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depending on the above parameters: 1) Active, unaffected cells, 2) Temporarily passivized
(immobilized) cells, and 3) Permanently passivized cells. For short exposure times and relatively
low intensities (≤ 40 s & at intensities ≤ 220 mW), cells are unaffected by the light. Durations
exceeding 60 s and intensities > 220 mW, cells appear permanently passivized and remain
immotile. Only in the narrow regime between the two phases are cells temporarily passivized.
I use this information in this study to ensure that in experiments, S. marcescens is unaffected
for my studies.

1.3.3 Swarming in confined areas

In nature, bacteria colonies are found in tortuous, highly confined environments.
Colonies in such states must adapt to these conditions that restrict the individual movement
of bacteria, nutrient uptake, and colony expansion. Recently, studies have imaged colony and
bacterium interaction with these boundaries. The authors in [41] suggest that when confined
in circular well with a diameters ≤ 80µm in diameter, swarmers can form a single large vortex,
significantly larger the 20 − 25µm diameter vorticies formed in dense swarming suspensions
in free space [42, 43]. The passive domain mentioned in section 1.3.2 also serves the purpose
of acting as soft confinement where the movement of the active front is impeded, but not
completely restricted unlike hard boundaries [43, 42]. There, the passive region can be deformed
by the actively moving vorticies. The jets and streams formed by the counter-rotating, periodic
vorticies convect passive cells away, freeing up room for active cells to overtake. This phenomena
may not limited to systems of a single species. While not directly observed, this feature can
be utilized in porous soil to move dirt and small material around, or the displacement of dead
bacteria.

Looking at confinement on a scale of a bacterium, the movement and motility
of a bacterium is largely affected by obstacles and the size/dimensions of said obstacles.
Smooth-swimming bacteria (that are deficient in tumbling) are influenced in a periodic pillar
array, either remaining trapped along the pillars or escaping depending on the cell length [44].
Short bacteria cells with lengths comparable to swimming bacteria, tend to remain along the
perimeter of the pillars, trapping themselves on the pillar for several minutes. In contrast,
long bacterial cells with lengths comparable to elongated swarming bacteria are not as easily
trapped. Elongated cells whose lengths are similar or longer than the pillar spacing interact
with adjacent pillars and orient themselves in such a way that they do not circulate. This
may be analogous to dense suspensions of swarmers that prevent individual reorientation and
allow for rapid, forward movement throughout their environment. These findings suggest that
the collective behavior of swarmers may be affected in ways that are influenced by size and
geometry of confinement. Periodic obstacles have the possibility of disrupting colony formation
due to the restriction placed on local density or jamming cells.

1.4 A mesoscopic view of swarming bacteria colonies

A key ability of swarming colonies is that they are able to quickly colonize surfaces.
The persistent speed of a swarm front/colony expansion rate is measured to be around 1-4
µm/s [13, 43]. Ubiquitous to swarmers are unique features and sub-populations of the colony
that are segregated based on proximity to the leading edge of the swarm. Darnton et al. clearly
illustrates these features with high resolution images of a swarm of E. coli at different positions
with in the swarm. At the leading edge and at distances approximately 100 µm away from the
front, the bacteria form a monolayer of cells that comprise of the highly motile, rafting cells
that enable their rapid front movement. Behind the monolayer, at distances ≥ 100-200 µm
away from the front, is a dense multilayer band of cells.

The morphology of the colony is highly species dependent, as not every swarming
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species has the same mechanisms or cell morphology. E. coli and S. marcescens have a relatively
smooth colony front and radially expand at a constant rate. Proteus mirabilis colonies presents
themselves in a different manner due to their dual appendages comprising of both flagella and
pili. The colony also radially expands, but does not do so constantly, favoring to engage in
periods of high activity, followed by periods of slow motility [45, 46]. The result are concentric
rings on a petri dish that give a ”bullseye” pattern. Pseudomonas aeruginosa, while also
having flagella and pili, do not form concentric rings. Rather, they migrate in long trails called
dendrites that have a tendril like appearance [47].

1.4.1 The mesoscopic view of S. marcescens

S. marcescens presents itself with a slightly different colony morphology, although the
pattern of a monolayer followed by a multilayer is still present. Patteson et al. conducted
particle image velocimetry (PIV) measurements on swarms of S. marcescens to measure the
flow speeds and streamlines of an active swarm due to the difficult of tracking fast-moving cells,
especially within the dense multilayer [43]. The monolayer consists of a thin band of cells, with
a width of only a few cells. Ahead of the monolayer and within free, unoccupied territory,
is a surfactant layer (that can seen in phase contrast as a white band) that appears to jam
cells between that surfactant layer and the dense, active multilayer behind it, and a dense,
non-motile region deeper in to the center of the colony. The width of the active multilayer is
approximately 200-300 µm. They report that region is comprised of active vortices that have a
characteristic diameter of ≈ 20-25 µm and a characteristic lifetime of 0.1 s. By seeding tracer
particles within the active swarm, they reveal that the vortices enable efficient cell and material
transport which may contribute not just to better front propagation, but removal of dead cells,
small objects, and increased antibiotic resistance [16, 48, 32].

1.5 Current approaches to modeling swarming bacteria

1.5.1 Active Brownian Particle Models

It is of interest to model swarming bacteria not only to understand the fundamental
and underlying physics behind their collective motion and rapid surface movement, but
swarming bacteria are also resembling of complex, active matter systems such as nematic
liquid crystals [49, 50]. Computer models developed to study swarming bacteria are limited as
they do not capture every possible variable observed in experiments but still offer insight in
how specific features of swarmers such as aspect ratio, speeds, confinement, or fluid viscosity
play a role in the dynamics of growing colonies. Various models have been published in
order to better understand how these systems move, align, and propagate. A simple model
that has been used are Active Brownian Particles (ABPs) with excluded volume, steric, and
hydrodynamic interactions An ABP is modeled through the Langevin equations that include
self-propulsion terms and effects from thermal noise to capture the motion of bacterial swimmers
and crawling mammalian cells [51, 52, 53]. Periodic vortex arrays, have been simulated using a
minimal model that includes only steric interactions between particles and neglects long-range
hydrodynamics, highlighting the importance of steric cell-cell interactions in the formation of
structures in collective motion [54]. The steric terms are short-range interactions, modeled as
either short-range force dipoles or have terms that align or repel other particles as a function
of particle-to-particle distance [55, 56, 57]. At low densities, particles are able to align in small
clusters. At densities comparative to swarms, these dynamics break down and do not exhibit the
same vortex dynamics seen in experiments. However, ABPs are inherently limited in studying
active swarmers due to their morphology as rigid circles as opposed to being rod-like structures.
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1.5.2 Self-propelled rod models

To address the morphological limitation, self-propelled rod (SPR) models are
agent-based models that simulate cells as a series of connected points [58] or spherocylinders. In
conjunction with similar parameters and terms in ABP models, the advantage of SPR models
are their tunable lengths which can model the different lengths observed in bacteria swarms.
By modeling swarmers as actual rods with defined aspect ratios, cell-cell collisions lead to
the global alignment of cells in small system sizes [59]. At large system sizes (higher packing
fractions), rods are not globally aligned. Rather, they form aligned microdomains like swarming
rafts that move independently of other align rafts in the system. This observation appears to
be abolished for SPR systems of higher aspect ratios at higher packing fractions (A ≥ 5, Φ =
0.65). Under these conditions, higher aspect ratios form rafts comprising of most of the rods
in the system [60]. Wensick et al. looks at the turbulence generated by hydrodynamics in
experiments, continuum, and agent based models, they find that in a minimal model, without
hydrodynamics, SPR systems were able to model vortexing and turbulence similar to what was
observed in B. subtilis [58].

The inclusion of hydrodynamics is of great interest as swarming is a surface movement
on a thin layer of fluid. Stresses on the fluid generated by bacteria propulsion can affect
the movement and collective ability of these systems, possibly disrupting the features seen in
steric-only systems. In these studies, inclusion of hydrodynamics are commonly referred to as
”wet” systems while the exclusion of hydrodynamics are referred to as ”dry” systems. One
possible way to model hydrodynamics in swarms are modeling rods as force dipole ”pushers”,
whose flagella create fluid flow moving behind the cell/rod (flow direction from head to tail)
[61, 62]. Lushi et al., looked at small systems of confined, active rods with hydrodynamics
and were inspired by confined B. subtilis [63, 64]. In that study, the model predicted that
hydrodynamic pushers move against the fluid flow, indicating that pusher cells generate thrust
to overcome the flow and actively move against the flow in coordinated groups. A review by Bär
et al. highlights these key findings and importance of both ”dry” and ”wet” SPR systems [49].
In summary, short-ranged interactions between rods promote greater alignment and clustering
of agents [65], much like what is seen in swarming systems. Many of these studies are limited
either by modeling cells as ABPs, excluding hydrodynamic interactions, or by not exploring
dynamics between aligned clusters of cells.

1.6 Overview of Dissertation

In this chapter, I focused on swarming motility and how it differs from other movement
modalities, and review the current literature on swarming bacteria species, emphasizing research
conducted on swarming Serratia marcescens. I provided an overview of the critical factors
necessary to induce swarming, the key features of swarming bacteria, and highlight gaps in
studying swarming on a microscopic scale (O(1) − O(102)) and mesoscopic scale (O(104)). I
also review in silico continuum and agent-based modeling of bacteria swarmers, and how the
modeling contributed to our current understanding of swarming.

In chapter 2, I provide a mesoscopic view of swarming Serratia marcescens as the
colony traverses through a passive frictional region of immotile bacteria. Previous work from
our group suggest that when a colony is exposed to a sufficient intensity of UV light for a
sufficient amount of time, bacteria will remain permanently immotile (passive) without killing
or lysing the cells. Typically, studies observe swarming colonies moving through free-space, or
space where there are no physical obstructions present and the colony front is free to move
into the unexplored territory. By passivating a sub-region of a swarming colony, this allows
for study of a natural scenario where an active colony must displace immotile material in order
to gain new ground. I describe the experiments in which we observe and analyze how an
active swarm displaces these passive cells at their interface (referred to as the active-passive
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interface). Our findings describe the collective motion of the active phase, and how the dynamic
structural features and hydrodynamics of the swarm facilitate efficient material transport and
displacement of passive cells. We also study the coupling between interface dynamics, roughness
and emergent active interfacial flow. As in experiments, it is difficult to decouple the effects
of short-range physical steric interactions and far-field hydrodynamics. Therefore, I use an
agent-based model of self-propelled rods to simulate dilute and dense systems of swarming
bacteria with tunable steric interactions, cell morphology, and hydrodynamic interactions
in order to independently study the effects of either steric interactions between cells or
hydrodynamic flows.

In chapter 3, I contrast the previous simulations on dense bacteria systems by
simulating dilute systems of swarming S. marcescens. Current literature explores either larger
systems of swarmers where direct cluster interactions cannot be easily observed, or systems
comprised of only few cells to study key morphological features of swarmers. I explore densities
in between the two, where clusters can be readily observed and discriminated in order to study
their spatiotemporal dynamics. As described previously and in chapter 2, experiments cannot
decouple the multiple factors that influence cell dynamics and collective motion. Therefore,
I also utilize the SPR model to study dilute systems and how the formation and persistence
of clusters is affected by cell morphology, short range cell-cell interactions, and long-range
hydrodynamic interactions. Cell elongation is found to play a critical role in the size and
persistence of clusters. Simulations with long cells that mimic the elongated lengths of swarming
cells increase both the size and persistence whereas short cells comparable to planktonic or
swimming cells suffer in their ability to collectively move. The inclusion of hydrodynamics
(often referred to as ”wet” systems) decreases the size and persistence of clusters compared
to systems without hydrodynamics (referred to as ”dry” systems). However, hydrodynamics
actively mix cells in these systems, which provides a net benefit to the motility of cells and
transport of material. These results ultimately suggest that elongation in bacteria swarming
species is a key factor in their ability to form clusters and collectively move, and for dense
systems, form vortex structures that enable rapid propagation across a surface.

In chapter 4, I present a method/workflow to study the pre-swarming phase (often
referred to and will be referred to in this text as the lag time or lag period) of swarming bacteria
species. The lag period is a period of time, often several hours, after inoculation where the
colony grows and develops, but does not swarm. After which, the colony appears to swarm and
spread. Very few papers up until to this point has attempted to observe cells during this lag
period, where it has been hypothesized that growing cells gather resources by extracting fluid
from the substrate in order to begin swarming. Additionally, I present a validation of particle
tracking methods that can utilized to study the mechanical properties of swarming colonies.



Bibliography

[1] L. Alberti and R. M. Harshey, “Differentiation of Serratia marcescens 274 into swimmer
and swarmer cells.,” Journal of Bacteriology, vol. 172, no. 8, pp. 4322–4328, 1990.

[2] G. Lowe, M. Meister, and H. C. Berg, “Rapid rotation of flagellar bundles in swimming
bacteria,” Nature, vol. 325, no. 6105, p. 637–640, 1987.

[3] H. C. Berg, “The rotary motor of bacterial flagella,” Annual Review of Biochemistry,
vol. 72, no. 1, p. 19–54, 2003.

[4] S. Chattopadhyay, R. Moldovan, C. Yeung, and X. L. Wu, “Swimming efficiency of
bacterium escherichia coli,” Proceedings of the National Academy of Sciences, vol. 103,
p. 13712–13717, 2006.

[5] H. C. BERG and D. A. BROWN, “Chemotaxis in escherichia coli analysed by
three-dimensional tracking,” Nature, vol. 239, no. 5374, p. 500–504, 1972.

[6] H. Berg, Random Walks in Biology. Princeton paperbacks, Princeton University Press,
1993.

[7] A. E. Patteson, A. Gopinath, M. Goulian, and P. E. Arratia, “Running and tumbling with
E. coli in polymeric solutions,” Scientific Reports, vol. 5, no. 1, p. 15761, 2015.

[8] H. C. Berg, E. coli in Motion. Springer, 2004.
[9] Y. Wu, B. G. Hosu, and H. C. Berg, “Microbubbles reveal chiral fluid flows in bacterial

swarms,” Proceedings of the National Academy of Sciences, vol. 108, no. 10, pp. 4147–4151,
2011.

[10] R. M. Harshey, “Bacterial motility on a surface: Many ways to a common goal,” Annual
Review of Microbiology, vol. 57, no. 1, p. 249–273, 2003.

[11] M. F. Copeland and D. B. Weibel, “Bacterial swarming: a model system for studying
dynamic self-assembly,” Soft Matter, vol. 5, no. 6, pp. 1174–1187, 2009.

[12] L. Hamouche, S. Laalami, A. Daerr, S. Song, I. B. Holland, S. J. Séror, K. Hamze, and
H. Putzer, “Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a
Trail of Quiescent Descendants,” mBio, vol. 8, no. 1, pp. e02102–16, 2017.

[13] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, “Dynamics of bacterial swarming.,”
Biophysical journal, vol. 98, no. 10, pp. 2082–90, 2010.

[14] L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, “Visualization of flagella during
bacterial swarming�,” Journal of Bacteriology, vol. 192, no. 13, p. 3259–3267, 2010.

[15] D. B. Kearns, “A field guide to bacterial swarming motility,” Nature Reviews Microbiology,
vol. 8, no. 9, p. 634–644, 2010.

[16] R. M. Harshey and J. D. Partridge, “Shelter in a swarm,” Journal of Molecular Biology,
vol. 427, no. 23, p. 3683–3694, 2015.

[17] S. Ulitzur, “Induction of swarming in vibrio parahaemolyticus.,” Archives of microbiology,
vol. 101, no. 4, p. 357–63, 1974.

[18] J. Henrichsen, “Bacterial surface translocation: a survey and a classification.,”
Bacteriological Reviews, vol. 36, no. 4, p. 478–503, 1972.

10



11

[19] H. C. Berg, “Swarming motility: It better be wet,” Current Biology, vol. 15, no. 15,
p. R599–R600, 2005.

[20] L. Ping, Y. Wu, B. G. Hosu, J. X. Tang, and H. C. Berg, “Osmotic pressure in a bacterial
swarm,” Biophysical Journal, vol. 107, no. 4, p. 871–878, 2014.

[21] A. Yang, W. S. Tang, T. Si, and J. X. Tang, “Influence of Physical Effects on the Swarming
Motility of Pseudomonas aeruginosa,” Biophysical Journal, vol. 112, no. 7, pp. 1462–1471,
2017. This paper is of interest because it tells us different factors of the substrate that
affect swarming.

[22] W.-J. Ke, Y.-H. Hsueh, Y.-C. Cheng, C.-C. Wu, and S.-T. Liu, “Water surface tension
modulates the swarming mechanics of bacillus subtilis,” Frontiers in Microbiology, vol. 6,
p. 1017, 2015.

[23] T. Matsuyama, A. Bhasin, and R. M. Harshey, “Mutational analysis of
flagellum-independent surface spreading of serratia marcescens 274 on a low-agar
medium.,” Journal of Bacteriology, vol. 177, no. 4, p. 987–991, 1995.

[24] T. Matsuyama, T. Tanikawa, and Y. Nakagawa, “Biosurfactants, from genes to
applications,” Microbiology Monographs, p. 93–120, 2010.

[25] R. Zhang, L. Turner, and H. C. Berg, “The upper surface of an escherichia coli swarm is
stationary,” Proceedings of the National Academy of Sciences, vol. 107, no. 1, p. 288–290,
2010.

[26] J. D. Partridge, G. Ariel, O. Schvartz, R. M. Harshey, and A. Be’er, “The 3D architecture
of a bacterial swarm has implications for antibiotic tolerance,” Scientific Reports, vol. 8,
no. 1, p. 15823, 2018.

[27] J. D. Partridge, N. T. Q. Nhu, Y. S. Dufour, and R. M. Harshey, “Tumble Suppression Is
a Conserved Feature of Swarming Motility,” mBio, vol. 11, no. 3, 2020.

[28] M. Pezzlo, P. J. Valter, and M. J. Burns, “Wound infection associated with vibrio
alginolyticus,” American Journal of Clinical Pathology, vol. 71, no. 4, p. 476–478, 1979.

[29] J. Overhage, M. Bains, M. D. Brazas, and R. E. W. Hancock, “Swarming of pseudomonas
aeruginosa is a complex adaptation leading to increased production of virulence factors
and antibiotic resistance� †,” Journal of Bacteriology, vol. 190, no. 8, p. 2671–2679, 2008.

[30] J.-L. Bru, B. Rawson, C. Trinh, K. Whiteson, N. M. Høyland-Kroghsbo, and A. Siryaporn,
“Pqs produced by the pseudomonas aeruginosa stress response repels swarms away from
bacteriophage and antibiotics,” Journal of Bacteriology, vol. 201, no. 23, 2019. Relevant
because we can observe from this study that antibiotics repel swarms of bacteria. Very
little studies of swarm dynamics and characterization of flows have been done response to
antibiotics.

[31] M. T. Butler, Q. Wang, and R. M. Harshey, “Cell density and mobility protect swarming
bacteria against antibiotics,” Proceedings of the National Academy of Sciences, vol. 107,
no. 8, pp. 3776–3781, 2010.

[32] S. Bhattacharyya, D. M. Walker, and R. M. Harshey, “Dead cells release a ‘necrosignal’
that activates antibiotic survival pathways in bacterial swarms,” Nature Communications,
vol. 11, no. 1, p. 4157, 2020.

[33] D. B. Kearns and R. Losick, “Swarming motility in undomesticated bacillus subtilis,”
Molecular Microbiology, vol. 49, no. 3, p. 581–590, 2003.

[34] A. Be’er, B. Ilkanaiv, R. Gross, D. B. Kearns, S. Heidenreich, M. Bär, and G. Ariel, “A
phase diagram for bacterial swarming,” Communications Physics, vol. 3, no. 1, p. 66, 2020.

[35] R. Hertle and H. Schwarz, “Serratia marcescens internalization and replication in human
bladder epithelial cells,” BMC Infectious Diseases, vol. 4, no. 1, p. 16, 2004.

[36] B. Ilkanaiv, D. B. Kearns, G. Ariel, and A. Be’er, “Effect of Cell Aspect Ratio on Swarming
Bacteria,” Physical Review Letters, vol. 118, no. 15, p. 158002, 2017.

[37] S. Peled, S. D. Ryan, S. Heidenreich, M. Bär, G. Ariel, and A. Be’er, “Heterogeneous
bacterial swarms with mixed lengths,” Physical Review E, vol. 103, no. 3, p. 032413, 2021.



12

[38] J. O’Rear, L. Alberti, and R. M. Harshey, “Mutations that impair swarming motility
in serratia marcescens 274 include but are not limited to those affecting chemotaxis or
flagellar function.,” Journal of Bacteriology, vol. 174, no. 19, p. 6125–6137, 1992.

[39] F. F. V. Chevance and K. T. Hughes, “Coordinating assembly of a bacterial
macromolecular machine,” Nature Reviews Microbiology, vol. 6, no. 6, p. 455–465, 2008.

[40] K. M. Ford, J. D. Antani, A. Nagarajan, M. M. Johnson, and P. P. Lele, “Switching and
torque generation in swarming e. coli,” Frontiers in Microbiology, vol. 09, p. 2197, 2018.

[41] W. Chen, N. Mani, H. Karani, H. Li, S. Mani, and J. X. Tang, “Confinement discerns
swarmers from planktonic bacteria,” eLife, vol. 10, p. e64176, 2021.

[42] J. Yang, P. E. Arratia, A. E. Patteson, and A. Gopinath, “Quenching active swarms:
effects of light exposure on collective motility in swarming Serratia marcescens,” Journal
of The Royal Society Interface, vol. 16, no. 156, p. 20180960, 2019.

[43] A. E. Patteson, A. Gopinath, and P. E. Arratia, “The propagation of active-passive
interfaces in bacterial swarms,” Nature Communications, vol. 9, no. 1, p. 5373, 2018.

[44] P. Chopra, D. Quint, A. Gopinathan, and B. Liu, “Geometric effects induce anomalous
size-dependent active transport in structured environments,” Physical Review Fluids, vol. 7,
no. 7, p. L071101, 2022.

[45] J. F. M. Hoeniger, “Cellular changes accompanying the swarming of proteus mirabilis: I.
observations of living cultures,” Canadian Journal of Microbiology, vol. 10, no. 1, p. 1–9,
1964.

[46] J. F. M. Hoeniger, “Cellular changes accompanying the swarming of proteus mirabilis:
Ii. observations of stained organisms,” Canadian Journal of Microbiology, vol. 12, no. 1,
p. 113–123, 1966.

[47] N. C. Caiazza, R. M. Q. Shanks, and G. A. O’Toole, “Rhamnolipids modulate swarming
motility patterns of pseudomonas aeruginosa,” Journal of Bacteriology, vol. 187, no. 21,
p. 7351–7361, 2005.

[48] S. Benisty, E. Ben-Jacob, G. Ariel, and A. Be’er, “Antibiotic-Induced Anomalous Statistics
of Collective Bacterial Swarming,” Physical Review Letters, vol. 114, no. 1, p. 018105, 2015.

[49] M. Bär, R. Großmann, S. Heidenreich, and F. Peruani, “Self-Propelled Rods: Insights and
Perspectives for Active Matter,” Annual Review of Condensed Matter Physics, vol. 11,
no. 1, pp. 1–26, 2019.

[50] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Lwen,
R. Golestanian, U. B. Kaupp, L. Alvarez, T. Kirboe, E. Lauga, W. C. K. Poon,
A. DeSimone, S. Muios-Landin, A. Fischer, N. A. Sker, F. Cichos, R. Kapral, P. Gaspard,
M. Ripoll, F. Sagues, A. Doostmohammadi, J. M. Yeomans, I. S. Aranson, C. Bechinger,
H. Stark, C. K. Hemelrijk, F. J. Nedelec, T. Sarkar, T. Aryaksama, M. Lacroix, G. Duclos,
V. Yashunsky, P. Silberzan, M. Arroyo, and S. Kale, “The 2020 motile active matter
roadmap,” Journal of Physics: Condensed Matter, vol. 32, no. 19, p. 193001, 2020.

[51] G. Volpe, S. Gigan, and G. Volpe, “Simulation of the active Brownian motion of a
microswimmer,” American Journal of Physics, vol. 82, no. 7, pp. 659–664, 2014.

[52] S. Bose, K. Dasbiswas, and A. Gopinath, “Matrix stiffness modulates mechanical
interactions and promotes contact between motile cells,” Biomedicines, vol. 9, no. 4, p. 428,
2021.

[53] S. Bose, P. S. Noerr, A. Gopinathan, A. Gopinath, and K. Dasbiswas, “Collective states of
active particles with elastic dipolar interactions,” Frontiers in Physics, vol. 10, p. 876126,
2022.

[54] R. Großmann, P. Romanczuk, M. Bär, and L. Schimansky-Geier, “Vortex Arrays and
Mesoscale Turbulence of Self-Propelled Particles,” Physical Review Letters, vol. 113, no. 25,
p. 258104, 2014.

[55] N. Kumar, H. Soni, S. Ramaswamy, and A. K. Sood, “Flocking at a distance in active
granular matter,” Nature Communications, vol. 5, no. 1, p. 4688, 2014.



13

[56] S. Das and R. Chelakkot, “Morphological transitions of active Brownian particle aggregates
on porous walls,” Soft Matter, vol. 16, no. 31, pp. 7250–7255, 2020.

[57] L. Caprini and U. M. B. Marconi, “Spatial velocity correlations in inertial systems of active
Brownian particles,” Soft Matter, vol. 17, no. 15, pp. 4109–4121, 2021.

[58] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Löwen,
and J. M. Yeomans, “Meso-scale turbulence in living fluids,” Proceedings of the National
Academy of Sciences, vol. 109, no. 36, pp. 14308–14313, 2012.

[59] S. Weitz, A. Deutsch, and F. Peruani, “Self-propelled rods exhibit a phase-separated state
characterized by the presence of active stresses and the ejection of polar clusters,” Physical
Review E, vol. 92, no. 1, p. 012322, 2015.

[60] P. Bera, A. Wasim, J. Mondal, and P. Ghosh, “Mechanistic underpinning of cell aspect
ratio-dependent emergent collective motions in swarming bacteria,” Soft Matter, vol. 17,
no. 31, pp. 7322–7331, 2021.

[61] K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, “Direct measurement of
the flow field around swimming microorganisms,” Phys. Rev. Lett., vol. 105, p. 168101,
Oct 2010.

[62] A. Baskaran and M. C. Marchetti, “Statistical mechanics and hydrodynamics of bacterial
suspensions,” Proceedings of the National Academy of Sciences, vol. 106, no. 37,
p. 15567–15572, 2009.

[63] A. Baskaran and M. C. Marchetti, “Enhanced diffusion and ordering of self-propelled
rods,” Physical Review Letters, vol. 101, no. 26, p. 268101, 2008.

[64] E. Lushi, H. Wioland, and R. E. Goldstein, “Fluid flows created by swimming bacteria
drive self-organization in confined suspensions,” Proceedings of the National Academy of
Sciences, vol. 111, no. 27, pp. 9733–9738, 2014.

[65] F. Peruani, A. Deutsch, and M. Bär, “Nonequilibrium clustering of self-propelled rods,”
Physical Review E, vol. 74, no. 3, p. 030904, 2006.



Chapter 2

Dynamics of active swarm
interfaces propagating through
passive frictional domains

14



15

2.1 Introduction

The experimental protocols to prepare the swarms of Serratia marcescens, the method
of creating immotile (passive) domains within actively swarming regions and some of the
experimental analysis presented in this chapter have been published previously in [1, 2].

An important feature of bacterial swarms are the dynamically evolving interfaces
and propagating fronts that form naturally. A prototypical example of these fronts are
spatiotemporally rich interfaces that separate motile active domains from passive domains
comprised of dead or non-motile bacteria. Non-motile bacteria are inextensible, and they
may still generate stresses in the fluid around them behaving as an effectively highly frictional
material. In recent work from the lab [1, 2], the response of bacterial cells to wide-spectrum
light to used to create internal active-passive interfaces within dense active swarms of Serratia
marcescens. The overall effect of light – in terms of immobilizing bacterial cells – was found
to depend on exposure time, and intensity, and wavelength. For fixed wavelengths, especially
in the UV region of the spectrum, high intensities coupled with long exposure times caused a
permanent loss of motility [2]. When combined with suitable shadowing material or screens
to direct the incident light, this provided a controllable method to generate macroscopic
domains with arbitrary geometries as required. For instance, a straight interface could be
created whereby the immobilized (passive) domain and swarming (active) domain interacted [1].
Experiments revealed that the interface region has a well-defined thickness, with a quantifiable
surface energy and raises the possibility that the propagation speed of the diffuse interface
couples to local swarm velocity and interface curvature [1, 3].

In this chapter, we examine and investigate an equally important aspect of the
active-passive interface, namely its spatiotemporal structure that enables the manner of
propagation and colonization. The passive region comprises of densely packed aligned bacteria
arranged in static domains that are typically smaller than the structure of the collective flow
structures. Over length scales associated with multiple domains, the passive region appears as
a dense frictional half-space which swarming bacteria have to penetrate in order to propagate.
The interface is not sharp - rather it posses attributes of a classical diffuse interface with
a well defined interfacial thickness. Employing PIV techniques and intensity based image
analysis, we find that the diffuse, moving interface region is also characterized by a well-defined
roughness profile. Correlations between spatially and temporally separated surface undulations
are controlled by the interaction of the interface region with the intense adjacently located active
flows. Dynamical and growth exponents characterizing the spatiotemporal roughness profile
differ from the classical scaling values derived for passive growth or erosion. Our experiments
also suggest possible self-similar behavior for the experimentally measured interfacial roughness
opening up additional questions for future exploration.

In section 2.2, I describe recent work from the group and by collaborators [1, 2] on
the observed behavior of swarming Serratia marcescens to UV-light and how, at sufficient
time and durations, UV-light can render bacteria permanently passivized without killing them.
This experimental setup allows observation of actively swarming cells moving through passive,
highly frictional domains similar to situations where bacteria colonies must navigate through
tortuous, frictional environments. These studies highlight how motile swarms feature long-range
collective motions [4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2] featuring structures with defined length
scales and persistence times. I analyze these experiments later in this section, focusing on the
active-passive interface and how the spatiotemporal dynamics of the interface, active region,
and passive region change. Additionally, the interface between the active-passive interface
was tracked and the roughness measured spatiotemporally. The roughness of the interface
correlates with the mean bacteria length (5 - 10 µm in length) and scaling of the roughness is
found to deviate from the traditional Edward-Wilkinson (EW) and the Kardar-Parisi-Zhang
(KPZ) scaling laws that attempt to describe the self-similar nature of interfaces.

Besides being relevant in biology and medicine, swarming bacteria are a convenient
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experimental system to study and test models for dense active matter and active fluids [13, 14,
12, 15, 16, 17]. Recent numerical and theoretical studies have focused on the collective flows
and identified dynamical exponents characterizing the energy spectrum and spatiotemporal
features as well as variations near interfaces [13, 1]. To explain these features, theoretical
models for swarming systems based on adaptations of classical nematic hydrodynamic theories
and hydrodynamic multiphase models have been used to characterize the phase-separating
active nematic and passive phases and propagation of interfaces of active nematics on substrates
[18, 19, 20, 21]. Understanding the role of swarming in enabling bacterial collective motility and
rapid propagation is both important and timely; this will require combination of experimental,
analytical and computational approaches.

Informed by these experiments and other numerical and theoretical studies, section
2.3 describes the self-propelled rod (SPR) model I use to simulate individual swarming bacteria
cells. A key feature that many previous models simulating high-density swarms lack is the
inclusion of hydrodynamics that affect cell movement and collective features observed in swarms.
– in other words, they simulate ”dry” active systems rather than wet, fluid infiltrated systems.
Our experiments on Serratia marcescens, and those of others, do not allow us to discriminate
and separate the impact of purely steric effects from fluid mediated hydrodynamic interactions
on the collective motion well within the active phase as well as in the vicinity of the interface.
In other words, it is difficult to elucidate the effect of steric interactions and hydrodynamic
interactions in the experiments described in section 2.2. To investigate each effect separately
and also their combined effect, we analyze a discrete agent based simulations that treat the
bacteria as inertialess self-propelled rods moving in a viscous fluid in two dimensions with
parameters chosen to mimic the bacterial system. The simulation allows us the ability to
combine and study the effects of important parameters separately or in combination, with each
parameter encapsulating a desired physical mechanism.

In consideration of both steric and hydrodynamic interactions in bacterial swarms,
our experiments and additional simulations, using codes built on original ones developed by
Dr. Ardekani’s group at Purdue suggest that hydrodynamic and steric interactions enable
different modes of surface dynamics, morphology and front invasion. I begin by describing
experiments on active-passive swarm systems and interfaces presented and discussed in earlier
work [1, 2]. Then I summarize the analysis of images and data derived from these works (with
permission). Data analysis and interpretation are then presented next. Following this, in 2.4,
I report first details of the simulation scheme used to interpret these experiments, present
results for dense active-passive systems as in the experiments, and conclude with a comparison
between simulation predictions and experimental results. Specifically, I compare in this section
two systems: one with hydrodynamics enabled and another with hydrodynamics disabled and
assess that hydrodynamics introduce active mixing into the system that reduces the size and
lifetime of structural features present in bacteria swarms, while promoting more efficient cellular
and material transport that benefit the ability of a swarming colony to spread.

2.2 Experiments on swarming S. marcescens
moving through passive-frictional domains

I use swarming Serratia marcescens as the model system to study two aspects of the
swarming process as an active swarm propagates into a non-motile dense bacterial medium. The
first aspect relates to the spatiotemporal structure of the interface and changes in morphology
as it propagates. The second aspect is the relationship and competing roles of direct (steric)
cell-cell interactions, and fluid mediated interactions on emergent active flow structures such
as streamers, flocks and vortices.

Cultures of Serratia marcescens (WT ATCC 274) were grown from frozen glycerol
stock in LB media consisting of 1 wt% Bacto Tryptone, 0.5 wt% yeast extract, and 0.5 wt%
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NaCl in deionized water. The culture was incubated overnight at 34 °C until mid-exponential
phase of growth (0.4 ≤ OD600 ≤ 0.8). Solid agar media was created by adding 0.6 wt% Bacto
Agar and to LB media. The solution was autoclaved and cooled to room temperature to solidify
and aliquoted into 50 mL Falcon tubes for later use. To prepare plates for experiments, 22.5
mL of agar was reheated in a hot water bath until molten, poured into a 100x15 mm petri dish
and resuspended with 425 µL of 25% glucose solution. The plates were then left to cool until
solidified. Cultures were diluted to an OD600 = 0.6. The solid agar plates were then inoculated
with 5 mL of diluted culture.

2.2.1 Analysis of experiments

Features of the swarming base state prior to exposure

As a point of departure we summarize observations of our base state - the unexposed
actively swarming region. In collectively-moving swarms, individual self-propelling cells are
influenced by steric and hydrodynamic interactions with their neighbors [24, 7, 4, 1, 8]. These
interactions result in complex structural and flow features including fluctuating regions of high
vorticity and streamers as seen in Figure 2.1(a-b) (see also [1, 2]) that superimposes PIV
derived velocity fields on a static image of the active swarm. The intensity and transient of
these emergent flows increases as one moves from the leading front of the swarm as indicated
by the faint white curve in Figure 2.1(a).

The probability distribution function p(v) of averaged speeds (based on the PIV
measurements) v in a region of area 400 µm2 and at a distance 100 µm from the edge of
the expanding colony shows a peak at 18 µm/s, an expectation value ≈ 28 µm/s and a tail
that extends to 100 µm/s. The advancing front of the swarm is approximately 3 µm/s [1]. The
spatial correlation function Cv(∆r) and the temporal correlation Ct(∆t) of the velocity fields
were also calculated using

Cr(∆r) =
〈v(r0) · v(r0 +∆r)

|v(r0)|2
〉
, (2.1)

and
Ct(∆t) =

〈v(t0) · v(t0 +∆t)

|v(t0)|2
〉

(2.2)

respectively, with brackets denoting averages over reference positions r0 and times t0.
Application of equation (2.1) yielded typical vortex sizes λc ≈ 20 µm. For ∆r < λc, bacterial
velocities are correlated positively, Cr > 0. As ∆r increases, the function Cr decays crossing
zero and then stays negative for 21 µm < ∆r < 32 µm indicating neighboring vortices are
typically anti-correlated. For ∆r > 32 µm, velocity fields become progressively uncorrelated.
Fitting Ct(∆t) = exp(−∆t/τ), we estimate τ ≈ 0.25 s.

In Figure 2.1(b), we show a snapshot of the PIV derived vorticity field in the
interior of the swarm region away from any interfaces. Note the organized, arrayed groups of
clockwise and counter-clockwise vortices. The intensity and temporary nature of these vortices
is clearly evidenced upon seeding the swarm with small 2 µm colloidal polystyrene spheres;
these particles are strongly advected by the bacteria and follow tortuous trajectories (insets,
Figure 2.1(b)). The particle trajectories obtained from standard particle tracking techniques
are shown for 4 second time intervals. The particle speed distribution p(v) was determined by
pooling the particle speed over time for hundreds of particles; the particle speed is defined
as the two-dimensional particle displacement over a 1 second time interval. The particle
speed distribution measurement (blue circles) was found to follow a 2D Maxwell-Boltzmann
distribution [1, 2], p(v) = vm(kBTeff)

−1exp(−mv2/2kBTeff), where m is the mass of the
polystyrene particle, kB is the Boltzmann constant, and Teff ≈ 2.2 × 105 K, approximately
700 times the thermal temperature (293 K). The mixing produced by these fluctuating flows



18

Figure 2.1: (a) (left) A section of a swarm front with velocity fields obtained using PIV and
superimposed onto the image [22, 23]. The direction of propagation is upward. The free edge
of the swarm is seen on the top as the white curve. Estimated speeds of the swarm increases
rapidly as one moves from the interface and into the swarm (downward). The substrate is agar.
We note that swarm speeds can reach values of 50 µm/s. (right) Snapshot of the vorticity field
in the active phase that illustrates the alternate arrangement of well defined vortical structures.
(b) (Inset, Top right) The vortical and time-dependent nature of the collective flows are easily
observed by seeding the swarm film with 2µm particles (top, scale bar 50 µm) and then tracking
their absolute as well as relative motions over time (Inset, Bottom left). (Center) We note
persistent motion for small times leading to complex diffusion-like response. Tracers that are
close to each other may move apart rather rapidly. The length scales of the vortical structures
are ∼ 20 − 25 µm; the residence time of structures is around 0.8 seconds [1]. Also note the
presence of vortices of both signs as indicated by the organized arrangement of blue and red
colored areas. Note the vortex lengths comprise of a few bacterial lengths. Experimental images
and PIV analysis were reproduced from raw and processed data from experiments described
in earlier work [1, 2]. The insets show characteristic trajectories of tracers particles indicating
changes in the distance between particle sets with time.

is illustrated in the inset below (bottom left inset, Figure 2.1(b)) where we plot trajectories of
spatially separated tracers (initial separations 3 µm and 87 µm) tracers.

Collective flows drive the propagating front

Figures 2.3(a) (i)-(ii) illustrate the interface region of the swarm (shown magnified in
(i)) and also during light exposure (Figure 2.3 (c) - (ii)). The top half of the image (bright) is
the domain that is exposed to light incident through a half-plane aperture. The dark (bottom)
half is the unexposed active swarm. Note that the (apparent) boundary between the two phases
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Figure 2.2: (a) Snapshots at two different times in the low-density and/or pre-swarming
states indicating mechanisms by which bacterial clusters navigate jammed, stuck or otherwise
immotile bacteria. Images are thresholded and color contrasted snapshots from raw videos.
(b,c) Structural analysis using ImageJ and the OrientationJ plugin (c) of a section of a swarm
near an interface.

is straight on very large length scales but wavy and diffuse on shorter length scales.

Focusing on the interface region in Figure 2.3(c)-(iii), we observe the velocity fields
obtained from PIV analysis superposed on the raw image. Swarming bacteria in the active
segment of the figure exhibit strong collective motion right up to the boundary region (flow
speeds ∼ 50 µm/s). Vortices align along the interface, and are arrayed normal to it. Dynamic
vortices (typical lifetime, ∼ 0.24 s, frequency 0.8 s, characteristic vortex size ∼ 20−25 µm) etch
the interface into cusps and valleys and are observed to control the morphology and structure
of the interface.

Theoretical and computational studies of dense suspensions of passive rods suggest
that polar and/or nematic alignment may be induced due to a combination of excluded
volume effects – modeled for instance using a mean-field Maier-Saupe or Onsager potential
– and thermal diffusion [25, 26]. Recognizing that bacterial swarms may behave similarly, we
examined the structure and alignment of bacterial clusters in the active and passive phases
as the interface position changed in time using the Directional J and OrientationJ plugins
that are a part of the open source software [22] ImageJ. Qualitatively, the orientation is
visualized as a false-color image with colored domains with domains of the same color indicating
similarly aligned bacteria and intensity quantifying degree of coherence. Structural information
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(a)

(b)

(a)

(b)
(a) (b)

Figure 2.3: (a) (i) Raw image of the active (dark) - passive (light) edge generated by light
exposure. (ii) Examination of the vicinity of the front separating the active and passive domains
10s after exposure (t > 0) reveals strong velocity gradients (in color) in the active region. Far
from the interface, the active flows show intense vortical patterns. The snapshots are from
videos taken with 63x (NA = 0.7) objective in a Nikon inverted microscope and includes a
larger area of view. (b) Structural analysis using ImageJ and the OrientationJ plugin of a
section of the active-passive interface. Snapshot from raw video acquired using 20x Nikon
objective at 30 fps. We show (left) - length scales of similarly clusters, (middle, grayscale
indicating degree of alignment) the degree of alignment and (right) an instantaneous snapshot.
Images and analysis in (a) and raw images from (b) were used with permission, and correspond
to analysis of previously published data (see [1, 2]).

such as size of coherently arrayed structures and length scales over which structural features
are correlated may thus be obtained. Using these plugins, the domains are seen to span a
distribution of sizes, with values typically between 10-20 µm accompanied by continuously
changing orientational fields [2]. Figure 2.3(b) shows the result of such an image based analysis
of the structural features demonstrating the presence of many intertwined aligned domains.
This however, is just a static representation of the highly dynamical swarming process.

Intensity field quantify interface shape and roughness

The raw videos obtained from the images provide a sequence of snapshots of the
intensity field over the domain of observation as a function of time. Noting that the mean
intensity fluctuations in the active and passive phases far from the boundary, |∆IA(t)| and
|∆IP (t)|, remained relatively constant over the duration of the longest experiments, we defined
a scalar order parameter, ϕE ∈ [−1, 1] (the subscript E denotes experiments)

ϕE =
2|∆I| − |∆IA(t)| − |∆IP (t)|

|∆IA(t)| − |∆IP (t)|
(2.3)

that was computed from intensity fluctuations ∆I between successive images to locate and track
the inter-phase boundary. To reduce noise in the system (due to pixel resolution, short-range
fluctuations and background light fluctuations), we then filtered the pixel-wise calculated order
parameter by smoothing the data over a 3 × 3 µm2 area. The filtered phase field has value
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(b)(a)

Figure 2.4: (a) Interface profiles in the (x, y) plane obtained from the phase-field based on
intensity fluctuations for two experimental data sets - (i) & (ii). The shapes are obtained by
fitting a vertically averaged (along y) one-dimensional phase field and seeking the location of
ϕE = 0 as a function of the lateral position, x. Time stamps are in seconds. For these profiles,
the one-dimensional, averaged phase field (system size L = 200 µm) ⟨ϕE⟩x ≡

∫ L

0
(ϕE/L) dx

follows a quasi-static form. Also shown is a schematic demonstrating the definitions of the
variables used to calculate the interface location and thence the interface height h(x, t). (b)
Snapshots focusing on a subdomain of the active-passive interface in Figure 2.1(b). The filtered
two-dimensional interface position identified by the locus ϕE(rInt, t) = 0 is shown as the blue
curve for various times after cessation of exposure. PIV derived snapshots of the vorticity
field and overlaid streamlines reveal the dynamic motion of individual vortices. Individual
vortices - red (counter-clockwise) and blue (clockwise) - etch the interface boundary (blue
line). Interface profiles in (a) were produced in this dissertation from raw datasets taken from
[1, 2]. Streamline plots showing the vorticity field in (b) were generated by analyzing data
corresponding to experiments in [1, 2] (with permission).

(a) (b)

Figure 2.5: Interface roughness as a function of box length and time. The upper and lower
roughness bounds, are measured from four experiments. (a) Local interface roughness profiles
W as a function of box length ℓ measured over time t for a single experiment. (b) Sample
interface roughness W values for various ℓ in a single experiment as a function of time, t.
Roughness profiles were produced from raw data discussed in [1], that were then discretized
and analyzed.
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-1 corresponding to the completely passive phase and +1 corresponding to the fully active
phase. The interface boundary was identified as the characteristic region over which ϕE changes
from one asymptotic value to the other; sharp variation occurring over a finite length that is
identified[1] as a characteristic interface width. To obtain a clear value for the mean interface
position, we therefore defined the interface position (in the two dimensional x−y plane) rInt(t)
implicitly by the locus of points such that ϕE(rInt, t) = 0. Our system being approximately
two-dimensional, we chose to orient the x axis along the edge of active-passive interface observed
at the instant exposure is stopped t = 0. The interface shapes extracted from the phase field
did not feature overhangs.

Snapshots of the interface location (here the two dimensional curve in the x − y
plane) for two representative experiments are shown in Figure 2.4(a) - (i) & (ii) along with a
schematic sketch of the notation and definitions used. The profiles clearly exhibit significant
roughness. Figure 2.4(b), illustrates the PIV derived snapshots of the vorticity field and
overlaid streamlines for the experiment corresponding to Figure 2.3(c)-(iii) illustrating the rapid
turnover of collective flow features before the interface has the time to propagate significantly.

Averaging over the lateral dimension normal to the direction of propagation, we obtain
a one-dimensional, phase field profile ⟨ϕE⟩x ≡

∫ L

0
(ϕE/L) dx that, after initial transients, is well

represented by

⟨ϕE⟩x =

∫ L

0

ϕE
L
dx ≈ tanh

(
y − Y (t)

d(t)

)
. (2.4)

Equation (2.4) provides the mean averaged interface location Y (t) and the intrinsic thickness
d(t). Details of the procedure and the connection between the spatiotemporal variations in d
and Y and the collective flow in the active phase have been analyzed[1, 2] in previous studies
and will not be addressed here.

Roughness profiles

Interface roughness is related to the extrinsic thickness W (the width correlation
function) [27, 28, 29, 30], that is defined as

W 2(ℓ, t) =
〈∫ x0+ℓ

x0

1

ℓ

∣∣h(x′, t)− h(x′, t)
∣∣2dx′〉

x0

(2.5)

where h(x′, t) is the local average over distance ℓ, x0 is the reference position and ℓ the averaging
box length that in our series of experiments varies from around 2 µm up to the system size
L = 200 µm.

Figure 2.5 shows sample interface roughness profiles W (ℓ, t): Focusing first on the ℓ
dependence of W - shown in Figure 2.5(a) - we observe two regimes, the first corresponding
to ℓ < 80 µm and the second to ℓ > 80 µm. For either regime, W increases with t (blue to
red) with the curves eventually collapsing to a single curve (c.f the orange at 53 s and the
red curve at 66 s). We find ⟨W ⟩t ∼ ℓ for ℓ < 80 µm. For ℓ > 80 µm, the dependence is
very weak (the exponent being smaller than 1/2). The data in Figure 2.5(a) suggests that for
interfacial separations less than ≈ 80 µm, roughness is perhaps correlated (power law > 1/2).
This result may be a consequence of the periodicity of the active vortical flows. However a clear
understanding of the length scale is elusive.

We use our experimental data to analyze the interface roughness W values for various ℓ
in a single flat interface experiment as a function of time, t. As seen in Figure 2.5(c), we observe
an increasing power law in time with increasing ℓ; of course, eventually for large ℓ (up to ℓ = L),
we observe the curves approaching each other. Erosion is caused by the swirling vortical flows
that form (arrayed periodically) adjacent to the interface. This spatial organization combined
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Figure 2.6: We estimate the roughness and dynamic exponents by measuring the extrinsic width
W (ℓ, t) over time. The scaled interface roughness profiles collapse for four separate experimental
realizations with each experiment collapsing into its own curve The growth exponent is b = 1/3
and the dynamic exponent is z = 3. Here, we show four experiments, denoted as set 1-4; each
curve is plotted using a different time value in that experimental set.

with time dependence of the positions at which vortices are located, results in fluctuations in
W observed in Figure 2.5(c).

Dynamic scaling approaches for the description of initially flat, self-affine, single-valued
interfaces that roughen with time have been proposed based on continuum models of the
growth/erosion process in a variety of geophysical and materials physics contexts[27, 28, 30,
31]. Self-similar roughness profiles in these theoretically studied cases follow scalings given by
W (L, t) ∼ tβ , (t≪ t∗), W (L, t) ∼ ℓα, (t≫ t∗) and t∗ ∼ ℓz with z = α/β. Here α, β and ℓ are
the local roughness exponent, local growth exponent and system size respectively. The scaling
relation here means that for early time (t ≪ t∗), the roughness grows as a power law of time
till it saturates for characteristic time t∗. After time t∗, the roughness grows as a power law of
ℓ with z defined as the dynamic exponent,

W (L, t) ∼ ℓαF
(
t/ℓα/β

)
= ℓαF (t/ℓz) (2.6)

A quantity complementary to characteristic time t∗, (if it exists) is the characteristic width L∗.
An alternate manner to describe self-similarity is via the forms

W (ℓ, t) ∼ tα/zG (ℓ/η(t)) = tα/zG
(
ℓ/t1/z

)
, (2.7)

G(ζ ≪ 1) ∼ ζα, G(ζ ≫ 1) ∼ constant. (2.8)

The spatiotemporal evolution of a flat interface occurs as W ∼ tβ at short time; eventually
correlations develop along the interface that saturate when the correlation length becomes the
characteristic length. The set of exponents then decides the specific universality class describing
the growth [27]. We note that equations (2.6)-(2.8) usually describe process without an imposed
external length scale. The Edwards-Wilkinson (EW) class describes an interface that roughens
due to random particle deposition and is smoothed by lateral motion, such as at the surface
of settled granular aggregates under gravity. The Kardar-Parisi-Zhang (KPZ) class describes
interfacial growth due to random particle depositions and explicitly includes a nonlinear term
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for growth perpendicular to the interface. Both the KPZ and EW describe the interface through
local growth mechanisms.

In order to test if the roughness profiles we obtained from experiments were self-similar,
we attempted to plot these in a manner consistent with equations (2.6)-(2.8). Figure 2.6
summarizes these results. We see that scaled roughness profiles from 4 experiments show
similar qualitative features. We see domains where the rescaled curves collapse suggesting a
self-similar form.

2.3 Simulations of dense bacterial swarms

It is of interest to understand if steric effects and hydrodynamic effects play equal roles
in the interface propagation and in determining the spatiotemporal features of the interface,
specifically roughness features and swarming intensity. Furthermore, understanding the relative
importance of hydrodynamic interactions will shed light on swarming in moist rather than wet
environments. Here, bacteria swarm in a film sufficient to maintain their swarming phenotype.
The thin film of liquid and the soft underlying substrate act as momentum sinks and confine
the effects of hydrodynamic interactions to local and medium range length scales.

As mentioned previously, our experiments on Serratia marcescens do not allow us to
discriminate and separate the impact of purely steric effects from fluid mediated hydrodynamic
interactions on the collective motion well within the active phase as well as in the vicinity of
the interface. To investigate each effect separately and when acting in tandem, we next propose
and analyze discrete agent based simulations that treat the bacteria as inertialess self-propelled
rods (SPR) [13] moving in a viscous fluid. Steric interactions are implemented as explained
below using standard interaction potentials that depend on distances between the bacteria with
rods interacting with all neighbors within a cut-off distance. Hydrodynamic interactions are
implemented by treating each rod as a moving line of force dipoles. We do not include thermal
noise in our system and ignore translational and rotational diffusion of the rods.

2.3.1 Agent based simulation model without thermal noise

The simulated bacterial swarm system consists of N = 56, 000 rod-like bacteria. Each
simulated bacteria is idealized as a slender rod of length ℓb and width λ (the aspect ratio is
thus a = ℓb/λ = 5) that can self-propel. These in-silico bacteria move in a domain of area
A = 500× 800 (measured in bacterial width units); the ambient fluid is Newtonian with shear
viscosity µ, and density ρ. The rods have an intrinsic self-propulsion speed uo. We note that for
Serratia marcesens, the self-propulsion speed uo ∼ 28µm/s swimming in a water-like Newtonian
fluid, the Reynolds number R ≡ ℓbuoρ/µ ≪ 1 and thus the use of the Stokes equation is
appropriate. In accord with the experimental settings, we simulate a dense suspension with an
area fraction ψ = Nℓbλ/A = 0.7. In simulations, lengths are scaled by rod width λ, velocities
are scaled by intrinsic self-propulsion velocity uo, time by τ = λ/uo ∼ 0.04 s, and forces by
µuoλ. Experiments on bacteria in the dilute pre-swarming phase (Figure 2.2a) suggest that
bacteria in colonies have a range of bacterial lengths with a mean between 5-7 µm; longer
bacteria that are 2-3 times the length are possible.

Rods are indexed uniquely so as to be able to track them over time. The position
and state of a rod with index α is completely determined once the position of its mass rα, its
orientation vector pα, its linear velocity drα/dt, and its angular velocity ωα are known. In the
overdamped limit characterized by small Reynolds numbers, the evolution of these variables is
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governed by

drα
dt

= uh + V pα + f−1
T · Fs, (2.9)

ωα = ωh + f−1
R · Ts. (2.10)

Here, uh and ωh are the hydrodynamic contributions to the translational and rotational speed
of the rod, respectively V = 1 is the dimensionless self-propulsion speed, p is the unit vector of
rod orientation, Fs and Ts are the force and torque due to the steric effects between neighboring
bacteria. The tensors fT and fR in (2.11) and (2.12) are the translational and rotational friction
tensors given by

fT
f0

= f∥pαpα + f⊥(I − pαpα), (2.11)

fR
f0

= λ2fRI. (2.12)

with f0 = 1 being the Stokesian friction coefficient proportional to the fluid viscosity in scaled
units. The three scalar friction coefficients f∥, f⊥ and fR are dimensionless geometric factors
that depend on the aspect ratio a of the rods. Here, we adopt the expression for cylinders and
use

2π/f∥ = ln(2a)− γ∥, (2.13)
4π/f⊥ = ln(2a)− γ⊥, (2.14)

πa2/3fR = ln(2a)− γR (2.15)

with (γ∥, γ⊥, γR) given by Broersma [32].

2.3.2 Steric interactions

Steric interactions between rods (bacteria) are treated in a discrete manner. We
partition each rod into n = 6 segments with each segment represented by a point. The position
of these points may then be used to evaluate interactions. Geometry dictates that two rods α
and β interact only if their center-of-mass distance |∆rαβ | = |rα − rβ | is less than ℓb + 2λ. Let
rαβij be the distance between the i-th segment of rod α and j-th segment of rod β calculated as

rαβij = |∆rαβ + (ℓipα − ℓjpβ)| (2.16)

where pα and pβ are the orientation vectors of rods with indices α and β and parameters
ℓi, ℓj ∈ [−ℓb/2, ℓb/2] locate positions of the segments along the rods. The total steric derived
potential evaluated along rod α is then obtained using the Yukawa potential for the interaction
[33, 13]:

Uα =
1

2

∑
β ̸=α

H(Rc − rαβ)
U0

n2

n∑
i=1

n∑
j=1

exp(−rαβij /λ)

rαβij

(2.17)

where H(x) is the Heaviside step function, U0 = 800 is the dimensionless potential strength
with scale of µu0λ2, and Rc is the cutoff radius beyond which the steric interaction is zero.
Here we choose Rc = 1.25λ. A linked-cells algorithm for short-range interaction [34] is used
to accelerate the calculation of the steric interaction given the large number of rods in our
simulated system.

2.3.3 Hydrodynamic interactions

The hydrodynamic terms uh and ωh are obtained by solving for the background flow
experienced by rod α due to the dipolar flows generated by all the rods in the system. This
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background flow is obtained by solving the appropriate Stokes equation in 2D - here, the
two-dimensional incompressible Stokes equation for the fluid velocity field u supplemented with
extra source terms corresponding to the distribution of dipolar stresslets aligned along each rod
in the system. The resulting extra fluid induced drag forces are calculated using the distributed
Lagrange multiplier method [35, 36] used earlier in suspensions of active swimmers.

The flow field induced in the fluid due to the distributed active stresslet is given by

∇2u = −∇p+
n∑

i=1

Fiσ(x − xi), (2.18)

∇ · u = 0, (2.19)

where p is the pressure, and Fi = (2αh/n)(ℓi/|ℓi|)V p is the force distribution for each rod
segment, where i is the index of rod segments, and αh is the dimensionless stresslet strength of
the bacteria. In our simulations, αh = 1 [10]. In (2.19), the term σ(x − xi) converts the forces
on rods (Lagrangian grid) to the background flow field (Eulerian grid) with x, xi denoting the
position of Cartesian grid points and rod segments, respectively. The resulting flow field u is
then interpolated on the rod segments as v, and then integrated along the rod length to obtain
the total hydrodynamic contributions to the translational and rotational speed of the rod

Mbuh =

∫
ℓb

ρvdℓ, and Ib · ωh =

∫
ℓb

ρr × vdℓ, (2.20)

where ρ = 1 is the density ratio between rods and the fluid, ℓ is the distance along the rod
length, r is the position vector evaluated from the center of mass, and Mb and Ib are the
dimensionless mass and moment of inertia of the rod, respectively. Evaluation of uh and ωh

closes the set of equations (2.9)-(2.15) for the system of rods. Positions and orientations can
be tracked in time. Concomitantly, (2.18)-(2.20) provides spatiotemporal features of the fluid.

Using this computational model, I validated the model by testing a range of
hydrodynamic values (Figures 2.7, 2.8) and different lengths (Figure 2.9) to validate the model’s
use for a variety of swarmer lengths.

2.4 Simulation results and analysis

2.4.1 Initialization of SPR systems

In the experiments, the quenched passive bacteria in the exposed region were observed
to have significant local nematic alignment [2]. However on the whole when averaged over length
scales much larger than 20 µm alignment was more or less random. This is consistent with the
paralyzed retaining order at length scales comparable to the size of the collective structures
in the active region. The swarming bacteria, when spatially and temporally averaged, are on
average randomly oriented (ignoring the small bias due to the speed of the swarming front).
Therefore, to maintain consistency across simulations, and to try to mimic this feature in our
noise-less simulations, we conducted each simulation in two steps with the domain held fixed.
To reduce the uncertainties, we averaged the roughness results based on ten simulation runs
with each simulation starting from a different initial rod configuration.

The first step of the simulation allowed us to generate random orientational and spatial
distribution of bacteria (rods) at high volume fractions. In order to achieve this, we set all rods
to be motile and hydrodynamically interacting; the rods are located initially in a rectangular
grid and are aligned. This is shown in Figure 2.7. A perturbation is then superimposed on the
rod orientation p. We let each rod move and evolve for a long enough time so that the position
and orientation of the rods represent a possible configuration for the bacterial system before
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the exposure to light. There are nematic structures in the initial state of the rods, and some
regions are void of bacteria because of the swarming effects. It is likely that in the swarming
bacteria experiments, noise and possible two-dimensional effects where bacteria can move in
and out of the plane may reduce the propensity for such regions devoid of bacteria. The rod
positions and orientations are then extracted and used as the initial configuration in the second
step.

In the second step, only rods located in the lower half of the domain are set to be motile
(V = 1, Equation (2.9)) while the rest are passive (V = 0, Equation (2.9). We then advance
time with each rod moving and interacting with other rods. As the simulation proceeds, we
track the active-passive interface. Here, the simulation domain is a rectangle of a fixed height
H = 800 with wall boundary conditions applied at the upper and lower boundaries. This height
is large enough that the active-passive interface is not affected by the confinement of the walls
initially over the time-scale of our simulations. Periodic boundary conditions are applied to the
left and right boundaries of the simulation domain. A sample of this evolution is shown in a
dilute system in Figure 2.7.
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T = 400
(a)

(b)

Figure 2.7: Initialization of a half-passive, half-active interface simulation. The top-half are
passive rods with no self-propulsion (light blue rods) while the bottom-half are active rods
(red with blue head indicating the ”front” of a rod). (a) A system of N = 900 rods in the
dry-limit where hydrodynamic contributions are negligible. (b) A system of N = 900 rods where
hydrodynamic contributions compete with steric interactions. In (a), negligible hydrodynamics
in these systems generate voids as rods tend to cling together due to steric interactions. (b),
meanwhile, shows that hydrodynamic interactions actively mix the system such that minimal
voids are present and actively moving rods are able to move further into the passive phase in
the same amount of time.

2.4.2 Validation of the SPR model

Hydrodynamics in in silico models introduces additional terms that act as competing
interactions with steric interactions between rods. To test these competing interactions, I
created a dilute system (ψ = 0.33, L = 5, N = 900) at the dry-limit (α=0.1) and at a value where
hydrodynamics are expected to dominate (α=10). With the inclusion of the Yukawa potential
(Equation 2.17), rods within the cutoff range are attracted to one another and will tend to stick
to one another as shown in Figure 2.8(a). While this does appear to benefit the clustering ability,
swarms are characterized as fluidic flows that are able to convect material efficiently (Figure



28

2.1). Thus, the inclusion of hydrodynamics in models is crucial for modeling realistic swarmers.
Figure 2.8(b) validates this point by showing a system dominated by hydrodynamic interactions.
The result is a highly disperse system of rods where very little permanent and highly persistent
clustering occurs. The corresponding pressure and vorticity plots show increased range and
magnitude of the pressure and vorticity, thereby displaying the positive effect hydrodynamics
have on the active mixing of the system and efficient particle transport.
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(i) (ii) (iii)

Figure 2.8: Simulations of a fully active system of L = 5 rods at the dry-limit (α=0.1) and
where hydrodynamic interactions dominate (α=10). N = 900 in each system. For each system,
(i) shows a snapshot of the system, (ii) shows the corresponding pressure fields, and (iii) shows
the corresponding vorticity fields. In (a), where the system is in the dry-limit, the rods are
held together primarily by steric interactions and form large clusters. Whereas in (b), the
hydrodynamic flows introduce heavy active mixing that disperse clusters. These are emphasized
in the corresponding pressure and vorticity fields, where in (a, ii-iii) the magnitude of the
pressure and vorticity are significantly smaller than in systems where hydrodynamics dominate
(a, ii-iii).

To further probe the capabilities of the system and assert that the SPR model can
indeed be used to test a range of swarming lengths, I increase the length of rods from L = 5 to
L = 10 and initialize them in dilute (ψ=0.3, N = 500, α=1) and dense systems (ψ = 0.80 N
= 1200, α=1). Figure 2.9 displays both of these systems and show promise of further studies
expanding on the role of aspect ratio. These systems of elongated rods show that compared
to L = 5, the range and magnitude of the vorticity and pressure are increased, as well as the
apparent size of vorticity fields. While this chapter does not further explore the role of rod
length, chapter 3 further explores the role of rod length.

2.4.3 Defining the effective interface position

To calculate the number density and velocity fields of bacteria, we divided the
simulation domain into small bins of size δ = 4 and computed the numbers of both active
and passive rods in each bin. We smoothed the velocity and vorticity fields by analyzing the
data in overlapping cells [13], with cell size 1.5 times bin size.

In our experiments, individual bacteria could not always be clearly visualized
especially in the passive region - however their motion was clearly observable. Therefore,
we used intensity fluctuations (that are correlated with density fluctuations) to estimate the
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Figure 2.9: Test simulations of elongated rods at two different densities. To further validate
the model works with a range of rod lengths, I increased the length of the rods from L = 5 to
L = 10 in dilute (ψ = 0.33, (a)) and dense (ψ = 0.80, (b)) systems. Hydrodynamic strength
is fixed at α=1. (a)
shows a dilute system where some rods cluster. (b) shows the dense system where the size of
the calculate vorticity is larger. The effect of aspect ratio is explored further in chapter 3.

phase-field order parameter given by equation (2.3). Note that fluctuations in intensity are
tracked not the intensity itself. The filtered phase field has value -1 corresponding to the
completely passive phase and +1 corresponding to the fully active phase. The interface location
and shape obtained thus was consistent with the interface obtained using velocity fluctuations
[1, 2].

In our simulations however, rods can be directly tracked and there is no direct analogue
to intensity fluctuations. We used a modified order parameter based on number densities (the
subscript S denoting simulation)

ϕS =

{
(na − np)(na + np)

−1, if (na + np) > 0

0, otherwise,
(2.21)

where na and nd are the number density of rod segments for active and passive bacteria,
respectively. Here ϕS = 1 corresponds to the purely active phase and ϕS = −1 corresponds to
the purely passive phase. The exact value ϕS = 0 corresponds to the regions of equal number
of active and passive rods, or the regions that are void of bacteria. We focus attention on the
first case; the second where voids can form in the active phase is interesting in itself and is
connected to large scale density fluctuations observed in active matter models [17, 12].

Note that equation (2.21) exhibits a feature that is not observed or cannot be discerned
from experiments. The rod simulations sometimes show voids where there are no rods (active
or passive) and hence by definition ϕS = 0 since na+np = 0. This should be distinguished from
the case where na = np. Consequently, we will distinguish the manner in which the phase-field
is evaluated to zero in subsequent discussions.

Motivated by the success of the phase-field approach in tracking the experimentally
observed interface location, we employ a similar method. The interface height h, is calculated
by fitting ϕS in a vertical slice with ϕS = tanh((y − h)/d). This calculation of interface is
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Figure 2.10: Velocity correlation function (VCF) calculated in the active phase are plotted here
for a range of hydrodynamic stresslet strengths (α = 0.0-1.0), reproduced from [37]. (Inset)
Vortex sizes (diameters) measured in bacterial widths (≈ 1 µm). Vortex sizes in experiments
can range from 20-35 µm and the tests shown here encapsulate these ranges and validate the
SPR model.

capable of dealing with possible overhangs and mixing in the active-passive interface. The
interface roughness is subsequently evaluated by using the same equation as in the experiments
- equation (2.5).

2.4.4 Morphology of the propagating interface

We first investigated the rod configuration and averaged density and velocity/vorticity
fields in the active-passive interface for self-propelled rods in two limits - without hydrodynamic
interactions between rods (no HI), and with full Stokesian hydrodynamics (with HI). Figures 2.7
illustrates striking features of the interface motion and suggest significant changes in interface
structure when HI is present.

When the hydrodynamic effects are excluded (Figure 2.7(a)), the rods only interact
with each other through the short-range steric interactions. In the active phase, bacteria
have a pronounced tendency to form collective structures such as flocks and streamers; these
are nematic structures with groups of bacteria are moving towards the same direction. The
bacteria comprising these structures are more likely to penetrate and form incisive cracks in
the passive phase. Eventually these protrusions form finger-like or island-like (if these are
disconnected from the active phase) regions in the passive phase. Since the passive bacteria
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Figure 2.11: (a) Here, we highlight the role of hydrodynamic interactions in significantly
modifying both the interface morphology, effective thickness as well as propagation speed.
We note that the interface without HI (i), is less diffuse than the interface when hydrodynamic
interactions are present (ii). We note also the increase in voids in the active phase, fast moving
large-scale flocks traveling in the passive phase and the significantly lower mixing in the absence
of HI. Finally comparison of the jagged black lines - the computed interface heights and profiles
- suggests that the effective roughness is also dependent on the presence of hydrodynamic
interactions. (b) (i) Experimental results for h(x,t) (time stamp here in seconds), illustrating
an instance where a local protuberances first forms and then grows (forming fingers) and
intrudes into the passive region. However the fingers are not as pronounced; suggesting a
response intermediate between the dry state (no HI) and fully wet state (HI dominates). (ii)
These sharp features of the evolving interface are typically connected to the presence of sharp
vortical structures (either rotating the same way or in opposite senses) that stretch and convect
material points (bacteria) in the interface region. Data in (a) was produced in collaboration
with Dr. Yuchen Zhang and Dr. Arezoo Ardekani. Data in (b) was obtained from analysis of
experimental datasets from [1, 2].

cannot enter the active phase due to being immotile and have to be convected by the incoming
active bacteria, there is net flux of bacteria from the active phase to the passive phase. Right
below the active-passive interface, there we observe significant number of voids where very few
active bacteria are present. Furthermore, voids span multiple bacterial lengths.

When hydrodynamic interactions are included as shown in Figure 2.7(b), active and
passive phases are better mixed and the fingering seen previously is not observed possibly
due to HI induced destabilization. The length scale of nematic structures generated in the
passive domain decreases due to active flows. Passive bacteria are displaced and advected
through the active region in both cases eventually leading to mixing. We anticipate that
continuous realignment and instabilities are due to local shearing flows generated over the scale
of many bacteria. Note again that we do not have diffusion in our simulations, and hence this
destabilization is from hydrodynamic effects; the final result is an active, turbulent motion of
rods [10] with highly vortical structures. The flow vortices lead to breakup of the active-passive
interface and substantially enhance the mixing between the active and passive phases.
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Comparison of sequences in Figure 2.7(a) and Figure 2.7(b) clarify the nature of
structural differences in the interface region, and the variations in the manner in which the
leading front propagates without and with HI. Hydrodynamic interactions are associated with
a reduced occurrence of dendritic protrusions that may pinch off, penetrate and move through
the frictional passive region. Furthermore, we see larger (white) voids with lower values of local
densities when hydrodynamic interactions are neglected. We also note larger local interface
mixing speeds when hydrodynamic interactions are included. The interface region is more
smeared out and exhibits the hallmark of a mushy, bi-phasic mixed region when hydrodynamic
interactions are present.

As anticipated from Figure 2.7, we observed the following: (i) The front in the absence
of HI clearly demonstrates fingering and clustering with these pinching off and moving deep
into the passive frictional domain. (ii) Non-HI simulations demonstrate significant density
variations in the active phase, reminiscent of the large amplitude density fluctuations seen in
model theoretical active polar and nematic systems [13, 10]. These fluctuations are usually
smeared out when hydrodynamic interactions are allowed. (iii) Finally, again as expected, HI
smears out the interface region which now possesses features of a diffuse interface. Note that a
finite interface thickness was calculated in the Serratia experiments and reported earlier by us
[1] using both intensity variations (a stand-in for density variations) as also independently using
PIV. Here we see that hydrodynamic interactions significantly thicken the apparent interface -
i.e, there is truly a well mixed bi-phasic region when HI is present.

Examination of the associated vorticity fields shows that vortical structures are slightly
larger and more segregated when hydrodynamic interactions are non-existent. For rods without
hydrodynamics, the vortices are elongated and connected due to the presence of the nematic
structures. When hydrodynamics are included, the vortices are broken, creating mesoscale
turbulence and leading to a more disordered flow field. Here, the magnitude of flow velocity
and vorticity are larger than those without hydrodynamics interactions, and there is a slight
flow in the passive phase since the hydrodynamic interaction decays slowly with distance.

Hydrodynamic interactions impact not just the morphology and structure of the
interface region but also the evolution and dynamics. The striking difference between
simulations without and with HI are evident in Figures 2.11(a)-(i) and 2.11(a)-(ii). Note
the increasingly bi-phasic structure of the interface region due to hydrodynamic interactions;
additionally, this mushy region gradually increases in width due to mixing. Green domains
deep in the active phase observed in Figure 2.11(a)-(i) corresponding to voids or low density
regions are significantly less for the case with HI than without.

2.4.5 Vorticity fields and velocity correlations

To check the effect of the bounding walls as well as to investigate how velocity
fields observed in our simulations compared with experiments, we next analyzed the vorticity
distribution and velocity correlations far from the active-passive interface region. We note
that vorticity magnitudes across the active region are consistently similar once we move away
from the interface and deep into the active region (yellow box). As time progresses however the
distance between vortical structures increases slightly possibly due to the mixing and convective
flux of passive rods into the active phase.

To quantify the structural features of the velocity field, in addition to the vorticity
field, of the vortical structures in this region, we calculate the velocity correlation function
(VCF) in Figure 2.10, choosing the region 100 < y < 300. Furthermore, to discern effects
due to HI, we analyze simulations with and without HI. Given the VCF, characteristic vortex
sizes can be found from the length-scale at which VCF equals 0 and crosses over to positive
values. As time goes by, for either with or without hydrodynamics, the number density of
active bacteria at the studied region decreases because some active bacteria penetrate into the
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passive domain.

Associated with the decrease in number density is an increase in vortex radius.
Interestingly, these conclusions are consistent with our reported observations on slightly
increases in size and longer residence time of vortical structures close to the interface [1] (and
thus higher density of passive rods). Thus our computations capture qualitative features of the
swarm and predict correlation lengths consistent with experiments.

2.4.6 Roughness of the interface and comparison with
experiments

Finally, combining experiments with simulations, we conclude that hydrodynamic
and steric interactions enable different modes of surface dynamics, morphology and thus front
invasion. This is clearly seen when one compares the vorticity fields in the interface region for
simulations with and without HI (Figure 2.11. In the absence of HI such as for dry systems
where the only contribution from ambient fluid is the Stokes drag on the rods, we observe a
sharper interface structure, albeit with a more disruptive morphology and extensive fingering.
Flocks and streamers can develop at the interface, and exploiting any structural weakening in
the passive phase can pinch off and penetrate the frictional medium. What is noteworthy is that
these clusters are also characterized by strong vorticity and thus involve circulatory motions.

2.5 Summary and Outlook

Swarming is a complex multi-cellular response featuring fast, collective and long
ranged intense bacteria laden flows [38, 39] and enables efficient and rapid colonization of
environments and biologically important surfaces. This phenomenon requires the integration
of multiple and multimodal chemical and physical signals, including physiological and
morphological differentiation of the bacteria into swarmer cells, the optimal presence of nutrient
and favorable porous surfaces [38, 39, 7]. A significant component of the swarming state are
interfaces or propagating fronts that form naturally allowing swarms to invade free space or
highly frictional domains. Here, we study the evolving structural features of an active-passive
interfaces using dense colonies of Serratia marcescens as a model system. We image the
evolution, dynamics and morphology of the interface region between an active (swarming) phase
and a passive (immotile) phase. The passive phase is densely packed and micro-structured
and hence offers an highly frictional environment. Integrating results from Particle Image
Velocimetry (PIV), intensity based image analysis and analysis of surface fluctuations, we
quantify the dynamics and morphology of the evolving interface. We show that correlations
between spatially separated surface fluctuations and damping of the same are influenced by
the interaction of the interfacial region with adjacently located collective flows. Furthermore,
dynamical growth exponents characterizing the active manner in which the interfacial region
is continuously reshaped differ significantly from classically expected values.

To complement and interpret our experiments, we presented a high-performance
numerical simulation that explicitly tracks the motion of each bacteria with consideration
of both cell-cell steric interaction and far-field hydrodynamic interactions. The simulations
are able to separate the steric and hydrodynamic effects and illustrate the time evolution of
mixing between the active and dead bacteria swarms for either with or without hydrodynamic
interactions. The hydrodynamic effects have a tendency to create turbulence in active phase,
which disturbs the active-passive interface and thus enhance the mixing between passive and
active bacteria. The active turbulence also decreases the length scale of the nematic structure
and make it easier for active bacteria to penetrate the passive phase. At the same time,
simulations in the dry regime - where hydrodynamic interactions are neglected - strongly
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indicate significant fingering instabilities with macro-scale flocks penetrating the passive phase,
pinching off from the rest of the active domain and covering significant territory in the passive
region before fragmenting. The interface with hydrodynamic effects shows larger roughness
exponent and dynamic exponent than those without hydrodynamic effects, but the growth
exponents are similar.

Combining experiments with simulations, we conclude that hydrodynamic and steric
interactions enable strikingly different modes of surface dynamics, morphology and thus front
invasion. Swarms typically utilize and move in nutrient-laden ambient fluid in a swarm that
is extracted from underlying soft poroelastic fluid infiltrated substrates. Our observations
imply that surfaces tailored with a friction gradient or a porosity gradient may hinder swarm
propagation significantly.

We conclude with some possible extensions of this work. Our results strongly motivate
the need for further careful experimentation where bacterial swarm intensity (density and/or
self-propulsion), the substrate friction and softness can all be varied independently. This will
allow us to investigate carefully the physicochemical and biophysical conditions under which
the front propagation and attendant instabilities may be suppressed or enhanced. In turn,
this information will also help elucidate the mechanisms underlying the formation of jets and
streamers observed in many advancing bacterial interfaces. The agent-based numerical model
we studied considered the propagation of swarms into frictional domains and was motivated by
the manner in which bacteria may reconstitute and reclaim territory, and also the manner in
which bacteria may physically interact with sub-domains of other bacterial species or mutants
with strongly contrasting self-propulsion. It would be of interest to generalize our treatment by
allowing the self-propulsion speed and viscous friction to depend on biophysical parameters such
as substrate properties. Similarly, introducing a dependence on an ambient diffusing chemical
may provide a minimal model of quorum sensing. Finally, in order to probe the active matter
related aspects of swarming matter such as the co-existence and formation of phases, one can
combine the agent-based microscopic models presented in this paper with mesoscale models for
active liquid crystals [17, 18, 20, 19, 21].
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3.1 Introduction

In chapter 2, I reported on the spatiotemporal dynamics of the active-passive
interface in dense swarms and dense SPR simulations. As previously mentioned, however,
assessing how these rod-like cells gather into clusters, and the role these clusters play into the
formation of swarming structural features is not trivial due to the high density and multi-layer
formation of S. marcescens. Therefore, it is of interest to study dilute systems of swarming
bacteria to elucidate the effects of interactions between small, clearly distinguishable clusters.
Here, I utilize the SPR model introduced in chapter 2 and elaborate on in section 3.2 to
simulate systems of rods at low density (Ψ = 0.33). At this density, clusters can be observed
moving independently and can be observed interacting with one another as opposed to dense
simulations where clusters cannot be as clearly identified.

One clear benefit of cell elongation is upregulating flagellar synthesis in a process
called hyperflagellation, increasing the flagellar count and increasing the thrust of the cell
[1, 2]. The mean speed of bacteria increases when they transition to this state. The increase
in speed of longer swarming cells can confer higher rates of propagation and survivability of
cells [3, 4]. Another potential benefit to elongation is that longer length swarmers may promote
increased clustering and rafting. Swarms possess a wide distribution of bacterial lengths and
have sub-populations of highly elongated bacteria. These extremely long cells may act as
recruitment sites for rafting, as shorter cells will collide with these cells and reorient parallel
to the long cell and raft together [5, 6, 7, 8]. As a precursor, I observe clusters of swarming
S. marcescens in figure 3.1, where I diluted a dense swarm with LB media in order to better
observe smaller numbers of bacteria.

At low bacterial densities, cells exhibit the aforementioned run-and-tumble motion. In
this state, prior to swarming, no collective motion takes places as cells randomly explore their
surroundings in search of nutrients. As swarming is a collective form of motion, density may
play a crucial role in the ability to swarm. When swarming cells are diluted to densities where
they can be observed in small groups, the cells exhibit collective motion, clustering, and rafting.
A mapping of the effect of density and aspect ratio on B. subtilis was conducted, mapping a
wide range of aspect ratios from planktonic length to hyper elongated cells at very low and very
high densities (Ψ = 0.1−0.7) [7]. Very low densities may inhibit swarming motion as there will
be lower frequency of cell-cell interactions which are required for bacteria to cluster and move
together. Very high densities, across all measured aspect ratios from that study can induce
jammed states that hinder bacteria motility. Depending on the aspect ratio, different densities
can induce swarming and influence the formation of small, local clusters, or larger clusters that
are comprised of several dozen bacteria. In section 3.3, I report on the effect of elongation
by independently tuning the aspect ratio of the rods from L = 3, 5, 10 which correspond to
bacteria aspect ratios similar to their swimming state (L = 3) to very high aspect ratios seen
in swarming bacteria (L = 10).

Agent-based models of Active Brownian Particles (ABP) have been utilized to study
alignment and rafting behavior of swarming bacteria and active matter systems [9, 10, 11]. An
ABP is modeled through the Langevin equations that include self-propulsion terms and effects
from thermal noise to capture the motion of bacterial swimmers and crawling mammalian cells
[12, 13, 14, 15]. Periodic vortex arrays, observed in the swarm front, have been simulated using
a minimal model that includes only steric interactions between particles and neglects long-range
hydrodynamics, highlighting the importance of steric cell-cell interactions in the formation of
structures in collective motion [16]. Self-organization can occur in active matter systems and
is of key importance to the fitness and surviability of a colony [17]. When hydrodynamics
are neglected, the vortices are elongated and connected due to the presence of the nematic
structures. When hydrodynamics are included, the vortices become irregular and topological
defects occur which are characteristic of mesoscale turbulence of the system is observed [18]. A
key limitation to ABPs however, is their circular shape and do not represpent the morphology
of bacteria swarmers.
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Figure 3.1: Experimental snapshots of swarming S. marcescens in dilute systems (a) and dense
systems (b). (a). Diluted swarm generated with a 1 µL droplet of LB media added ahead of the
swarm front. Examples of rafts are indicated by red squares. Scale bars are 20 µm. (b,top)
Dense suspension of the S. marcescens. The area of the image is 50x50 µm where focused
snapshots of Particle Image Velocimetry (PIV) analysis is shown in (b, ii-v). (b, bottom)
PIV snapshots capturing the bacteria speeds (color map) and direction of flow (black arrows).
Scale bar shown is 10 µm. (c) Velocity distribution taken from PIV analysis over 30 seconds
from the dense swarm in (b).

Meanwhile, SPR models are more complex agent based models that appropriately
capture the morphology of flagellated bacteria rods. Motivated by monolayers of growing
P. aeruginosa and presence of topological defects within those colonies, SPR simulations were
previously utilized to study and mimic movement, orientation, and flow fields of the colony, all of
which are mediated by the movement of +1/2 and -1/2 topological defects formed by interacting
SPRs [19]. Studies of rod-like spheroidal squirmers with hydrodynamic interactions also find
that increased aspect ratio increases phase separation and promotes clustering [20, 21]. All of
this taken together motivates the exploration of the role of cell aspect ratio and hydrodynamics
on swarming systems and is the topic of this chapter.

3.2 Methods

3.2.1 Simulations

The simulations on dilute systems of rod-like swarmers utilize the same code as
described in chapter 2 of this dissertation. Here, I briefly describe the key features of the
model and the significant changes to the parameters in this section. To capture the morphology
of a swarming bacterium and interactions between cells, I simulate a bacterium as a slender
rod with a length L and width λ. I model the rod length as a series of n = L + 1 connected
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points. Therefore, the aspect ratio, defined as the length-to-width proportion of the rods and is
given by A = L/λ. I model the rods moving in a Newtonian fluid with a shear viscosity µ, and
density ρ. The rods can self-propel with a intrinsic self-propulsion speed, µ0, where for swarms
of S. marcescens, the mean swarming speed is µ0 ≈ 28µm

s and V = 1 ≡ 28µm
s . Therefore, the

rods move in a water-like low-Reynold’s number fluid given by Re ≡ (Lµ0ρ)/µ ≪ 1 and the
use of Stokes equation is appropriate. The simulation domain area, A, is 128λx128λ for dilute
suspensions and 256λx256λ for dense suspensions as I study both dilute and dense suspensions
of rods, I define the density of the simulations as an area fraction, given by Ψ = n(L+ 1)λ/A.
For dilute simulations, Ψ ∼ 0.33. For the agent-based model, each rod is indexed to track
their positions and orientations over time. The equations of motion of a rod of index γ in the
environment are defined as:

drγ

dt
= uh + V pγ + f−1

T · Fs (3.1)

ωγ = ωh + f−1
R · Ts (3.2)

where Eqn.3.1 describes the position of the rod with time and Eqn.3.2 describes the orientation
of the rod with time. fT and fR denote the translational and rotational friction tensors. Fs

and Ts are the force and torque of the rod due to steric interactions with other rods.

Steric Interactions

Steric interactions between rods are modeled with the Yukawa potential as defined in
chapter 2, which I define again as:

UA =
1

2

∑
B ̸=A

H(Rc − rAB)
U0

n2

n∑
i=1

n∑
j=1

1

rAB
ij

exp (
−rAB

ij

λ
) (3.3)

Hydrodynamic Interactions

To capture the effects of cell-fluid/hydrodynamic interactions, the self-propelled rods
are modeled as a series of rigid points, where the force distribution along n points of the rod,
indexed by li, is defined as: Fi = ((2αh)/n)(li/|li|)V p, where αh represents the dimensionless
stresslet strength of the rods and is the parameter that I tune to affect cell-fluid interactions. In
this study αh = 1 is the same stresslet strength used to study active-passive interface systems
in chapter 2. I vary this stresslet strength from the ”dry” limit, αh = 0.1 to an extreme wet
limit, αh = 160 where hydrodynamic contributions are expected to complete dominate steric
interactions. These parameters are listed in table 3.1.

Simulating dilute and dense systems of rods

As most swarming colonies are dense suspensions of bacteria, it is difficult to observe
individual clusters and asses how their dynamics change over time. To study the collective
motion of these rafts and clusters, I simulate dilute suspensions of rods (Ψ ∼ 0.33) and vary
two parameters independently (Table 3.1): the rod length (L) and the stresslet strength of the
rods (αh). In the system, Ψ = N(L+ 1)λ · A−1. As the rod length affects the area fraction, I
adjust the number of rods, N , to maintain the dilute system of rods at Ψ = 0.33.

The rods in the system are initialized as evenly space lattices and allowed to develop
until the rods are well-mixed. All analysis presented in this text is conducted after the system is
well-mixed and is determined when the mean pressure and vorticity reach a quasi-steady-state.
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Rod Lengths
(L)

Rod
Width(λ)

Area
Fraction (Ψ)

Velocity (V ) Stresslet
Strength

(αh)

Simulation
domain area

3, 5, 10 1 0.33 1 0.1, 0.25,
0.5, 1, 10,

160

(128x128)λ

5 1 0.72 1 1 (256x256)λ

Table 3.1: Table of simulation parameters. Here, the rod width λ = 1 µm (≈ 1 bacteria width.
The velocity, V = 1 = 28 µm (mean swarm speed)

In this text, histograms are represented as normalized probability density functions
and are labeled as normalized frequency in text. The equation for the normalized frequency of
measured lengths in Figure 3.2(a):

P (L) =
Li

N
(3.4)

where P (L) is the probability of finding a length of a bacteria, L, across a 30 second
video. Li is the length of a bacterium with index i. N is the total number of bacteria measured.
Each cell was measured once.

Here, I assess the lifetime/persistence time of clusters via the temporal speed and
orientation autocorrelation function. The equation is is given by:

CV (τ) = ⟨Vα(t0)Vα(t0 + τ)

|Vα(t0)|2
⟩ (3.5)

where CV is the autocorrelation function at delay time τ , and the angle brackets denote an
ensemble average of the correlation functions for each rod in the system. The time CV crosses
zero is the correlation time of the cluster, in other words, the average time τ a cluster remains
stable before rods begin to leave the cluster is such that CV (τ) = 0.

Similarly, the orientational autocorrelation function is given by:

Cθ(τ) = ⟨θα(t0)θα(t0 + τ)

|θα(t0)|2
⟩ (3.6)

where Cθ is the autocorrelation function at delay time τ , and where θ is the orientation
of the rod in radians, measured from the positive x-axis on a Cartesian coordinate system.

The autocorrelation functions are fit to the expression y = exp−t/τ where τ is selected
to obtain the best fit to the functions would give the correlation time for the rod velocities and
orientations.

The motility of the rods and clusters can be described by calculating the mean squared
displacement (MSD) of the rods and the equation is given by:

⟨∆r2(τ)⟩ = ⟨|r(t+ τ)− r(t)|⟩ (3.7)

where r(τ), is the position of rod in the system at time and τ is the delay time from
initial observation. Angled brackets (⟨∆r2(τ)⟩) denote an ensemble average of the MSDs of
all rods in the system. The slope of the MSD versus τ on a logarithmic plot informs us how
efficiently the rods explore the space, where a slope of 1 (MSD(τ) ∝ τ) is diffusive behavior and
acts like a random Brownian particle, while a slope of 2 (MSD(τ) ∝ τ2) is ballistic behavior
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where the trajectories are straighter and there is significantly less random reorientation of the
rods [9, 22].

The two particle MSD is given by:

∆r2AB(τ) = |rAB(t+ τ)− rAB(t)| (3.8)

where rAB = rA − rB .

Rod clusters are identified by binarizing the rods at each time-point. I assume that
each rod contains the same amount of pixels to generate the image and take a sum of all
white pixels at the beginning of the simulation. An in-house MATLAB code was then used to
determine how many white pixels are adjacent and are therefore ”connected”. Based on the
connected pixel count I then estimate how many rods are adjacent and considered a cluster.

Histogram plots of cluster sizes are plotted as normalized PDFs and referred to as
normalized frequencies of a particular set of cluster sizes occurring. In the SPR simulations,
cluster sizes were measured every t = 2.5 simulated seconds and histogram plots reflect cluster
sizes being measured over the duration of the simulation.

3.2.2 Experimental Setup and Analysis

The in-silico rods are modelled after experiments on swarming Serratia
marcescens (WT American Type Culture Collection 274). The colonies were cultured in LB
broth overnight at 37 °C. The cultures were grown until mid-log phase (OD600 = 0.6) and cell
density was measured with a Vernier GoDirect SpectroVis Plus spectrophotometer. 5 µL of
inoculum was pipetted onto the center of 0.6% (w/v) agar plates (1% Bacto Tryptone, 0.5%
yeast extract, 0.5% NaCl and 0.6% Bacto Agar in deionized water, measured in w/v percents.
100x15 mm petri dish.) with 300 µL of 25% glucose solution. The inoculated plate was then
incubated at 37◦C for 10-15 hours, after which time the colony was swarming. Imaging was
conducted on a Nikon Ti-E inverted microscope. All videos/images were recorded with a 20x
objective with a 1x or 1.5x camera magnification (effective 30x). Videos were recorded for 30
seconds. The cultures were maintained at 34◦ C with a Tokai-Hit stage top incubator. Videos
were recorded at 100 FPS, 1 ms exposure, 30 seconds per video.

Individual cells are manually tracked using ImageJ for at least 10 seconds and until the
cells are no longer trackable/visible. From their positions, their mean squared displacements
can be calculated using Eq.3.7. Their speeds are estimated by V (t) = r(t) − r(t −∆t), where
V is the cell speed at time, t, and r is the position of the cell in Cartesian coordinates.

Cell velocities in the dense swarm are estimated using the MATLAB distribution of
PIVLab (Particle Image Velocimetry) [23]. I analyze time-lapse videos of the swarm for at least
30 seconds using 64, 32, and 16 pixel interrogation windows which are equivalent to: 14.4, 7.2,
3.6 µm windows (20x objective) and 10.1, 5.0, 2.5 µm windows (30x objective).

The spatial average of the magnitude of vorticity (⟨ω2⟩) is calculated as:

⟨ω2(t)⟩ =
1

A
ΣN

i=1ω(t)
2
i dA = ⟨ω(t)2⟩ (3.9)

=
1

A
ΣN

i=1ω
2
i (t)∆Ai (3.10)

=
1

N
ΣN

i=1ωi(t) (3.11)
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Similarly, the spatial mean pressure is calculated as:

⟨p(t)⟩ =
1

A
ΣN

i=1p(t)idA (3.12)

⟨p(t)⟩ =
1

A
ΣN

i=1p(t)i∆Ai (3.13)

⟨p(t)⟩ =
1

N
ΣN

i=1p(t)i (3.14)

where i is a unit area A, N is the total number of unit areas within the simulation domain, and〈〉
is an position ensemble average that calculates the vorticity and pressure across grid points

in the simulations that contain the values for vorticity and pressure.

The error bars within this chapter are presented as 1 standard deviation, calculated
as:

S =

√
1

N − 1
ΣN

i=1|Ai − µ|2 (3.15)

where S is the standard deviation, µ is the mean of A, N is total number of grid points in the
simulation domain,

3.3 Results

3.3.1 Experimental Observations

The experiments on wild-type, swarming Serratia marcescens in dilute suspensions
reveal the dynamic and highly cooperative nature of bacteria swarming colonies. I utilized
ImageJ to measure cell lengths in figure 3.2(a), confirming a wide length distribution amongst
swarmers and increased mean length (Lmean = 8.71µm) with lengths reaching up to 31 µm in
the experiments. I confirm that there is significant elongation when S. marcescens transitions
from the pre-swarming to the swarming state. Pre-swarming lengths vary from 1-8 µm in length
with a mean of approximately 3 µm (N = 774). Comparing this to swarming cell lengths, there
is an approximate 2-3 fold increase length, consistent with previous results [24, 25].

I then measured the speeds of cells of different lengths to assess if cell length correlates
to any difference in cell speeds. I note that I do not consider interactions between cells when
selecting cells, but take this into consideration in the discussion section. I calculated both the
mean speed of 4 different bacteria lengths and their mean squared displacements (Figure 3.2(b,
c)) finding that for bacterium longer than the mean planktonic length (Table 1.1), their motion
is ballistic (MSD ∝ τ2) for the observed time. Bacteria with lengths comparable to swimming
bacteria, are diffusive for longer delay times and are slower than longer bacteria. I then assess
the orientation autocorrelation function of two cells of lengths 10.7 and 12.6 µm, finding that
for the longer cell, Cθ(τ) = 0 when τ = 2.25s and for the shorter cell, τ = 0.25s (Figure 3.2d).
What is not clear from these observations alone are the effects of hydrodynamic and steric
interactions between cells that may aid in their ability to cooperate and collectively move.
To capture these features of bacteria swarmers, as well as to capture cell-cell and cell-fluid
interactions, I use the SPR model introduced in chapter 2 with tunable cell morphology,
hydrodynamics, and steric interactions.

In the dilute state, swarming S. marcescens can be easily observed rafting and traveling
through unoccupied spaces in these aligned groups (Figure 3.1a). I contrast the measured
speeds of individual cells to speed measurements dense suspensions where optical flow methods
are utilized. Bacteria speeds in dense swarms increase compared to swimmers, reaching mean
speeds of Vmean ≈ 26.6 µm · s−1.
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(a) (b)

(c) (d)

Figure 3.2: Elongated swarming bacteria show increase in speeds compared to short bacteria
with lengths comparable to swimmers. (a) Length distributions of measured bacteria lengths
taken from two experiments and measured with ImageJ by drawing a straight line end-to-end for
each visible and individually distinguishable bacteria. While planktonic bacteria typically have
a length of 2-5 µm (Table 1.1), swarming bacteria elongate significantly, doubling or tripling
their lengths. The mean length measured amongst N = 280 cells is Lmean = 8.71 µm. (b)
Mean squared displacement of single tracked cells from diluted S. marcescens swarm. Longer
cells (12.6 and 31.1 µm) appear to have more ballistic trajectories compared to shorter cells.
Cells were manually tracked using ImageJ for at least 10 seconds and until they were no longer
trackable. (c) Speeds of each bacterium from a-d. The bacterium that has a length (3.36
µm) close to the planktonic length move slower than elongated bacteria (≥ 10.7µm). Notably,
the bacterium with a length of 10.7 µm moves faster than bacteria longer than that length.
(d) Orientation correlation function for L = 10.7, 12.6 µm cells measured. Time where the
function crosses zero is the approximate time, τ , for the cell to orient itself away from an initial
orientation at Cθ(t). For L = 10.7 µm, τ ≈ 0.25s. For L = 12.6 µm, τ ≈ 2.25s.

Swarming bacteria exhibit a range of lengths typically ranging from 3-15 µm (Figure
3.2a). Here, I track and measure the speeds and MSDs of swarming bacteria spanning these
typical lengths and additionally track an outlier length of 31.1µm (Figure 3.3). Generally, I
find that for a cell length comparable to pre-swarming cells, the MSD and measured speeds are
lower than elongated lengths. However, increases in length beyond 10.7 µm see slight decreases
in MSD and speeds.

Through Particle Image Velocimetry analysis of dense swarms of S. marcescens,
I confirm previous observations of bacteria increasing their speeds compared to planktonic
bacteria [26] (Figure 3.2c). Furthermore, I utilized ImageJ to measure cell lengths in diluted
swarms, confirming a wide length distribution amongst swarmers and increased mean length
(Lmean = 8.71µm) with lengths reaching up to 31 µm (Figure 3.3d). I further assess from these
dilute studies if individual bacteria speeds are dependent on their length. To observe individual
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Figure 3.3: Swarming bacteria lengths and speeds increase compared to swimming bacteria.
(a-d) Snapshots and tracks of S. marcescens bacteria with different lengths. Bacteria were
manually tracked using ImageJ and marked at the center of the cell along their long axis. Time
between each point is ∆t = 0.25s. Scale bars for the bacteria snapshots are 10 µm and the
scale bars for the tracks are 20 µm. Points A, B, C are points in time and are indicated by
speed versus time plots. As expected, cells move slower they are moving into other cells or
moving into groups of cells. Cells appear to move the fastest when their direction of motion is
unimpeded, or in case of elongated cells (c-d), moving in a raft with other bacteria adjacent to
the tracked bacterium. Scale bars in these snapshots are 10 µm.

cells, I diluted dense swarms with LB broth to better image and resolve their morphologies
(See Methods). I calculated both the mean speed of 4 different bacteria lengths and their
mean squared displacements (Figure 3.2(b, c)) finding that for bacterium longer than the mean
planktonic length (Table 1.1), their motion is ballistic (MSD ∝ τ2) for the observed time.
Bacteria with lengths comparable to planktonic bacteria, are diffusive for longer delay times
and are slower than longer bacteria. What is not clear from these observations alone are the
effects of hydrodynamic and steric interactions between cells that may aid in their ability to
cooperate and collectively move. To capture these features of bacteria swarmers, as well as to
capture cell-cell and cell-fluid interactions, I use the SPR model with tunable cell morphology,
hydrodynamics, and steric interactions.

3.3.2 Increased rod aspect ratio benefits motility and promotes
clustering and cluster lifetime

In this study, I varied the rods lengths from L = 3, 5, 10 to study the effects of cell
aspect ratio on swarming dynamics. L = 3 is comparable to single, swimming cells, while L = 5,
10 are comparable to elongated swarming bacteria. I maintain a density of Ψ = 0.33 to study
how cells may interact with one another and form clusters. At higher densities, it becomes
difficult to study cluster formation as there would be persistent cluster-cluster interactions.
Trajectories and visualizations of rod lengths comparable to swarming bacteria at L = 5, 10
(Figure 3.4) show cluster formation and ballistic trajectories where the longer length of the
rods promote less reorientation compared to L = 3. The enhanced motility of the rods is
further supported by calculating the ensemble MSD (Figure 3.5(a)). Rods with lengths similar
to the mean length of swarming bacteria (L = 5) show ballistic motility measured over small
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Figure 3.4: Snapshots of systems of rods with different lengths and snapshots of their positions
and trajectories. Pairs of rods next to each other were selected for tracking. Large red and blue
marks indicate pairs of rods adjacent to each other at the first timepoint in the figure. Their
respective trajectories are taken over t = 200 (a-c). The time between each successive frame is
∆t = 50 and the scale bars in each trajectory plot is 50λ. In (c), pairs are close together and
made distinct with solid and dashed lines.

times, which at long times, they display diffusive behavior. For even longer rods (L = 10), the
motion can be described as purely ballistic across all measured delay times. This is supported
qualitatively by observing rod trajectories (Figure 3.4). For L = 10, the trajectories are ballistic,
rods are aligned and moving alongside each other. Visualizing the rod dynamics over the course
of the simulation revealed that as aspect ratio increases, so does the size Figure 3.6(a-c) and
persistence time Figure 3.5(c, e) of the clusters.Rods with a length of 10 form large, aligned
clusters compared to other lengths studied. At these long rod lengths, the initially small
clusters eventually collide, creating larger clusters as a result. These larger clusters also persist
for longer times as shown by the time it takes for Cθ(τ) = 0.

In figure 3.8(a,b), I plot the time ensemble averaged magnitude of vorticity and
ensemble averaged pressure as functions of rod length. As the length of rods increases, so
does the magnitude of vorticity. I note that while there are large fluctuations of the vorticity
(as shown by the shaded error plots), the mean for all vorticties does not greatly vary across
time. Unlike vorticity, the mean pressure fluctuates over time for all rod lengths and does not
appear to vary between lengths as shown by the significant overlap between the curves.

To have a better understanding of the effect length has on the vorticity, I compliment
figure 3.8(a,b) by providing snapshots of the vorticity field over time for each rod length.
Looking at system plots of the vorticity in figure 3.7 as functions of length, I find that for the
shortest system length, the size of vorticies appear smaller compared to the longest system
length. For L = 10, the elongated rods are able to move together in larger clusters (figure 3.6)
that increase the size of the apparent vorticity. This is to be expected as larger clusters are
able to swirl and turn as one, increasing the local vorticity at the location of those clusters.
Meanwhile, changes in rod length does not appear to significantly affect the size or magnitude
of pressure in each of the respective systems (Figure 3.8(b)).
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3.3.3 Inclusion of hydrodynamics promote clustering and meso-scale
turbulence resembling bacteria swarms

Hydrodynamics have been previously shown to be vital in forming cohesive and
persistent structures consisting of multiple active agents [27, 28, 29]. I confirm through the
simulations, that hydrodynamics in swarm-like systems assist in forming cohesive and persistent
aligned clusters that can move through free-space.

In this study, I vary the stresslet strength from 0.1 ≤ αh ≤ 160 to capture effects near
the dry limit for hydrodynamic interactions and regimes where hydrodynamics dominate over
self-propulsion and steric interactions.

Low values of αh decrease the stress on the fluid, allowing steric interactions to
dominate. At αh = 0.1, I observe the largest clusters among the stresslet strengths used
in this study (Figure 3.6(d-f)). While this may imply that dry systems cluster better compared
wet systems, these clusters have very long lifetimes and are not as turbulent as higher stresslet
strengths. Figure 3.5(d) shows that while the spatial velocity correlation function, CV for
αh = 0.1 decays, the velocities do not appear to un-correlate for the duration of the simulations.
When αh ≫ 1, the stress on the fluid is higher than lower values and the rods are pushed around
by the flow in such a way that destabilizes rafting and clustering as shown in figure 3.5(b,d,f).
However, looking at velocity correlation functions, there is a large decrease in lifetime from
τ = 237s for αh = 1 to τ = 200s for αh = 160. Therefore, while high hydrodynamics may allow
for some cell-cell interaction, the rods do not prefer to stay close or aligned with each other. In
the dry limit (αh = 0.1), very large clusters can form (Figure 3.6(c,e,f)) and are stable.

Similar to the previous MSD analysis on the length of rods, I find that the rods at short
time-scales are ballistic across the tested stresslet strengths, eventually becoming diffusive at
long time-scales (Figure 3.5(b)). However, I also find that as I increase the stresslet strength, the
MSD becomes increasingly diffusive at all time-scales. Furthermore, it appears that in the dry
limit, the rods are more motile compared to higher values of αh as seen by the higher magnitude
of the MSD when compared. The variety in which rods can exhibit different lifetimes and sizes of
clustering and motility leads us to the idea that while hydrodynamic inclusion is a powerful tool
that can qualitatively and quantitatively match experimentally observed phenomena, careful
tuning must be implemented in order to avoid erroneous or nonsensical results.

3.3.4 Two-particle MSD

In figure 3.9, I calculate the two-particle mean squared displacement (2P-MSD) of
single pairs of rods within the L = 5, 10 systems at fixed stresslet strength and velocity (αh = 1,
V = 1). Two-particle tracking has been previously utilized as a way to determine the bulk
properties of a viscoelastic material based on tracking of tracers on length scales much smaller
than the sample itself [30]. Single- or one-particle MSDs assume that the environment is
homogeneous, isotropic, and incompressible such that the motion of a tracked particle will
not be influenced by other tracked particles in the system. In other words, the 2P-MSD and
signal-particle MSD are equivalent in these systems. However, swarming bacteria colonies are
neither homogeneous or isotropic: they have heterogeneous length and the arrangement of the
cells are non-isotropic, prompting the analysis of these systems with 2P-MSD. I look at two
cases: 1) when the pair of rods start apart at the beginning of analysis (Figure 3.9a) and when
they start together (Figure 3.9b). Diffusive behavior in 2P-MSD can be interpreted as the pair
of rods staying close to one another, while ballistic behavior is indicative of the rods moving
away from each other and separating further in the case where they begin apart. For rods that
start apart, the 2P-MSD is diffusive at short times for L = 10 while becoming ballistic only for
very long times. This indicates that the rods continue to stay away from each other. For L = 5,
the 2P-MSD is ballistic for short and intermediate times, only becoming sub-diffusive at very
long delay times, which indicates that the rods may have come close into a cluster only at very
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long delay times. In contrast, when the pair of rods are tracked starting together, the 2P-MSD
for L = 5 is only slightly super-diffusive as the rods slowly move away from one another. For
L = 10, the motion is sub-diffusive for most delay times as the longer lengths allow the rods to
maintain distance and stay in the same cluster for very long times.

3.3.5 Dense rod simulations

In the previous section, I utilized SPR simulations at dilute area fractions where
cell-cell interactions and be easily resolved. However, in nature, bacteria swarms are highly
dense populations where they can form multilayers extending into 3D. To better capture details
of cluster-cluster interaction, I analyze dense simulations with Ψ = 0.73. In these dense
simulations, I model one set of parameters: L = 5, αh = 1, and V = 1 to determine how
this . The MSD of the dense suspension is similar to the dilute case. At short time delays, the
motion of the rods are ballistic and at long time delays, the motion of the rods are diffusive
(figure 3.10(b)). Unlike the dilute case, the temporal orientation autocorrelations remain loosely
correlated (remaining close to, but not equal to zero) over long periods of time, Cθ(τ = 455) = 0
(figure 3.10(c)). For the velocity autocorrelation function, the time for the velocities to become
uncorrelated is the same as the dilute system, CV (τ = 272.5) = 0 (figure 3.10(d)). For the
orientation correlation function, the long, but weak correlation time indicates strong stability
of clusters that consistently run into and merge with other clusters.

3.4 Discussion

Bacteria swarming species are capable of rapid surface translocation and while research
has identified several key features of the cells (elongation, hyperflagellation, collective motion,
etc.) [24, 31], the precise mechanisms to which these features affect swarming remain unclear.
In this work, I explore how elongation, cell-cell interactions, and hydrodynamics affect swarming
through an in silico tunable self-propelled rod model.

3.4.1 Rod Morphology

In these systems, I simulate homogeneous systems of dilute, self-propelled rods to
study the role bacteria cell length has on the motility, cluster size, and cluster stability. The
experimental work on studying S. marcescens swarms reiterates the wide range of observable
cell lengths and cell speeds in swarms (Figure 3.3,3.1). While I do not explore cell-cell and
cluster dynamics in live experiments on S. marcescens, other groups that have studied the
effects of cell elongation on the motility of bacteria swarms suggest that higher cell aspect
ratios confers increased motility and cluster stability in the swarm. Notably, groups have found
that increased bacteria cell lengths have increased speeds [8, 25, 5] which would provide a
benefit to the propagation of the swarming colony. In the simulations, I model all rods in
each system studied with a uniform velocity set to the mean swarming speed of S. marcescens
(V = 1 ≡ 28µm · s−1) [32], so there are no speed variations between individual agents and vary
the length of rods in each system from L = 3, 5, and 10.

I find that longer rod lengths provide several benefits to swarming dynamics. Longer
rods increase both motility of rods and correlation times (Figure 3.5). Analysis of the
trajectories (Figure 3.4) and their respective mean squared displacements indicate that longer
rods tend to stay close to one another for long periods of time. Elongated rods have a tendency
to collide more often, reorienting themselves parallel to one another, and stick together via
steric interactions, resulting in larger, persistent clusters and ballistic behavior consistent with
the previous findings [27, 33, 34]. Short rods on the other hand, are subject to turbulent
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flows caused by hydrodynamics. Consequently, short rods may be pushed around easily and
reoriented randomly [8], and ultimately result in rods at the edge of a cluster to orient themselves
away from its cluster. Clusters are consequentially smaller and less persistent, suggesting that
elongation is an essential feature of swarming bacteria that enables their increased cooperation
and motility. At higher densities of homogeneous systems of short rods, this effect may be less
pronounced due to increased collisions and interactions between rods which can bound cells
into a cluster.

In the model, rod density is dilute (Φ = 0.33) and the rods are homogeneous in length
for each length systematically studied. Naturally, swarms are dense and range in lengths, so
how does length heterogeneity affect swarming dynamics? By systematically adjusting ratios
of elongated mutants of B. subtilis and shorter, wild-type cells, Peled et al. find that elongated
bacteria can act to enhance or reduce enhanced features of a swarm [34]. At low ratios of
long-to-WT cells, short WT cells collide often with elongated cells, aligning themselves parallel
into a cluster. This in turn, increases the mean speed of all cells. However, higher long-to-WT
ratios decrease speeds, possibly due to increase rates of collision and jamming. Taking this
into consideration with the results, this suggests that long cells aid in the formation of clusters,
taking in cells of varying lengths that are typically shorter and remain in a cluster due to
steric interactions. While I do not look at heterogeneous cell lengths, this prompts future work
that studies how both variations in length and hydrodynamics have an effect on motility and
clustering ability.

3.4.2 Rod Hydrodynamics

The role of hydrodynamics in active matter systems have been explored in various
contexts, including studying vortex formation in particle suspensions and dynamics of
microswimmers [35, 21, 29]. In active matter systems and bacteria swarms, assessing the
effects of hydrodynamics and steric interactions on collective features is difficult due to coupled
effects from both. The self-propelled rod model allows independent tuning of hydrodynamics
to describe its role in the formation of clusters and vortices in bacterial swarming systems.
However, delicate tuning of the stresslet strength is necessary to appropriately encapsulate the
collective features described in literature and experiments.

I test large values of stresslet strengths (αh = 10, 160) as well as stresslet strengths
close to the previously studied values that appear to form vorticies as seen in swarming species
[29], αh = 0.1, 0.25, 0.5, 1, to determine the effects to collective behavior with small changes
to stresslet strength. Large values stated here are considered large, due to heavy flows that
greatly disturb the collective motion of the system, resembling active particles in low-viscosity
systems.

Flagellated bacteria generate dipolar fluid flows through thrust produced by their
flagella and cell body, which are defined in literature as ”pusher” type hydrodynamic effects
[36, 37, 6, 38, 29, 39]. Pushers move fluid away along their long-axis and draw in fluid centered at
their short axis’, which may be a contributing factor to the alignment of rod-shaped swarmers.
In the dry limit of the system (αh = 0.1), cluster size appears to be significantly higher than
αh = 1 (Figure 3.6). However, the persistence of these clusters are decreased (Figure 3.5). The
large increase in cluster size at the dry limit may be due to steric interactions dominating over
hydrodynamics: rods that move close together align due to steric interactions, but there may not
be large enough hydrodynamic contributions from the pushers to hold the alignment between
rods. Consequentially, this would lead to decreased persistence time of clusters as they can
break away easily. With extremely high hydrodynamic contributions (αh = 160), persistence
time is significantly reduced as rods may come close to one another, but are soon pushed
away by the large hydrodynamic forces exerted (Figure 3.6). Recent models that incorporate
hydrodynamic forces for spheroidal squirmers in semi-periodic conditions find similar results
at the same packing fraction [40]. At low packing fractions (Φ ≤ 0.33), clusters form at small
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hydrodynamic contributions, whereas only small clusters form at higher hydrodynamic values.
I note that swarm systems are dense, with very high packing fractions and dynamics/features
can differ from what can be interpreted from this work. At higher densities, there is possibility
of motility induced phase separation (MIPS) where clusters tend to consist of agents moving
with similar velocities [20, 41, 40]. The addition of hydrodynamics to these systems exacerbates
this effect, with multiple, smaller phase separated clusters. This latter effect may be seen in live
swarms, as there is a wide speed distribution amongst densely packed swarming cells. These
MIPS clusters move independently, but the density forces interactions between clusters that
lead to mesoscale turbulence and vortex formation observed in dense swarms [16, 40].

For many bacteria species, surfactants are produced in order to reduce the surface
tension and aid in fluid-mediated surface swarming which are unaccounted for in most studies
[42, 43, 44]. The addition of exogenous fluid to the system generated by these species, as well as
reduced surface tension, may have significant effect on the hydrodynamic forces. What also has
not been addressed in relation to hydrodynamic forces and surfactants is that certain species of
surfactant producing swarmers form multi-layer colonies [45, 6]. At the upper surface of these
swarming colonies, there is increased diffusivity as a result, which aids in material collection
and transport. While I do not explicitly explore these effects in this work, the model is capable
of tuning the viscosity of the simulated fluid to replicate the effect of surface-tension reducing
surfactants. This would warrant additional studies of these factors with the aim of a holistic
interpretation of the different factors that affect swarming.

While the dilute simulations can capture cell-cell interactions and cluster formation,
swarms are dense suspensions where multiple clusters interact with one another. I extend the
scope of the simulations by modeling rods in a dense system (Ψ = 0.73). Unsurprisingly, the
temporal correlation functions, Cθ(τ) and CV (τ), decay at slower rates compared to the dilute
case due to to the increased rate of rod interactions. In dilute suspensions, cell reorientation
is made easier by reduced frequency of steric interactions, allowing cells to reorient and move
away from an aligned cluster. This results is the shorter correlation times calculated previously
(Figure 3.5). For dense suspensions where cells are tightly packed, cells cannot easily move
away from the general direction of cluster due to the high degree of steric interactions and
proximity to other cells. Therefore, velocities and orientations can remain loosely correlated
for longer periods of time.

3.4.3 Phenotype effects on motility and collective features

Collective behaviors are ubiquitous in nature, commonly found in social animals such
as flocks of birds or fish and in colonies of microorganisms. These large scale dynamics that may
consist of hundreds of agents, are brought upon by local interactions and alignment amongst
individuals within a relatively short proximity of only several body-lengths away. Such behavior
acting on a large scale is key to foraging and territory acquisition, leading to the prolonged
survival of the group.

In Mexican tetra fish, A. mexicanus, distinct collective behaviors emerge depending
on age of development and whether the groups of fish reside near the surface of open water, or
inside cave systems [46]. At later stages of development, around the sub-adult stage, groups of
surface fish modulate their swimming and turning speeds in order to remain closer in proximity
to their nearest neighbors, while cavefish at similar development stages do not exhibit any
form of collective behavior. Similar behavior can be exhibited in the clustering ability of
swarming versus swimming bacteria. Morphological differences aside, swimming bacteria move
individually and possess no preference for proximity or alignment with nearest neighbors. The
homogeneous system of SPRs with short lengths comparable to swimming bacteria display
similar dynamics to cavefish: these shorter length rods tend to scatter and have shorter cluster
lifetimes compared to longer rods (Figure 3.4, 3.6) which can be compared to the lack of
schooling/shoaling amongst cavefish.
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In addition to swarming, other types of bacteria motility exhibit collective motion and
large scale features. Gliding Oscillatoria lutea for example, a strain of filamentous cyanobacteria
spanning up to 1500 µm in length, transition from being isotropiclly spaced and oriented at low
densities, to bundling together beyond a critical density forming order states of aligned filaments
and distinct patterning at length scales larger than individual filaments [47]. Furthermore, this
ordering a large densities typically occur for a filament interacting with another at a small
angles of attack. This behavior is seen similarly in swarming cells, where low densities can form
short-range order at scales of only a few bacteria cell lengths (Fig 3.1(a)), but higher densities
form vortexes that can span 20 µm in diameter for a single vortex [32, 48].

However, compared to fish, swarming bacteria possess no innate knowledge or instincts
that promote beneficial collective behavior. So then, what factors may contribute to promoted
clustering and collective motion of swarming bacteria? The results suggest that length plays
a critical role in cluster formation. Long cells naturally encounter more cells due to their
length, meanwhile steric and hydrodynamic interactions are able to maintain proximity and
alignment for these longer cells. In contrast, swimming bacteria are shorter and possess less
flagella. The latter difference may also play an important role in the rafting ability of swarming
cells. Swimming bacteria undergo run-and-tumble motion, where the cell randomly reorients
(tumbles) at a frequency of approximately 1 Hz and is caused by sudden counter-rotation of
flagella [3] while swarming bacteria suppress tumbling [49]. While this has the direct result of
increasing swarming speeds, the reduction in tumbling rate may benefit clustering as cells at
the periphery of a cluster may find it more difficult to reorient themselves away from the group
if they cannot tumble.

Swarming bacteria are highly active systems that form ordered microdomains similar
to nematic liquid crystals [19, 50]. In these systems, defects are able to form and comparisons
can be drawn to elucidate the role of alignement and defect formation in these highly active
systems. Within these bacteria colonies are motile, topological +1/2 and -1/2 point defects,
similar to non-equilibrium nematic systems. These topological defects are hypothesized to
aid in the expansion of an initially 2D colony into multi-layer, 3D colonies. This growth in
dimension aids in continued proliferation of the colony, transition from swarming to biofilms,
and protection from exogenous factors that can harm the its development, such as antibiotics
[31, 51]. Initially, an inoculated colony of rod-shaped bacteria begins as a single layer of cells.
As the colony continues to grow and the density increases, the rod-shaped cells begin to locally
align and cluster together. Interactions between local clusters generate topological +1/2 and
-1/2 point defects [52, 19]. Collision of two +1/2 defects can create a +1 defect and can cause
vertical orientation of these cells therefore creating an upward protrusion of cells to create
a second layer. The 2D SPR system, while does not extend into 3D, could potentially be
utilized to study growing bacteria colonies in the context of active nematic systems. These
nematic structures and their defects can drive three dimensional growth of bacterial colonies.
-1/2 defects in rod-like/filamentous systems are subdiffusive, due to collisions between rods
when oriented in such a manner. Similar to the system, rods moving in opposite directions
or are oriented anti-parallel can become jammed or have their movement temporally impeded.
However, the dilute density of the system allows reorientation away from other rods, restoring
their mobility. As clusters begin to form, the rods are aligned parallel to one another, orienting
themselves in similar directions. The simulations can be readily expanded into dense systems
resembling these studies where these point defects are abundant enough that they readily
interact with one other. Similar systematic studies of aspect ratio and hydrodynamics can be
conducted in order to asses their roles in the formation and dynamics of these defects, and how
they may contribute positively or negatively to the collective features of bacterial colonies.
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3.5 Conclusions

My study of in-silico, dilute suspensions of self-propelling dipolar rods enables analysis
of cell-cell interactions that are difficult to elucidate in dense swarming suspensions where
large collectives of cells interact. Aspect ratio plays a crucial role in cluster formation of
rod-shaped agents, implying that rod-like, flagellated swarming bacteria obtain some of their
fast-moving qualities and collective features due the elongation of bacteria when initiating
the swarming phase. Hydrodynamic interactions also appear to benefit cluster formation and
cluster persistence with assumed interactions, but appropriate tuning is required to capture
as many qualitative swarm features as possible. In the dilute limit, the analysis is limited to
only these cell-cell interactions and mesoscale vorticies typically formed in denser systems are
not observable. Therefore, I complimented the analysis of dilute systems by analyzing a dense
system that captures the aforementioned vorticies and cluster-cluster interactions. Overall,
these cell-cell interactions are key to understanding what collective features emerge and the
mechanisms which form these in dense systems.

The homogeneous systems of study are inclusive of conditions and parameters in
naturally occurring swarms: wide length variation, varying speeds, chemotaxis, etc. The
results that found through the model and experimental observations support the hypothesis
that elongation in bacteria swarming species is key to their enhanced motility and ability to
perform collective motion. Hydrodynamics are shown here to be effective in not only aiding
in the formation of clusters and collective features, but also introducing active mixing into the
system which facilitates rapid transport seen in dense swarming suspensions. Future research
regarding bacteria swarms may involve studies on systems consisting of a range of lengths as
opposed to fixed length systems. The fraction of high aspect ratio swarming cells to lower aspect
ratio cells determines whether swarming motility and clustering ability benefits or is suppressed,
prompting the necessity to study heterogeneous systems of rod aspect ratios further [34]. The
work also does not simulate the rods in three-dimensions, which are more typical of entire
swarming colonies, but can capture features observed in monolayers and monolayer regions of
swarms [53, 54]. Other future work involving the self-propelled rod model can be used to study
heterogeneous systems with two sets of aspect ratio to determine how much of an effect length
variation plays into swarming features and collective motion. Furthermore, this work can be
generalized to study active nematic systems such as liquid crystals that resemble swarm-like
structures and other active matter systems.
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Figure 3.5: Increasing rod stresslet strength decreases cluster persistence and rod motility. (a)
Mean squared displacement for varying aspect ratios of self-propelled rods. (b) Mean squared
displacement of rods with varying stresslet strength, αh. For early delay times (τ) and for
stresslet strengths ≤ 1, the rod motion is ballistic (⟨r2(τ)⟩ ∝ τ2). For longer delay times, the
rod motion is diffusive (⟨r2(τ)⟩ ∝ τ). (c) Temporal velocity autocorrelation function for various
rod lengths, L. Dashed lines are exponential fits to the correlation functions and are as follows:
For L = 3, τ = 12, L = 5, τ = 55, and L = 10, τ = 108. (d) Temporal velocity autocorrelation
function for various stresslet strengths, αh. Dashed lines are exponential fits to the correlation
functions and are as follows: For αh = 0.1, τ = 59, αh = 1, τ = 55, and αh = 160, τ = 25.
(e) Orientation autocorrelations as functions of rod length. Dashed lines are exponential fits
to the correlation functions and are as follows: For L = 3, τ = 12, L = 5, τ = 55, and L = 10,
τ = 108. (f) Orientation autocorrelations as functions of stresslet strength, αh. Dashed lines
are exponential fits to the correlation functions and are as follows: For αh = 0.1, τ = 4, αh = 1,
τ = 4, and αh = 160, τ = 3.5.
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Figure 3.6: Statistics of cluster sizes of rods as a function of length (a-c) and stresslet strength,
αh (d-f). Histograms bins in (a) and (d) are 5 rods and taken over a time frame of ∆t =
100s.(a) Histogram of cluster sizes for rods of different lengths. Short rods (L = 3) typically do
not exceed cluster sizes beyond 20 rods in single cluster and is evident in the mean cluster size
in (b). (b) Bar chart showing mean cluster sizes for each rod length. Error bars are 1 standard
deviation. Cluster sizes were calculated by determining the number of rods are connected to
each other (see Methods). (c) Bar chart of maximum cluster sizes observed (normalized by the
total number rods for each system) for each rod length. The maximum cluster size increases
with rod length. For each length, the total number of rods in the max observed cluster size
is 143, 300, 265 rods for L = 3, 5, 10, respectively. (d) Histogram of cluster sizes for rods of
different stresslet strengths. (e) Mean cluster size across the three different stresslet strengths.
The ”dry” limit is where there are minimal hydrodynamic effects (αh = 0.1). (f) Bar chart
of maximum cluster sizes observed (normalized by the total number rods for each system,
maintaining Φ = 0.33) for each value of αh tested. The total number of rods in (f) for each
value of αh corresponds to 697, 513, 429, 300, 234 rods for αh = 0.1, 0.25, 0.5, 1, 160.
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Figure 3.7: Vorticity plots over time for three different rod lengths: (a) L = 3. (b) L = 5. (c)
L = 10. In each system, αh = 1, V = 1, and snapshots are separated by 50 simulated seconds.
The domains in each snapshot are 128x128λ.
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Figure 3.8: Time evolution of the spatial mean magnitude of vorticity (a,c), ⟨ω2⟩, and pressure
(b,d) mean pressure ⟨p⟩ for simulations with different rod lengths and stresslet strengths. αh

= 160 is excluded for readability reasons due to the large magnitude generated, relative to the
other values. Shaded areas are 1 standard deviation.

(a) (b)

Figure 3.9: Two particle MSD (2P-MSD) given by Eqn. 3.8 shown for rods L = 5, 10 for when
rods start apart (a) and when rods start together (b). At short delay times for when paired
rods start apart, the 2P-MSD for L = 5 rods are diffusive while for L = 10, the 2P-MSD is
ballistic. Similar is seen for L = 5 rods when the paired rods start together.
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Figure 3.10: Statistics on dense system of rods. In the data presented, L = 5, αh = 1, V = 1,
Ψ ≈ 0.82 with 8000 rods in the system. To accommodate this many rods, the domain was
increased to (256x256)λ. (a) Snap of a simulation with the dense system of rods. Rods have
high degrees of interaction with each other, much like bacteria in dense swarms. (b) Ensemble
MSD of the dense system. Similar to the dilute case, the MSD shows that the rods motion is
ballistic for at short times while over long times the motion is diffusive. (c) Velocity correlation
function, CV , shows that the velocities are loosely correlated for long delay times. Fit shows a
correlation time of τ = 54. (d) Orientation correlation function, Cθ shows that the orientations
are loosely correlated for long delay times. Fit shows a correlation time of τ = 4. (e) Mean
vorticity magnitude, as a function of time. (f) Mean pressure as a function of time.
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4.1 Introduction

The results presented in section 4.2 are a reprint in part of Kumar et al. [1]. In this
chapter, I describe not very well understood regimes of swarming colonies: the pre-swarming/lag
period and the mechanical properties of the swarm. I present methodologies to both track tracer
particles within a swarm to assess the mechanical properties of a swarm and a methodology to
study the pre-swarming/lag period.

4.1.1 Limited research in the pre-swarming lag time in swarming
colonies

Most research on swarming colonies and species only do so once the colony has begun to
swarm in order to capture movement, dynamics, and features at various spatiotemporal levels
ranging from the morphology of the colony to dynamics of single swarming cells. However,
almost no research has looked into the lag time in swarms where after inoculation, it is
speculated that cells in the inoculum extract fluid from the substrate to replicate either until a
quorum is reached or a chemical signal initiates collective motility [2]. Typically, this lag time
ranges from 1-3 hours depending on growing conditions and initial density.

Primarily, researchers have only quantified the lag time and studied what factors can
abolish the lag time in B. subtilis. Kearns et al. has looked into density dependence and
speculates that swarmer density is required to produce enough surfactant to reduce surface
tension [3]. Secondly, it is likely that hyperflagellation is required as B. subtilis mutants with
upregulated flagella production eliminates the lag time [4]. Finally, the lag time is abolished
when swarming cells are taken from an active swarm and re-inoculated onto fresh agar [2].
However, it must be taken into account that all research for this particular phenomena has
been limited to B. subtilis. While some of these lag abolishing phenomena may work for others,
the complexity of each swarming species makes it difficult to make correlations from one species
to another.

Furthermore, little has been done on observing the transition from a small, low density
colony to the initiation of swarming. This regime may be important to understanding how small
populations survive and proliferate, even when there is no quorum. As mentioned previously,
swarming initiates based on density, surface tension, hyperflagellation, and substrate properties
but these properties have only been correlated to already swarming colonies or single cell,
static images that can only capture a few of these properties [5]. It is unknown if single cells
initiate swarming based on one or multiple of these factors. Therefore, it is of importance
to properly study the full temporal features of a swarm from single cells to a full colony at
high-spatiotemporal resolution.

In this chapter, I describe a method/workflow to culture and image growing bacteria
cells in small, polydimethylsiloxane (PDMS) chambers. Section 4.2 describes the protocols to
create chambers, bacteria cultures, how to set up the imaging platform, and relevant equations
for analysis of our desired cell features. Section 4.4 details how I post-process images in
preparation for feature extraction. This entails contrasting, region of interest (ROI) selection,
and background subtraction. Section 4.5 goes into the Feature Assisted Segmenter/Track
(FAST) designed by the Durham group that allows for a user-friendly way to segment cells in
a cluster from one another [6]. This program allows us to extract data about cell morphology
such as cell lengths, cell widths, and cell orientations. This chapter concludes with section
4.6, where I go into how to utilize the data to extract individual cell data that was obtained
from FAST in section 4.5, process the data for any erroneously recorded data, and use that
data to obtain length, width, and aspect ratio distributions, as well as calculate a scalar order
parameter.
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4.1.2 Material properties of bacteria colonies affect strategy and
dynamics

As described in chapter 1, swarming colonies exhibit many aspects of
out-of-equilibrium, active matter systems that behave as non-Newtownian fluids. Swarmers
move on to of a fluid layer, and their multi-layered activity may be described as a non-Newtonian
fluid. One key aspect of swarming colonies that has been difficult to explore is understanding
the mechanical properties of the swarm as the mechanical properties have implications colony
response mechanisms, cell motility, and bacteria patheogenesis [7, 8]. Recently, it has been
shown that bacteria swarms are non-Newtonian and show properties that can be measured via
rheology [9] Various methods are available, ranging from ”top-down” studies (bulk rheology,
microrheology, atomic force microscopy), where colonies are probed by external means, and
”bottom-up” studies (altering substrates and imaging cell behavior or probing the substrate
via traction force microscopy), where the behavior of the colony or the effect of the colony is
measured against the properties of their environment [10, 11, 12, 13]. What is currently clear is
that the macroscopic colony shape and spreading rate is affected by substrate stiffness, but the
exact mechanisms or how known mechanical properties impact bacteria on a single cell level
is largely unknown [14, 15]. With this prior knowledge we want to understand how does the
mechanical properties of the swarm dictate dynamics, expansion, and cell morphology? Particle
and cell tracking have been previously used to understand local fluid flows and the rheological
environment of active and biological materials including bacterial suspensions [16, 17], bacteria
swarms [18], algal suspensions [19]. Particle tracking combined with traction force microscopy
has also been used to extract viscoelastic and elastic material properties that are needed in
computational and theoretical studies of biological matter [20].

To validate future use in bacteria swarms and swarms of S. marcescens, I use
brightfield and florescence microscopy, high speed particle-tracking, and passive microrheology,
to study the diffusion, transport and trapping of spherical tracer particles in a viscoelastic
material: mucin, mucin-laden with various types of commonly used rock dust, and
carboxylmethylcellulose (CMC). Having validated the methods and analysis, I present my
analysis of tracer transport in reconstituted bare and dust-laden 10%mucin and discuss how
these techniques may apply to bacteria swarms.

4.2 Validation of particle tracking methods to study
non-Newtonian matter

4.2.1 Preparation of viscoelastic mucin and mucin loaded with
anti-caking agent

The rock dust types used our study were: (1) unmodified limestone rock dust
(MineBriteTM G; UCRD with mean particle size ≤ 74 µm), (2) modified limestone which is a
moisture-tolerant rock dust, MTRD and has mean particle size 19.5 µm), and (3) crystalline
silica (Min-U-Sil®10, SiO2 with mean particle size 3.4 µm). Mucin samples (Sigma-Aldrich,
Type III Mucin from porcine stomach, M1778) were prepared by mixing mucin granules with
PBS to a final 10 wt% concentration (at pH = 7.3). This was set as our control system.
Rock dust solutions were prepared by dissolving particles in Hank’s buffer for 24 hours to a
concentration of 1 mg/mL. The final formulations were: (a) (Mucin-CD) mucin with UCRD
in solution, constituted by mixing 1 mg/ml of UCRD and 10 wt% mucin in DI water; (b)
(Mucin-CD) mucin with MTRD in solution, constituted by mixing 1 mg/ml of MCRD and
10 wt% mucin in DI water; (Mucin-S) mucin with SiO2 in solution, constituted by mixing 1
mg/ml of SiO2 with 10 wt% mucin in DI water. In these experiments, pH was not varied and
crosslinkers were not added to the mucin solutions.
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Figure 4.1: Spatiotemporally resolved particle tracking using brightfield microscopy for larger
tracers, and florescence microscopy for sub-micron tracers. I show the three main steps in
stitching and composing particle trajectory videos and image stacks from raw data. Trajectories
are computed in the x − y plane corresponding to the imaging focal plane. The top row
illustrates the method for brightfield images, and the bottom row for images obtained using
florescence. For each case, columns depict (I) tracer particle detection, (II) image filtering,
and contrasting, and (III) trajectory construction. (I, top) The original image of 2.29 µm
Spherotech polystyrene tracer particles in DI water (Zeiss 200M Axiovert microscope, 40x/NA
0.75 objective, 30 fps, 30 ms exposure time. The total observation time = 600 s and temperature
= 21oC). (II, top) Filtered image of (I, top) with automatically identified particles, following
the Crocker-Grier algorithm. Bandpass filters ensure that particles are shown as bright spots
against a dark background. (III, top) Two representative tracks from the particle tracking
routine. (I, bottom) Original florescence microscopy image of 0.53 µm Spherotech fluorescent
tracer particles in 90 kDa (CMC) solution (Zeiss 200M Axiovert microscope, 40x/NA 0.75
objective, 90 fps, 11 ms exposure time. Total observation time = 60 s). (II, bottom) Filtered
image of (I, bottom). (III, bottom) Magnified image showing only trajectories of the particle
identified as C.

4.2.2 CMC Sample Preparation

I used carboxymethylcellulose (CMC) from Sigma-Aldrich (MW = 250 kDa and DS
= 0.7), although solutions with MW = 90 kDa were also tested. Homogeneous solutions with
0.5%, 1%, and 2% (in weight %) concentrations of CMC were formulated. CMC samples were
prepared at 40°C and spun on a magnetic stir plate at 100 RPM for 48 hours. Samples were
then allowed to rest for 1 hour prior to measurements to allow the network to relax.

4.2.3 Slide Preparation for particle tracking and microrheology

Imaging channels were designed with McMaster-Carr polyester plastic mounting tape
(Product No. 75955A673) by folding the tape onto itself, and subsequent smoothing. This
resulted in a well geometry that was ≈ 200 µm in depth. The imaging well was punched
out from the folded tape with a 0.5 inch in diameter hole-punch and then affixed to a glass
slide of dimensions, 25 × 75 ×1 mm (Fisher Scientific). For imaging experiments, 16µL of



67

sample solution was first pipetted into the well, then a cover glass slip (18 × 18 mm, 0.13 mm
thickness, VWR) was placed over the sample and fixed by double-sided mounting tape. The
tracer particles were diluted to 1:100 concentration in DI water and injected into the samples.
The injected volume was small, relative to the inital volume of mucin solution such that local
water content remained approximately the same.

4.2.4 Optical Setup for microrheology

For particle tracking and microrheology measurements, I used spherical florescent
particles of diameter a = 0.5 − 5 µm (Spherotech, Nile Red, Excitation wavelength, λ = 510
nm), and also non-florescent Spherotech polystyrene particles of diameter a = 0.5 − 5 µm
as tracers. A Zeiss 200m Axiovert microscope in brightfield mode (for larger tracers), and
sometimes in fluorescence mode (for smaller sub-micron particles) was used to deliver high
contrast images. Post loading, samples were allowed to equilibrate and data was recorded after
10 minutes. The motion of the tracer particles are subsequently captured for 1 to 10 minutes
and are saved as AVI videos.

All images presented were taken with a Zeiss EC Plan-Neofluar 40x/NA 0.75 M27
(Working distance = 0.71 mm, Depth of Field = 1.09 µm) objective. Video was recorded using
a Mako G-158B monochrome camera. Particles in mucin samples were imaged at 30 fps with
30 ms exposure time. Particles in CMC were imaged at 90 fps with 11 ms exposure. Video
recordings were done with the imaging plane focused on the center plane of the rectangular
channel (≈ 100µm away) to minimize hydrodynamic, surface, and capillary effects from the
channel edge walls. The experiments were conducted at room temperature (21oC) measured
with a Neulog temperature sensor (NUL-203).

4.2.5 Image filtering and pre-tracking processing

The particle tracking and filtering of images are based of Crocker and Grier’s particle
tracking algorithm adapted to MATLAB [21]. Accurate reconstruction of trajectories and
particle tracking rely on particles being clearly distinguishable from the background such that
the program can easily detect those particles. Images were pre-processed such that consistent
contrast within each video was maintained.

Figure 4.1 illustrates the raw images of particles from experiments conducted using
brightfield mode (Figure 4.1(I-III), top three tiles from left to right), and for experiments using
florescent tracers (Figure 4.1(I-III), bottom three tiles from left to right). Images of individual
tracer particles display concentric rings around them with decaying intensity (see the closeup
in Figure 4.1(III), bottom). The central ring of this diffraction pattern, i.e., the Airy ring, has
the highest intensity and was used to fit and calculate particle locations. The intensity profile
of the Airy ring is approximated by the form [21, 22],

I(x, y) ≈ I0 exp(− (x− x0)
2

2w2
) exp(− (y − y0)

2

2w2
) (4.1)

where I0 is the peak intensity (amplitude) at the center, x0 and y0 are the coordinates of the
intensity center, and w is the root mean square width. The resolution of the images and particles
are limited by the Rayleigh criterion where if the center-to-center distance of the Airy rings
is less than the diffraction limit, the particles cannot be considered as two separate, trackable
particles.

Recorded images were processed such that background and undesirable artifacts were
removed. The contrast was adjusted so that the particles are as bright as possible against the
background and the image was converted to greyscale. Spatial bandpass filtering was used to
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Figure 4.2: Example raw trajectory corrected for drift to obtain the final reconstructed
trajectory. Trajectories are computed in the x − y plane corresponding to the imaging plane.
I show trajectory construction, and drift correction for the motion of a 2.29 µm tracer particle
in DI water (from Figure 4.1, top) is shown. In (a), I show the uncorrected particle trajectory,
with the start of track indicated by the green circle. In (b), the drift vectors are plotted for the
full observation time (600 s). Here, drift acts as undesired translation of the particle, affecting
its natural trajectory through a medium. In (c), we plot the corrected track (trajectory) with
drift subtracted out from the original trajectory. The start of track is indicated with the green
circle. Images were taken on Zeiss 200M Axiovert microscope with 40x/NA 0.75 objective at
30 fps, 30 ms exposure time, and temperature = 21oC.

remove bright spots present which did not fall within the particle size limits and any other
features such as single, bright pixels, that are not particles. The centroids of the remaining
bright features were then determined and particles below the diffraction limit were rejected.
Some artifacts (non-tracers) remained as faint spots that were detected as real tracers by
the algorithm. To remove these artifacts, images were filtered so that only particles above a
brightness threshold remain were identified as real tracers. An example of this is illustrated in
Figure in Figure 4.1(II)top and bottom: we see real tracers particles identified (in one frame)
and marked with a blue circle.

Tracer trajectories are re-constructed by connecting a particle to the most likely
corresponding particle at the next timepoint, taking into consideration the Brownian motion
of non-interacting particles. For interacting particles in a particular frame, a time threshold
is applied, where two particles are allowed to be un-resolved for a defined amount of frames
(typically 2-5 frames, depending on particle size and when particles are stuck temporally as
doublets) before they are discarded. A minimum squared displacement threshold is defined
such as particles below that threshold are removed from the analysis (when particles stuck
temporally as doublets). Finally, a memory function is defined to account for particles moving
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Figure 4.3: Analysis of tracer particle trajectories of the 2.29 µm tracer particles in DI water,
a Newtonian fluid. (a) Histogram of (particle averaged, over single particle trajectories)
translational displacements in x and y Cartesian coordinates as tracked from Figure 4.1,
displaying a Gaussian distribution with zero mean and finite variance (equal for both x and y
components) for the probability distribution of tracer displacements. Since particles undergo
free Brownian motion, the variance is related to the diffusivity and the delay time over which
the displacements are evaluated [23]). (b) The normalized velocity autocorrelation function as
a function of delay time (in seconds) for trajectories recorded. The velocity autocorrelation is
nearly zero, confirming the Brownian motion of the tracers in DI water. Large fluctuations for
large delay times are due to a decreasing number of sample trajectories.

in-and-out of the focal plane. The memory function defines a maximum amount of frames an
already detected particle may lose detection and re-gain detection. For example, a detected
particle may leave the focal plane at time t0 for 2 frames due to thermal noise and will not be
detected for those 2 frames, but be detected in the subsequent frame (t3); the memory function
will declare that the particle at t0 and at t3 must be the same particle and will link the two
detection spots together to generate a single track. Stitching together the positions of such
identified particles provides the coordinates of the tracers in time and allows us to reconstruct
the raw trajectories (the blue and the red curves) as shown in Figure 4.1(III).

Finally the raw trajectories were corrected for drift using a statistical model included
in the particle tracking algorithm that employs velocity drift corrections (see Figure 4.2).
Drift arises from various sources including small amplitude stage movement, sample leakage,
building vibration, and thermal noise due to heating. A vibration-free stage was used with the
microscope to minimize vibrations and bias.

4.2.6 Statistical Analysis

The ensemble averaged mean square displacement of tracers, averaged over a
population of isolated tracer particles, as a function of delay time, τ (i.e., ⟨MSD(τ)⟩ is defined
by:

⟨MSD(τ)⟩ = 1

Nτ

Nτ∑
α=1

[Rα(t+ τ)− Rα(t)]
2. (4.2)

Here, Rα(t) is the reference position (in x− y coordinates) of tracer with index α at some time
t along its trajectory, Rα(t + τ) is position of the same tracer at time t + τ , and Nτ is the
total number of particles (individual trajectories). Not all particles have the same value of the
maximum delay time as some particles may leave the plane for the duration of imaging.
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It is important to clarify that there are two types of averaging employed in Equation 4.2
to obtain the MSD. First is at the level of each tracer trajectory generated over an observation
time tF . Fixing a time delay τ , we calculate the square displacement for all possible pairs of
time instances separated by τ and calculate an average MSD from these values. This MSD is
then generated for all possible delay times along the full single trajectory to generate MSD(τ).
The next part of averaging comes from taking an ensemble average of multiple tracer particles at
delay time τ to then generate ⟨MSD(τ)⟩. Note that small delay times will have a larger number
of trajectories while fewer trajectories are associated with large delay times and statistical error
is expected to be larger for larger delay times.

Ensemble averaging hides possible spatiotemporal inhomogeneities that are associated
with the ambient environment, in this case the mucin and CMC formulations. We analyze
discrete probability distributions (histograms) of tracer displacements to better understand
local transport properties (see Appendix). These histograms are obtained on a particle (or
trajectory basis) and are averaged over the trajectory of a tracer but are not averaged over
particles/tracers.

4.2.7 Velocity correlation, diffusion, and dispersion of tracers

To validate the tracking algorithm accurately tracks and reconstructs trajectories, I
obtained displacement histograms at fixed delay times. For freely moving, and non-interacting
Brownian particles, the ensemble average of displacement of is expected to be zero, and Gaussian
with width determined by the tracer diffusivity and the delay time. Figure 4.3(a) shows one such
histogram for 2.29 µm particles moving in DI water at 21oC. Here the x and y coordinates are
measured in a fixed lab-frame and span the focal plane. As expected, the x and y displacement
histograms of particles are similar since there is no directional bias to the motion that breaks
x− y symmetry. Both distributions are Gaussian with zero mean and identical width, confirm
accurate trajectory reconstruction from detected particles.

The velocity of a Brownian tracer becomes uncorrelated with prior values as the
moving particle moves along its trajectory in time and loses memory of its prior spatiotemporal
position. The velocity autocorrelation function applied to a single tracer particle quantifies
this:

vcorr(t) = ⟨v(t0) · v(t0 + t)

|v(t0)|2
⟩ (4.3)

where t0 is a suitable chosen initial reference time. The velocity correlation for 2.29µm
polystyrene particles in water is shown Figure 4.3(b). A value of zero shows that the particle
motion is uncorrelated and confirms a random walk motion where. The curve is normalized so
that we get value of 1 for dt = 0.

The trajectory-averaged MSD of Brownian tracers are valid in the long time limit, and
the ensemble averaged MSD are statistically identical with the same mean. This mean MSD is
related to the particle diffusivity D and time t by the relationship [23]:

MSD = ⟨MSD⟩ = 4Dtγ (4.4)

with γ = 1. Sub-diffusion is characterized by γ < 1 while superdiffusion corresponds to motion
with γ > 1. The diffusivity D, for spherical tracers of diameter a moving in a Newtonian fluid
at viscosity µ and temperature T is given by the Stokes-Einstein relationship

D =
KBT

3nπµa
(4.5)

where kB is the Boltzmann constant and n is the dimension (this this case n = 2). Figure
4.4(a) shows individual tracer mean square displacement values calculated for each independent
trajectory/track for 2.29 µm tracers in DI water. Ensemble averaging the values we obtain a
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Figure 4.4: Single particle Mean Square Displacement (MSD) of tracers as a function of delay
time for (a) unloaded 10 wt% mucin solution, and (b) a solution of CMC (concentration 1 wt%,
MW 250 kDa). Tracer sizes are (a) 1 µm, and (b) 0.87 µm, and the number of tracks are (a)
157 and (b) 37, and for each the ensemble averaged value ⟨MSD⟩(τ) is calculated by averaging
over the values at each τ . The power law exponent γ in the relationship MSD ∝ τγ is 2 for a
ballistically moving tracer, γ = 1 for freely diffusing tracer and γ < 1 for a sub-diffusing tracer.
Also indicated are the three values of the delay time τ = 0.1s, 1s and 10. Temperature = 21oC.
The inset in (b) shows typical MSD’s for a more concentrated 2% CMC solution obtained for
a larger 2.11 µm tracer.

linear relationship between ⟨MSD⟩ and t confirming the freely diffusing motion of the particles.
Note that the slope of the curve (or equivalently the value of the ensemble averaged MSD
evaluated at some time t = τ can be used to estimate D for this particular tracer size.
Alternately, knowing the temperature T and tracer diameter a, one can use Equation 6 to
calculate the effective viscosity of the ambient medium.

4.2.8 Diffusion of tracers in viscoelastic CMC

The frequency dependent linear viscoelastic moduli can be calculated from the
mean square displacements of the tracks to determine the surrounding material’s elasticity
and quantify rheological properties. Figure 4.4(b) shows sample MSD curves evaluated
from trajectories of individual tracers in CMC solution at concentrations yielding properties
consistent with viscoelastic materials. The CMC formulations correspond to solutions that
are 0.5, 1, and 2% (weight/volume) and are expected to be increasingly viscoelastic. Tracers
used were 0.87µm, and 2.11 µm diameter particles. The difference may be attributed to the
viscoelastic behavior of the CMC at the higher concentration and to the sampling of larger
network pore sizes and interaction with the entangled polymer network by the larger tracer
particle.

The generalized Stokes-Einstein relationship (GSER) can be used to convert the MSD
of the tracked tracer particles to provide the complex moduli in the frequency domain [24,
25, 26]. MSD(τ), can be converted to the Laplace (Fourier) frequency domains (1/τ where
τ is the lag time, can be interpreted as frequency). The GSER is built on the principle of
average motion of tracer particles in a continuum complex fluid, and is therefore valid provided
macrostructural features are smaller than the tracer sizes. The frequency dependent version
of the Stokes relationship effectively provides a measure of the viscoelastic drag on the tracer
particles. Assuming local homogeneity and isotropy of the medium, this may be analyzed to
obtain the complex shear modulus.

The viscoelastic modulus G̃(s) calculated from the unilateral Laplace transform of
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Figure 4.5: Values of the effective tracer diffusivity estimated from particle tracking and
trajectory analysis. (a) Experimentally estimated diffusivity of tracers in DI water (data
connected by the dotted line) at a temperature of 25 °C. The theoretical result predicted by the
Stokes-Einstein relationship is shown as the dashed line. There is excellent agreement for small
to micron sized tracers. For the largest tracer 4−5 µm, we observed a decrease in frequency deu
to increased sedimentation effects that resulted in fewer trajectories and a concomitant larger
statistical error. Error bars (black) correspond to 1 standard deviation. The red bar indicates
the variation in results when the channel size was reduced by 15 % with tracers interacting
more strongly with the walls of the channel. The control mucin solution behaves primarily as
a viscous fluid for small tracer particles with an effective viscosity that is larger than DI water.
Visual observations suggest that the largest tracers in these cases typically remained in the field
of view but manifested a pronounced reduction in random motion (b) Estimated diffusivities
of tracer particles 0.5-5 µm in diameter for the 10 wt% control mucin solution and 10 wt%
mucin solution with dust and anti-caking additives. ⟨MSD⟩ for short to moderate delay times
(τ < 3s) was used to obtain a linear fit. Diffusivity were confirmed by estimating at τ = 1s.

ensemble averaged MSD = ⟨∆r̃2(s)⟩ is given by

G̃(s) =
kBT

πRs⟨∆r̃2(s)⟩
(4.6)

where kB is the Boltzmann’s constant, T is temperature, R is tracer particle radius, and s = iω
is Laplace frequency [27, 26, 28]. Following previously established theory, ⟨∆r2(t)⟩ is expanded
algebraically in a power law, and leading terms are retained to calculate the viscoelastic moduli.
We use:

G̃(s) =
kBT

πR⟨∆r2(s)⟩Γ[1 + α(s)]

∣∣∣
t=1/s

(4.7)

α(s) =
dln(⟨∆r2(t)⟩)

dln(t)

∣∣∣
t=1/s

(4.8)

Γ[1 + α] ≈ 0.457(1 + α)2 − 1.36(1 + α) + 1.90. (4.9)

The storage (elastic) modulus G′, and the loss (viscous) modulus G′′ may are obtained from
Equation 4.8 by extracting the real and imaginary components, respectively. If α ≈ 1, we
expect the tracer particle to be diffusive in isotropic Newtonian fluids. For tracer particles
surrounded in a purely elastic medium that severely restricts their thermal motion, α ≈ 0 and
the storage modulus G′ is the leading term in the complex modulus.

Here, I validate the tracking algorithm and calculation of the MSD and complex
moduli in viscoelastic mucin and CMC solutions. Swarming colonies and other active matter
systems are suggested to behave as non-Newtonian fluids and their rheological properties are of
interest as those properties may inform swarm strategy and have implications for patheogensis.
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Figure 4.6: Magnitude of the complex moduli, |G∗(ω)|, of the unloaded 10 wt% mucin
(control sample), and of solutions of 250 kDa CMC at varying concentrations obtained using
microrheology. (a) The Generalized Stokes-Einstein formulation was used to calculate the
complex (G∗) moduli and its magnitude of control mucin using tracer sizes of 1.0 µm (blue),
and 5.0 µm (maroon). For the small to moderate frequencies ω shown here, a nearly linear
behavior is seen with frequency for both, indicating that the mucin solution is dominantly
viscous. (b) Microrheology results for 250 kDa CMC solution at 0.5, 1.0, and 2.0% (w/v) for
0.87 µm tracers are shown here. The storage modulus G′(ω) and the loss modulus G′′(ω) were
also estimated separately for the CMC solutions, with significant elastic components suggesting
strong viscoelastic response unlike for the 10% mucin solution. (c) The elastic modulus G′(ω)
obtained from analysis of trajectories for 0.87 µm tracers.

Therefore, this methodology and algorithm may be used in future works to further study
swarm’s rheological properties.

4.3 Chamber preparation and imaging settings

4.3.1 PDMS Chamber Setup

PDMS chamber are fabricated in a 10:1 base-to-curing ratio with SYLGARDTM 182
Silicone Elastomer Kit. We mix 13.5 g of base with 1.5 g (total volume 15 g) of curing agent
and slowly pour the mixture in a 100x15 mm petri dish. The PDMS is then placed in a vacuum
chamber for at least 1 hour or until bubbles are removed. Then, the dish is placed in at 65 °C
oven (Fisher Scientific IsoTemp oven) for at least 2 hours to cure. Once the PDMS has cured
and solidified, concentric rings with an inner diameter of 15.9 mm and outer diameter of 25.4
mm are punched out using metal hole punchers. With this method, we fabricated PDMS rings
with a height of 2 mm and a volume of ≈ 394 µL (1 mm3 = 1 µL) which molten agar can be
poured into and solidified for subsequent inoculation and imaging.
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4.3.2 Agar Preparation

Agar samples were prepared as one would for microbiological studies by mixing
media suitable for microorganism growth and motility studies [15, 18, 29] (in this paper
we use Luria-Bertani media) and granulated agar. Agar samples were prepared by mixing
Luria-Bertani media (0.5% m/v yeast extract, 0.5% m/v NaCl, 1% m/v Bacto Tryptone, in
deionized water) and 0.5, 0.75, 1.0, and 2.0 m/v % Difco Bacteriological agar (Sigma-Aldrich,
214510). The agar solution was then autoclaved on the liquid cycle (Primus Sterilizer Co. LLC
Autoclave, at least 121 °C at 20 PSI) to melt and sterilize the solution. Unused aliquots were
stored in parafilmed 15 mL Falcon™tubes for up to 2 weeks. Aliquots were reheated in a 1550
watt microwave at 10 % power (Toshiba EM131A5C-BS) until fully melted and pipetted into
the PDMS chambers for use.

4.3.3 Culturing methods

To prepare cultures of Serratia marcescens (WT ATCC 274) for experiments, we
culture from frozen, -80°C glycerol stock in approximately 5 mL of Luria Broth media (LB
media). We culture at 37°C and shake at 300 RPM overnight, until the culture reaches an
OD600 of at least 0.5 to indicate that the culture is the exponential phase of growth. We then
dilute the culture down to an OD600 = 0.01 to ensure we can capture individual cell growth
and cluster formation as the experiment runs.

4.3.4 Imaging setup and chamber preparation

Due to the geometry of the Zeiss Axioimager.A2, only glass slides and the lid of 60x15
mm petri dishes fit under the objective. Larger dishes or imaging chambers either do not fit,
are cumbersome to maneuver, or too tall for the working distance of most objectives. Other
upright microscopes may not have this limitation. The PDMS chambers described previously
are placed at the center of the lid of the 60x15 mm petri dish and pressed down upon to seal.
No additional sealant is necessary. Then, the chamber is filled with ≈ 390 µL of molten agar
and 8 µL of 25 % glucose solution. The lid is gently swirled to mix the solution and left to set
for 10-15 minutes.

Once the agar is set, 1 µL of bacteria culture is pipetted at the center of the chamber
and left to dry for 5-10 minutes (this allows the liquid culture to properly adhere to the agar
and not slide around when being transported to the microscope. Once the culture is set, a
coverslip (Corning No.1) is placed on top of the PDMS chamber and sealed by gently pressing
the coverslip on top along the chamber walls.

Serratia has been shown to be sensitive to wide-spectrum light exposure as discussed
in chapters 1 & 2 [30, 18]. Therefore, consideration must be made for two factors (in regards
to transmitted light microscopy): 1) Light intensity, 2) Exposure duration. Details regarding
the appropriate intensity and duration have been reported in this dissertation, but briefly,
exposure to wide-spectrum light under 40 s and intensities less than 220 mW should have no
effect on the motility of Serratia. The imaging protocol presented here is well under the time
and intensity thresholds.

4.3.5 Imaging methods

We image on a Zeiss Axioimager.A2 in PH1 with a 40x LD Achroplan (NA = 0.6, WD
= 1.8 mm) with a corrective numerical aperture collar. The camera used was a Hamamatsu
ORCA-Flash4.0 V3 Digital CMOS camera (C13440-20CU) Images are taken every 1 minute
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over a duration of 7-9 hours at an exposure time of 100 ms and 10% relative intensity (84.7
µW · cm−2, measured at 535 nm, Thor Labs PM100D). Experiments were imaged at ambient
room temperature (20-22 °C).

4.3.6 Scalar order parameter

To quantify how the alignment will change, we will measure the order parameter, S, of
the colonies at different length scales as the microcolonies grow. The order parameter describes
how aligned cells are with the mean orientation (referred to as the director) and is given by
Eq.4.13. S = 1 describes a system where all cells in the domain are aligned with the director
and S = 0 is a disordered system where orientations are isotropic [31]. The domain sizes will
span from small clusters of cells (≈ 2µm box), to the entire microcolony in order to capture
both local and global ordering.

The orientation vector of the ith cell in the system at an angle ψ is given by:

Pi = cosψiex + sinψiey (4.10)

and define orientations from +π
2 to -π2 as shown in figure 4.7.

The director/mean orientation over a domain is defined as:

ψdomain =
1

Ndomain
ΣNdomain

i ψi (4.11)

where i is the ith cell in the domain and N is the total number of cells.

We define
〈〉

cells as the ensemble average of a cell cluster, that is to say, an average
taken over the entire population of cells in a system. Similarly, we define an ensemble average
over the entire viewable domain window (which can contain multiple clusters) as

〈〉
domain. All

ensemble averages in this chapter are calculated as cell averages,
〈〉

cells and drop the notation
for the remainder of this text.

The order parameter will be evaluated at each individual cell i:

SA =
1

2
⟨3 cos(θi)2 − 1⟩cells (4.12)

θi = ψD − ψi

where A is the domain window centered at the centroid of the ith cell, θ is the angle
between the ith cell’s orientation and the director, ψD, and ⟨⟩ denotes an ensemble average of
all cells within the specified domain A. The director is the average orientation of all cells within
the domain window.

4.4 Post-processing of experimental images for analysis

High-quality images and analysis should come primarily come from good experimental
setup and imaging settings. It is important to understand that to accurately resolve individual
cells, proper preparation and understanding of what imaging settings to use will yield the best
results. Post-processing/image editing cannot make-up the deficit from an improper setup.
Keeping that in mind, post-processing of images for analysis can allow for more accurate cell
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Figure 4.7: Schematic of how cells orientations ( θ) are measured in FAST. Scale bar is 5 µm.
Orientations that are measured in FAST measure from the positive x-axis and measure from
+π/2 and -π/2.
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detection as processing routines such as thresholding and background subtraction will better
distinguish cells from the background and each other.

The steps for post-processing of images are as follows and are further classified by
[Manual process], which requires full user input and [Semi-automated process] which does
require some use input, but routines and functions are ran on the backend to process the
image:

1. Identify region of interest (ROI) [Manual process]
2. Crop ROI from the rest of the image [Manual process]
3. Contrast the image stack to better resolve cells [Semi-automated process]
4. Apply background subtraction [Semi-automated process]
5. Save as ”.ome.tif” extension

Firstly, we identify and crop the ROI as it is typically not reasonable to process the
entire imaged region as the agar surface is uneven and while some regions are in focus, other
regions may not be. Thus, to speed up processing and make later analysis easier, only crop the
ROI (Fig. 4.8).

Figure 4.8: Selecting a cluster as a region of interest.

Then, we open up the Brightness/Contrast editing window and let the program
automatically contrast our image stack (Image → Adjust → Brightness/Contrast → Auto
→ Apply).
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From there, we apply a background subtraction by opening: Process → Subtract
Background. From the sub-menu, we adjust the Rolling Ball Radius. The Rolling Ball Radius
takes an average grayscale intensity from a circle of the specified radius and subtracts that value
from the entire image with the goal of making the cells stand out more to the background. The
appropriate radius depends on the size of your ROI, but typically values of 20 pixels and higher
are sufficient and the preview window should be used to select the appropriate rolling ball
radius. Once the background subtraction is applied, the background and foreground (cells)
should look distinct from one another (Fig. 4.9).

Figure 4.9: Applying contrasting and background subtraction to the image set generated from
cropping in Fig. 4.8. (a) Raw image of a cluster of S. marcescens. (b) Processed image after
contrasting and background subtraction. The resolution of the cropped cluster is 55.0x56.5 µm.

Finally, the image stack is saved as an ”.ome.tif” extension (other formats are
acceptable, see FAST documentation for other formats) as this is the recommended format
for use with the Feature-Assisted Segmenter/Tracker described in the following section.

4.5 Segmentation and features from the Feature-Assisted
Segmenter/Tracker

A longstanding problem that biologists encounter is processing images of dense systems
of cells and discriminating cells in these systems in such a way that each cell can be tracked
for the purposes of obtaining useful information such as cell position, cell length, orientation,
etc. Various methods exist to detect individual cells and extract these features, but have costly
computation times or a large amount of adjustable parameters that requires significant time to
adjust [32, 33, 34].

The Feature-Assisted Segmenter/Track (FAST) [6] is a program designed to do such
a task in a user-friendly manner. In the following sections, I briefly describe the modules used
in FAST and the general values for the parameters. In-depth documentation and explanations
are available through Meacock et al., 2022 [6].

4.5.1 Required add-ons

The MATLAB variant of FAST requires the Bio-Formats package (Available at
https://www.openmicroscopy.org/bio-formats/downloads/). Before using FAST, this package
should be downloaded and added to your set path to ensure functionality of the FAST.
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4.5.2 Opening FAST and loading your dataset

Once you have saved your dataset as an ”.ome.tif” extension, the steps to upload are
as follows:

1. Open FAST by typing homePanel into the command window
2. Click ”Choose root directory” and navigate to the folder where your dataset is stored
3. If prompted, Upsample imaging data. This doubles the imported resolution for easier

segmentation. This step takes longer for larger ROIs.

4.5.3 Segmentation and feature extraction

In the segmentation module, the user inputs values into an interactive GUI (Fig. 4.10)
that illustrates: the size of detected objects and how foreground and background should be
separated (texture), how cells in close proximity should be separated and discriminated against
one another (ridge detection), how cells that have not been separated by ridge detection should
be separated (watershed), and finally, filtering out spuriously detected regions based on size
(segmentation area).

Figure 4.10: The GUI for the segmentation routine in FAST. Cells are individually color coded.
The parameters are on the sidebar and are as follows: Neighborhood size: 9, Texture
threshold: 2.2255, Ridge Scale: 19.243, Ridge threshold: 0.1305, Minimum ridge area:
25, Watershed threshold: 1.3798, Object area threshold (high): 2500, Object area
threshold (low): 10.

The exact values for the parameters does depend on the domain size of the ROI, camera
used for imaging, magnification, and lighting settings. When analyzing multiple datasets with
varying domain sizes, the parameters will need to be adjusted accordingly. For example, looking
at a growing colony at 100x as opposed to 40x will require vastly different values than what
is shown. Similar changes will need to be made if the resolution of the image is different. If
all subsequent datasets are taken with the same objective and imaging settings, the values for
parameters do not change much. In Fig. 4.10, the values of each parameter are listed and would
generally work for similar datasets, but always double-check the segmentation and adjust.
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Ridge Detection: Ridge detection allows for separation of adjacent cells based on the
ridge scale (how big the ridges should be), ridge threshold (allowable ridge size), and minimum
ridge area (the smallest allowable ridge, useful for isolated cells or small cells relative to the
mean size in the system). Figure 4.11 highlight how improper ridge detection settings affect
highlighting of cells.

Figure 4.11: Ridge Detection settings. Red indicates where ridges are being formed by the
program. Cells that are fully enclosed by ridge will likely be detected as a cell at the end of
processing by FAST. (a) Properly set ridge settings outlining every cell in the cluster. Ridge
scale: 19.24, Ridge threshold: 0.13, Minimum ridge area: 25. (b) Low ridge scale
(Ridge scale = 10) only tracing small sections of cells, none of which are fully enclosed by a
ridge. Ridge scale: 10, Ridge threshold: 0.13, Minimum ridge area: 25. (c) High ridge
threshold (Ridge Threshold = 0.4) only tracing sections of the cluster. Ridge scale: 9.243,
Ridge threshold: 0.4, Minimum ridge area: 25. (d) High minimum ridge area (Minimum
ridge area = 100) where most cells are outlined, but a few large gaps exist (white spots where
there should be red) Ridge scale: 19.243, Ridge threshold: 0.13, Minimum ridge area:
500. All other settings are the same throughout the figure and are as follows: Neighborhood
size: 17, Texture threshold: 5.638, Watershed threshold: 1.379, Object area threshold
(high): 2500, Object area threshold (low): 10.

Watershed: Watershedding separates cells picked up by ridge detection as
occasionally, cells may be caught mid-division or may be too close to one another for ridge
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detection to properly separate them. Therefore, the watershed slider allows for separation of
these cells. Figure 4.12 highlights what too low of a watershed threshold can do, creating too
many divisions within already detected cells and erroneously counting single cells as multiple
cells.

Object area thresholding: After the previous steps are done, cells are detected and
color coded in the segmentation window. Here, settings need to be adjusted in order to filter
out as many erroneously detected cells as possible. Erroneous cell detection is due to imaging
settings where some of the background is detected as foreground.

Object area threshold (high) sets the maximum allowed area (in pixels) for a cell.
This can filter out large blobs around the periphery that are picked up, but can also filter out
elongated cells if set too low. Object area threshold (low) sets the minimum allowed area for a
cell. This setting can help filter out small spots that are picked up. Setting this too high can
filter out cells that are small, but still relevant for analysis,

With the current imaging setup as described in the Methods section that requires
constant refocusing of the objective, the imported images will include sections of images that are
out of focus and appear as the background instead of the foreground and result in erroneously
detected cells or missed cells (Figure 4.14). There are two avenues of approach to account for
this. Firstly, manually removing images from the stack that are out of focus. This would yield
in accurate datasets, however one will need a way to account for the temporal position of the
remaining images as FAST and many other programs will assume a constant timestep between
images. An alternative approach, and an approach further described in the following section in
MATLAB routines, is to take advantage of the fact that poor detection results in low detection
count and shapes that are not ellipsoids with high aspect ratios. Knowing that, one can run
the segmentation will all images in the stack and remove timepoints that have low detection
counts and remove individually tracked regions that do not resemble rod-like cells.

Finally, once the entire image stack has been analyzed, the next module ”Features”
can be used to obtain the length, width, orientation, cell area, and by proxy, the number of
cells present at each timepoint, from the segmentation data. In the following section, I describe
the various MATLAB routines designed to obtain statistics about the growing colonies from
the features extracted from the Feature Assisted Segmenter/Tracker from the previous section.

4.6 MATLAB Routines

4.6.1 Loading extracted features from FAST analysis

In the previous section, I describe how segmentation settings are set in FAST, and
what features are extracted from the dataset. These features are saved to the working directory
as CellFeatures.mat. Your working directory will look something like Fig. 4.15. Channel_1 is
the stack of images imported into FAST. Segmentations are binary, segmented images of the
stack. CellFeatures.mat is the data file with the saved lengths, widths, orientations, and cell
areas at each timepoint. Metadata.mat is a data file storing the resolution, dt, and max time
of your dataset. SegmentationSettings.mat are the settings applied in segementation settings
in FAST (Fig. 4.10).

Cell counting and correcting for erroneous ”cells”

At the end of the previous section, I describe two approaches to accounting for
out-of-focus images in an image stack. Using the information that: 1) Out-of-focus images
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Figure 4.12: Watershed settings. (a) Properly set watershed settings that outline cells (in
yellow) and divides cells that are too close to one another (red lines). While there are some
erroneously selected cells with this setting, they are filtered out in subsequent processing steps.
(b) Watershed settings that are too low (Watershed Threshold = 0.15). This leads to too
many separations. For example, single cells should remain single cells, but due to the lowered
threshold, single cells are cut up into multiple cells.

result in low detection counts, and 2) Erroneously detection regions do not typically look like
rods, and therefore have low aspect ratios compared to detected cells.
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Figure 4.13: Object Area Thresholding. (a) Reduced object area threshold (high) (Object area
threshold [high] = 500). While most cells are picked up by FAST, cells whose area exceeds
500 are left out. (b) Increased Object Area Threshold (low) = 500. Because this setting was
increased, FAST only includes detected cells with an area over 500.

The MATLAB routine, OrderParameter.m, accounts for both before calculating the
global and local order parameters. To account for low detection counts, we track the number
of detected cells at each timepoint and filter out timepoint where the cell count decreases. We
expect that the number of cells to increase as time passes (but not every timepoint), so any
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Figure 4.14: Using the same settings in FAST as in Fig.4.10, out of focus images will result in
poor detection of cells.

Figure 4.15: Snapshot of the what the working directory looks like once features have been
extracted from FAST. CellFeatures.mat stores each cell length, width, orientation, and area.

decreases in cell count must be due to poor detection. After account for out-of-focus images,
FAST may detect ”ghost” cells, which are detected regions that satisfy the parameter criterion
listed previously. These ”ghost” cells can be seen in around the periphery of the cluster in Fig.
4.14. One can go back and fine tune settings to eliminate these, but care must taken as to
not remove correctly detected cells. This becomes an even greater problem with datasets with
many timepoints. These erroneous cells are not rod-shaped and look like circular blobs. We take
advantage of this by calculating the aspect ratio of each detected cell and threshold the dataset
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to include cells with aspect ratios above the set threshold (ARCutoff), which is typically aspect
ratios greater than 2. The aspect ratio of the ith cell is calculated as: ARi = Lengthi/Widthi.
After these two filtering steps are completed, the remaining code will calculate the local order
parameters (Eq. 4.13, Fig. 4.17).

Figure 4.16: Statistics from the image in Figure 4.10. Statistics were taken oven N = 319 cells.
(a) Length distribution. (b) Width distribution. (c) Aspect ratio distribution.

Figure 4.17: Local order parameters averaged over time (a) and at the last timepoint of the
example dataset (b). Grey shaded regions are 1 standard deviation away from the mean.
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4.7 Conclusion

In this chapter, I presented a method/workflow to image a swarming strain of S.
marcescens from an inoculum at immotile, low density to high density swarming and process
the images to obtain useful statistics. Custom-made imaging chambers were made with PDMS
in order to capture images with a specific microscope (Zeiss Axioimager.A2) but future research
on this topic may be done on any range of microscope, provided that high resolution images can
be taken at consistent intervals. For example, an inverted microscope or higher magnification
objectives may increase the resolution of images and allow for more accurate segmentation and
feature extraction. The images were post-processed to remove as much background noise as
possible, then subsequently used in FAST to segment the cells. Multiple programs already exist
in various programs and coding languages, but often these contain many parameters which may
potentially increase the robustness of segmentation over FAST, but lack the ease of use and
may be too difficult to reasonable learn and use. Finally, the segmented cells were analyzed
with in-house MATLAB routines to obtain statistics from those segmented cells. These routines
and statistics have potential in studying growing clusters, the pre-swarming phase of swarming
bacteria species, and active nematic systems that resemble growing bacteria clusters.
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Appendix

Example Dataset from Chapter 4

The example dataset and relevant analysisyy code (excluding the FAST program) is
given in the attached folder. This corresponds to ”20240312_SM274_0p5EAgar_A01”.

FAST segmentation settings
1. Neighborhood size: 9
2. Ridge Scale: 19.243
3. Ridge threshold: 0.1305
4. Minimum ridge area: 25
5. Watershed threshold: 1.3798
6. Object area threshold (high): 2500
7. Object area threshold (low): 10

Trajectory histogram formulation

For each trajectory, we divide the overall displacement time history (from time t = 0
to the final time for which the trajectory exists) into intervals of τ . We then compute the
squared displacement between reference times tR and time tR + τ repeating this exercise for
all possible values of tR. Thus by averaging over tR, we obtain the trajectory averaged mean
square displacement for a single tracer as a function of the delay time τ . We then bin the
results using bin-widths of 0.05 µm2 and generate a histogram using

Probability[MSD(τ)] =
ni
N
. (.13)

Here, N is the total number of samples and ni is the number of estimated samples (the number
of MSD values) within a bin. Note that via this calculation, each trajectory (tracer particle)
is assigned a mean value of a squared displacement for a delay time τ . The histogram merely
provides the probability distribution from the many trajectories. Values and histograms are
generated for 3 time increments τ = 0.1, 1, and 10 s to assess the motility of particles within
the networks at short and long time scales. All errors bars correspond to 1 standard deviation.
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Figure .18: Histograms denoting the discrete probability distribution of (trajectory averaged)
mean square displacements (MSD) for 1 µm tracer particles in 250 kD CMC solution at three
delay times τ = 0.1, 1, 10 seconds. We show results for three CMC concentrations from 0.5%
to 2%.
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a = 0.5 µm
<latexit sha1_base64="z1X6dGdWaUDLOXu103IAmZBfJ0Y=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgapgRXwhC0Y3LCvYBnaFk0rQNTTJDkhHKMAs3/oobF4q49SPc+Tdm2llo64GEwzn3cu89Ycyo0q77bZWWlldW18rrlY3Nre0de3evpaJEYtLEEYtkJ0SKMCpIU1PNSCeWBPGQkXY4vsn99gORikbiXk9iEnA0FHRAMdJG6tlVBK+g57jQv0x9nmTmQ3okecqzrGfXXMedAi4SryA1UKDRs7/8foQTToTGDCnV9dxYBymSmmJGsoqfKBIjPEZD0jVUIE5UkE6PyOChUfpwEEnzhIZT9XdHirhSEx6aynxFNe/l4n9eN9GDiyClIk40EXg2aJAwqCOYJwL7VBKs2cQQhCU1u0I8QhJhbXKrmBC8+ZMXSevY8c6c07uTWv26iKMMquAAHAEPnIM6uAUN0AQYPIJn8ArerCfrxXq3PmalJavo2Qd/YH3+AGdkl14=</latexit>

a = 1.0 µm

<latexit sha1_base64="NtjbFMfwpFWiOVKaD/wyG3eBPSk=">AAACBHicbVDLSgMxFM34rPU16rKbYBFcDTPFF4JQdOOygn1AZyiZNG1Dk8yQZIQyzMKNv+LGhSJu/Qh3/o2ZdhbaeiDhcM693HtPGDOqtOt+W0vLK6tr66WN8ubW9s6uvbffUlEiMWniiEWyEyJFGBWkqalmpBNLgnjISDsc3+R++4FIRSNxrycxCTgaCjqgGGkj9ewKglew5rjQv0x9nmTmQ3okecqzrGdXXcedAi4SryBVUKDRs7/8foQTToTGDCnV9dxYBymSmmJGsrKfKBIjPEZD0jVUIE5UkE6PyOCRUfpwEEnzhIZT9XdHirhSEx6aynxFNe/l4n9eN9GDiyClIk40EXg2aJAwqCOYJwL7VBKs2cQQhCU1u0I8QhJhbXIrmxC8+ZMXSavmeGfO6d1JtX5dxFECFXAIjoEHzkEd3IIGaAIMHsEzeAVv1pP1Yr1bH7PSJavoOQB/YH3+AGj+l18=</latexit>

a = 2.0 µm
<latexit sha1_base64="+vveLAoscz8fyy7zYVgwjgNLCOg=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgapgRqyIIRTcuK9gHdIaSSdM2NMkMSUYowyzc+CtuXCji1o9w59+YaWeh1QMJh3Pu5d57wphRpV33yyotLa+srpXXKxubW9s79u5eW0WJxKSFIxbJbogUYVSQlqaakW4sCeIhI51wcp37nXsiFY3EnZ7GJOBoJOiQYqSN1LerCF7CuuNC/yL1eZKZD+mx5CnPsr5dcx13BviXeAWpgQLNvv3pDyKccCI0ZkipnufGOkiR1BQzklX8RJEY4QkakZ6hAnGignR2RAYPjTKAw0iaJzScqT87UsSVmvLQVOYrqkUvF//zeokengcpFXGiicDzQcOEQR3BPBE4oJJgzaaGICyp2RXiMZIIa5NbxYTgLZ78l7SPHe/Uqd+e1BpXRRxlUAUH4Ah44Aw0wA1oghbA4AE8gRfwaj1az9ab9T4vLVlFzz74BevjG23Ml2I=</latexit>

a = 5.0 µm
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Figure .19: Histograms denoting the probability distribution of trajectory-averaged MSD,
shown for the 10 wt% control mucin solution at delay times τ = 0.1, 1, 10 seconds. We
show data for a = (a) 0.5 µm, (b) 1 µm, (c) 2 µm, and (d) 5 µm. For the largest tracer size
of 5.0 µm, the variation in values is larger compared to smaller tracer sizes. The number of
trajectories analyzed are (a) N = 270, (b) N = 157, (c) N = 76, and (d) N = 20. Images
were taken on Zeiss 200M Axiovert microscope with 40x/NA 0.75 objective at 30 fps, 30 ms
exposure time.




