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ORIGINAL ARTICLE
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Abstract
Background and Aims Nonalcoholic fatty liver disease (NAFLD) has reached pandemic proportions. Early detection can 
identify at-risk patients who can be linked to hepatology care. The vibration-controlled transient elastography (VCTE) 
controlled attenuation parameter (CAP) is biopsy validated to diagnose hepatic steatosis (HS). We aimed to develop a novel 
clinical predictive algorithm for HS using the CAP score at a Veterans’ Affairs hospital.
Methods We identified 403 patients in the Greater Los Angeles VA Healthcare System with valid VCTEs during 1/2018–
6/2020. Patients with alcohol-associated liver disease, genotype 3 hepatitis C, any malignancies, or liver transplantation 
were excluded. Linear regression was used to identify predictors of NAFLD. To identify a CAP threshold for HS detection, 
receiver operating characteristic analysis was applied using liver biopsy, MRI, and ultrasound as the gold standards.
Results The cohort was racially/ethnically diverse (26% Black/African American; 20% Hispanic). Significant positive pre-
dictors of elevated CAP score included diabetes, cholesterol, triglycerides, BMI, and self-identifying as Hispanic. Our 
predictions of CAP scores using this model strongly correlated (r = 0.61, p < 0.001) with actual CAP scores. The NAFLD 
model was validated in an independent Veteran cohort and yielded a sensitivity of 82% and specificity 83% (p < 0.001, 95% 
CI 0.46–0.81%). The estimated optimal CAP for our population cut-off was 273.5 dB/m, resulting in AUC = 75.5% (95% 
CI 70.7–80.3%).
Conclusion Our HS predictive algorithm can identify at-risk Veterans for NAFLD to further risk stratify them by non-invasive 
tests and link them to sub-specialty care. Given the biased referral pattern for VCTEs, future work will need to address its 
applicability in non-specialty clinics.
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Graphical Abstract
Proposed clinical algorithm to identify patients at-risk for NAFLD prior to fibrosis staging in Veteran.

Keywords Nonalcoholic fatty liver disease · Prediction · Model · Elastography

Introduction

Nonalcoholic fatty liver disease (NAFLD) has reached pan-
demic proportions, currently affecting 25–30% of the United 
States population [1]. An estimated 2 million Veterans (30%) 
have NAFLD, with the prevalence nearly tripling in recent 
years [2]. NAFLD encompasses a spectrum of liver disease 
including hepatic steatosis (HS) and its more severe form, 
nonalcoholic steatohepatitis (NASH), which can progress 
to cirrhosis and hepatocellular carcinoma (HCC). Patients 
with NAFLD are also at an increased risk of non-hepatic 
complications, including cardiovascular events [3, 4], extra-
hepatic malignancies [5], and overall poor quality of life [6]. 
As NASH-related cirrhosis is becoming the leading indica-
tion for liver transplantation [7, 8], early disease detection 
is critical.

However, diagnosing NAFLD in its early stages remains a 
challenge. In routine clinical care, HS incidentally found on 
imaging with or without elevated transaminases, rather than 
recognition of metabolic comorbidities as part of a dedicated 
evaluation, prompts referral to hepatology/gastroenterology 
clinics for further evaluation of NAFLD. Liver biopsy (LB) 
remains the diagnostic gold standard which is limited by 
cost, sampling error, and procedural risks [9], preventing its 
implementation at a population scale and restricting its use 
primarily to clinical trials [10]. To address this challenge, 
in 2021, the American Gastroenterology Association (AGA) 
developed guidelines that encourage primary care providers 
to recognize and screen patients at risk of NAFLD defined 
as having (1) at least 2 metabolic risk factors (obesity, 

hypertriglyceridemia, low high-density lipoprotein-HDL, 
and hypertension or prediabetes), (2) type 2 diabetes (dia-
betes), or (3) elevated transaminases [11]. However, given 
the large burden of NAFLD coupled with competing clinical 
responsibilities during primary care visits, developing easily 
applicable, automated algorithms embedded in electronic 
health records (EHR) to identify at-risk patients can facili-
tate early detection.

Vibration-controlled transient elastography (VCTE, 
FibroScan®) can estimate liver stiffness and HS nonin-
vasively [12]. The VCTE controlled attenuation param-
eter (CAP) has been validated in HS diagnosis in several 
prospective biopsy-controlled studies that report excellent 
diagnostic accuracy for HS detection [13–17]. It is therefore 
gaining traction as a non-invasive method of risk-stratifying 
chronic liver disease. Further, HS as measured by the CAP 
score is associated with an increased overall mortality in the 
United States, independent of hepatic fibrosis [18]. Despite 
its advantages, implementation of VCTE has challenges: it 
is not always available to all clinics; it requires additional 
training in its interpretation; and most importantly, it has not 
been shown to be cost effective in an initial assessment of 
patients at risk for NAFLD. [19]

The Veterans Affairs Healthcare System (VAHCS) is 
the largest integrated health system in the United States 
with long-term longitudinal clinical and demographic data. 
Despite the growing burden of NAFLD among Veterans, 
Veterans Health Administration (VHA)-based NAFLD 
predictive algorithms are lacking [20]. Given that VCTE is 
becoming the standard of care in clinical practice [11, 21] 
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and the unique VHA EHR offers, we aimed to develop a 
clinical predictive algorithm using the VCTE CAP score to 
identify at-risk Veterans for NAFLD.

Methods

Data Source

The study was approved by the Veterans Affairs Institutional 
Review Board. VCTE was introduced to the VA Greater 
Los Angeles Healthcare System (VAGLAHS) in 03/2016 
for assessment of hepatic fibrosis. In 01/2017, the CAP was 
introduced for HS measurement. We queried the Corporate 
Data Warehouse, a repository of all clinical health data at 
VAGLAHS, from 01/2017 to 0/62020.

Discovery Cohort

At VAGLAHS, 1,767 VCTE records were available 
between 01/2016 and 06/2020, of which 1,403 had a CAP 
score. As VCTE is operator dependent and requires train-
ing for proficiency [22], we selected cases from 2018 
to 2020 to allow enough time for operators to become 
proficient. Three trained navigators (S.B., R.S., A.L.) 
abstracted clinical data from the EHR using a common 
data abstraction form after being trained by the same per-
son (S.B). Near the end of data abstraction, one primary 
clinician abstractor (S.B.) reviewed a 20% random sample 
from each abstractor’s data sample to assure accuracy of 
data. The study team discussed and resolved any discrep-
ancies by consensus. This resulted in 740 unique patients 
with VCTE reports. Exclusion criteria were as follows: 

high-risk ethanol use (any AUDIT-C > 3 in women or > 4 
for men [20] or with a diagnosis of alcohol-associated liver 
disease (ALD) made by a hepatologist); chronic HCV gen-
otype 3 (n = 4), given its competing cause of HS; patients 
with a history of primary or secondary liver malignancy 
or who had a liver transplantation were also excluded; and 
VCTE reports with poor technical quality (liver stiffness 
measurement interquartile range (IQR) > 30% [23]), result-
ing in 434 patients. Patients lacking any radiographic or 
LB data were also excluded, yielding a final discovery 
cohort of 403 patients (Fig. 1).

Data Collection

Socio-demographic and clinical information were collected 
from the EHR including age, sex, race, ethnicity, hepatitis 
B surface antigen, hepatitis C antibody, hepatitis C RNA, 
human immunodeficiency virus (HIV) antibody, and anti-
viral treatment history (hepatitis B and C); body mass index 
(BMI) and systolic and diastolic blood pressures on the date 
of VCTE; and whether patients had active prescriptions for 
anti-hypertensives, statins, or for diabetes medications at the 
time of VCTE. Laboratory parameters including white blood 
cell count, platelet count, ALT, aspartate aminotransferase 
(AST), alkaline phosphatase (AP), total bilirubin, lipid 
panel, hemoglobin A1c, random glucose, and lipid panel 
were also obtained. All laboratory parameters were collected 
on dates closest to the VCTE date and no more than 1 year 
from the VCTE date. All VCTE (Fibroscan® 502 touch) 
reports were reviewed. CAP score, LSM with IQR, and 
probe size (M or XL) were obtained from each VCTE report.

Fig. 1  Study Population
1767 FibroScans 2016-2020

1403 with CAP score 2016-2020

740 cases from 2018-2020 

Remove duplicates (~15%)
Exclude positive AUDIT-C (~30%)
Exclude HCV GT3 
Exclude malignancy
Exclude s/p OLT patients
Exclude LSM IQR > 30%
Exclude patients without LB, MRI or US

Final cohort n = 403

Exclude data from 2016-2018
Exclude duplicates (use most recent)
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Selection of Covariables

Covariables were selected a priori based on previous 
NAFLD algorithms, considering both biological plausibil-
ity and clinical availability. We included age, sex, and race, 
and ethnicity due to prior studies describing their associa-
tions [24]. Given that many of the clinical and laboratory 
variables were part of the metabolic syndrome, multicol-
linearity was evaluated prior to final covariable selection 
(Supplementary Fig. 2). Patients who were prescribed sta-
tin medications exhibited a significantly lower low-density 
lipoprotein (LDL) (p < 0.001; Supplementary Fig. 3), so we 
avoided inclusion of both LDL and use of statin because of 
the anticipated causal relationship. We assessed the effect of 
anti-hypertensive medication prescription rather than blood 
pressure measurement, given that single random blood pres-
sure on the day of the VCTE may not accurately capture 
a clinical diagnosis of hypertension. For diabetes, because 
having an active prescription for diabetes medication did not 
have the predicted relationship with hemoglobin A1c (being 
on treatment for was associated with higher hemoglobin 
A1c, p < 0.001; Supplementary Fig. 4), we defined diabetes 
as a hemoglobin A1c > 6.5% or having a diabetes medication 
prescription. We considered including HDL, triglycerides 
and BMI as components of metabolic syndrome, consistent 
with the National Heart, Lung, and Blood Institute (NHLBI) 
definition and given the AGA Clinical Care Pathway guid-
ance statement (see Introduction). Given that triglycerides 
are commonly defined in the NHLBI metabolic syndrome 
definition, they were selected for inclusion over HDL. ALT 
and AST demonstrated a high correlation (r = 0.81), and 
given the association between ALT and NAFLD in previ-
ous work [20], ALT alone was selected for inclusion.

Validation Cohort

To validate the predicted NAFLD clinical definition and 
CAP score, we identified 40 unique Veterans in 2017–2021. 
VCTE reports and either imaging (US or MRI) or LB were 
available for all 40 patients (see Statistical Analysis for 
power calculation).

Imaging Data

US and MRI abdomen were reviewed centrally for the pres-
ence or absence of HS, by a single expert abdominal radiolo-
gist (F.H.) who was blinded to the remainder of the data and 
statistical analysis. Of note, only 7 MRI with elastography 
with PDFF to quantitate HS were available and included in 
our cohort (MRE was introduced after VCTE at GLA). HS 
on MRI was identified using T1-weighted gradient-echo in-
phase and out-of-phase sequences. If there was signal drop 
out in the out-of-phase sequence compared to in-phase, then 

HS was diagnosed. Computerized tomography imaging data 
were excluded because of its limited accuracy in HS diagno-
sis [25]. All imaging data were obtained at the time closest 
to the VCTE date, with median time of 8.2 weeks for US 
and 2.1 weeks for MRI. Of note, 3 abdominal USs were con-
ducted outside our local VA including through community 
care, which were not able to be reviewed locally.

Liver Biopsy

LB pathology reports were reviewed when available. The 
presence or absence of HS was recorded as a binary vari-
able and included any grade of steatosis. Of note, NAFLD 
activity score was not clinically utilized.

Statistical Analysis

Covariable Descriptions

Patient demographics and clinical parameters were sum-
marized by mean ± standard deviation (SD) for continuous 
variables and frequency (%) for categorical variables.

Power Calculation for Validation Cohort

To test the fit of our 6-predictor regression, assuming the 
tests for total regression with R2 = 0.35 (F2 = 0.55), n = 29 
patients were needed for a power of 80% and a significance 
of 0.05.

Development and Performance of NAFLD Definition

Multivariable linear regression modeling using CAP score 
as a continuous variable and backward elimination of covari-
ables to determine significant predictors of HS. Specifically, 
the “caret” library in R was used to implement the leave-
one-out, cross-validation approach, which offers more stable 
estimates in high-dimension, small sample data. To evaluate 
the performance of our NAFLD definition, we determined 
the sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV). We calculated the cor-
relation between predicted and actual CAP scores.

Determination of CAP Threshold

Given the heterogeneity in steatosis thresholds across 
different populations [26], we developed an internally 
validated CAP threshold that distinguishes presence or 
absence HS in Veterans. We defined the HS using a hier-
archical composite algorithm where all available LBs 
were selected first (classified as positive or negative for 
any grade of HS), followed by all unique MRIs (classi-
fied as positive or negative for HS), and finally unique US 
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(classified as positive or negative HS). Agreement between 
the test results for LB, MRI, and US were explored using 
Cohen’s kappa. Associations between CAP score and 
each of LB, MRI, and US were explored using unpaired 
t tests. Receiver operating characteristic (ROC) analysis 
was used to determine the Veteran-specific CAP cut-off 
using our HS definition as a binary variable. When results 
occasionally conflicted, the result from the more accurate 
test was used, as defined by LB, followed by MRI, and 
then US. Each patient was only counted once. We identi-
fied 31 patients without a LB, MRI, or US. Since CAP 
scores of the 31 patients ranged from no HS to severe 
steatosis [27] (Supplementary Fig. 1), they were excluded 
from our final cohort (Fig. 1). The optimal CAP threshold 
for HS detection was selected using the Youden method. 
The ROC curve was plotted using R 4.1 library pROC. The 
optimal cut-off was identified using library cutpointr func-
tion “oc_youden_kernel,” which maximizes both sensitiv-
ity and specificity on the ROC curve after smoothing of 
the predictor by a binned kernel density estimate. p values 
are from 2-sided tests with p < 0.05 considered statistically 
significant. Analyses was completed in R 4.1.2.

Results

Demographic and Clinical Characteristics

Four-hundred and thirty-four patients met our inclusion 
criteria (Fig. 1). Of these, 403 had at least one of LB, MRI, 
or US available for inclusion in CAP threshold develop-
ment (Table 1). All 403 patients had a complete set of pre-
selected predictors. The mean age was 60.1 ± 13.4 years. 
The cohort was predominantly male (96.8%, n = 390) and 
was racially and ethnically diverse, with African Ameri-
can/Black race representing 26.1% (n = 105) and Hispanic 
ethnicity constituting 19.5% (n = 78) of the cohort. Most 
patients had features of the metabolic syndrome: 53.5% 
(n = 215) were on anti-hypertensive medications; 34.0% 
(n = 137) were on diabetes treatment; and 51.0% (n = 205) 
were prescribed a statin. The median CAP score in our 
cohort was 286.5 dB/m (Fig. 2a). The median LSM was 
6.6 kPa, with the majority (n = 295, 73.2%) of patients 
with early stage (F0–F2) fibrosis and were therefore less 
likely to have “burnt-out” NASH [28] (Fig. 2b). Of the 
patients with ≥ 20 kPa (n = 39), 51% had CAP > 274 dB/m 
(mean 280.5 dB/m). This was consistent with largely pre-
served synthetic liver function, evidenced by mean total 
bilirubin of 0.8 ± 0.4 mg/dL and mean platelet count of 
210.6 ×  109/L, suggestive of no clinically significant portal 
hypertension.

NAFLD Predictors and Model Performance

Model Development

Our regression analysis included the following covaria-
bles: age, sex, race, ethnicity, statin prescription, anti-
hypertensive prescription, ALT, triglycerides, cholesterol, 
diabetes, and BMI. After stepwise variable selection and 
cross-validation, the optimal linear multivariate model 
identified had 6 predictors F(6, 387) = 37.8, p < 0.001, 
R
2
adj

  =  0.36 (Supplementary Fig.  5). The 6 predictors 
included African American/Black race, Hispanic ethnicity, 
cholesterol, diabetes, BMI, and triglycerides (Table 2). 
Consistent with previous work [24], we found a significant 
positive association between CAP scores and patients who 
self-identified as Hispanic (p < 0.001; Supplementary 
Fig. 6) and a significant negative association between self-
identifying as African American/Black and CAP scores 
(p < 0.001; Supplementary Fig. 6). The final NAFLD defi-
nition derived from the multivariable model was as 
follows:

Model Performance in Discovery Cohort

We used our NAFLD predictive equation to calculate a pre-
dicted CAP ( ̂CAP ) score for each patient. ĈAP and CAP 
were significantly correlated (p < 0.001, 95% CI 0.54–0.67; 
Fig. 3). We further evaluated the performance of our predic-
tive model within our Veteran cohort using our internally 
developed CAP threshold of 273.5 dB/m. ĈAP was classified 
as above or below 273.5 dB/m (see above) and compared to 
actual CAP as above or below 273.5 dB/m. The sensitivity, 
specificity, NPV, and PPV for our model to identify HS as 
defined by CAP > 273.5 dB/m were 77%, 76%, 72%, and 
80%, respectively.

Model Performance in Validation Cohort

We used our NAFLD predictive equation to calculate a 
predicted CAP score for each patient in the validation 
cohort (n = 40) (Supplementary Table 3). CAP and ĈAP 
were significantly correlated (p < 0.001, 95% CI 0.46–0.81; 
see Supplement Figs.  7 and 10). We again classified 
ĈAP and actual CAP for each patient as above or below 

ĈAP =75.67 + (−26.6 × Black) + (13.7 × Hispanic)

+ (0.15 × Cholesterol) + (5.3 × BMI)

+ (32.0 × Diabetes − Prescription or high A1c)

+ (0.06 × Triglycerides)

.
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Table 1  Patient and clinical demographics of cohort (n = 403)

Socio-demographic characteristics Average (SD) 
or count (%)

Age (years) 60.1 (13.4)
Male sex 390 (96.8)
Race
 White 218 (54.1)
 Black or African American 105 (26.1)
 Asian 35 (8.7)
 Declined to answer 34 (8.4)
 American Indian/Alaska Native 6 (1.5)
 Another race not listed 3 (0.7)
 Native Hawaiian or Other Pacific Islander 2 (0.5)

Ethnicity
 Not Hispanic 305 (75.7)
 Hispanic 79 (19.6)
 Declined to answer or not available 19 (4.7)

Clinical characteristics Average (SD) 
or count (%)

 Hepatitis C (antibody)
  Positive

 Sustained virologic response (SVR) 59 (14.6)
 Not post-treatment 68 (16.9)
 Negative 275 (68.2)
 Not available 1 (0.2)

Hepatitis B surface antigen
 Positive 20 (5.0)
 Negative 374 (92.8)
 Not available 9 (2.2)
 Human immunodeficiency virus (HIV) positive antibody 6 (1.5)
 Body Mass Index (kg/m2) 30.5 (6.0)

Active prescription for treatment of
 Diabetes mellitus (medication or A1c > 6.5%) 137 (34.0%)
 Hyperlipidemia (statin) 205 (51.0%)
 Hypertension (any anti-hypertensive) 215 (53.5%)

Laboratory parameters Average (SD)

Alanine aminotransferase (U/L) 45.1 (46.2)
Aspartate aminotransferase (U/L) 34.4 (22.5)
Alkaline phosphatase (U/L) 83.9 (43.8)
Total bilirubin (mg/dL) 0.8 (0.4)
Cholesterol (mg/dL) 164.8 (46.7)
Random glucose (mmol/L) 125.1 (50.9)
Platelets (/microL) 210.6 (67.1)
Hemoglobin A1c (%) 6.3 (1.4)
LDL (mmol/L) 92.6 (39.2)
HDL (mmol/L) 43.1 (11.7)
Triglyceride (mmol/L) 154.2 (120.2)
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Fig. 2  CAP and fibrosis distribution of cohort based on VCTE (n = 403)

Table 2  Significant clinical 
predictors of CAP scores

6-predictor model F(6, 387) = 37.8, p < .001, R2

adj
 = 0.36;

*White was used as the reference group

Predictor � �
std

CI �2
p

Body mass index 5.3 0.43 4.3 6.3 0.23
Black or African American* − 26.6 − 0.16 − 40.7 − 12.6 0.07
Diabetes Mellitus (med or A1c > 6.5%) 32.0 0.21 45.0 19.1 0.04
Hispanic* 13.7 0.07 − 1.7 29.1 0.01
Cholesterol 0.15 0.09 0.01 0.3 0.01
Triglycerides 0.06 0.09 0.004 0.1 0.01
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273.5 dB/m and compared them. The sensitivity, specific-
ity, NPV, and PPV for our model to identify HS as defined 
by CAP > 273.5  dB/m were 82%, 83%, 86%, and 78%, 
respectively.

Development of Internally Validated CAP Threshold

Associations Between Diagnostic Modalities

We first verified that the CAP score was significantly higher 
when steatosis was present for LB (t(41) = 4.9, 95% CI 

45.9–110.9), MRI (t(109) = 6.4, 95% CI 50.4–95.3), and US 
(t(366) = 9.5, 95% CI 51.4–78.2) (Supplementary Fig. 8). 
Several patients had more than one US, MRI, and LB avail-
able (Supplementary table 2). When a patient had multiple 
studies available, we compared imaging and LB data for 
the presence or absence of HS. US and LB (ĸ(50) = 0.47, 
95% CI 0.47–0.72) and US and MRI (ĸ(104) = 0.45, 95% 
CI 0.6–0.75) had moderate concordance, while MRI and LB 
exhibited fair/low concordance (ĸ(50) = 0.22, 95% CI − 0.25 
to 0.69), attributable to a low count (n = 14) (Supplementary 
Fig. 9). As expected and as is typical of a real-world cohort, 
the majority of our data had HS arbitrated by radiographic 
evidence (either MRI or US, n = 349; 87%) and fewer by LB 
(n = 54; 13%).

ROC Analysis and CAP Threshold Selection

The area under the curve for the CAP scores predicting 
NAFLD as defined by HS on US, MRI, or LB was 75.5% 
(95% CI 70.7–80.3%) (Fig. 4). The Youden cut-off was 
273.5 dB/m, resulting in sensitivity of 74.8%, specificity 
of 68.9%, PPV of 75.4%, and NPV of 68.2%. We addition-
ally assessed the CAP threshold using only the sub-group of 
patients who had a LB and MRI (without US), given their 
higher sensitivity in detecting HS. We found that a total of 
155 patients had either a LB or MRI. Similarly to the group 
of patients with US, we found that the optimal CAP thresh-
old was 272 dB/m (Supplementary Fig. 10). Alternate CAP 
cut-offs and their resulting sensitivity, specificity, PPV, and 
NPV values are provided in Supplementary table 4.
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Fig. 3  Relationship of CAP predicted by formula and measured CAP

Fig. 4  Receiver operating char-
acteristic curve replicating CAP 
scores that suggest tests positive 
for hepatic steatosis (n = 403)
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Discussion

In this study, we developed a novel HS clinical predictive 
algorithm that can be used to screen Veterans in primary 
care and endocrinology clinics. Our model has key features 
that are worth emphasizing: (1) it uses clinically reasonable 
and readily available predictors, allowing ease of implemen-
tation; (2) it is the first to utilize the VCTE CAP score in its 
development in a Veteran population; (3) it is validated in 
an independent Veteran cohort; and (4) it is in keeping with 
growing efforts to develop clinical care pathways that can 
capture NAFLD patients early, before they develop late com-
plications, especially as most cirrhosis related to NAFLD is 
found incidentally. [29]

In the context of linkage to care, we envision embedding 
our predictive model in EHR to identify patients at risk for 
NAFLD in primary care clinics. Patients who are predicted 
to have NAFLD based on the predicted CAP score can sub-
sequently be risk stratified by FIB-4, which can guide down-
stream assessment by VCTE and referral to sub-specialty 
care. FIB-4 has been shown to have a low accuracy when 
applied to the general population and has the potential to 
overestimate the risk of liver disease and cause over-referrals 
to sub-specialty care [30, 31]. While VCTE is more accurate, 
its general use would hinder clinics without this technology 
and likely drive health care costs given it has been shown not 
be cost effective as an initial non-invasive test for NAFLD 
assessment [19]. There is therefore a gap in developing a 
simple clinical tools, such as ours, to bridge non-invasive 
testing where VCTE may not be available, as recommended 
by the society guidelines. [11, 32]

Variable selection was methodical and informed by 
NAFLD biologic plausibility and also ease of clinical 
use. Noureddin and colleagues predicted the prevalence 
of NAFLD based on CAP scores using machine learning 
methods in the National Health And Nutrition Examination 
Survey cohort [33]. In their agnostic approach, they identi-
fied all of our predefined covariables, affirming the validity 
of our model [33]. However, they identified waist circum-
ference as a significant predictor, which is not collected in 
routine clinical care, as evidenced by the lack of waist cir-
cumference measurements in our cohort and which therefore 
limits the clinical applicability of their model. Previous algo-
rithms, such as the fatty liver index, the NAFLD-Liver Fat 
Score, the NAFLD Screening score, and the ALD/NAFLD 
Index, are also similarly limited because they utilize varia-
bles such as waist circumference, insulin level, uric acid, and 
haptoglobin which are not routinely collected by primary 
care [34, 35]. By contrast, our ĈAP model can be calculated 
for any Veteran evaluated in primary or sub-specialty clinics 
without requiring additional dedicated bloodwork or clinic 
encounters.

In addition to predicting a CAP threshold, identifying one 
that diagnoses HS can simplify clinical decision-making. We 
noted heterogeneity in previously published CAP thresholds 
that may be attributable to population-specific factors or the 
method by which HS was detected [33, 36, 37]. We there-
fore opted to determine an internal VA CAP threshold rather 
than using historical cut-offs. Although LB remains the gold 
standard in the spectrum of NAFLD and NASH, few are 
conducted clinically. The use of LB to select NAFLD cases 
also introduces selection bias because a very small, narrow 
subset of patients with NAFLD are, in fact, biopsied. To 
achieve more real-world applicability, our study incorpo-
rated imaging modalities to arbitrate the diagnosis of steato-
sis. Previous investigation into the sensitivity and specificity 
of US and MRI in HS detection guided our approach [25]. 
While, US is the most commonly used method in real-world 
practice, as evidenced by our findings, the sensitivity for HS 
detection is lower when < 30% [25]. We found that our CAP 
score findings in Veterans are concordant with recent VHA 
NAFLD Consensus Guidelines [38], which were guided by 
expert opinion.

In our proposed score, self-identified Black race was a 
negative predictor, while Hispanic ethnicity was a positive 
predictor of NAFLD. This is consistent with prior large 
genetic and epidemiologic studies on population-specific 
prevalence of NAFLD [24, 39]. It is increasingly recognized 
that differences in epidemiology, natural history, and out-
comes according to race and ethnicity may at least partially 
reflect underlying unmeasured social and structural deter-
minants of health [40]. The inclusion of race and ethnicity 
in our clinical score can serve to indirectly measure these 
influences in addition to any potentially unknown hereditary 
factors which contribute to NAFLD risk, and as our data 
show, can improve prediction of CAP score and NAFLD 
risk overall.

Our study is not without limitations including its retro-
spective nature and single-center study population. There is 
a selection bias of our cohort as it mainly consists of patients 
evaluated in sub-specialty care, where the vast majority of 
VCTE are ordered. We also recognize that patients with 
“burnt-out” NASH may not have steatosis, potentially pre-
cluding them from being identified, although we found that 
51% of our cohort with kPa ≥ 20 still had elevated CAP 
scores. Finally, the population is predominantly male and 
may not be generalizable to non-VA populations but per-
forms well within Veterans, where VA-specific scores are 
needed.

NAFLD remains underdiagnosed [41–43], limiting our 
appreciation of the true disease burden and therefore, our 
ability to tackle it most effectively: at an early stage, when 
primary prevention can avert or delay complications. In line 
with the recent NAFLD Consensus Statement and society 
guidelines advocating for early identification [32, 44], we 
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propose that incorporating our predictive algorithm in VHA 
EHR would simplify the identification of at-risk Veterans 
in primary care and endocrinology clinics, who can subse-
quently be risk stratified for advanced fibrosis by non-inva-
sive tests [11, 44, 45]. This would provide an opportunity 
to implement preventative interventions including weight 
loss counseling, nutrition referral, and initiation of struc-
tured exercise programs which are available in VAHCS [46]. 
Future work will focus on validating the predictive model 
prospectively in Veterans, while quality improvements meas-
ures in NAFLD clinical care pathways and engagement of 
key stakeholders are ongoing.
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