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SUMMARY

Rapid eye movement (REM) and non-REM (NREM)
sleep are controlled by specific neuronal circuits.
Here we show that galanin-expressing GABAergic
neurons in the dorsomedial hypothalamus (DMH)
comprise separate subpopulations with opposing ef-
fects on REM versus NREM sleep. Microendoscopic
calcium imaging revealed diverse sleep-wake activ-
ity of DMH GABAergic neurons, but the galanin-
expressing subset falls into two distinct groups,
either selectively activated (REM-on) or suppressed
(REM-off) during REM sleep. Retrogradely labeled,
preoptic area (POA)-projecting galaninergic neurons
are REM-off, whereas the raphe pallidus (RPA)-
projecting neurons are primarily REM-on. Bidirec-
tional optogenetic manipulations showed that the
POA-projecting neurons promote NREM sleep and
suppress REM sleep, while the RPA-projecting neu-
rons have the opposite effects. Thus, REM/NREM
switch is regulated antagonistically by DMH galani-
nergic neurons with intermingled cell bodies but
distinct axon projections.

INTRODUCTION

Rapid eye movement (REM) and non-REM (NREM) sleep are

distinct brain states associated with different mental experience

and functional roles (Brown et al., 2012). During NREM sleep, the

electroencephalogram (EEG) is dominated by large-amplitude

slow-wave activity, but during REM sleep the EEG is de-

synchronized (Aserinsky and Kleitman, 1953; Dement, 1958;

Jouvet, 1962). The switch between REM and NREM sleep oc-

curs multiple times each day, but the neural circuit controlling

the switch remains poorly understood.

REM and NREM sleep are regulated by multiple groups of

neurons in the brainstem and hypothalamus (Brown et al.,
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2012; Jouvet, 1962; Saper et al., 2010; Scammell et al., 2017;

Weber and Dan, 2016). In the brainstem, some neurons power-

fully promote NREM to REM transitions, while others sustain

NREM sleep and suppress REM sleep (Anaclet et al., 2014;

Boissard et al., 2003; Clément et al., 2011; Hayashi et al.,

2015; Hobson et al., 1975; Lu et al., 2006; Sapin et al., 2009;

Sastre et al., 1996; Van Dort et al., 2015; Weber et al., 2015).

In the lateral hypothalamus, melanin-concentrating hormone

(MCH)-expressing neurons are most active during REM sleep

(Hassani et al., 2009). Their brief optogenetic activation strongly

promotes REM sleep, while their chronic activity is found to be

important for NREM sleep (Blanco-Centurion et al., 2016; Fer-

reira et al., 2017; Jego et al., 2013; Konadhode et al., 2013;

Tsunematsu et al., 2014). The dorsomedial hypothalamus

(DMH) also plays a key role in sleep regulation, as its lesion

decreased both NREM and REM sleep during the subjective

day but have the opposite effects during the subjective night

(Aston-Jones et al., 2001; Chou et al., 2003). However, the un-

derlying circuit mechanism is not well understood. Neurons in

the DMH exhibit diverse brain-state-dependent firing patterns

(Findlay and Hayward, 1969), which is partly due to the exis-

tence of multiple cell types. A recent study using single-cell

RNA sequencing showed that, as a molecular marker, galanin

labels a subtype of GABAergic neurons in the hypothalamus

(Romanov et al., 2017). This neuropeptide is strongly implicated

in sleep regulation (Sherin et al., 1998; Steiger and Holsboer,

1997), and it is densely expressed in the DMH.

In this study, we examined the role of galanin-expressing

DMH neurons in sleep regulation using microendoscopic cal-

cium imaging, virus-assisted circuit tracing, and bidirectional

optogenetic manipulations. We found that while DMH

GABAergic neurons exhibit diverse brain-state-dependent

activity, the galanin-expressing subpopulation consists of

two distinct groups with opposing effects on REM versus

NREM sleep. These two neuronal groups can be separated

on the basis of their axonal projections, but their cell bodies

are intermingled in the DMH. The physical proximity between

these functionally antagonistic populations could facilitate their

reciprocal inhibitory interactions to induce the rapid switch be-

tween REM and NREM sleep.
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Figure 1. DMH Galaninergic Neurons Consist of Distinct REM-On and REM-Off Subpopulations

(A) Schematic of microendoscopic calcium imaging in the DMH.

(B) Field of view (left) and activity map (right) of an example imaging session in a GAL-Cremouse. M, medial; L, lateral; A, anterior; P, posterior. Regions of interest

(ROIs) are outlined in red. Numbers indicate ROIs whose calcium traces are plotted in (C).

(C) EEG power spectrogram, EMG trace, brain states (color coded), and calcium traces (Z scored) recorded in the imaging session.

(D) REM-NREM activity difference versus wake-NREM activity difference. Each symbol represents one neuron. Red, galaninergic neurons shown in (C). Black,

galaninergic neurons from GAL-Cre mice (n = 36 neurons from 4 mice). Gray, GABAergic neurons from GAD2-Cre mice (n = 40 neurons from 3 mice). Traces on

the top and right, distributions of wake-NREM (top) and REM-NREM (right) activity difference for galaninergic (black) and GABAergic (gray) neurons.

See also Figures S1 and S2.
RESULTS

Microendoscopic Calcium Imaging of DMH Neurons
To measure the activity of DMH galaninergic neurons across

brain states, we used a galanin (GAL)-Cre mouse line (Gerfen

et al., 2013), in which the specificity of GAL-Cre expression in

the DMH has been validated previously by in situ hybridiza-

tion (2011 Allen Institute for Cell Science, Allen Mouse Brain

Connectivity Atlas, available from http://connectivity.brain-map.

org/transgenic/experiment/100138525). A Cre-inducible adeno-

associated virus (AAV) expressing the calcium indicator

GCaMP6f (Chen et al., 2013) was injected into the DMH (Fig-

ure S1A), and imaging was performed through a gradient refrac-

tive index (GRIN) lens coupled to a miniaturized integrated fluo-

rescence microscope in freely moving mice (Cox et al., 2016;

Ghosh et al., 2011). During each imaging session, brain states

were classified based on EEG and electromyogram (EMG) re-

cordings (Figures 1A and 1B). Calcium activity of the galaninergic

neurons varied strongly across brain states (Figure 1C). In partic-

ular, for each of the 36 imaged neurons, the activity was signifi-

cantly different between REM and NREM sleep (p < 0.05,

Wilcoxon rank-sum test). Some neurons were selectively acti-

vated during REM sleep (‘‘REM-on’’ neurons), while others were

selectively suppressed (‘‘REM-off’’ neurons). These neurons

were often observed in the same field of view (Figures 1B and

1C), and they appeared to be spatially intermingled (Figure S1B).

To quantify the relative activity of each neuron in different

brain states, we plotted its REM-NREM modulation index

(ZREM – ZNREM, where Z is Z-scored calcium activity averaged

within each brain state) versus the wake-NREM modulation in-

dex (Zwake – ZNREM). The galaninergic neurons fell into two
distinct clusters (Figure 1D, black dots). The REM-NREM modu-

lation index exhibited a clear bimodal distribution (p = 0.003,

Hartigan’s dip test), with the two peaks corresponding to the

REM-on and REM-off neurons. However, the wake-NREMmod-

ulation index showed a unimodal distribution centered around

0 (p = 0.98, Hartigan’s dip test), indicating that the overall activity

was similar during wakefulness and NREM sleep.

Interestingly, when we imaged the sleep-wake activity of DMH

GABAergic neurons in GAD2-Cre mice, we found a much higher

degree of functional heterogeneity, with different neurons prefer-

entially active during wake, REM, or NREM states (Figure S2).

Both the REM-NREM and wake-NREM modulation indices

showed unimodal distributions (p = 0.60, Hartigan’s dip test),

and the GABAergic neurons were scattered in all quadrants

with no apparent clustering (Figure 1D, gray dots). This suggests

that, as a subpopulation of DMHGABAergic neurons, the galani-

nergic neurons are especially involved in regulating REM and

NREM sleep.

Axon Projections of DMH Galaninergic Neurons
Given the similar transmitter phenotypes of REM-on and

REM-off DMH neurons (both are GABAergic and galaninergic),

we wondered whether they can be distinguished based on their

projection targets. Anterograde tracing of DMH galaninergic

axons using Cre-inducible AAV expressing enhanced yellow

fluorescent protein (eYFP) revealed projections to multiple brain

regions, including the preoptic area (POA), lateral hypothalamus

(LHA), dorsomedial region of the thalamus, periaqueductal gray

(PAG), dorsolateral pons, and raphe pallidus (RPA) (Figures S3A

and S3B). Such broad projections are consistent with previous

findings in the rat (Aston-Jones et al., 2001; Chou et al., 2003).
Neuron 97, 1168–1176, March 7, 2018 1169
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Figure 2. POA-Projecting and RPA-Projec-

ting DMHGalaninergic Neurons Are Distinct

Subpopulations

(A) Schematic of viral injection for simultaneous

retrograde tracing from POA and RPA.

(B) Fluorescence images of DMH showing neurons

expressing eGFP and mCherry. Scale bar, 50 mm.

(C) Number of neurons expressing each marker

alone or both. Each line represents data from one

mouse (n = 3 mice).

See also Figure S3.
To determine whether these divergent projections originate

from different subsets of DMH neurons or reflect collateral pro-

jections from the same population, we selectively labeled the

neurons projecting to each area. Since our anterograde tracing

experiment showed the most extensive galaninergic projection

to the POA, and previous studies indicated the importance of

the DMH-POA pathway in sleep regulation (Chou et al., 2003),

we first targeted the POA-projecting DMH neurons. An AAV

vector expressing avian-specific retroviral receptor (TVA) fused

with mCherry (AAV2-CAG-DIO-TVA-mCherry) was injected

into the DMH of GAL-Cre mice, and a glycoprotein (G)-deleted,

EnvA-pseudotyped rabies virus (RV) expressing enhanced

green fluorescent protein (RV-DG-eGFP+EnvA) was injected

into the POA to infect the TVA-expressing galaninergic neu-

rons that project to the POA (Miyamichi et al., 2011; Zhang

et al., 2016) (Figure S3C). Analysis of eGFP-labeled axons

showed that, in addition to the POA, these DMH neurons

also project to the LHA and thalamus (Figures S3D and

S3G). However, in the RPA region we found no labeled axon.

Conversely, when we performed the complementary experi-

ments to label the RPA-projecting DMH neurons by injecting

RV-DG-eGFP+EnvA into the RPA (Figure S3E), we found few

eGFP-labeled axons in the POA (Figures S3F and S3H), sug-

gesting that the POA and RPA projections originate from

different neurons.

To test directly the relationship between the DMH neurons

projecting to the POA and RPA, we performed simultaneous

retrograde tracing from the two target areas. After injecting

Cre-inducible rAAV2-retro (a designer AAV variant with high

retrograde efficiency) (Tervo et al., 2016) expressing eGFP and

mCherry into the POA and RPA, respectively (Figure 2A), we

found strong expression of both eGFP and mCherry in the

DMH but very little overlap between them (Figures 2B and 2C).

This indicates that the POA- and RPA-projecting DMH galani-

nergic neurons form largely distinct subpopulations.
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Activity of POA- and RPA-
Projecting Neurons
We next measured the sleep-wake acti-

vity of the POA- or RPA-projecting

subpopulation using calcium imaging.

Cre-inducible rAAV2-retro expressing

GCaMP6s was injected into the POA or

RPA of GAL-Cre mice, and a GRIN lens

was implanted into the DMH (Figures 3A,

3B, 3E, and 3F). Both subpopulations of
DMH galaninergic neurons showed brain-state-dependent cal-

cium activity. The POA-projecting neurons were selectively sup-

pressed during REM sleep (Figures 3C and 3D), with all 28 cells

showing lower activity during REM than NREM sleep (mean

DZ = 1.4, 95% confidence intervals [CIs] [1.2, 1.6]; p < 0.001,

Wilcoxon rank-sum test), and 26/28 cells showing lower activity

during REM sleep than wakefulness (mean DZ = 0.8, 95% CIs

[0.5, 1.0]; p < 0.05, Wilcoxon rank-sum test). In contrast, most

of the RPA-projecting neurons were selectively activated during

REM sleep (Figures 3G and 3H), with 52/55 showing higher activ-

ity during REMsleep than both NREMsleep (meanDZ = 2.9, 95%

CIs [2.5, 3.2]) and wakefulness (mean DZ = 2.6, 95% CIs [2.2,

3.0]). For both the POA- and RPA-projecting subpopulations,

the wake-NREM modulation index showed unimodal distribu-

tions around 0. Thus, the two galaninergic subpopulations

defined by their projection targets largely segregate into the

REM-on and REM-off functional categories.

POA-Projecting Neurons Suppress REM and Promote
NREM Sleep
To test whether each subpopulation of DMH neurons play any

causal role in sleep regulation, we manipulated their activity

optogenetically. To express channelrhodopsin 2 (ChR2) in

the POA-projecting neurons, we injected Cre-inducible rAAV2-

retro-ChR2-eYFP into the POA of GAL-Cre mice and implanted

anopticfiber into theDMH(Figures4AandS4A). Laser stimulation

(5 or 20Hz, 2min/trial, randomly applied every 5–30min) causeda

significant decrease in REM sleep (mean –7.6%, 95% CIs

[�5.2%, –10.2%]; p < 0.001, bootstrap) and a complementary in-

crease in NREM sleep (mean 11.7%, 95% CIs [8.5%, 14.8%],

p < 0.001), with no significant change in wakefulness (p > 0.18;

Figures 4B, 4C, and S5A). To distinguish whether the laser-

induced suppression of REM sleep was due to a decrease in its

initiation or maintenance, we analyzed the transition probability

between each pair of brain states (Figure S4B). Laser activation
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Figure 3. POA- and RPA-Projecting DMH Galaninergic Neurons Are REM-Off and REM-On, Respectively

(A) Schematic of calcium imaging of POA-projecting DMH galaninergic neurons.

(B) Field of view (left) and activity map (right) of an example imaging session. ROIs are outlined in red. Numbers indicate ROIs whose calcium traces are plotted

in (C).

(C) EEG power spectrogram, EMG trace, brain states (color coded), and calcium traces (Z scored) recorded in the imaging session.

(D) REM-NREM activity difference versus wake-NREM activity difference. Traces on the top and right: distributions of wake-NREM and REM-NREM activity

differences for POA-projecting DMH galaninergic neurons (n = 28 cells from 3 mice).

(E–H) Similar to (A)–(D), for RPA-projecting neurons (n = 55 cells from 3 mice).
of the POA-projecting neurons caused marked (p < 0.05, boot-

strap) decreases in NREM/REM (mean –0.6%, 95% CIs

[�0.4%, –0.7%]) and REM/REM transitions (mean –3.8%,

95% CIs [�3.6%, –4.1%]), indicating a suppression of both the

initiation and maintenance of REM sleep (Figure 4D). To further

quantify the reduction of REM sleep initiation, we calculated the

percentage of times a NREM/REM transition occurred during

the 2-min laser stimulation period (number of transitions during

laser divided by the total number of transitions recorded). It was

found tobemuch lower than the percentageduring the 2-minwin-

dow immediately before the laser stimulation (1.2%versus 8.2%).

Since the rAAV2-retro-DIO-ChR2-eYFP injected into the POA

can also infect POA-projecting neurons outside of the DMH, in

principle the effect of laser stimulation in the DMH could be

mediated by the axons of these non-DMH neurons that pass

through the DMH. We thus tested the effect of activating

DMH neuron axons in the POA. Following the injection of

AAV2-EF1a-DIO-ChR2-eYFP into the DMH of GAL-Cre mice,

which labels only the DMH neurons, laser stimulation of their

axons in the POA also suppressed REM sleep (mean –4.9%,
95% CIs [�3.1%, –6.8%], p < 0.001) and promoted NREM sleep

(mean 6.9%, 95% CIs [4.3%, 9.5%], p = 0.013; Figures 5A–5C).

This further indicates that the POA projection of DMH galani-

nergic neurons is REM suppressing.

We next tested the effect of inactivating the POA-projecting

DMH galaninergic neurons. To express the inhibitory opsin

iC++ in these neurons (Berndt et al., 2016), we injected Cre-

inducible rAAV2-retro-EF1a-DIO-iC++-eYFP into the POA of

GAL-Cre mice. Laser stimulation (constant light, 1 min/trial,

randomly applied every 5–30 min) significantly increased REM

sleep (mean 12.6%, 95% CIs [9.2%, 16.2%], p < 0.001) and

decreased NREM sleep (mean –10.7%, 95% CIs [�6.5%,

–15.1%], p < 0.05; Figures 6A–6C). Furthermore, while the

probability of a REM sleep episode initiated shortly (<120 s) after

the end of the preceding REMepisodewas quite low before laser

onset (2.4%), the probability increased to 18.1% for the REM

episodes initiated during inactivation of the POA-projecting gal-

aninergic neurons. In control mice expressing eGFP without

ChR2 or iC++, laser stimulation had no effect (p > 0.7; Figures

S6A–S6C), and the effects of laser stimulation were significantly
Neuron 97, 1168–1176, March 7, 2018 1171
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Figure 4. POA- and RPA-Projecting DMH Galaninergic Neurons Have Opposing Effects on REM-NREM Sleep Regulation
(A) Schematic of optogenetic activation of POA-projecting DMH galaninergic neurons.

(B) An example experiment showing EEG power spectrogram, EMG trace, and brain states (color coded). Purple shading, laser stimulation period.

(C) Percentage of time in NREM, REM, or wake state before, during, and after laser stimulation (purple shading), averaged from 6 mice. Shading of each

trace, ±SEM.

(D) Transition probability within each 10 s period with optogenetic activation of POA-projecting DMH galaninergic neurons (n = 6 mice). Shown in each bar is the

transition probability averaged across six consecutive 10 s bins within each 60 s. Error bar, 95% confidence interval (bootstrap). The baseline transition

probability (gray dashed line) was averaged across all time bins within 240 s before laser onset. Direct wake/REM and REM/NREM transitions were not

observed and the corresponding plots were omitted. Bottom right diagram indicates transition probabilities that are significantly increased, decreased, or un-

affected by laser stimulation.

(E–H) Similar to (A)–(D), for optogenetic activation of RPA-projecting neurons (n = 4 mice). The percentage of NREM/REM transitions was 22.7% during laser

and 9.9% during the 2-min period immediately before laser. The probability of REM episodes initiated <120 s following the preceding episode was 4.1% before

laser and 19.2% during laser.

See also Figures S4–S6.
different between ChR2 and eGFP mice (p < 0.001, bootstrap)

and between iC++ and eGFP mice (p < 0.001).

RPA-Projecting Neurons Promote REM and Suppress
NREM Sleep
Finally,we tested theeffectsofactivatingand inactivating theRPA-

projectingDMHgalaninergicneurons.After injectingCre-inducible

rAAV2-retro-ChR2-eYFP into the RPA of GAL-Cre mice, laser

stimulation in the DMH strongly increased REM sleep (mean
1172 Neuron 97, 1168–1176, March 7, 2018
15.4%, 95% CIs [9.1%, 21.8%]; p < 0.001, bootstrap) and

decreased NREM sleep (mean –13.9%, 95% CIs [�6.9%,

–21.0%], p < 0.001; Figures 4E–4G and S5B). These effects were

caused by increases in both NREM/REMandREM/REM tran-

sitions (Figure 4H), indicating enhancement of both the initiation

and maintenance of REM sleep. In contrast, iC++-mediated inac-

tivation of these neurons caused decreased REM sleep (mean

–4.7%, 95% CIs [�2.3%, –7.3%], p = 0.014) and increased

NREM sleep (mean 3.6%, 95% CIs [0.3%, 6.7%], p = 0.029;
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Figure 5. Optogenetic Activation of Axon Projections of DMH Galaninergic Neurons into the POA and RPA

(A) Schematic of optogenetic activation of DMH galaninergic axons in the POA.

(B) An example experiment showing EEG power spectrogram, EMG trace, and brain states (color coded). Purple shading, laser stimulation period.

(C) Percentage of time in NREM, REM, or wake state before, during, and after laser stimulation (purple shading) of DMH axons in the POA (n = 6 mice). Shading of

each trace, ±SEM.

(D–F) Similar to (A)–(C), for optogenetic activation of DMH axons in the RPA (n = 4 mice).
Figures 6D–6F). Laser had no effect in control mice expressing

eGFP alone (p > 0.5; Figures S6D–S6F), and the effects of laser

stimulation were significantly different between ChR2 and eGFP

mice (p < 0.001; bootstrap) and between iC++ and eGFP mice

(p = 0.038). Furthermore, in GAL-Cre mice injected with AAV2-

EF1a-DIO-ChR2-eYFP in their DMH, laser stimulation of the axons

in the RPA increased REM sleep (mean 9.5%, 95% CIs [5.9%,

13.0%]; p < 0.001, bootstrap) and suppressed NREM sleep

(mean –7.6%, 95% CIs [�3.3%, –11.9%], p = 0.011; Figures

5D–5F). Together, these results indicate that the RPA-projecting

DMH galaninergic neurons are REM promoting.

DISCUSSION

Using cell-type- and projection-target-specific imaging and

optogenetic manipulations, we have revealed a novel hypotha-

lamic mechanism regulating the REM-NREM switch. While the

DMH GABAergic neurons exhibit highly diverse brain-state-

dependent calcium activity (Figure 1D, gray dots), the neuropep-

tide galanin labels two distinct subpopulations that are either

REM-on or REM-off (Figures 1D, black dots). Retrograde label-

ing based on their axon projections then allowed us to isolate

each of the two subsets and demonstrate their opposing effects

on REM versus NREM sleep.

Earlier transection studies by Jouvet showed that the main

brain region controlling REM sleep lies in the brainstem (Jouvet,

1962). The DMH galaninergic neurons characterized in our study

are likely to interact with the brainstem REM circuit. The
REM-promoting effect of RPA-projecting neurons could be

partly mediated by their GABAergic and/or galaninergic inhibi-

tion of the serotonergic neurons in the RPA, which are known

to be REM-off (Heym et al., 1982; Trulson and Trulson, 1982).

These serotonergic neurons may in turn interact with other neu-

rons in the REM-sleep control circuit (Moazzami et al., 2010),

including GABAergic neurons in the ventral medulla (Weber

et al., 2015). The POA-projecting neurons, on the other hand,

could suppress REM sleep through multiple projections (Figures

S2C, S2D, and S2G). In addition to the REM-promoting neurons

in the POA (Chung et al., 2017; Lu et al., 2006), the REM-active,

REM-promoting MCH neurons (Blanco-Centurion et al., 2016;

Ferreira et al., 2017; Hassani et al., 2009; Jego et al., 2013) are

located well within the axonal field of the POA-projecting neu-

rons. Whether and how the DMH galaninergic neurons interact

with these sleep-related neurons remain to be elucidated. Inter-

estingly, the DMH, POA, and RPA are all key brain structures

involved in thermoregulation (Morrison and Nakamura, 2011),

an important homeostatic process closely related to sleep gen-

eration. In future studies it would be of great interest to investi-

gate the relationship between the neurons controlling sleep

and those regulating body temperature.

The nature of the inputs that give rise to the REM-on versus

REM-off activity of the DMH galaninergic neurons remains un-

known. A promising approach is to map the monosynaptic in-

puts to POA- or RPA-projecting galaninergic neurons using the

‘‘cell-type-specific tracing the relationship between input and

output’’ (cTRIO) method (Beier et al., 2015; Schwarz et al.,
Neuron 97, 1168–1176, March 7, 2018 1173
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Figure 6. Effects of Optogenetic Inactivation of POA- and RPA-Projecting DMH Galaninergic Neurons

(A) Schematic of optogenetic inhibition of POA-projecting DMH galaninergic neurons.

(B) An example experiment showing EEG power spectrogram, EMG trace, and brain states (color coded). Purple shading, laser stimulation period.

(C) Percentage of time in NREM, REM, or wake state before, during, and after laser stimulation (purple shading), averaged from 6 mice. Shading of each

trace, ±SEM. The percentage of NREM/REM transitions was 10.8% during laser and 5.8% during the 1-min period immediately before laser.

(D–F) Similar to (A)–(C), for optogenetic inhibition of RPA-projecting neurons (n = 4 mice). The percentage of NREM/REM transitions was 1.5% during laser

and 5.4% during the 1-min period immediately before laser.

See also Figure S6.
2015). Such whole-brain mapping will provide an anatomical

blueprint to guide functional identification of the REM- and

NREM-sleep-related inputs. Another useful approach is to

combine retrograde labeling and gene expression profiling to

identify molecular markers specific for the POA- and RPA-

projecting populations (Chung et al., 2017). Uncovering the ge-

netic identity of each population will greatly facilitate selective

targeting of these neurons for further circuit analysis.

Our results demonstrate a striking circuit motif in which two

groups of neurons, residing in the same nucleus and using the

same neurotransmitters (both GABA and galanin), promote two

mutually exclusive brain states. The spatial intermingling be-

tween these two groups raises the intriguing possibility of local

reciprocal inhibition, and their physical proximity could greatly

improve the efficiency of the neuronal circuit in regulating the

switch between REM and NREM sleep.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Green Fluorescent Protein (GFP) Antibody Aves Labs GFP-1020; RRID: AB_10000240

Bacterial and Virus Strains

AAV2-EF1a-DIO-ChR2–eYFP University of North Carolina Vector Core N/A

AAV2-EF1a-DIO–eYFP University of North Carolina Vector Core N/A

AAV1-Syn-DIO-GCaMP6f University of Pennsylvania Vector Core AV-1-PV2819

rAAV2-retro-EF1a-DIO-ChR2-eYFP This paper Tervo et al., 2016

rAAV2-retro-EF1a-DIO-iC++-eYFP This paper Tervo et al., 2016

rAAV2-retro-EF1a-DIO-GCaMP6s This paper Tervo et al., 2016

rAAV2-retro-EF1a-DIO-mCherry This paper Tervo et al., 2016

rAAV2-retro-EF1a-DIO-eGFP This paper Tervo et al., 2016

RV-DG-eGFP+EnvA This paper Miyamichi et al., 2011

AAV2-EF1a-DIO-TVA-tdTomato This paper Miyamichi et al., 2011

Experimental Models: Organisms/Strains

GAL-Cre mice GENSAT KI87; RRID: MMRRC_031060-UCD

GAD2-Cre mice Jackson Laboratory 010802; RRID: IMSR_JAX:010802

Software and Algorithms

MATLAB MathWorks R2016b

nVista HD software Inscopix N/A

Mosaic Inscopix 1.2

OpenEx software TDT N/A

ImageJ NIH https://imagej.nih.gov/ij/

Other

nVista system Inscopix Version 1

GRIN lens Inscopix 1050-002179

TDT system TDT 3

TDT amplifier TDT RZ5

Nanozoomer Hamamatsu N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yang Dan

(ydan@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the Animal Care and Use Committee at the University of California, Berkeley. Opto-

genetic manipulation and viral tracing experiments were performed in male or female GAL-Cre mice (GENSAT, stock number KI87).

Calcium imaging experiments were performed in male or female GAL-Cre mice and GAD2-Cre mice (Jackson Laboratory, stock

numbers 010802). Animals were housed on a 12-hr dark/12-hr light cycle (light on between 7:00 and 19:00). Animals with implants

for EEG/EMG recordings, optogenetic stimulation or calcium imaging were housed individually. Adult (6- to 12-week old) mice were

used for surgery.

For optogenetic experiments, GAL-Cre mice were randomly assigned to control (injected with AAV expressing eGFP) and exper-

imental groups (injected with AAV expressing ChR2-eYFP or iC++-eYFP). For optogenetic, imaging, and rabies-mediated tracing

experiments, GAL-Cre mice were randomly assigned to POA- or RPA- retrograde experiments. No randomization was used for
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calcium imaging (for both GAL-Cre and GAD2-Cre mice) and AAV anterograde tracing (GAL-Cre mice). Investigators were not

blinded to animal identity and outcome assessment.

METHOD DETAILS

Surgical Procedures
Adult mice were anaesthetized with isoflurane (5% induction, 1.5% maintenance) and placed on a stereotaxic frame. Body temper-

ature was kept stable throughout the procedure with a heating pad. After asepsis, the skin was incised to expose the skull, and the

overlying connective tissue was removed. A craniotomy (0.5-1 mm diameter) was made for virus injection, optical fiber implantation,

or GRIN lens implantation. The stereotaxic coordinates were as follows. DMH: anteroposterior (AP) –1.5 mm, mediolateral (ML)

0.3 mm, dorsoventral (DV) 4.8-5.0 mm; POA: AP 0 mm, ML 0.3 mm, DV 5.0-5.2 mm; RPA: AP –6 mm, ML 0 mm, DV 5.6-5.8 mm.

The following viral vectors were used in this study. AAV2-EF1a-DIO-ChR2–eYFP, AAV2-EF1a-DIO–eYFP (produced by University

of North Carolina Vector Core), AAV1-Syn-DIO-GCaMP6f (University of Pennsylvania Vector Core, �1012 vector genomes per

milliliter; injection after 10 3 dilution), rAAV2-retro-EF1a-DIO-ChR2-eYFP, rAAV2-retro-EF1a-DIO-iC++-eYFP, rAAV2-retro-EF1a-

DIO-GCaMP6s, rAAV2-retro-EF1a-DIO-mCherry, rAAV2-retro-EF1a-DIO-eGFP, AAV2-CAG-DIO-TVA-mCherry (1012 to 1013 vector

genomes per milliliter; AAV preparation followed previously reported protocol (Maheshri et al., 2006; Zhang et al., 2016)) and RV-DG-

eGFP+EnvA (108 to 109 vector genomes per milliliter; preparation followed previously reported protocol (Osakada and Callaway,

2013; Zhang et al., 2016)). For injection, virus was loaded into a sharp micropipette mounted on a Nanoject II attached to a micro-

manipulator and slowly injected into the target area (for imaging, 500 nL unilateral, into DMH, POA or RPA; for optogenetic activation

of DMH galaninergic neurons or their axons, 500 nL/hemisphere, bilateral, into the DMH; for optogenetic manipulation of POA-

projecting neurons, 500 nL/hemisphere, bilateral, into the POA; for optogenetic manipulations of RPA-projecting neurons, 600 nL

into the RPA). To trace the axon collaterals of subgroups of DMH galaninergic neurons projecting to either the POA or the RPA,

AAV2-CAG-DIO-TVA-mCherry was first injected into the DMH (500 nL, unilateral) of GAL-Cre mice. Three weeks later, RV-DG-

eGFP+EnvA (500 nL) was injected into the POA or RPA of these mice.

For EEG and EMG recordings, a reference screw was inserted into the skull on top of the cerebellum. Two stainless steel screws

were inserted into the skull 1.5 mm from midline and 1.5 mm anterior to the bregma, and two others were inserted 3 mm from the

midline and 3.5 mm posterior to the bregma. One EMG electrode was inserted into the neck musculature. Insulated leads from

the EEG and EMG electrodes were soldered to a pin header, which was secured to the skull using dental cement.

For calcium imaging, mice were implanted with a GRIN lens (600 mm diameter, 7.3 mm long, Inscopix). A 600 mm diameter optical

fiber (Thorlabs) with sharpened tip was inserted into a polyimide tube (625 mm diameter, cut to 7.3 mm, Vention) and implanted to

200 mm above the target brain area. The polyimide tube was then secured to the skull using dental cement, and the optical fiber

was retracted. The GRIN lens was then inserted through the polyimide tube into the target area. A heat-shrinkable tube with paper

tape above was used as protective cap to cover the GRIN lens. After >3 weeks, the tape was removed to expose the GRIN lens and a

miniaturized, single-photon, fluorescence microscope (Inscopix) was lowered over the implanted GRIN lens until the GCaMP6

fluorescence was visible under illumination with the microscope’s LED. The microscope’s baseplate was then secured to the skull

with dental cement darkened with carbon powder for subsequent attachment of the microscope to the head. After recovery from

surgery, we did not observe any gross behavioral abnormality, and these mice exhibited normal sleep–wake cycles. After surgery,

mice were allowed to recover for at least 2 weeks before experiments.

For optogenetic manipulations, mice were implanted bilaterally with optical fibers. After surgery, mice were allowed to recover for

at least 2 weeks before experiments.

Polysomnographic Recordings
EEG and EMG electrodes were connected to flexible recording cables via a mini-connector, and recordings were made in the ani-

mal’s home cage placed in a sound-attenuated box. Recordings started after at least 1 hr of habituation after the experimenter con-

nected the cables (which could disrupt the natural propensity for sleep). All signals were acquired using TDT RZ5 amplifier (bandpass

filter, 1–750 Hz; sampling rate, 1,500 Hz). We used the difference between the voltage potentials recorded from the EEG electrode

and the reference electrode as EEG signal and the difference between the potentials from the EMGelectrode and reference electrode

as EMG signal.

Optogenetic Manipulations
We performed optogenetic manipulation experiments 4 to 6 weeks after injection of AAV expressing ChR2. Recordings took place

during the light cycle (10:00 to 19:00) in the mouse’s home cage placed within a sound-attenuating chamber. For optogenetic ma-

nipulations of DMH neurons, each trial consists of a 20 Hz pulse train lasting for 120 s (for optogenetic activation) or constant light

lasting for 60 s (for optogenetic inhibition) using a blue 473-nm laser (6 mW at fiber tip, Shanghai Laser). The inter-trial interval was

randomly distributed, from 5 to 30 min, controlled by the TDT system.
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Calcium Imaging
Imaging sessions took place during the light cycle in the home cage placed within a sound-attenuated chamber. The animal was

briefly anesthetized with isoflurane to secure the microscope to the baseplate and to focus it to a given field of view. The animal

was then allowed to recover from anesthesia and habituate in their home cage for at least 30 min prior to imaging. Calcium activity

was acquired using the nVista hardware and nVista HD software (Inscopix), with a 5 Hz image acquisition rate using 0.2-0.7 mW illu-

mination. EEG and EMGwere acquired using TDT system-3 controlled byOpenEx software (TDT) (see above). An output signal (5 Hz)

delivered from the Inscopix system to the TDT system throughout the recording session was used to synchronize the timing between

the imaging and EEG/EMG recordings. Each recording session lasted 30-120 min, and for each mouse the data from a single

recording session was included. Although GCaMP6f has faster calcium dynamics, the fluorescence signals are weaker than

GCaMP6s. Since the expression efficiency of AAV-retro injected at the projection target is weaker than that of AAV1 injected in

the DMH, we chose to use GCaMP6s for the imaging experiments involving retrograde labeling.

Histology and Immunohistochemistry
Mice were deeply anesthetized and transcardially perfused with 0.1M PBS followed by 4% paraformaldehyde in PBS. After removal,

brains stayed overnight in 4% paraformaldehyde. For cryoprotection, brains were stored in 30% sucrose (w/v) in PBS solution for at

least one night. Brains were sliced in 50 mm coronal sections using a cryostat (Thermo Scientific). For immunohistochemistry,

non-specific binding sites were blocked by incubating the brain sections in 10% goat serum (Millipore) in PBST (0.3% Triton

X-100 in PBS). To amplify the fluorescence of axon fibers expressing eYFP or eGFP we applied antibodies for GFP (GFP-1020,

Aves Labs, 1:1,000). Brain sections were incubated with the primary antibody diluted in blocking solution for two nights. A

species-specific secondary antibody conjugated with green Alexa fluorophore (1:1,000; goat anti chicken) was diluted in PBS and

applied for 2 hr at room temperature. Fluorescence images were taken using 20 3 , 0.75 NA objective in a high-throughput slide

scanner Nanozoomer 2.0 RS (Hamamatsu), a fluorescence microscope (Olympus BX53) or a confocal microscope (LSM 710, Zeiss).

QUANTIFICATION AND STATISTICAL ANALYSIS

Polysomnographic Analysis
Spectral analysis was carried out using fast Fourier transform, and NREM, REM and wake states were semi-automatically classified

using a custom-written sleep analysis software (MATLAB,MathWorks) for each 5 s epoch (wake: desynchronized EEG and high EMG

activity; NREM sleep: synchronized EEG with high power at 0.5–4 Hz and low EMG activity; REM sleep: desynchronized EEG with

high power at theta frequencies (6–9 Hz) and low EMG activity) (Xu et al., 2015). Brain state classification was validated by human

after automatic scoring. For optogenetic experiments, we aligned all trials from the same experimental group of mice by the time

of laser stimulation to quantify the effect.

Transition Analysis
To quantify transition probabilities between brain states, we discretized time into 10 s bins. The brain state of each bin was classified

based on EEG and EMG recordings (see Polysomnographic Analysis above). We then aligned all laser stimulation trials from all N

mice by the onset of laser stimulation at time 0. To determine the transition probability from state X to Y for time bin i, Pi(X, Y), we

first determined the number of trials (n) in which the animal was in brain state X during the preceding time bin i-1. Next, we identified

the subset of these trials (m) in which the animal transitioned into state Y in the current time bin i. The transition probability Pi(YjX)was

computed as m/n. In Figures 4D and 4H, each bar represents the transition probability averaged across six consecutive bins. To

compute the baseline transition probabilities, we averaged across all time bins within 240 s before laser onset.

Calcium Imaging Analysis
Imaging data were processed in Mosaic (Inscopix) and MATLAB (MathWorks). First, the acquired images were spatially down-

sampled by a factor of 4. To correct for lateral motion of the brain relative to the GRIN lens, we used the motion correction function

inMosaic, as in previous studies (Mukamel et al., 2009; Resendez et al., 2016). Regions of interest (ROIs) were then identified using an

established algorithm based on principal and independent component analyses (PCA-ICA) followed by visual inspection (Mukamel

et al., 2009; Resendez et al., 2016). The pixel intensities within each ROI were averaged to create a fluorescence time-series. For

individual neurons, the Z score was calculated as the difference between the calcium activity at each bin and the averaged calcium

activity of the whole recording time, divided by the standard deviation of the whole recording time.

Activity map was computed as follows:

mx;y =
D��

fx;yðtÞ � fx;y
���

fx;y + f
��3

w

E
t

wheremx,y is the activity at pixel (x,y), brackets indicate averaging, fx,y(t) is the fluorescence value at frame t, fx,y is the average of fx,y(t)

over time, f is the average of fx,y over w, and w is a sliding window of 2 3 2 pixels (�5 3 5 mm)(Pinto and Dan, 2015).
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Axon Arborization Analysis
Consecutive 50 mm coronal sections were collected and stained using Hoechst. Slides were scanned using a Nanozoomer

(Hamamatsu). All images were acquired using identical settings and were analyzed using ImageJ and MATLAB as previously

described (Chung et al., 2017). Images were background subtracted, thresholded, and pixels above this threshold were interpreted

as positive signals. Pixels at the tissue borders with fluorescence artifact were excluded from the analysis. Each brain sample was

aligned to the Allen Mouse Brain Atlas (Oh et al., 2014). The eGFP-labeled axon signal was quantified for each region and averaged

across samples (Do et al., 2016; Zhang et al., 2016).

Statistics
Statistical analysis was performed using MATLAB. The selection of statistical tests was based on reported previous studies. All

statistical tests were two-sided. The 95% confidence intervals for brain state probabilities were calculated using a bootstrap

procedure: for an experimental group of n mice, with mouse i comprising mi trials, we repeatedly resampled the data by randomly

drawing for each mouse mi trials (random sampling with replacement). For each of the 10,000 iterations, we recalculated the mean

probabilities for each brain state across the n mice. The lower and upper confidence intervals were then extracted from the distribu-

tion of the resampledmean values. To test whether a given brain state was significantly modulated by laser stimulation, we calculated

for each bootstrap iteration the difference between the mean probabilities during laser stimulation and the baseline values without

laser stimulation (identical duration to laser stimulation). From the resulting distribution of difference values, we then calculated a p

value to assess whether laser stimulation significantly modulated brain states or transitions between brain states. The investigators

were not blinded to allocation during experiments and outcome assessment.
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