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Abstract 31 

Understanding the evolutionary mechanisms underlying the maintenance of individual 32 

differences in behavior and physiology is a fundamental goal in ecology and evolution. The 33 

Pace-of-life syndrome hypothesis is often invoked to explain the maintenance of such within-34 

population variation. This hypothesis predicts that behavioral traits are part of a suite of 35 

correlated traits that collectively determine an individual’s propensity to prioritize reproduction 36 

or survival. A key assumption of this hypothesis is that these traits are underpinned by genetic 37 

trade-offs among life-history traits: genetic variants that increase fertility, reproduction and 38 

growth might also reduce lifespan. We performed a systematic literature review and meta-39 

analysis to summarize the evidence for the existence of genetic trade-offs between five key life-40 

history traits: survival, growth rate, body size, maturation rate, and fertility. Counter to our 41 

predictions, we found an overall positive genetic correlation between survival and other life-42 

history traits and no evidence for any genetic correlations between the non-survival life-history 43 

traits. This finding was generally consistent across pairs of life-history traits, sexes, life stages, 44 

lab vs field studies, and narrow- vs broad-sense correlation estimates. Our study highlights that 45 

genetic trade-offs may not be as common, or at least not as easily quantifiable, in animals as 46 

often assumed. 47 

 48 

Introduction  49 

Individual animals consistently differ in their behavioral and physiological traits and these 50 

differences can have important fitness consequences. A fundamental goal in ecological and 51 

evolutionary research is to understand the mechanisms that maintain such phenotypic variation 52 

within populations. Life-history trade-offs have been central to explaining the maintenance of 53 

phenotypic variation (MacArthur & Wilson, 1967; Pianka, 1970; S. C. Stearns, 1989) and have 54 

been very successful at explaining variation present at the among-species level (Healy et al., 55 

2019; Promislow & Harvey, 1990). This classic life-history theory predicts that species differ in 56 

their ‘pace of life’ due to differential resource allocation; correlational selection subsequently 57 

generates a suite of traits involved with a particular strategy. In the past 10-15 years this classic 58 

theory has been adapted to explain variation, particularly in behavioral traits, at the within-59 

species level. The modern ‘Pace-of-life syndrome’ (POLS) hypothesis, predicts that individuals 60 



also differ in their ‘paces-of-life’ and those that have faster paces-of-life grow faster, have 61 

shorter lives, reproduce earlier, have faster metabolic rates, and also exhibit riskier behaviors, 62 

compared to individuals with slower paces-of-life (Montiglio et al., 2018; Réale et al., 2010; 63 

Wolf et al., 2007; Figure 1). Originally developed to explain variation at the among-species 64 

level, life-history trade-offs are thus also invoked as evolutionary explanations for the 65 

maintenance of individual variation in whole suites of traits including life-history, physiological 66 

and behavioral traits at the within-species level.   67 

A key assumption in explaining trade-offs among life-history traits is that individuals have 68 

limited resources, creating resource allocation compromises. Importantly, resolutions to these 69 

allocation challenges are predicted to be resolved at the genetic level: traits that allow individuals 70 

to invest more heavily in current fitness goals (e.g., higher growth rates) are predicted to come at 71 

the cost of future investments (e.g., lower future survival rate, resulting in a shorter lifespan). 72 

These negative correlations can come about through shifts in genetic architecture from 73 

antagonistic pleiotropy or linkage disequilibrium. Recent meta-analyses summarizing studies of 74 

phenotypic correlations between life-history and behavioral traits have, however, shown a lack of 75 

general agreement in the direction of these correlations (Moiron et al., 2020; Royauté et al., 76 

2018). In fact, Haave-Audet et al.’s meta-analysis found a positive, instead of negative, overall 77 

phenotypic correlation between survival and reproduction (2022). While this may appear 78 

counter-intuitive, theory demonstrates that even if mechanistic trade-offs exist at the genetic 79 

level, correlations at the phenotypic level can appear as positive or zero if individuals have 80 

differential resource acquisition  (van Noordwijk & de Jong, 1986a). Increasing resource 81 

acquisition can allow some individuals to acquire more, or better quality, resources than others in 82 

absolute terms, allowing them to both grow faster and live longer than individuals with fewer or 83 

poorer overall resources (Laskowski et al., 2021; Reznick et al., 2000). This can lead to a 84 

positive correlation at the among-individual level, even if an allocation trade-off exists at the 85 

additive genetic level. Importantly, manipulating or controlling resource acquisition is rare in 86 

most empirical studies. It is largely impossible in most field studies, and under laboratory 87 

settings food resources are typically provided ab libitum meaning individuals may not be faced 88 

with limiting resources at all, further obscuring the apparent presence of functional allocation 89 

trade-offs. Therefore, the key assumption of the Pace-of-life syndrome hypothesis relies on the 90 



presence of functional trade-offs among life-history traits, which is best tested at the genetic 91 

level.  92 

Many studies have quantified genetic correlations among life-history traits; however, the 93 

magnitude and general direction of these correlations is not yet clear. The most recent meta-94 

analysis on genetic correlations among life-history traits was performed in 1996 (Roff, 1996), 95 

and it showed that while the overall genetic correlation between life-history traits was positive, 96 

there was a greater proportion of correlations that were negative compared to correlations 97 

between other traits such as morphology or behavior, suggesting that genetic trade-offs may be 98 

more likely between life-history traits. Nearly 30 years later, our goal is to update and expand on 99 

this previous work to explicitly test whether key life-history traits exhibit genetic trade-offs, the 100 

key assumption of the Pace-of-life syndrome hypothesis explaining maintenance of phenotypic 101 

variation at the within-species level and life-history theory more generally. We expect to see 102 

negative genetic correlations between traits related to survival and reproduction, and positive 103 

correlations between traits that contribute to similar fitness proxies such as between growth rates 104 

and rate of sexual maturation (i.e., faster growth will correlate positively with earlier sexual 105 

maturation; Figure 1).  106 

 107 

Methods  108 

We compiled genetic correlations among life-history traits from studies published since 1995 as 109 

we assumed studies published before were included in Roff (1996). We focused on five key life-110 

history traits: survival (e.g., longevity), growth rate (e.g., change in the body size between 111 

developmental intervals), body size, maturation rate (e.g., reversed age to maturation), and 112 

fertility (e.g., number of offspring). We recorded body size because it could reflect growth in 113 

some cases (e.g., higher growth rate leads to larger body size within the same time interval). We 114 

predicted an overall negative genetic correlation between survival and these other life-history 115 

traits such that increases in survival or longevity are associated with slower growth rates, slower 116 

rates of sexual maturation and lower fertility (prediction 1, Figure 1), and a positive genetic 117 

correlation between other life-history traits (prediction 2, Figure 1) such that faster growth rates, 118 

faster rates of sexual maturation and larger body sizes would all be associated positively with 119 

each other and with greater fertility. We also explored several moderators potentially influencing 120 



the magnitude and direction of the genetic correlations, including sex (i.e., male, female, both), 121 

life stage (i.e., adults, non-adults, cross), experimental design (i.e., family design, pedigrees, 122 

genetic lines), lab vs field studies, and narrow- vs broad-sense estimates. We included sex as a 123 

potential moderator because selection pressures often differ between males and females (Janicke 124 

et al., 2016; Winkler et al., 2021) though the predicted direction of these effects on the genetic 125 

correlations between life-history traits could be equivocal given that both sexes need to 126 

economize their resources to the same extent. On the one hand, we may expect stronger genetic 127 

correlations in females, if we consider that they invest more heavily in their reproduction through 128 

the production of larger gametes, but on the other hand, in some species, males invest heavily in 129 

secondary sexual characteristics and may thus show tighter trade-offs among life-history traits. 130 

We also tested for effects of life stage (juvenile vs adult) as selection pressures may be stronger 131 

on juveniles before they have had a chance to reproduce. We included lab vs field setting as a 132 

moderator because individuals might be exposed to different environments depending on the 133 

experimental conditions (e.g., presence of predators or more limiting resources in field studies). 134 

Finally, we also included experimental design and narrow- vs broad-sense estimates as 135 

moderators to explore whether they may influence the magnitude of the genetic correlations and 136 

the uncertainty of the estimates. 137 

(a) Study selection, eligibility criteria and data collection 138 

We performed a systematic literature review following the Preferred Reporting Items for 139 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines in ecology and evolutionary 140 

biology (O’Dea et al. 2021). We performed our search in Scopus and Web of Science in June 141 

2021, and included articles published from 1995 on. In Scopus, we used the following search 142 

string: TITLE-ABS-KEY(“life-histor*” OR “life histor*”) AND (“genetic” AND “correlate*” 143 

OR “covar*”). We restricted subject area to Agricultural and Biological Sciences, Biochemistry, 144 

Genetics, and Molecular Biology, Environmental Science, and Neuroscience. In Web of Science, 145 

we covered the following databases: Science Citation Index Expanded – 1945-present, Social 146 

Sciences Citation Index – 1956-present, Arts &Humanities Citation Index – 1975-present, 147 

Conference Proceedings Citation Index-Science – 1990-present, Conference Proceedings 148 

Citation Index – Social Science & Humanities – 1990-present, Book Citation Index – Science – 149 

2005-present, Book Citation Index - Social Sciences & Humanities – 2005-present, and 150 

Emerging Sources Citation Index – 2015-present; and our search string was: TS=(“life-histor*” 151 



OR “life histor*”)AND(“genetic” AND “correlate*” OR “covar*”). We restricted subject area 152 

to Ecology, Evolutionary Biology, Genetics heredity, Zoology, Marine freshwater biology, 153 

Biology, Fisheries, Behavioral sciences, Biodiversity Conservation, Environmental Sciences, 154 

Entomology, Ornithology, Physiology, Mathematical Computational Biology, Parasitology, 155 

Limnology, Developmental Biology, Toxicology, Demography, Endocrinology Metabolism, 156 

Neurosciences, Anatomy Morphology, Infectious Biseases, Paleontology, and Reproductive 157 

Biology. We limited our search to papers published in English. 158 

The title and abstract of all studies (n = 3490) were independently screened for eligibility by 159 

three authors (K.L.L., M.M., and P.T.M.) using the software Rayyan (Ouzzani et al., 2016) and 160 

using the following inclusion/exclusion criteria: the study should (1) be empirical, (2) use non-161 

domesticated animals (studies on humans were also excluded), (3) include at least one life-162 

history trait at any life stage, e.g., survival, fertility, growth rate, body size, maturation rate, or 163 

any other fitness proxy, and (4) explicitly mention quantitative genetic components such as 164 

heritability or genetic variance, but excluding fixation index (FST), heterozygosity matrix, and 165 

SNP polymorphism. In addition, (5) we excluded studies that measured the genetic components 166 

at the population or species level. To increase the reproducibility and reliability of the process, 167 

three authors (K.L.L., M.M., and P.T.M.) screened the titles and abstracts of the same 100 168 

studies to calibrate the agreement on the inclusion/exclusion criteria before proceeding with the 169 

screening of the remaining 3390 studies.  170 

All studies that passed the title-and-abstract screening (n = 433) were full-text screened by one 171 

author (C.C.), but prior to that, three authors (C.C., K.L.L. and M.M.) calibrated the agreement 172 

on the full-text inclusion/exclusion criteria using 50 studies. For the full-text screening we had an 173 

additional set of five inclusion/exclusion criteria in addition to the title-and-abstract ones (1-5). 174 

We excluded studies that: (6) only studied one life-history trait measurement or only multiple 175 

measurements on body size proxies, (7) did not report genetic correlations or covariances 176 

between life-history traits, (8) measured life-history traits under extreme conditions, such as 177 

extreme temperature or humidity, under starvation, or pathogen infection, because traits 178 

measured under extreme conditions might mostly reflect physiological responses to stress; and 179 

(9) used hybrid animals (e.g., mule). Lastly, (10) we excluded genetic correlations measured 180 

across environments or across sexes as it is unclear how we would expect the genetic correlation 181 

to change across contexts (e.g., Sgrò & Hoffmann, 2004). Data for all studies that passed the 182 



full-text screening (n = 151) were extracted by one author (C.C.), but only after three authors 183 

(K.L., M.M., and A.S-T) had double-checked 5 studies each to ensure the reliability of the data 184 

extraction procedure. The PRISMA flowchart showing the number of studies included and 185 

excluded, and the exclusion reasons at each stage of the systematic review is shown as 186 

Supplementary Figure 1. The full list of included and excluded studies is available in 187 

Supplementary Data 1. The checklist from PRISMA-EcoEvo is available in Supplementary Data 188 

2. The full dataset used in our analyses is available in Supplementary Data 3 and 4 (meta-data). 189 

Supplementary Note 1 includes the knit Rmarkdown file re-creating all results presented in the 190 

manuscript; Supplementary Note 2 presents a sensitivity analysis (see section ‘Calculation of 191 

effect sizes and sampling variances’). All these data are also deposited online at 192 

https://doi.org/10.5281/zenodo.8075879.  193 

(b) Data coding  194 

Proxies and trait categorization. For each genetic correlation we recorded the life-history traits 195 

involved and categorized them as: survival, growth rate, body size, maturation rate, or fertility 196 

(Table 1). We excluded measures that combined more than one life-history trait (e.g., survival 197 

and fertility combined in a principal component analysis). To make genetic correlations 198 

comparable across studies, their signs were coded so that a positive genetic correlation 199 

represented that a genetic basis with a positive effect on one life-history trait also has a positive 200 

effect on the other trait (i.e., survive longer, reproduce more, grow faster, mature earlier, bigger 201 

body size), whereas a negative correlation represented that the genetic basis that benefits one 202 

trait has a cost to the other trait. For example, higher mortality means lower survival, thus, we 203 

reversed the sign of any genetic correlation between mortality and number of offspring, but not 204 

for those between longevity and number of offspring.  205 

Field or lab. We recorded whether the experiment was conducted in the field or in the lab 206 

(including any artificial environments such as outdoor tanks and enclosures).  207 

Experimental design. We categorized the experimental design of each study into three: genetic 208 

lines, family design, or pedigree. Genetic lines included studies using clones or genotypes, 209 

whereas family designs included half- and full-sib designs, and parent-offspring pairs. We 210 

considered studies using individual information from a pedigree (e.g., relatedness matrix using 211 

https://doi.org/10.5281/zenodo.8075879


data from parents and grandparents) as a pedigree design. Design was used to determine the unit 212 

of replication at which to calculate the sampling variance of each genetic correlation (see below).  213 

Sample size. We recorded sample sizes at multiple levels if provided, including number of: (i) 214 

families/dams/sires, (ii) individuals or offspring, and (iii) genetic lines or clones. If only degrees 215 

of freedom were provided, we decided to assign sample size as the degrees of freedom plus one 216 

for all models regardless of model structure because it was often difficult to determine the exact 217 

sample size from degrees of freedom based on model structure (e.g., mixed-effects models).  218 

Narrow- or broad-sense. We recorded whether the genetic correlations were calculated as 219 

additive genetic correlations (narrow-sense) or broad-sense genetic correlations (additive and 220 

non-additive).  221 

Sex. We recorded the sex of the measured individuals (i.e., female or male), using “both” when 222 

the authors either included individuals of both sexes or were unable to tell the sexes apart (e.g., 223 

measures taken before the individuals have reached adulthood). Note that contrary to the other 224 

life-history traits, fertility was mostly a female trait in our database (except for extra-pair and 225 

within-pair reproduction, sperm competitiveness, and mating success). In those cases where one 226 

of the life-history traits involved in the genetic correlation was measured for “both” sexes and 227 

the other trait measured for either females or males only, we used the latter to categorize the 228 

genetic correlation as “female” or “male”, respectively. We excluded cross-sex (i.e., across 229 

males and females) genetic correlations.  230 

Life stage. We recorded the life stage of the measured individuals (i.e., non-adult or adult), using 231 

“both” when authors either mixed individuals at both life stages or measured across life stages 232 

(from non-adult to adult). Note that the categorization of life stages is strongly linked to the life-233 

history trait itself. For example, fertility can only be measured at the adult stage and maturation 234 

rates can only be measured at non-adult stages, whereas longevity proxies could be considered as 235 

either non-adult stages (e.g., larval viability) or “both” stages (e.g., longevity). In cases where the 236 

trait pairs were measured at different life stages, we assigned the genetic correlation as “cross” 237 

life stages. Note also that the life stage variable may be linked with sex; for example, non-adults 238 

are likely to be “both” sexes.  239 

Genetic correlation or (co)variance. Our effect sizes of interest for the meta-analytic models 240 

were genetic correlations, which we preferentially extracted from the text and tables of the 241 



included studies. However, if the information was only provided in figures (e.g., barplots), we 242 

used the software WebPlotDigitizer (Rohatgi, 2022) to extract and calculate those genetic 243 

correlations. If the study only provided genetic (co)variances, we calculated their corresponding 244 

genetic correlations as: 245 

𝑟𝐺𝑥𝑦 =
𝐶𝑜𝑣𝑥𝑦

√𝜎𝑥 
2 𝜎𝑦

2
 

Equation 

(1) 

  246 

where 𝑟𝐺𝑥𝑦 is the genetic correlation between life-history trait 𝑥 and 𝑦, and 𝐶𝑜𝑣𝑥𝑦 is the genetic 247 

covariance between them. 𝜎𝑥 
2  and 𝜎𝑦

2 are the genetic variances of the respective life-history 248 

traits.  249 

Other variables. We recorded the year of publication of each study to test for decline effects. We 250 

also recorded the year when the experiments took place, the statistical approach used in each 251 

study to estimate each genetic correlation (i.e., animal model, family mean correlations, genetic 252 

line mean correlations or matrix ‘by hand’ calculations), and the geographical location.  253 

 254 

(c) Calculation of effect sizes and sampling variances  255 

We transformed all genetic correlations (rGxy) to Fisher's Zr (Hedges & Olkin, 1985), which, 256 

contrary to the correlations, is unbounded and normally distributed, following: 257 

𝑍𝑟 =
1

2
𝑙𝑛

(1 + 𝑟𝐺)

(1 − 𝑟𝐺)
 

Equation 

(2) 

 258 

Before applying the Fisher's Zr transformation, we excluded any rGxy ≤ -1 and ≥ 1 as well as 259 

genetic variances < 0 from the analyses because 1) these estimates are likely unreliable and 2) 260 

the former cannot be transformed to Zr (see Equation (2)). A potential solution could have been 261 

to artificially change those ≤ -1 and ≥ 1 values to a value within the -1 < value < 1 bound; 262 

however, we decided against it because our choice of value would contribute to substantial noise 263 

in the dataset. For example, converting 1 to 0.9 yields a Zr value of 1.47, while converting 1 to 264 

0.99 yields a Zr value 2.65.  265 



The sampling variance in Zr (Hedges & Olkin, 1985) was calculated as: 266 

𝑉𝑍𝑟 =
1

(𝑛 − 3)
 

Equation 

(3) 

 267 

where the sample size (n) was determined based on the type of experimental design (see section 268 

‘Design’ and ‘Sample Size’): (1) For genetic line designs, we used the number of genetic lines as 269 

the sample size. When these studies used multiple genetic lines with several crossings within or 270 

between lines, we still used the number of genetic lines as the sample size because the genetic 271 

lines, instead of the number of families, best captures the amount of genetic variation in the study 272 

population that generates the variation among families. (2) For family designs, we used the 273 

number of full families as the sample size, but when this was not provided, we used the number 274 

of dams, which reflects the number of full families, or if that was not provided either, we used 275 

the number of sires. (3) For pedigree designs, we used the number of individuals as the sample 276 

size. In cases where a study provided a range for the sample size (e.g., 100 to 200 individuals), 277 

we use the smaller number (i.e., 100) for the analyses to err on the conservative side. Lastly, in 278 

cases where the sample sizes differed between the two life-history traits used to calculate the 279 

genetic correlation, we used the smaller number (e.g., in a genetic correlation between growth 280 

rate and survival, 200 individuals were used to measure growth rate, but only 100 individuals 281 

were used for survival, then 100 was used as the sample size for this genetic correlation). As the 282 

number of individuals in the pedigree designs tends to be much larger than the number of genetic 283 

lines or families, we conducted a sensitivity analysis where the sample sizes for the pedigree 284 

designs were natural-log transformed prior to calculating VZr (results were robust to this 285 

sensitivity analysis; see Supplementary Note).    286 

(d) Meta-analysis  287 

All analyses were performed in R v.4.2.2 (R Core Team, 2021) using the R package ‘metafor’ 288 

v.3.4 (Viechtbauer, 2010). To test our predictions (Figure 1), we ran two sets of analyses, one for 289 

survival pairs (Figure 1, Prediction 1) and the other one for non-survival pairs (Figure 1, 290 

Prediction 2).  291 



To estimate the overall mean effect size (i.e., the meta-analytic mean) for each prediction, we ran 292 

phylogenetic multilevel intercept-only models that included phylogeny, species, study identity, 293 

group identity, and a unit-level observation identity as random effects using the function 294 

rma.mv() from the R package ‘metafor’. We extracted the phylogenetic information from the 295 

Open Tree of Life  database using the R package ‘rotl’ v.3.0.11 (Michonneau et al. 2016). We 296 

computed branch lengths using the Grafen method with height set to 1 using the R package ‘ape’ 297 

v.5.4.1 (Paradis and Schliep 2019), and the phylogenetic variance-covariance matrix was then 298 

added as a random effect to all models. Supplementary Figure 2 shows the phylogenetic 299 

relationship of species. Species was also added as a random effect because studies using the 300 

same species are likely to have similar estimates regardless of phylogeny (Cinar et al., 2022). 301 

Study identity was added as a random effect because some studies provided multiple genetic 302 

correlations. When a study provided multiple genetic correlations for different experiments (e.g., 303 

with different environmental conditions), we used group identity to account for such non-304 

independence. Group identity was identical to study identity if the study only provided one 305 

genetic correlation for one pair of traits. We included a unit-level observation identity to model 306 

within-study or residual variance. For the intercept-only models, we provide Q as a measure of 307 

total absolute heterogeneity and I2 as a measure of total relative heterogeneity, which we also 308 

partitioned for each random effect (Nakagawa & Santos, 2012). The 95% confidence intervals 309 

(CI) of I2 were calculated using the function i2_ml() from the R package ‘metaAidR’ v.0.0.0.900 310 

(Lagisz et al., 2022).  311 

To investigate the sources of heterogeneity observed in the intercept-only models (see Results), 312 

we explored several moderators (i.e., variables extracted in the ‘Data coding’ section: trait pairs, 313 

lab vs field, experimental design, sexes, narrow- vs broad-sense, life stages) by running 314 

phylogenetic multilevel meta-regressions with the same random effects structure as the intercept-315 

only models. We ran separate meta-regressions for each moderator (i.e., uni-moderator meta-316 

regressions). We did not run meta-regressions with multiple moderators because moderators 317 

were often correlated (but see section ‘Publication bias’). For these meta-regressions, we 318 

reported the percentage of variation explained by the moderator(s) as R2
marginal (Nakagawa & 319 

Schielzeth, 2013), which was calculated using the function r2_ml() from the R package 320 

‘orchaRd’ v.2.0 (Nakagawa et al., 2021). We performed post-hoc tests for moderators having 321 



more than two levels using the function linearHypothesis() from the R package ‘car’ v.3.1.1 (Fox 322 

& Weisberg, 2019).  323 

We plotted the results from all the models using the function orchard_plot() from the R package 324 

‘orchaRd’ v.2.0 (Nakagawa et al., 2021), and reported the estimates with both their 95% CIs and 325 

their 95% prediction intervals (PIs). The latter incorporate heterogeneity to show the range of 326 

effect sizes to be expected for 95% of similar studies (IntHout et al., 2016). 327 

Some studies calculated multiple genetic correlations from the same exact data using different 328 

methodologies (e.g., different analytical approaches). In these cases, we used only one estimate 329 

and selected it based on the following order of priority: (1) estimates from the model with the 330 

fewest number of variables (i.e., fixed and random effects) included whenever the study provided 331 

estimates from models with different model structures; (2) estimates from a model that 332 

partitioned genetic variances (i.e., animal models) over estimates solely based on correlations 333 

across family means or line means because the latter two could be biased by parental or 334 

permanent environmental effects; (3) estimates from the largest dataset provided if the study also 335 

provided estimates from subset(s); and (4) we arbitrarily selected the second set of estimates 336 

when we could not classify them based on the above criteria (n = 6 studies).   337 

(e) Publication bias  338 

We tested for small-study and decline effects, i.e., reduction in effect size over time, by running 339 

a total of six meta-analytic models, three for the pairs of survival traits and three for the non-340 

survival pairs. These included phylogenetic multilevel uni-moderator meta-regressions with 341 

either standard error (square root of VZr) or mean-centered year of publication as the only 342 

moderator (Nakagawa et al. 2022) for both survival and non-survival pairs. The random effect 343 

structure was identical to the models mentioned above. We also fit ‘all-in’ models following 344 

Nakagawa et al. (2022) which are models that simultaneously include all moderators (pair of 345 

traits, lab vs field, sex, life stage, experimental design, narrow- vs broad-sense, standard error, 346 

and mean-centered year of publication) and corrected for phylogeny to test whether evidence for 347 

publication bias remained after accounting for the heterogeneity explained by all our moderators 348 

combined.  349 

 350 



Results 351 

Our final dataset comprised a total of 1356 genetic correlations from studies published since the 352 

seminal Roff (1996) paper.  353 

Of these, 543 were for correlations between survival and other life-history traits, what we will 354 

call ‘survival pairs’ throughout. These estimates came from 58 studies across 37 species (11 355 

classes, Table 2), with insects (k = 405, n = 39 studies) and particularly the fruit fly Drosophila 356 

melanogaster being the species most commonly studied (k = 153, n = 15 studies). There were a 357 

relatively small number of estimates for the genetic correlation between survival and growth (k = 358 

30, n = 8 studies; Figure 2).  359 

Counter to the key assumption of the Pace-of-life syndrome hypothesis, we did not find support 360 

for an overall negative genetic correlation between survival and other life-history traits, but 361 

instead, an overall positive genetic correlation (Zr = 0.19, 95% CI [0.06 – 0.31], 95% PI [-0.99 – 362 

1.37], Figure 2A). However, both absolute and relative heterogeneity were high, with 7.6% being 363 

attributed to study, 8.7% attributed to experimental group, 17.9% attributed to species, and 364 

64.5% attributed to residual/within-study variance; phylogeny did not account for any 365 

heterogeneity (Table 3). We did not detect statistically significant differences among different 366 

pairs of life-history traits (genetic correlation between: survival and fertility: 0.22, 95% CI [0.07 367 

– 0.36]; survival and growth: 0.22, [-0.04 – 0.49]; survival and maturation: 0.12, [-0.03 – 0.28]; 368 

survival and size: 0.20, [0.04 – 0.35]; p > 0.34 in all post-hoc analyses; Figure 2B, 369 

Supplementary Table 1), and the variation explained by this moderator was negligible (R2
marginal 370 

= 0.4%).  371 

The other 813 genetic correlations were estimated between the other life-history traits not 372 

including survival, what we will call ‘non-survival pairs’. These correlations were collected from 373 

108 studies across 82 species (12 classes, Table 2), with insects (k = 528, n = 66 studies) 374 

providing the most estimates. Interestingly, the rainbow trout Oncorhynchus mykiss also 375 

provided a large number of estimates (k = 97, n = 4 studies). There were relatively few genetic 376 

correlations between growth and fertility (k = 17, n = 5 studies; Figure 2).  For non-survival life-377 

history traits, we found that the overall genetic correlation between them did not statistically 378 

differ from zero (Zr = 0.11, 95% CI [-0.13 – 0.34], 95% PI [-1.16 –1.38], Figure 2C). However, 379 

both absolute and relative heterogeneity were also high: 9.8% was attributed to phylogeny, 380 



30.4% attributed to study, and 59.7% attributed to residual/within-study variance; there was no 381 

heterogeneity attributable to species or group identity (Table 3). Estimates among different pairs 382 

of non-survival life-history traits largely overlapped (correlation between fertility and size: 0.19, 383 

95% CI [-0.01 – 0.39]; growth and fertility: 0.05, [-0.35 – 0.46]; growth and maturation: 0.36, 384 

[0.09 – 0.63]; growth and size: 0.16, [-0.08 – 0.39]; maturation and fertility: 0.19, [-0.02 – 0.40]; 385 

maturation and size: -0.03, [-0.22 – 0.16]; Figure 2D), although the following comparisons 386 

differed statistically: the correlation between fertility and size, maturation and fertility, growth 387 

and maturation, growth and size were all significantly larger than the correlation between 388 

maturation and size (p = 0.002, p = 0.004, p = 0.0004, and p = 0.03, respectively, Figure 2D, 389 

Supplementary Table 2). The variation explained by the moderator “trait pairs” was relatively 390 

small (R2
marginal = 3.5%).   391 

Furthermore, we explored several potential moderators that may explain the high levels of 392 

heterogeneity observed for both survival and non-survival pairs. Overall, results were generally 393 

consistent across moderator levels for genetic correlations between survival pairs (p > 0.14, 394 

Figure 3A, Supplementary Table 3) and genetic correlations between non-survival pairs (p > 395 

0.14, except for the comparison between adult stages and cross stages [p = 0.02]; the 396 

comparisons between females and males and between family and pedigree designs were 397 

marginal [p = 0.054 and p = 0.08 respectively], Figure 3B, Supplementary Table 4). The 398 

moderators explained a relatively small amount of variation for survival pairs (lab vs field: 399 

R2
marginal = 1.4%; sex: R2

marginal = 0.4%; life stage: R2
marginal = 0.09%; experimental design: 400 

R2
marginal = 1.1%; narrow- vs broad sense: R2

marginal < 0.001), and non-survival pairs (lab vs field: 401 

R2
marginal = 1.8%; sex: R2

marginal = 0.7%; life stage R2
marginal = 1.0%; experimental design: R2

marginal 402 

= 1.8%; narrow- vs broad-sense: R2
marginal = 0.5%).  403 

We detected little evidence of small-study effects in both survival pairs (slope of SE = 0.42, 95% 404 

CI [-0.20 – 1.05]; overall meta-analytic mean = 0.11, [-0.05 – 0.28];  p = 0.19; R2
marginal = 1.1%; 405 

Figure 4A) and non-survival pairs (slope of SE = -0.45, [-1.06 – 0.16]; overall meta-analytic 406 

mean = 0.19, [-0.09 – 0.48]; p = 0.15; R2
marginal = 1.1%; Figure 4B). Evidence for an overall 407 

decline in the genetic correlation over time was also seemingly not present for survival pairs 408 

(slope of publication year = 0.05, [-0.04 – 0.13]; overall meta-analytic mean = 0.18, [0.05 – 409 

0.31]; p = 0.27; R2
marginal = 0.6%; Figure 4C) and non-survival pairs and (slope of publication 410 



year = 0.06, [-0.02 – 0.15]; overall meta-analytic mean = 0.1, [-0.11 – 0.31]; p = 0.15; R2
marginal = 411 

1.0%; Figure 4D). These results were confirmed by the ‘all-in’ models (see Supplementary Table 412 

5). 413 

 414 

Discussion  415 

Our meta-analysis indicates a lack of strong evidence for the appearance of genetic trade-offs 416 

between life-history traits at the within-species level. In contrast, we detected an overall positive 417 

genetic correlation between survival and other life-history traits; that is, individuals who live 418 

longer tend to also have higher performance at other life-history traits collectively (i.e., grow 419 

faster, mature earlier, and have more offspring), although the magnitude of this genetic 420 

correlation was rather modest (meta-analytic mean = 0.19 and 95% CI [0.06 – 0.31]) with large 421 

heterogeneity. This result generally suggests a lack of ‘paces of life’ at the genetic level, and is 422 

aligned with findings from a previous meta-analysis showing a positive average phenotypic 423 

correlation between survival and fertility (Haave‐Audet et al., 2022). In all, this means that, 424 

based on current evidence, the key assumption underpinning the Pace-of-life syndrome 425 

hypothesis – live fast and die young – is not well supported, or at the very least, not easily 426 

observable, calling into question the adequacy of this often well-accepted hypothesis as an 427 

explanation for the existence and maintenance of individual differences in behavioral and 428 

physiological traits at the within-species level. 429 

Life-history theory was originally developed to explain variation at the among-species level: 430 

species differ in how they resolve resource allocation trade-offs generating differences in ‘paces 431 

of life’ (Stearns, 1989). The Pace-of-life syndrome hypothesis builds on this theory to predict 432 

that behavioral traits, especially those related to risk-taking, and physiological traits are key to 433 

resolving this trade-off, thus, providing an explanation for the maintenance of phenotypic 434 

variation at the within-population level (Réale et al., 2010). In direct contrast to one of the key 435 

assumptions of life history theory generally and the Pace-of-life syndrome hypothesis 436 

specifically, our meta-analysis shows no strong evidence for the expected genetic trade-offs but 437 

instead, an overall positive genetic correlation between survival and other life-history traits.  438 

Charnov (1989) showed that for simple two trait models, a negative genetic correlation can be a 439 

good indicator of a functional trade-off (i.e., differences in allocation). However, later models 440 



that explicitly modeled the relationships between many traits showed that this need not always be 441 

the case. First, genetic variation for resource acquisition may produce positive genetic 442 

correlations (van Noordwijk & de Jong, 1986b) as some individuals can then allocate more in 443 

absolute terms to many traits; the ‘big house, big cars’ analogy (Reznick et al., 2000). If there are 444 

more genetic variants that contribute to variation in resource acquisition than resource allocation, 445 

Houle’s model showed that mutation-selection balance alone is sufficient to produce positive 446 

genetic correlations (1991). These positive correlations may also be expected to be more evident 447 

when resources are abundant such as in lab settings where most animals are typically fed ab 448 

libitum. Indeed, we found a tendency for correlations between survival and other life-history 449 

traits collected in lab-based studies to be more positive compared to correlations collected from 450 

field studies. Though this comparison between lab and field-based studies should be interpreted 451 

very cautiously given that the vast majority of our compiled estimates (492 out of 553) were 452 

conducted in lab settings so this could potentially be due to sampling bias. Estimating genetic 453 

correlations under limiting resource conditions may better reveal functional trade-offs.  454 

Differences in resource acquisition among individuals have been highlighted in classic life-455 

history theory as potentially obscuring the presence of within-individual, that is, functional 456 

allocation trade-offs (de Jong & van Noordwijk, 1992; Reznick et al., 2000; van Noordwijk & de 457 

Jong, 1986b). Variation in resource acquisition is likely especially relevant when considering the 458 

Pace-of-life syndrome hypothesis, which explicitly deals with among-individual variation in 459 

behavioral traits. The Pace-of-life syndrome hypothesis predicts that behavior helps mediate 460 

trade-offs (e.g. risky behaviors can help an animal gather resources to fuel current reproduction 461 

but in doing so expose itself to greater mortality risk) but it may be that an individual’s behavior 462 

is more tightly linked to its acquisition strategies rather than its allocation strategies (Laskowski 463 

et al., 2021). This is especially relevant because, while there is good evidence for trade-offs 464 

among life-history strategies at the species-level (Healy et al., 2019; Promislow & Harvey, 465 

1990), it seems unlikely that a single species would harbor the same level of variation in the key 466 

behavioral or physiological traits that moderate allocation trade-offs as is present across a large 467 

number of species (S. C. Stearns & Rodrigues, 2020; White & Seymour, 2004). Together with 468 

results from multiple previous meta-analyses testing for the predictions of the Pace-of-life 469 

syndrome hypothesis (Haave‐Audet et al., 2022; Moiron et al., 2020; Royauté et al., 2018), 470 



empirical evidence on individual differences in resource allocation strategy driving individual 471 

differences in behavior appears to be weak, at best.  472 

Once resources are acquired, complex genetic relationships between traits, and how those 473 

resources are allocated can further obscure functional trade-offs. The fitness of an individual will 474 

be determined by all traits of an individual; however, most studies, necessarily, often measure 475 

just a few. This may be problematic because correlations with unmeasured traits and the 476 

relationships between suites of traits can produce positive or negative correlations depending on 477 

the relationship (Charlesworth, 1990; de Jong, 1993; de Jong & van Noordwijk, 1992). For 478 

instance, a genetic correlation between two life-history traits may not be representative of the 479 

underlying functional trade-off if the measured traits interact in a more complex manner than a 480 

simple bivariate relationship. The bivariate analyses typically used to estimate genetic 481 

correlations do not take into account how the two measured traits might also be related to other 482 

(unmeasured or not statistically modelled) life-history traits, ignoring important biological 483 

complexity that can ultimately obscure the appearance of genetic correlations (Charlesworth, 484 

1990). Furthermore, De Jong provided a model showing that the order in which resources are 485 

allocated between traits can alter the genetic correlation between those traits: initial allocation 486 

decisions can generate negative correlations between traits but subsequent sub-allocations can 487 

generate positive correlations (1993). Houle (1991) also highlighted how differences in the 488 

number of loci underpinning resource acquisition and allocation traits can obscure the 489 

appearance of negative genetic correlations as evidence for functional trade-offs, especially when 490 

the number of loci underpinning resource acquisition traits is bigger than that in allocation traits 491 

and there is little pleiotropy between them. Altogether, this does not necessarily mean that 492 

functional trade-offs do not exist, but that just sampling a few traits and fitting them to simple 493 

bivariate analyses may not provide the whole picture and make observing the expected trade-offs 494 

exceedingly difficult. 495 

In addition to the genetic complexity interlinking traits, it is important to note that these genetic 496 

relationships can also be responsive to changes in the environment. Life-history traits are highly 497 

responsive to the environment (Acasuso-Rivero et al., 2019) and if individual reaction norms 498 

cross, the sign of the genetic correlation can even reverse (Sgrò & Hoffmann, 2004; Stearns et 499 

al., 1991). For example, in one environment, genotype A may have higher growth and survival 500 

than genotype B (i.e., positive genetic correlation), yet in another environment, genotype A has 501 



higher growth but lower survival than genotype B (i.e., negative genetic correlation), thus 502 

causing the sign of the overall genetic correlation to reverse. Resource availability can act as an 503 

environmental gradient that causes exactly this (Wright et al., 2019). Salzman et al. (2018) 504 

modeled how allocation and acquisition decisions can be modified by environmental conditions 505 

changing the expected correlations among traits. Indeed, the genetic correlation between 506 

longevity and fecundity has been found to switch from positive to negative under low resource 507 

availability (Ernande et al., 2003; Messina & Fry, 2003). Altogether the genetic correlations 508 

between life-history traits may be dynamic depending on the environment or genetic background 509 

of the animal.  510 

Finally, it is worth mentioning that while we did not find strong evidence for publication bias, 511 

there was some indication that the overall positive genetic correlation we found between survival 512 

and other life-history traits may be influenced by small sample size effects. While there was no 513 

significant effect of the study’s standard error (as a proxy for its precision), including this effect 514 

in the model reduced the estimate of our overall meta-analytic mean from 0.19 (95% CI: [0.06 – 515 

0.31]) in the intercept-only model to 0.11 (95% CI: [-0.05 – 0.28]). For non-survival trait pairs, 516 

the effect of the standard error was negative, though non-significant, also suggestive of the idea 517 

that smaller studies may have been more likely to find (or report) larger effect sizes. Altogether, 518 

meta-analyses rely on the quality of the work being analyzed. Coupled together with the high 519 

heterogeneity we see in the estimates, we encourage caution in overgeneralizing the finding of 520 

positive genetic correlations between survival and other life-history traits. It is also worth noting 521 

that the vast majority of our correlations between survival and other life-history traits came from 522 

studies on invertebrates, and insects (often Drosophila fruit flies) in particular. While the genetic 523 

tractability of these animal systems makes getting these measures of genetic correlations more 524 

feasible, it is possible that this over-representation of a handful of species may limit our ability to 525 

generalize these findings to other species with different lifespans, reproductive tactics or 526 

ecologies generally.   527 

Concluding remarks 528 

Trade-offs between life-history traits are often invoked as evolutionary mechanisms underlying 529 

within-species differences in behavioral and physiological traits, ultimately, with fitness 530 

consequences. However, our meta-analysis reveals no strong evidence for the expected overall 531 



negative genetic correlation, and instead, it shows evidence for an overall positive genetic 532 

correlation. This suggests that genetically based resource allocation trade-offs between life-533 

history traits may not be as common, or at least as commonly observable, as is often assumed. 534 

Variation in resource acquisition, and/or relationships with unmeasured traits may be obscuring 535 

the expected functional trade-offs. Ultimately, our results confirm once again that the jury is still 536 

out regarding the validity of the Pace-of-life syndrome hypothesis, as it is currently conceived, as 537 

an explanation for the ubiquitous existence of individual differences in behavioral and 538 

physiological traits at the within-species level. We encourage a renewed focus on investigating 539 

the mechanisms underlying such individual differences, manipulative experiments to tease apart 540 

such mechanisms, and the development of formal theory to generate quantitative predictions 541 

about the relationships we expect to see among relevant traits and the conditions under which we 542 

expect them.  543 
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Table 1. Categorization of life-history trait proxies. 698 

Traits Proxies 

Survival Longevity (e.g., days) and mortality (e.g., proportion of 

individuals who died at a certain time point). 

Growth rate The change in body size or mass during a time interval (e.g., 

change in body size per day). 

Body size Body size or weight, or body condition (i.e., weight relative to 

size) at any life stage, as well as other proxies such as tarsus 

length in birds or thorax width in insects. 

Maturation rate Rate to reach maturation, including development time, pre-adult 

duration, age at metamorphosis or maturity, and age at first 

reproduction. 

Fertility Direct measures of reproduction, including number of eggs, 

hatchlings, recruits, and adult offspring, birth rate (e.g., per year), 

mating success, number of mating events, extra-pair 

reproduction, and within-pair paternity success.  

We excluded measures that do not directly reflect fertility, such 

as reproductive tissue size, laying date, mate choice outcome, age 

at last reproduction, or rate of aging. 

 699 

 700 

 701 

 702 

 703 

 704 



Table 2. Total number of correlations and studies (in parentheses) included within each animal 705 

taxon.  706 

 Pairs of survival traits Pairs of non-survival traits 

Actinopterygii 32 (3) 132 (11) 

Amphibia -- 50 (8) 

Appendicularia 4 (1) 31 (1) 

Aves 8 (3) 4 (1) 

Bivalvia 20 (1)  13 (4) 

Branchiopoda 10 (1) 17 (2) 

Chromadorea 41 (4) 14 (3) 

Collembola 1 (1) 10 (2) 

Gastropoda 4 (1)  12 (2) 

Insecta 405 (39) 528 (66) 

Lepidosauria 2 (1)  6 (2) 

Mammalia 16 (3)  24 (6) 

 707 

Table 3. Absolute (Q) and relative heterogeneities (%, I2) for the intercept-only models (see 708 

section “Methods”). Parentheses show 95% confidence intervals. 709 

 Pairs of survival traits Pairs of non-survival traits 

Q 23815, p < 0.0001 430354, p < 0.0001 

I2 total 98.7 (98.5 – 98.8) 99.8 (99.8 – 99.8) 

I2 species 17.9 (11.4 – 25.3) 0 (0 – 0) 

I2 phylogeny 0 (0 – 0) 9.8 (7.2 -12.8) 

I2 study identity 7.6 (5.1 – 10.5) 30.4 (24.5 – 36.7) 

I2 group identity 8.7 (6.8 – 10.8) 0 (0 – 0) 

I2 unit-level observation 

identity 

64.5 (57.8 – 70.7) 59.7 (53.9 – 65.3) 

  710 



Figure Captions. 711 

Figure 1. Predictions derived from the Pace-of-life syndrome hypothesis for the direction of the 712 

genetic correlations between five key life-history traits.  713 

 714 

Figure 2. The overall genetic correlation between survival and other life-history traits was 715 

positive (a) and did not clearly differ among different pairs of traits (b). In contrast, the overall 716 

genetic correlation among pairs of non-survival life-history traits was not clearly different from 717 

zero (c) and, with a few exceptions, (d) did not clearly differ among the different pairs of traits 718 

(see section ‘Results’). Orchard plots show the mean estimate, 95% CI (thick whisker), and 95% 719 

PI (thin whisker), with dot size being scaled by effect size’s precision (i.e., 1/SE). k corresponds 720 

to the numbers of genetic correlations, with numbers of studies shown in parentheses.  721 

 722 

Figure 3. Genetic correlations between both survival and other life-history traits (a) and between 723 

non-survival life-history traits (b) were not strongly affected by moderators. Orchard plots show 724 

the mean estimates, and 95% CI (thick whisker), 95% PI (thin whisker), with dot size being 725 

scaled by effect size’s precision (i.e., 1/SE). k corresponds to the numbers of genetic correlations, 726 

with numbers of studies shown in parentheses. 727 

 728 

Figure 4. Genetic correlations for pairs of survival traits and pairs of non-survival traits were not 729 

clearly associated with their standard error (i.e., no clear evidence of small-study effects; a, b), and 730 

there was no clear evidence of effect sizes declining over time (c, d). The solid lines are the model 731 

estimate, shaded areas are the 95% CI, with the size of the circles being scaled by their precision 732 

(i.e., 1/SE). 733 

  734 



 735 

 736 

Supplementary Figure 1. PRISMA flowchart shows the inclusion and exclusion of studies. List 737 

of studies excluded during title/abstract screening, studies excluded during full-text screening, 738 

and studies proceeded to data extraction are shown in Supplementary Data 1.   739 

 740 



 741 

Supplementary Figure 2. Phylogenetic relationship of species used in the meta-analysis.  742 
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Supplementary Table 1. Meta-analytic means and 95% CI (on the diagonal) for each set of survival pairs and the meta-regression 744 

post-hoc p-values for each comparison (off-diagonal). Significant comparisons (p < 0.05) are bolded. Comparisons with p < 0.10 are 745 

italicized.  746 

 747 

 748 

  749 

 Survival-fertility Survival-growth Survival-maturation Survival-size 

Survival-fertility 

k = 282 (35) 

0.22  

[0.07 – 0.36] 

0.95 0.19 0.81 

Survival-growth 

k = 30 (8) 

 0.22 

[-0.04 – 0.49] 

0.47 0.85 

Survival-maturation 

k = 122 (30) 

  0.12 

[-0.03 – 0.28] 

0.34 

Survival-size 

k = 109 (27) 

   0.20  

[0.04 – 0.35] 



Supplementary Table 2. Meta-analytic means and 95% CI (on the diagonal) for each set of non-survival pairs and the meta-750 

regression post-hoc p-values for each comparison (off-diagonal). Significant comparisons (p < 0.05) are bolded. Comparisons with p < 751 

0.10 are italicized.  752 

 Maturation-size Maturation-

fertility 

Growth-size Growth-

maturation 

Growth-fertility Fertility-size 

Maturation-size 

k = 320 (66) 

-0.03 

[-0.22 – 0.16] 

0.004 0.03 0.0004 0.69 0.002 

Maturation-fertility 

k = 176 (27) 

 0.19 

[-0.02 – 0.40] 

0.76 0.17 0.50 0.95 

Growth-size 

k = 84 (14) 

  0.16 

[-0.08 – 0.39] 

0.07 0.61 0.71 

Growth-maturation 

k = 41 (11) 

   0.36 

[0.09 – 0.63] 

0.15 0.17 

Growth-fertility 

k = 17 (5) 

    0.05 

[-0.35 – 0.46] 

0.47 

Fertility-size 

k = 175 (38) 

     0.19 

[-0.01 – 0.39] 

 753 



Supplementary Table 3. Meta-analytic means and 95% CI (on the diagonal) for moderators of survival pairs and the meta-regression 754 

post-hoc p-values for each comparison (off-diagonal). Significant comparisons (p < 0.05) are bolded. Comparisons with p < 0.10 are 755 

italicized.  756 

 Narrow Broad 

Narrow 0.19 

[0.03 – 0.35] 

0.99 

Broad  0.19 

[0.03 – 0.35] 

 757 

 Lab studies Field studies 

Lab studies 0.28  

[-0.02 – 0.58] 

0.29 

Field studies  0.03 

[-0.41 – 0.47] 

 758 

 Both Female Male 

Both 0.14 

[-0.03 – 0.31] 

0.34 0.66 

Female   0.23 

[0.08 – 0.38] 

0.73 

Males   0.19 



[-0.02 – 0.41] 

 759 

 Non-adult Both Cross 

Non-adult 0.23 

[-0.28 – 0.58] 

0.72 0.57 

Both  0.15 

[-0.28 – 0.58] 

0.88 

Cross   0.23 

[0.04 – 0.43] 

 760 

 Family Genotype Pedigree 

Family 0.28 

[-0.01 – 0.57] 

0.60 0.14 

Genotype  0.22 

[-0.09 – 0.53] 

0.28 

Pedigree   0.02 

[-0.37 – 0.41] 

  761 



Supplementary Table 4. Meta-analytic means and 95% CI (on the diagonal) for moderators of non-survival pairs and the meta-762 

regression post-hoc p-values for each comparison (off-diagonal). Significant comparisons (p < 0.05) are bolded. Comparisons with p < 763 

0.10 are italicized.  764 

 Lab studies Field studies 

Lab studies 0.08 

[-0.16 – 0.32] 

0.14 

Field studies  0.33 

[-0.05 – 0.72] 

 765 

 Both Female Male 

Both 0.12 

[-0.10 – 

0.34] 

0.83 0.16 

Female   0.14 

[-0.09 – 0.36] 

0.05 

Males   -0.03 

[-0.29 – 0.22] 

 766 

 Broad Dominance Narrow 

Broad 0.07 

[-0.22 – 0.35] 

0.87 0.30 



Dominance  0.11 

[-0.43 – 0.64] 

0.82 

Narrow   0.16 

[-0.13 – 0.45] 

 767 

 Family Genotype Pedigree 

Family 0.06 

[-0.19 – 0.31] 

0.70 0.08 

Genotype  0.10 

[-0.19 – 0.39] 

0.23 

Pedigree   0.32 

[-0.03 – 0.67] 

 768 

 Adult Both Cross Non-adult 

Adult 0.22 

[-0.06 – 0.50] 

0.77 0.02 0.56 

Both  0.18 

[-0.15 – 0.51] 

0.26 0.89 

Cross   0.06 

[-0.20 – 0.32] 

0.18 

Non-adult    0.16 



[-0.12 – 0.44] 

 769 

 770 
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Supplementary Table 5. Estimates of all-in models. 772 

Survival pairs 
 

estimate se zval pval ci.lb ci.ub 
 

Intercept 0.10 0.37 0.27 0.79 -0.63 0.83 
 

Pair (survival-growth) 0.00 0.17 -0.02 0.99 -0.34 0.34 
 

Pair (survival-maturation) -0.13 0.08 -1.65 0.10 -0.28 0.02 
 

Pair (survival-size) 0.00 0.09 0.05 0.96 -0.16 0.17 
 

Lab vs field (lab) 0.20 0.30 0.66 0.51 -0.39 0.79 
 

Sex (female) 0.19 0.10 1.82 0.07 -0.01 0.39 
 

Sex (male) 0.17 0.13 1.32 0.19 -0.08 0.41 
 

Stage (both) -0.34 0.27 -1.23 0.22 -0.88 0.20 
 

Stage (cross) -0.16 0.11 -1.48 0.14 -0.37 0.05 
 

Design (genotype) -0.20 0.15 -1.31 0.19 -0.50 0.10 
 

Design (pedigree) -0.24 0.20 -1.21 0.23 -0.64 0.15 
 

Narrow vs broad (narrow) 0.07 0.11 0.64 0.52 -0.15 0.29 
 

SE 0.58 0.38 1.51 0.13 -0.17 1.32 
 

Mean-centered (pub year) 0.08 0.04 1.80 0.07 -0.01 0.16 
        

Non-survival 

pairs 

 
estimate se zval pval ci.lb ci.ub 

 
Intercept 0.45 0.25 1.82 0.07 -0.03 0.93 

 
Pair (growth-fertility) -0.08 0.21 -0.37 0.71 -0.49 0.33 

 
Pair (growth-maturation) 0.20 0.15 1.33 0.18 -0.09 0.49 



 
Pair (growth-size) -0.08 0.14 -0.55 0.58 -0.35 0.20 

 
Pair (maturation-fertility) 0.08 0.10 0.81 0.42 -0.12 0.28 

 
Pair (maturation-size) -0.14 0.10 -1.36 0.17 -0.34 0.06 

 
Lab vs field (lab) -0.20 0.18 -1.12 0.26 -0.54 0.15 

 
Sex (female) -0.04 0.09 -0.43 0.67 -0.22 0.14 

 
Sex (male) -0.15 0.11 -1.40 0.16 -0.37 0.06 

 
Stage (both) 0.00 0.17 -0.02 0.98 -0.34 0.34 

 
Stage (cross) -0.15 0.10 -1.51 0.13 -0.35 0.04 

 
Stage (non-adult) 0.01 0.13 0.06 0.95 -0.25 0.27 

 
Design (genotype) 0.03 0.13 0.23 0.81 -0.22 0.28 

 
Design (pedigree) 0.06 0.16 0.35 0.73 -0.26 0.37 

 
Narrow vs broad (dominance) -0.02 0.25 -0.07 0.94 -0.51 0.47 

 
Narrow vs broad (narrow) 0.05 0.10 0.48 0.63 -0.15 0.24 

 
SE -0.24 0.36 -0.66 0.51 -0.94 0.47 

 
Mean-centered (pub year) 0.03 0.04 0.76 0.45 -0.05 0.12 
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