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Abstract

Although several studies propose computational models of the
process by which children acquire the syntax of their native
language, most focus on a single algorithm applied in a single
domain. Typically, the focus is learnability — under what
conditions an algorithm can or cannot acquire the grammar of the
target (native) language. Here, we present a comparative study of
12 algorithmic heuristics that are run in a domain that consists of 16
abstract languages each generated by a different grammar specified
in Chomsky’s principles and parameters framework. The heuristics
consist of both those used in previously established models and
new variations that we introduce. In contrast to a learnability study,
our focus is feasibility — how much time and/or effort is required to
achieve the target grammar. We find that the best heuristics make
use of structural information obtained by parsing input sentences
during the course of learning, that the performance of statistically-
based heuristics are next in line, and finally, that heuristics that
make use of hill-climbing search and a simple can-parse/can’t-
parse outcome from the parsing mechanism perform least well.

Background

Principles and Parameters

Chomsky (1981 and elsewhere) has proposed that all natural
languages share the same innate universal principles (Universal
Grammar - UG) and differ only with respect to the settings of a
finite number of (binary) parameters. For example, all languages
have a subject of some sort, but whether a language's grammar
dictates that the subject must be overt is determined by the
setting of the null subject parameter. The null subject parameter
is set off in English and on in Spanish. The syntactic component
of a grammar in the principles and parameters (P&P)
framework is simply a collection of parameter values — one value
per parameter. The set of human grammars is the set of all
possible combinations of parameter values.

Language Acquisition The P&P framework was motivated to a
large degree by psycholinguistic data demonstrating the extreme
efficiency of human language acquisition. Children acquire the
grammar of their native language at an early age — generally
accepted to be in the neighborhood of five years old. In the P&P
framework, if the linguistic theory delineates over a billion
possible  grammars by  positing 30  parameters
(2°=1,073,741,824), a learner need only determine the correct
30 values that comprise the target grammar (henceforth, G,,,).
Given the generally accepted presupposition that a compelling
theory of human language should show grammars to be easily

acquirable, and since, at least on face value, parameters seem
transparently learnable, it is not surprising that parameters have
been incorporated into many current generative syntactic
theories. However, the exact process of parameter setting has
been studied only recently (cf. Bertolo, 2001 and references
therein; Briscoe, 2000; Clark, 1992; Fodor, 1998a; Gibson &
Wexler, 1994; Yang, 2000; among others), and although it has
proved linguistically fruitful to construct parametric analyses, it
turns out to be surprisingly difficult to construct a workable
model of parametric syntax acquisition.

Parametric Ambiguity and the Need for Heuristics A
sentence is parametrically ambiguous if it is licensed by two or
more distinct combinations of parameter values. Parametric
ambiguity is rampant in natural language. For example, a
sequence of the form Subject-Verb-Object (SVO) is
parametrically ambiguous between underlying SVO order as in
English, and verb second (V2) order as in German.! Although
SVO sentences can be parsed by either grammar, the derivations
will be different due to the different parameter settings. By
contrast, a VOS sentence is not parametrically ambiguous with
respect to the V2 parameter. It can be licensed only by the -V2
value (since the second token is not a verb or auxiliary).

Ambiguity is a natural enemy of efficient language
acquisition. The key problem is that, due to ambiguity, there does
not exist a one-to-one correspondence between the linear left-to-
right word order of an input sequence and the correct parameter
values for the target grammar (as described above for an SVO
sentence with respect to + or -V2). So, even if the learner
hypothesizes parameter values which license the single, current
input sentence, those values may ultimately be incorrect for Gy,
In the face of parametric ambiguity, efficient search heuristics
must be employed to guide the learner towards the target
grammar as sentences are progressively consumed by the learner.
The remainder of the paper presents a comparative study of 12
search heuristics that are incorporated into current parameter-
setting models of language acquisition.

Overview

A Measure of Feasibility

As a simple example of a learning heuristic and of our simulation
approach, consider a domain of 4 parameters and a memoryless

' See Appendix for the linguistic details of how we implement the V2
parameter.



learner” which blindly guesses how all 4 parameters should be
set upon encountering an input sentence. Since there are 4
parameters, there are 16 possible combinations of parameter
settings (2'=16), i.e., 16 different grammars. Assuming that each
of the 16 grammars is equally likely to be guessed, the learner
will consume, on average, 16 sentences before achieving Geyg.
This is one measure of a model’s efficiency or feasibility.

However, when modeling natural language acquisition, since
practically all human learners attain the target grammar, the
average number of expected inputs is a less informative statistic
than the expected number of inputs required for, say, 99% of all
simulation trials to succeed. For our blind-guess learner, this
number is 72.° We will use this 99 percentile feasibility measure
(99% score) for most discussion that follows, but also include the
average number of inputs for completeness.

Error-Driven Learning

Although an outside oracle could ascertain when the blind-guess
learner has acquired the target grammar, the learner itself has no
“built-in” mechanism for identifying that it has achieved the
target. Even if the correct grammar is hypothesized, the learner
will most likely abandon it on the next sentence (with a
probability of 15/16) and hypothesize a different (incorrect)
grammar.

A standard way to build target identification into an algorithm
is to dictate that the learner be error-driven.* Assuming that all
inputs are grammatically correct instances of sentences that make
up the target language, one could provide the learner with the
ability to produce a can-parse/can’t-parse outcome’ given the
current input sentence, the current hypothesized grammar (G,,,),
and the rule: Don't change G, unless there is parse failure.
With this error-driven constraint, there is no need for an outside
oracle to stop the learner from relinquishing the target grammar
once it is attained. Since all sentences are generated (by
definition) by Gy, parse success is guaranteed once Gy = Geuns
and thus the learner will not be motivated to shift from its current
hypothesis.

An Error-Driven Blind-Guess (EDBG) learner is our first
heuristic of interest. It is easy to show that the average and 99%
scores increase exponentially in the number of parameters.
Clearly, human learners do not employ any strategy that
performs as poorly as this.

Table 1: EDBG, # of sentences consumed

99% Average
EDBG 86 15.09

2 By “memoryless” we mean that the learner processes inputs one at a
time without keeping a history of encountered inputs or past learning
events.

3 The average and 99 percentile figures (16 and 72) in this section are
easily derived from the fact that input consumption follows a
hypergeometric distribution. See Chung (1979) for an overview.

* Error-driven grammar learning was first introduced by Gold (1967) and
has become a standard in learnability research.

5 We intend for a “can-parse/can’t-parse outcome” to be equivalent to
the result from a language membership test. If the current input sentence
is one of the set of sentences generated by G, can-parse is engendered;
ifnot, can ‘t-parse.

The Simulations

In all experiments:

* The learners are memoryless.

¢ The language input sample presented to the learner consists of
only grammatical sentences generated by Gy

* The heuristics are tested in a 4-parameter, 16-language domain
(see Appendix for details).

* For each heuristic, 1,000 trials were run for each start/target
grammar pair.®

* At any point during the acquisition process, each sentence of
Giar s equally likely to be presented to the learner.”

Subset Avoidance and Other Local Maxima Depending on
the algorithm and the learning domain, it may be the case that a
learner will never be motivated to change G, and hence be
unable to ultimately achieve the target. This is often referred to as
a local maximum. For example, the EDBG learner will be
trapped if G, generates a language that is a superset of Giyg.
There is a wealth of remarkable learnabilitg/ literature that
addresses local maxima and their ramifications.” However, since
our study’s focus is on feasibility (rather than on whether a
domain is learnable) given a particular algorithm, we posit a
built-in avoidance mechanism, such as the subset principle
and/or default values that preclude local maxima; hence, we set
aside trials where a local maximum ensues.

The Heuristics

The heuristics we present can be separated into two families
based on the way they process input sentences: those that guide
the learner towards the target by use of a can-parse/can’t-parse
outcome, and those that take advantage of information gleaned
from the parse trees that are constructed by the parser. Gibson
and Wexler’s (1994) Triggering Learning Algorithm (TLA) and
Yang’s (2000) Variational Model make use of can-parse/can't-
parse outcomes only. Fodor’s (1998a) Structural Triggers
Learner (STL) takes advantage of more extensive structural
information obtained from sentence parsing.

TLA

The TLA incorporates two search heuristics: the Single Value
Constraint (SVC) and Greediness. In the event that G, cannot
parse the current input sentence s, the TLA attempts a second

® For the STL models presented later in the paper, the start grammar is
unspecified.

7 Not reported here are results from simulations run on several different
distributions of input sentences, in particular, those where the shorter
(presumably simpler) sentences occur more frequently. The relative
performance of the heuristics is substantially the same; however, in all
cases acquisition requires more inputs. These distributions and their
relationship to the rate of ambiguity in the domain are currently being
analyzed. Also, see Niyogi & Berwick (1996) for mathematical
treatment of how the distribution of inputs affects TLA performance.

% Discussion of the problem of subset relationships among languages
starts with Gold’s (1967) seminal paper and is discussed in Berwick
(1985) and Wexler & Manzini (1987). Detailed accounts of the types of
local maxima that the learner might encounter in a domain substantially
similar to the one we employ are given in Frank & Kapur (1996), Gibson
& Wexler (1994), and Niyogi & Berwick (1996).



parse with a randomly chosen new grammar, G, that differs
from G, by exactly one parameter value (SVC). If G, can
parse s, Gpe,, becomes the new Gy, otherwise Gy, is rejected as
a hypothesis (Greediness). Following Berwick and Niyogi
(1996), we also ran simulations on two variants of the TLA — one
with the Greediness heuristic but without the SVC (TLA minus
SVC, TLA-SVC) and one with the SVC but without Greediness
(TLA minus Greediness, 7LA—Greed). The TLA has become a
seminal model and has been extensively studied (cf. Bertolo,
2001 and references therein; Berwick & Niyogi, 1996; Frank &
Kapur, 1996; Sakas, 2000; among others). We will not rehash
these earlier discussions here. We include the TLA in our study
to present comparisons against other models.”

Table 2: TLA variants, # of sentences consumed

99% Average
TLA-SVC 117 18.12
TLA-Greed 102 19.44
TLA 227 22.56

The Variational Learner

Like other models, Yang’s Variational Learner (VL)'
incorporates the notion of a current grammar hypothesis (Geyy)
which is applied to the current input sentence. However, unlike
the other learners, the VL maintains, for each parameter, a weight
varying from 0 to 1. Roughly, the weight of a parameter can be
construed as a measure of the past successes (or failures) of
either a 0 or 1 value for that parameter during prior parses of
input sentences. If the weight is closer to 0, then the 0 value has
been more successful; if the weight is closer to 1, the 1 value has
been more successful.'"' The VL uses the weights to guide the
selection of the next hypothesis.

Since Yang’s emphasis was on learnability in the limit and not
on feasibility, in order to compare performance against other
learners, we make a minor adaptation by adding a stopping
criterion (see Step 4 below). The algorithm proceeds as follows:

1. Initialize weights for all parameters to 0.5.

2. Choose a new G, randomly, but biasing the choice towards
parameter values favored by the current weights.

3. If Gy succeeds in parsing the current input, nudge the weights
in the direction of the values that make up Gy (reward Gegy).
This has the effect of making those parameter values that
make up G, more likely to be chosen in the future. Otherwise
nudge the weights away from G,,’s parameter values (punish
Geur)-

° In particular, the data in Table 2 reinforce Berwick & Niyogi's (1996)
conclusion that in addition to creating local maxima, SVC and
Greediness reduce learning speed.

1% We use the proper name and acronym for readability; they are not
used by Yang.

' Of course, if the values from one or more parameters are strongly tied
to values of another parameter(s), the weight does not represent a simple
ratio or percentage of success. Still, Yang’s intention is that the weights
are an informative measure of past performance.

4.1f all the weights are within a target threshold of either 0 or 1
then learning ends. Else go to Step 2."

We chose 0.01 as the threshold value for stopping the learning
process. Given weights w;, ws, ..., w, where n represents the
number of parameters, learning ends if all weights are in the
range: 0.0 <w; <0.01 or 0.99 < w; < 1.0 (ie., every weight is
very close to either a 0 value or a 1 value). Note that this criterion
could be UG-endowed; that is, an oracle is not required to stop
the algorithm.

In both Yang’s original VL and the version presented above,
the amount that the weights are “nudged” during learning is
controlled by the learning rate (y).” We ran simulations with
v=.1,y=5, and y=.75.

Yang’s model is of particular interest because it is an explicit
implementation of the idea to keep statistics on the effectiveness
of parameter settings based on the success or failure of past
learning events. The reward/punish scheme of the VL is arguably
an extension of error-driven learning in that incorrect grammars
are punished, but it is significantly different from the standard
constraint in which G, cannot change after a successful parse.
The scheme works because the VL is statistical in nature; as
parameter values vie for domination, the ones most successful in
the past (and hence rewarded) are most likely to be chosen in the
future and will eventually prevail."*

However, the statistical nature of the VL, together with the
stopping criterion, may lead the learner to a local maximum. A
parasitic input sample might lead to an abundance of evidence
(i.e., successful parses) for incorrect parameter values early in the
course of learning. If the learner encounters enough misleading
evidence, it would cross the stopping threshold prematurely (on
parameter values that are different from those that make up Geyy).
This effect can be prevented by keeping the learning rate low,
which gives the weights elbow room to fluctuate more gently
until the evidence eventually supports the correct target.
Unfortunately, the cost of keeping the learning rate low can be
quite severe. In our 16-langua§e domain, the VL requires well
over 100,000 input sentences to achieve a 99% score with a
learning rate of 0.1. When the learning rate was increased to 0.5,
the expected number of inputs dropped to 242, and when the rate
was increased to 0.75, the number dropped even further to 84,
albeit with many more local maxima (learning failures).

To combat the extraordinarily high number of input sentences
needed, we incorporated into Yang’s VL a variation of the

'2 This stopping criterion could lead the VL to converge on the wrong
grammar. We consider these cases as local maxima, and as such, trials in
which local maxima ensue are discarded. Also implemented was a
different stopping criterion which requires that all the weights fall within
a threshold of the values that make up Gy, Clearly, this strategy could
not be UG-endowed because it requires that the learner have advance
knowledge of these values. It is also less efficient than the criterion
above, though it does enforce convergence on the correct grammar.

' The exact amount follows the Linear reward-penalty (Lg-p) scheme
(Bush & Mosteller, 1958). See Yang (2000) for details.

14 See Yang (2000) for a proof of convergence as the number of inputs
approaches infinity.

'S We found that many trials required over 100,000 input sentences
which was an arbitrary stopping point built into our simulation.



standard error-driven constraint.'® The Error-Driven Variational
Learner (EDVL) proceeds as follows:

1. Initialize weights for all parameters to 0.5.

2. Randomly choose a new G, to start with.

3. If Gy succeeds in parsing the current input, do nothing (no
reward; no punish). Otherwise, randomly choose a new
grammar (G, biased by the weights, re-parse with Gy, and
apply Yang’s original reward/punish scheme to adjust the
weights.

4. Set Gy, to values directly indicated by the weights — that is,
if w; > 0.5, then the value of parameter i/ becomes 1, if w; <0.5,
then the value of parameter / becomes 0, if w; = 0.5, then either
0 or 1 is chosen at random.

5. Go to Step 3.

Note that no stopping criterion is needed, and that there are no
local maxima because a move to another grammar is always
possible before Gy, is attained. As is shown in the table below,
the addition of the error-driven constraint greatly improves
performance. Surprisingly, contra Yang’s original model,
performance deteriorates as the learning rate increases. We
speculate that this is because a high learning rate encourages
excessive exploration of different grammars, thus superseding
the (positive) conservative nature of the error-driven constraint.

Table 3: VL & EDVL, # of sentences consumed

99% Average
VL y=.1 Over 100,000 Over 33,000
VL vy=.5 242 46.35
VL y=.75 84 1791
EDVL y=.1 44 8.39
EDVL y=.5 55 9.23
EDVL y=.75 75 12.16

STL

Fodor’s Structural Triggers Learner (STL) makes greater use of
the parser than the models discussed so far. A key feature of the
model is that parameter values are not simply 0 or 1, but rather
bits of tree structure or treelets. Thus, a grammar in the STL
sense is a collection of treelets rather than a collection of 1's and
0's. The STL is error-driven. If G, cannot license s, new treelets
will be utilized to achieve a successful parse.'” Treelets are
applied in the same way as any ‘“normal” grammar rule, so no
unusual parsing activity is necessary. The STL hypothesizes
grammars by adding parameter value treelets when they
contribute to a successful parse.
The basic algorithm for all STL variants is:

1. If Gy, can parse the current input sentence, retain the treelets
that make up Gy

' The resulting algorithm is similar to one originally proposed in Fodor
(1998b).

'7 In addition to the treelets, UG principles are also available for parsing,
as they are in the other models discussed above. See Appendix for details
that apply to the domain we use here.

2. Otherwise, parse the sentence making use of any or all
parametric treelets made available by UG, and adopt those
treelets that contribute to a successful parse.

The STL stands apart from other acquisition models in that it can
detect when an input sentence is parametrically ambiguous.
During a parse of s, if more than one treelet could be used by the
parser (i.e., a choice point is encountered), then s is (possibly)
parametrically ambiguous. The TLA and the VL do not have this
capacity because they rely only on a can-parse/can’t-parse
outcome and do not have access to the on-line operations of the
parser. Originally, the ability to detect ambiguity was employed
in two variations of the STL: the strong STL (SSTL) and the weak
STL.

The SSTL executes a full parallel parse of each input sentence
and adopts only those treelets (parameter values) that are present
in all the generated parse trees. Note that even if the surface word
order of the input is ambiguous between several languages (i.e.,
the sentence belongs to more than one language), the SSTL can
identify unambiguous parameter values (treelets) by looking at
all of the tree structures that the parser constructs for the
sentence. This makes the SSTL an extremely powerful model,
and for this reason, it establishes an upper standard against which
to compare other models. It is not, however, proposed as a
psychologically realistic model. As with the Error-Driven Blind-
Guess (EDBG) learner, it is clear that human leamers do not
exhibit an SSTL-like strategy. The consensus in sentence
processing research is that adults are only capable of limited
parallel parsing, if any (cf. Gibson, 1991). It does not seem
plausible to suppose that children possess a more powerful
mechanism than adults.

On the other hand, the weak STL executes a psychologically
plausible left-to-right serial (deterministic) parse. One variant of
the weak STL, the waiting STL (WSTL), deals with ambiguous
inputs abiding by the heuristic: Don't learn from sentences that
contain a choice point. These sentences are simply discarded for
the purposes of learning. This is not to imply that children do not
parse ambiguous sentences they hear, but only that they set no
parameters if the current evidence is ambiguous.

Table 4: SSTL & WSTL, # of sentences consumed

99% Average
SSTL 14 3.35
WSTL 30 5.11

As with the TLA, these STL variants have been studied from a
mathematical perspective (Bertolo et al, 1997; Sakas, 2000;
Sakas & Fodor, 2001a). Although the simulation results indicate
notably better performance than the other models examined thus
far in this paper, previous mathematical analyses lend doubts to
the ultimate success of the WSTL model. The WSTL requires
some fully unambiguous sentences for any learning to take place.
It is probably the case that fully unambiguous triggers are few
and far between in the domain of human languages, and negative
WSTL performance is exponentially tied to the rate of ambiguity
in the domain; that is, in a more realistically ambiguous domain
than the one we explored so far, the WSTL may consume and
discard an extremely large number of sentences before attaining
G This result has spurred a new class of weak STL variants



which we informally call the guessing STL family (Sakas &
Fodor, 2000).

The basic idea behind the guessing STL models is that there is
some information available even in sentences that are
ambiguous, and a strategy could exploit that information. We
incorporate four different heuristics into the original STL

paradigm:

* Strong Oracle (SO) — perform a parallel parse of the current
input s and choose a hypothesis grammar that licenses s and is
most similar (in terms of hamming distance) to Gy

* Random Choice (RC) — parse serially; when a choice point is
encountered, randomly pick a parsing alternative and adopt the
treelets that are present in the final tree structure.

* Minimal Chain (MC) — parse serially; when a choice point is
encountered, pick the choice that obeys the Minimal Chain
Principle (De Vincenzi, 1991), i.e., avoid positing movement
transformations if possible.

* Local Attachment/Late Closure (LAC) — parse serially; when a
choice point is encountered, pick the choice that attaches the
new word to the current constituent (Frazier, 1978).

Although the MC and LAC heuristics are not stochastic, we
regard them as “guessing” heuristics because, unlike the WSTL,
a learner cannot be certain that the parametric treelets obtained
from a parse guided by MC and LAC are correct for the target.
These heuristics are based on well-established parsing
preferences that adults employ, so it seems likely that children
apply them also (Fodor, 1998b).

The SO heuristic was originally conceived by Fodor and
Teller (2000) as an extension of the SVC. Their main point was
the efficiency advantage that results from using the parser to find
a successful parse of the current sentence, so that can't-parse
trials are eliminated. Given this capability, the question of how to
choose among possible parses arises. The SO criterion
presupposes full parallel parsing, which is unrealistic, but our
approximation to it would result from letting the parser employ
new treelets only where current ones do not suffice. Our data
show that the conservatism of the SO heuristic pays off: it gives
the strongest performance of any learner in our study, including
the SSTL.

The RC, MC, and LAC heuristics show a significant
improvement over the waiting strategy (WSTL). The difference
between the three variants is slight.

Table 5: guessing STL family, # of sentences consumed

99% Average

SO 10 2.33

RC 26 3.43

MC 26 3.44

LAC 24 3.25
Conclusions

One can expect 86 sentences to be consumed by a population of
(baseline) EDBG learners before 99% of the population acquires
the target grammar in our small domain of 16 languages, and
TLA variants require more input than that. The implemented
heuristics in the two paradigms forego information, structural or
statistical, in favor of a simple mechanism — the information

needed for language acquisition must somehow be available
from the surface word strings that make up the languages of the
domain. They will be successful only if either i) there are
recognizable, unambiguous signals in the surface strings that
trigger correct parameter values or ii) the distribution of cross-
language ambiguity'® in the domain being studied is conducive
to the heuristics being employed. There is faint evidence for both
cases. For (i), in a domain without null subject/topic, the fact that
a VOS sentence does not have a finite verb or auxiliary as the
second token is indeed secure evidence for the -V2 parameter
value. Although true for the -V2 value in this case, it is unclear
how other plausible syntactic descriptions will offer the same
advantage for the gamut of complicated linguistic phenomena
(e.g., null subject/topic) with which human languages are
inundated. As for (ii), previous work by the authors (Sakas,
2000) demonstrates that the TLA is a feasible learner in strongly
smooth domains — domains in which there is a monotonic
correlation between the similarity of grammars and the languages
that are generated by them. Although still an open question,
linguists have argued that natural languages are not strongly
smooth.

The Error-Driven Variational Learner (EDVL) is a more
promising model of language learning. On average, 44 sentences
will allow 99% of the population to attain the target grammar. Its
success can be attributed to the use of a strategy that maintains
statistics of past performance without the unreasonable
requirement that the learner memorize an entire input sample.

The most efficient heuristics, however, are those that make the
most use of tree structure produced by the parsing mechanism:
the psychologically plausible STL variants require almost half
the number of inputs consumed by the EDVL.

Conjectures and Ongoing Research

The relative success of the EDVL is important for a reason not
explicated earlier. Preliminary investigation points to the fact
that, uniquely among the heuristics in our study, the EDVL
performs more efficiently in ambiguous domains than in
unambiguous ones at the outset of learning. This could turn out
to be crucial as the guessing STL family might easily be foiled
by larger, more syntactically complicated domains which
generate sentences that contain a multitude of choice points — the
result being that the parse tree computed for an input sentence,
which guides parameter setting, reveals little about the target
grammar. However, it has been shown that the STL performs
extremely efficiently after just a few initial parameters have been
set (Sakas, 2000). One can imagine a hybrid model of a guessing
STL heuristic combined with a VL-like statistical heuristic where
the statistical heuristic is used to bootstrap learning, and as
performance deteriorates, the structural heuristic acquires more
control of the acquisition process. This is being investigated in
ongoing research.

The hard data that comprise our current study, however, reveal
that the utilization of structural information outperforms the
statistical heuristic overall.

18 For present purposes, cross-language ambiguity is defined as some
measure based on the intersection of the sets of surface forms that make
up the languages in the domain. See Fodor & Sakas (2001b) for other
definitions and the effects of ambiguity on learning efficiency.



Appendix: Simulation Domain

The four parameters are: Specifier Initial/Final, Complement
Initial/Final, V2 Movement, and Null Subject-Topic. We largely
adopt the first three parameters from Gibson and Wexler (1994).
The Specifier and Complement position parameters are non-
transformational. It is assumed that the subject is base generated
in Spec of IP, and that the verb moves to I in the final structure (if
I is not filled with an auxiliary).

Input sequences are formed with tokens representing adverb,
subject, verb, auxiliary, direct object, and indirect object.
Following Gibson and Wexler, we assume that the learner can
directly determine the role of a noun phrase. For example, the
noun phrase the big dog is interpreted as a subject or one of the
object types based on its role when uttered.

The following constraints on the domain are in place: all
sentence types are degree-0 (i.e., no subordinate clauses); Spec of
CP is to the left of C'; C always precedes IP; all adverbs are
sentential (i.e., base generated in Spec of CP); and there is no
transformational reordering of constituents (e.g., topicalization,
wh-movement, scrambling, etc.) with the exception of the V2
movement described below.

The V2 Movement [+/-V2] parameter determines whether a
finite verb moves to the second position in the root clause. That
is, a “verb second” language [+V2] entails that the finite verb is
transformationally fronted to C (from I) and that a topical
element is moved into Spec of CP (if Spec of CP is not filled
with an adverb). In a [-V2] language, the verb moves only up to
I, and there is no movement of a topic into Spec of CP.

Extending Gibson and Wexler’s domain, we add the Null
Subject-Topic [+/-Null] parameter. This parameter represents
either subject drop or topic drop depending on the value of the
V2 parameter. In [-V2] languages, an overt subject is either
optionally [+Null] (as in Spanish and Japanese) or obligatorily
[-Null] (as in English). For [+V2] languages, the parameter
works similarly, but instead of a subject, an overt topic may be
optionally [+Null] or obligatorily [-Null].
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