UC Irvine
UC Irvine Previously Published Works

Title
On the temporal inconsistencies of Linnean taxonomic ranks

Permalink
https://escholarship.org/uc/item/2vs440cd

Journal
Biological Journal of the Linnean Society, 102(4)

ISSN
0024-4066

Authors

AVISE, JOHN C
LIU, JIN-XIAN

Publication Date
2011-04-01

DOI
10.1111/j.1095-8312.2011.01624.x

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,

availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/2vs440cd
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

BIOLOGICAL

Journal % s

Biological Journal of the Linnean Society, 2011, 102, 707-714. With 4 figures

REVIEW ARTICLE

On the temporal inconsistencies of Linnean
taxonomic ranks

JOHN C. AVISE* and JIN-XIAN LIU

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA

Received 16 September 2010; revised 9 November 2010; accepted for publication 9 November 2010

The inconsistency problem in systematics refers in part to the fact that disparate taxa of identical Linnean rank
are not necessarily similar or even readily comparable in any other specifiable biological feature. This shortcoming
led to a ‘temporal banding’ proposal in which extant clades associated with particular taxonomic ranks would be
standardized according to a universal metric: the absolute time of evolutionary origin. However, one underexplored
possibility is that same-level taxa in disparate organismal groups already might be similar (fortuitously so) in
evolutionary age. In the present study, we explicitly address this possibility by reviewing published molecular
inferences about the known or suspected origination dates of taxonomic genera, families, and orders in diverse
organismal groups. Our findings empirically confirm that currently recognized taxa are far from temporally
standardized, thereby adding support for the contention that this kind of taxonomic inconsistency should

ultimately be rectified in our biological classifications.
of the Linnean Society, 2011, 102, 707-714.
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The hierarchical Linnean scheme of organismal clas-
sification, in which genera are nested within families,
families with orders, orders within classes, and so on,
has endured for more than 250 years. Originally
designed by Linnaeus (1758) to catalogue the biologi-
cal products of a supernatural Creator, the Linnean
system of ranking has survived major transforma-
tions in biology, such as the elucidation of evolution
and its principal driving force in the 1800s, the rise of
genetics and population genetics in the first half of
the 20th Century, and several more recent metamor-
phoses in systematics including the spread of a
revised concept of monophyly (Hennig, 1966), as well
as the ongoing revolutions in molecular phylogenetics
(Hillis, Moritz & Mable, 1996; Nei & Kumar, 2000;
Avise, 2004, 2006). Yet the basic Linnean system lives
on, having accommodated itself to each such concep-
tual shift in biology. For example, beginning with
Darwin (1859), the hierarchical categories that Lin-
naeus first erected as an organizational tribute to
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God’s creations were reinterpreted by the scientific
community to be logical outcomes of an evolutionary
process that successively crafts new species by
natural selection; furthermore, sensu Hennig (1966),
many systematists simply reinterpreted Linnean
ranks to be nested clades that arise naturally from
successive cladogenetic events in phylogenetic trees.
Nevertheless, as bemoaned by de Queiroz & Gauthier
(1992), ‘biologists still have not developed a phyloge-
netic system of taxonomy.’

TWO PERCEIVED PROBLEMS

Despite its resiliency and continued widespread
deployment, the traditional Linnean nomenclatural
system has come under criticism in recent years as a
result of (1) instabilities and (2) inconsistencies (i.e.
absences of standardization) in its nomenclatural
assignments.

INSTABILITY

In translating the standard Linnean framework into a
working taxonomy, one operational problem has been
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an instability of taxon names partly as a result of
historical shifts in the meanings attached to ranked
taxa (de Queiroz & Gauthier, 1990, 1992, 1994). Tra-
ditionally, taxa were treated (implicitly or explicitly) as
abstract classes of organisms based on shared traits
rather than shared ancestry per se. However, even
when taxa were interpreted under a strict phylogenetic
framework to be monophyletic assemblages or clades
(which themselves can have several different mean-
ings; de Queiroz, 2007), cascades of name changes for
Linnean ranks often have been necessitated when new
taxa were discovered or previously named taxa were
either split or lumped subsequent to reinterpretations
of new or existing data.

Systematists have attempted to alleviate the insta-
bility problem in various ways. The mainstream
approach has been to adopt and periodically update
an official International Code of Zoological Nomencla-
ture that formalizes how to name organisms (Polaszek
& Wilson, 2005), whereas proponents of an entirely
different approach known as the PhyloCode (Cantino
& de Queiroz, 2007) want to convert to a system in
which clade names (traditionally referring to taxo-
nomic rank) are redefined as clade types delimited in
the context of a phylogeny. Depending on how it
might be implemented, the PhyloCode would either
jettison Linnean ranks or retain a rank concept but
do so in a different and more stabilized nomenclatural
framework (de Queiroz, 2006).

INCONSISTENCY (NONSTANDARDIZATION)

Another obvious flaw of the traditional Linnean
system is that its implementation to date has not
entailed any serious attempt to standardize taxo-
nomic ranks across different kinds of organisms. This
problem has both conceptual and empirical aspects.
One conceptual inconsistency arises because some
traditional Linnean taxa of a given rank (such as
Class Aves) are monophyletic, whereas others of iden-
tical rank (such as Reptilia) are paraphyletic or even
polyphyletic. The empirical inconsistencies originate
because disparate groups of organisms of identical
rank in the traditional Linnean hierarchy are not
necessarily identical or even similar in other
attributes such as morphological diversity, rate of
phenotypic evolution, contribution to extant biodiver-
sity, diversity of ecological roles, or any other biologi-
cal or evolutionary features of which we are aware.
For example, some genera have dozens of species,
whereas others are monotypic; species in some genera
are phenotypically diverse, whereas those in other
genera are almost indistinguishable in morphology;
some taxonomic families encompass major compo-
nents of an ecosystem, whereas others include only
rare species of negligible impact; some taxonomic

families are quite ancient, whereas others are rela-
tively young; and so on. These points all have been
made before repeatedly (Laurin, 2008; Lee & Skinner,
2007; Minelli, 2000) but, in any event, the undisputed
fact is that conventional Linnean ranks are blatantly
nonstandardized and thus inconsistent. In other
words, under the current Linnean system, a taxo-
nomic genus or family of insects, for example, does
not necessarily compare in any specifiable way to a
genus or family of plants, fungi, birds or amphibians.

This type of inconsistency is not just a minor inven-
torial glitch in taxonomy but, rather, it is a funda-
mental impediment to cross-taxon research and
interdisciplinary communication in the biological sci-
ences. If, instead, classifications were standardized
such that the taxonomic assignments themselves con-
veyed meaningful relational information about clades
across diverse types of organisms, novel questions
and research opportunities in countless areas of com-
parative evolutionary biology would be promoted
(Avise, 2009).

In this brief commentary, we first elaborate on
temporal banding and the challenge of standardiza-
tion in comparative taxonomy. We will then address
whether traditional Linnean taxa of specified rank
already might be serendipitously standardized to
some extent with respect to known or suspected dates
of evolutionary origin.

TEMPORAL BANDING: A SOLUTION TO
INCONSISTENCY?

Hennig (1966) may have been the first to make
explicit a suggestion that the absolute time of evolu-
tionary time of origin should be the ultimate ‘gold-
standard’ for synchronizing Linnean taxonomic ranks
such that, for example, a genus-level or family-level
clade of extant insects would have arisen, by defini-
tion, within the same specified window of evolution-
ary time as its taxonomic counterparts in fungi, birds,
and mammals, or any other type of organism. Avise &
Johns (1999) elaborated on Hennig’s (1966) sugges-
tion and named it the ‘temporal-banding’ approach.
The exact temporal bands (windows of evolutionary
time) to be associated with particular Linnean ranks
are in principle arbitrary and, initially, would have to
be ratified by the systematics community; thereafter,
they would provide a universal basis for objectively
assigning particular Linnean ranks to particular
clades. There is no dispute that every biological clade
had some true time of evolutionary origin. Thus, at
least in principal, geological time is one (and arguably
the most useful) universal yardstick for comparing
clade ranks within and among any organismal
groups. As noted by Hennig (1966), ‘If systematics is
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TEMPORAL INCONSISTENCIES 709

to be a science it must bow to the self-evident require-
ment that objects to which the same name is attached
must be comparable in some way.’

Unfortunately, temporal-banding as originally for-
mulated by Avise & Johns (1999) would necessitate
wholesale nomenclatural changes because the current
Linnean assignments would have to be modified to
accommodate the new formulation for ranks based on
dates of evolutionary origin. Thus, this proposed route
to solving taxonomy’s inconsistency problem would
exacerbate the instability problem. This latter draw-
back subsequently was addressed by Avise & Mitchell
(2007) who suggested a simple remedy that still
remains consistent with the general notion of tempo-
ral banding: merely append suitable ‘time-clips’ to
existing taxon names as the origination dates of
clades become adequately documented from molecu-
lar data, fossils or other evidence.

APPLES VERSUS ORANGES IN THE
MOLECULAR ERA

Much of the inconsistency problem described above
relates to the proverbial ‘apples versus oranges’ issue:
how can anyone meaningfully compare the pheno-
types, ecologies, or any other attributes of organisms,
as different as primates, fruit flies, fungi, and plants?
Without a common yardstick for cross-taxon compari-
sons, the challenge of standardizing Linnean ranks
has appeared to be insurmountable.

MOLECULAR YARDSTICKS AND CLOCKS

In the latter part of the 20th Century, molecular
genetic approaches appeared to offer some hope of
escape from the apples versus oranges problem. All
extant organisms employ nucleic acids as genetic
material and proteins as metabolic workforces. By
comparing homologous DNAs or protein molecules
even in disparate kinds of organisms of specified
taxonomic rank, the desired common yardstick might
finally have been found. Alas, it soon became appar-
ent that same-level taxa in different organismal
groups are far from consistent with respect to mag-
nitudes of genetic divergence at homologous proteins,
loci, or even entire genomes (such as mitochondrial
DNA). Among vertebrate animals, for example, con-
generic species and confamilial genera of endotherms
(birds and mammals) often show much smaller
genetic distances than counterpart taxa of reptiles
and amphibians (Avise & Aquadro, 1982; Johns &
Avise, 1998).

Another sobering realization came with the eluci-
dation of rate heterogeneities in molecular evolution
at several levels: across nucleotide sites within a
gene; across nonhomologous loci within a lineage;

across comparable genomes; and at homologous loci
across taxonomic lineages (Gu & Li, 1992; Rand,
1994; Ayala, 1997; Li, 1997; Kumar & Hedges, 1998).
Thus, early hopes for a universal and metronomic
‘molecular clock’ (Zuckerkandl & Pauling, 1965) were
dashed, as were prospects that genetic distances
might be an ideal universal metric for standardizing
Linnean ranks. This is not to say that molecular
timepieces were discarded; by contrast, stochastic or
‘relaxed’ molecular clocks remain extremely helpful
for reconstructing and provisionally dating nodes in
phylogenetic trees. Nevertheless, dating exercises are
challenging and their results often remain problem-
atic in some instances. Much discussion has sur-
rounded how best to combine molecular and fossil
data with those from biogeography, morphology or
other phenotypic evidence (Benton & Ayala, 2003;
Donoghue & Benton, 2007; Marjanovi¢ & Laurin,
2007; Padial et al., 2010), as well as how best to
calibrate and constrain molecular clocks in phylogeny
reconstruction (Kumar, 2005; Benton, Donoghue &
Asher, 2009; Hedges & Kumar, 2009b). We will not
discuss such implementational issues here, although
they have major implications for the reliability and
precision of reported dates for phylogenetic nodes
(Graur & Martin, 2004; Ho et al., 2005; Pulquério &
Nichols, 2006; Ho & Phillips, 2009).

DNA BARCODING

In recent years, an exploding literature on this topic
attests to the widespread appeal of standardization in
taxonomy. The basic idea of ‘DNA barcoding’ is to use
the magnitude of sequence divergence in a ‘master
molecule’ (typically a mitochondrial cytochrome
oxidase gene) as a consistent metric to identify
species in any organismal group (Hebert et al., 2003;
Stoeckle, 2003). The approach not only has great
promise, but also potential pitfalls (Moritz & Cicero,
2004), including the arbitrariness of any sequence
divergence threshold for species recognition.

To date, DNA barcoding has been the major gen-
erator of enthusiasm for standardization in taxonomy.
We find this situation quite ironic because ‘species’ is
the one-and-only level in the Linnean hierarchy not
recommended for inclusion in the temporal-banding
proposal by Avise & dJohns (1999) (i.e. under the
biological species concept, reproductive isolation
already serves as a universal standard for demarcat-
ing sexual species, at least in principle). Of course,
DNA barcoding could be extended to higher Linnean
ranks by assigning arbitrary sequence-divergence
cutoffs for genera, families, orders, and so on;
however, we still would argue that the ages of clades
would ultimately be a better standard for any univer-
sal earmarking of supra-specific taxa.

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 707-714
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ABSOLUTE TIME: THE ULTIMATE
ARBITER?

Under the general temporal-banding framework,
taxonomic ranks of extant clades would be standard-
ized (or at least time-clipped) according to dates of
origin. However, one key issue not well addressed is
whether same-level taxa in different organismal
assemblages already might be somewhat similar in
evolutionary age. Although systematists apparently
have made no conscious efforts to time-standardize
taxonomies across (or even within) organismal
groups, it remains possible that some degree of stan-
dardization has arisen de facto because: (1) most
systematists have strived to assign Linnean ranks to
clades (as opposed to grades or artificial groups); (2)
such clades typically are nested, meaning that lower-
ranked clades almost inevitably are younger than
higher-ranked clades in any organismal group; and
(3) many biogeographical events associated with the
geological timescale may have concordantly shaped
the cladograms of multiple taxa in ways that should
be reflected to some degree in current taxonomies.

Here, we review recently published molecular infor-
mation on suspected evolutionary ages of taxonomic
genera, families, and orders in diverse organismal
groups. The results strongly imply that currently
recognized Linnean taxa are indeed highly nonstand-
ardized, temporally.

Our analysis was prompted by the recent publica-
tion of The Timetree of Life (Hedges & Kumar, 2009a),
a synthetic phylogenetic treatise from which most of
our temporal estimates of clade origins and taxonomic
assignments were extracted. This edited volume con-
sists of more than 80 chapters devoted to family-level-
and-above taxa in particular extant groups of
animals, plants, and microbes, with each chapter
typically including a ‘best-estimate’ of a timetree (a
cladogram with evolutionary dates) as reconstructed
by systematic experts on each organismal group. Most

of the estimates of divergence time in The Timetree of
Life came from molecular clocks (often based prima-
rily on mitochondrial DNA) as calibrated using fossil
or biogeographic evidence. In the present commen-
tary, ‘evolutionary age’ or ‘date of origin’ will refer to
the nodal timepoint at which each taxonomic clade
was reported to have arisen.

Because The Timetree of Life treated only taxa at
and above the taxonomic level of families, we supple-
mented our analysis with previously estimated diver-
gence dates for selected genera in various organismal
groups, based on our own literature survey (see Sup-
porting information, Appendix S1). Here, we focus
mostly on vertebrate taxa because these animals have
attracted special interest in discussions of compara-
tive molecular evolutionary patterns. We also have
summarized timetree data for decapod crustaceans
(Decapoda) because published estimates are available
for many genus- and family-level taxa in this arthro-
pod group. Table 1 summarizes these published esti-
mates of evolutionary ages (inferred dates of origin)
for traditionally recognized genera, families, and
orders in the various vertebrate groups and decapods;
the data are graphically portrayed in Figures 1, 2, 3.

One major point to emerge is that each Linnean
rank within a group appears to be associated with a
wide range of evolutionary ages. Within mammals, for
example, some extant genera provisionally date back
only 100 000 years, whereas others are as old as
40 Myr; and, within reptiles, coalescent points for
extant members of various genera range from
approximately 7-160 Mya. Similar statements apply
to the taxonomic ranks of families and orders. For
example, the provisional evolutionary ages of amphib-
ian families range from 43-226 Myr, and dates for
mammalian families range from 7-80 Myr.

The second major point from these data is that
mean evolutionary age generally increases with taxo-
nomic rank within each vertebrate group. Within
birds, for example, a traditional genus arose on

Table 1. Summary of published evolutionary ages (Myr) estimated for genera, families, and orders within each of four
major vertebrate groups, and also for decapod crustaceans among the invertebrates (see text)

Orders Families Genera
Age Age Age

Taxon N. (mean = SE) Ranges N (mean + SE) Ranges N (mean + SE) Ranges
Amphibia 3 274.0+10.0 264.0-294.0 76 101.3+55 43.2-226.4 84 37.3+1.7 14.3-110.7
Reptilia 3  240.5+15.9 219.2-271.5 72 86.4 +4.8 32.9-2094 137 315+22 6.9-159.0
Aves 31 85.5 3.0 53.0-106.9 149 429+ 1.7 11.3-97.9 201 27.7x1.1 0.4-80.0
Mammalia 26 81.2+5.3 60.7-202.2 141 37.1+1.3 7.3-80.5 597 9.6 +0.3 0.1-40.0
Decapoda 1 437 NA 25 200.9 +16.1 94.0-430.0 57 60.2+4.2 16.8-135.1

NA, not available.

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 707-714
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Mammalia (697) —0— .
Aves (201) o+ ' : '
Reptilia (137) 4 ' o+ . '
Amphibia (84) A c::é
Decapoda (57) 1 + : + :
0.0 20I_0 40I_0 60'_0 80I_0 10£)A0 126_0 146_0 166_0 180.0
Age (Myr)

Figure 1. Published evolutionary ages of surveyed genera within each of four major vertebrate groups, and also for
decapod crustaceans among the invertebrates. Mean dates, SEs, and ranges are shown.

Mammalia (141) —0— I
Aves (149) A —l-—
Reptilia (72) 1 +o+
Amphibia (76) . ;
Decapoda (25) A + c + . . ;
0.0 SOI,O 106.0 156,0 206.0 25(').0 306.0 35[').0 406,0 456.0 500.0
Age(Myr)

Figure 2. Published evolutionary ages of surveyed taxonomic families within each of four major vertebrate groups, and
also for decapod crustaceans among the invertebrates. Mean dates, SEs, and ranges are shown.

Mammalia (26) - -+
Aves (31) —iﬂ—‘—
Reptilia (3) - : : 4—.-—.—
Amphibia (3) ’ ._._,_
Decapoda (1) 4 *
0.0 50I.0 10;)40 156.0 20[I].0 25(I).0 30;).0 35;).0 40;].0 45(').0 500.0
Age(Myr)

Figure 3. Published evolutionary ages of surveyed orders within each of four major vertebrate groups, and also for
decapod crustaceans among the invertebrates. Mean dates, SEs, and ranges are shown.

average approximately 28 Mya, a taxonomic family
arose 43 Mya, and an order originated approximately
86 Mya. A general association of higher Linnean rank
with older evolutionary age is of course not unex-
pected. Nevertheless, for each vertebrate group, we
conclude that clades of a given taxonomic rank can be
associated with a wide range of evolutionary ages,
meaning that there is little consistency with respect
to time of origin.

Table 1 and Figures 1, 2, 3 also permit comparisons
of mean evolutionary ages of taxa across these
groups. Taxonomic inconsistency is evident from this
perspective also. For example, whereas a mammalian
genus reportedly averages an age of only 10 Myr,
an amphibian genus typically arose approximately
35 Mya. Furthermore, whereas a typical mammalian
family arose approximately 40 Mya, a typical amphib-
ian family arose more than 100 Mya. At the ordinal

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 707-714
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Figure 4. Regressions showing the relationships between evolutionary ages of taxa and their Linnaean ranks in current
classifications. For this analysis, genera, families, and orders were arbitrarily assigned numerical values of 1, 2, and 3.

level, estimated mean ages of taxa range from a low
of approximately 80 Myr in mammals and birds to
highs of approximately 240 and 270 Myr in reptiles
and amphibians, respectively.

The heterogeneity of origination dates for a
specified-level taxon becomes even more pronounced
when an invertebrate group (Decapoda) is also con-
sidered; in our survey, the 25 taxonomic families and
57 genera within this taxonomic order originated on
average approximately 200 Mya, and 60 Mya, respec-
tively; or approximately five-fold longer ago in each
case than the same-level taxa of mammals.

The heterogeneity of taxonomic assignments with
respect to absolute evolutionary time of origin across
major vertebrate groups has been illustrated previ-
ously (Hedges & Kumar, 2009b: 15), and it is further
demonstrated by significantly different slopes for
these groups in the regressions between evolutionary
age and taxonomic rank (Fig. 4). In this representa-
tion, it appears to be the case, for example, that
reptilian and amphibian taxa not only are consis-
tently older at each taxonomic level than their coun-
terpart taxa among the birds and mammals, but also
that their evolutionary ages increase faster with
increasing levels of Linnean taxonomic rank.

One goal of this commentary has been to consider
the degree to which clades currently assigned a given
taxonomic rank might already be somewhat consis-
tent, with respect to age of origin, across extant
members of disparate organisms. At issue is not so
much whether higher ranks within a specified group
tend to be more ancient than lower ranks (this is to be
expected under nearly all taxonomic and evolutionary
scenarios), rather, the more salient questions are: (1)
are identical taxonomic ranks in the same and differ-
ent organismal groups consistent with respect to evo-
lutionary age and (2) are the slopes in the regressions
between taxonomic rank and evolutionary age consis-
tent across different kinds of creatures? For animals
included in our survey, the answers to both questions
are ‘no’; the evolutionary ages of taxa are not consis-

tent across (or even within) specified organismal
groups. Furthermore, the inconsistencies are even
more pronounced when highly disparate kinds of
organism are considered.

Thus, evolutionary dates of origin can now be added
to the pantheon of biological variables for which
nested ranks in current Linnean taxonomies are
highly inconsistent. Other such variables include
such diverse features as numbers of species per taxon,
magnitudes of phenotypic divergence (e.g. in morphol-
ogy, behaviour, physiology, etc.), ecological roles, spe-
ciation rates, geographic ranges, genetic distances in
proteins or nucleic acids, calibrations for molecular
clocks, and just about any other biological variable
that you might think of. In other words, even two-
and-a-half centuries after Linnaeus, systematists
have yet to standardize (or even develop criteria for
standardizing) the nested Linnean categories (ranks)
that serve as the organizational and nomenclatural
foundation for essentially all areas of biology.

SYNOPSIS

In the introduction to The Timetree of Life, Hedges &
Kumar (2009a: 16) emphasize ‘the immense value of
having a robust Timetree of Life for all fields of
science. It will provide a means for estimating rates of
change for almost anything biological; for example,
morphological structures, behaviors, genes, proteins,
non-coding regions of genomes — in any group of
organisms. In that sense it will catalyze a Renais-
sance in comparative biology’. If reliable timetrees
can indeed be generated for many taxa in the coming
years, we agree with the sentiment by Hedges and
Kumar, and would merely add that a nomenclatural
scheme (such as time-clips) clearly encapsulating that
temporal information might then help to catalyze a
transition to comparative evolutionary thinking,
which in turn could benefit many areas of biology,
ranging from the phylogenetic analysis of adaptations
(Harvey et al., 1996; Avise, 2006) to biodiversity

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 707-714
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analyses including conservation efforts (Wilson, 1988;
Purvis, Gittleman & Brooks, 2005).

In the present commentary, we have confirmed that
temporal inconsistencies pervade current Linnean
taxonomies. The twin problems of taxonomic instabil-
ity and nonstandardization have plagued biology for
more than two centuries. However, with the increased
availability of timetrees for numerous taxa, perhaps a
time will come when systematists rectify the incon-
sistency problem by somehow incorporating temporal
benchmarks into their biological nomenclatures. The
nonstandardization problem in taxonomy has pre-
Darwinian roots and is insidious but, in principle, it
can be corrected. For the first time since Linnaeus,
conceptual frameworks as well as empirical
approaches now exist to stabilize and universally
standardize taxonomic assignments across all forms
of life. The open question is: will systematists finally
choose to adopt some such system?
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