
UC Irvine
ICS Technical Reports

Title
Issues in the runtime modification of software architectures

Permalink
https://escholarship.org/uc/item/2vj8t9fm

Author
Oreizy, Peyman

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2vj8t9fm
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protected
by Copyright Law
(Title17U.S.C.)

Issues in the Runtime Modification

of Software Architectures

Peyman Oreizy

Department of Information and Computer Science
University of California, Irvine, CA 92697

peymano@ics.uci.edu
http://www.ics.uci.edu/~peymano/

UCI-ICS-TR-96-35

August 1996

Abstract

Existing software architecture research has focused on static architectures, where the
system architecture is not expected to change during system execution. We argue
that the architectures of many systems, especially long running or mission critical
systems, evolve during execution, and thus cannot be accurately modeled and
analyzed using static architectures. To overcome these problems, we propose the use
of dynamic architectures, where the system architecture may change during
execution. In this paper, we identify the issues involved in supporting dynamic
architectures. Although some of these issues may be addressed by augmenting
current models (i.e., adding constructs that support dynamism to existing
architectural description languages), many are new to dynamic architectures (i.e.,
runtime support for modifying architectures). We describe an initial implementation
of our tool, ArchShell, that supports the runtime modification of C2-style software
architectures.

5L 6m

pAcohAiifipl
ujyApe-Pi.ofGctfciq
jiiiice:jjjjb'iA!9{euai

1. Introduction

Current software architecture research assumes that a system's architecture is "static", in the
sense that the architecture does not change during execution. Many architecture modeling
notations and tools, such as Wright [AG94] and UniCon [SDK+95] are based on this
assumption. It is our belief that the architectures of many systems evolve during execution, and
thus cannot be accurately modeled and analyzed using a static architecture.

For example, consider the high costs and risks associated with shutting down and restarting
long running safety or mission critical systems. Many such systems employ elaborate
mechanisms that allow system extension during execution.

But the benefits to runtime evolution are not constrained to safety intensive, mission critical
systems. A broadening class of systems and end-user applications are beginning to exhibit
similar properties in an effort to provide end-user customizability and extensibility. Runtime
extension facilities have become readily available in many popular operating systems (e.g.,
dynamic link libraries in UNIX and Microsoft Windows) and as a part of component object
models (e.g., runtime component loading facilities in CORBA [OHE96] and COM [Broc94]).
These facilities enable "system evolution without recompilation" by allowing new libraries or
components to be located, loaded, and executed during runtime. Unlike program overlays, the
identity of the libraries or components that a system will utilize is not necessarily known until
runtime. The architecture of these systems evolves during the course of execution.

Static architectural modeling notations lack the constructs to express runtime change,
thereby making it unnecessarily difficultor impossible to describe and analyze such systems. If
we are to model the architectures of dynamically changing systems, we must augment our
notations to describe runtime architectural changes and construct tools to help us analyze their
unique properties. We refer to the unique aspects of such architectures as dynamic architectures.

The remainder of this paper is organized as follows. Section 2 discusses the unique issues in
supporting dynamic architectures. Section 3 presents an experimental tool we have constructed
that supports dynamic architectures. Section 4 discusses related work.

2. Dynamic Architectures

Dynamic architectures require formalisms and tools beyond those of static architectures.
Adequate notational constructs are needed to describe runtime change, analysis tools are needed
to help verify their unique properties, and runtime support libraries are needed to reduce the
costs associated with their implementation.

Our investigation into supporting dynamic architectures has revealed several important
issues that need to be addressed. We present our preliminary set of issues below.

Modincation time: We distinguish between four periods during which architectural
modifications may occur. The first, change at design time, represents the current focus of
architecture research. The last, change at runtime, represents flexible runtime change. The two
intermediate periods aredistinguished for practical reasons. They provide less flexibility as
compared to the pure dynamic case, but they are easier to analyze and implement.

1. Design time: Modifications are made before the architectural model and its associated source
code are "compiled" into an application. Such modifications are relatively well understood
since only an abstract model of the architectural is altered.

2. Pre-execution time: Modifications are performed after compilation but before execution. Since
the application isnot running, modification canbe made without regard to theapplication state.
Such modifications require that the application's architectural model be included with the
application (e.g., by embedding it in the executable binary), and mechanisms for adding and
removing components to the application be provided^

3. Constrained run-time: Modifications are performed only when certain pre-specifiedconstraints
are satisfied. Constraints basedon the program state allowchanges to be made when the appli
cation is in a known "safe" state with respect to the modification. Constraints based on the
application topologyallow changes to be made in the presence or absence of specific structural
properties.

4. Run-time: Modifications are performed during runtime where assumptions about the slate of
the application or its architectural topology are not made beforehand.

Modification operations: The operations for describing change include: adding
components, removing components, upgrading or replacing components, changing the
architecture topology by adding or removing connections between components, altering the
mapping of components to processing elements, querying for properties of architectural
elements (e.g., to obtain versioning information), and querying the current architectural topology.

A typical change will require several modification operations. Consider for example the
corrective upgradeof the text processing component of a word processor. Before making the
change one may need to verify that (a) the existing component is older than the upgraded
component, (b) components dependent on the text processing component will not be adversely
affected, and (c) components that the new text processing component depend on are present. If
steps (b) or (c) fail, other modification operations may need to be performed to upgrade existing
components.

This necessitates a facility for grouping modification operations into atomic sets, such that if
any one operation fails to complete, the entire set of changes are uncommitted to avoid leaving
the system in an unstable state.

Modification constraints: By enabling change within system boundaries, architectural
modifications risk compromising system integrity. Thus, mechanisms that maintain system
integrity in light of architectural modifications are needed.

Modification constraints provide a means to specify limits on what aspects of an architecture
may change. They may restrict change based on modification operation, panicular components,
modification time, or a combination thereof. They may also require that functional properties be
verified (e.g.. by using an analysis tool) before a change is committed. Relating constraints to
behavioral properties of the system allows trade-offs to made if all constraints cannot be met
simultaneously.

For example, consider a system whose integrity relies on satisfying real-time constraints. If
adequate tools are not available to verify such properties at runtime, architectural modifications
may be restricted to the subset of the system not operating under real-time constraints.

1. System "patches" area common form of pre-execution time change. But theyare extremely brittle because they
operate at the level of byte streams.

Architectural modification language: Existing architecture definition languages (ADLs)
such as Wright [AG94] and UniCon [SDK+95] only describe static architectures. In order to
support dynamic architectures, two other descriptions are necessary:

• An architectural modification language (AML) is needed to describe modification operations.
It describes the set of operations that must be performed to modify the architecture. [Med96]
describes our initial attempt at supporting architectural modifications for C2's ADL. An archi
tectural modification language would most likely be operational^.

• An architectural constraint language (ACL) is needed to describe modification constraints. It
describes the constraints under which architectural modifications must be performed. The
application designer will typically provided the set of architectural constraints, which may
change as components are added and removed from the architecture. An architectural con
straint language would most likely be declarative.

Although these two languages are conceptually distinct, there is an important interaction
between the two: modifications specified in the AML must be verified against constraints
specified in the ACL.

Understandability and analyzability of these languages is particularly important. Users will
be the primary authors of the descriptions, and tools must be able to verify modification
operations against modification constraints effectively.

Optimization in the presence of change: Runtime modifications precludes the use of some
classes of static optimizations. For example, in a static architectural model, a common
optimization is to implement architectural connectors using direct procedure calls [SDK+95].
Such optimizations cannot be performed on a dynamic architecture since new components may
be added to the connectors at runtime. But by specifying constraints on the architecture, such as
"new components cannot be added to or removed from connector X", flexibility can be
exchanged for performance. Thus, the application designer may consider the trade-offs between
flexibility and performance as needed.

Optimization techniques based on runtime profiling information, such as adaptive
compilation [Holz94] and load balancing, may be appropriate. Further iiivestigation into
determining the applicability of these techniques to dynamic architecture is needed.

Runtime system: The runtime system is the engine of architectural modification. Runtime
system responsibilities include:

• Maintaining the system's architectural model. Since the architectural model may be needed to
direct runtime change, the model must be included as a part of the delivered system and main
tained by the runtime system.

• Ensuring that architectural modifications are within modification constraints.

• Enacting architectural modifications using facilities provided by the environment, e.g.,
dynamic loading and linking of components, process migration facilities for moving a compo
nent to a new processing element, interprocess communication mechanisms for component

2. Although the architecture modification language may be interpreted, the components themselves can be compiled.
This is significant because since it enables flexibility without incurring the performance costs associated with pro
gram interpretation.

communication, etc. Environments lacking some of these facilities limit the scope ofdynamic
change. For example, an environment without dynamic linking facilities must use interprocess
communication mechanisms between the application and newly added components.

The runtime system may take many forms. It may be compiled into the application as a
library during compilation, it may be packaged as a part of the modification operations, or even
as a separate application. Theform it takes depends on many factors including the types of
modification operations supported, the types of modification constraints that need to be
enforced, properties of the execution environment, etc.

Concurrency: Complex software systems have architectures involving heterogeneous OTS
components, of varying granularity, written indifferent programming languages, and running in
a distributed, heterogeneous environment. It is naive to assume that execution may be suspended
during architectural modification.

Techniques supporting change in such an environment need to be investigated. Locking
components involved in a modification during a change to prevent access to them is one
potential approach.

System state; A component's internal state changes during its lifetime and affects its
execution behavior. Replacement during execution entails transferring (and possibly translating)
the state of the component to its replacement. Failure to do so is likely to compromise system
integrity. Care must be taken to ensure thatcomponent state does notchange during the transfer.
Techniques for transferring the state ofa running component to another need tobeinvestigated.

3, ArchShell: An Environment Supporting Dynamic Architectures

We have built a prototype tool, called ArchShell, that supports the construction and runtime
modificationof software architectures. ArchShell has provided valuable feedback in
understanding dynamic architectures and the tools that are needed to support them.

ArchShell supports the interactive construction and execution of C2-style architectures^ in a
manner similar to the way in which a UNIX shell (e.g. csh) allows construction and execution of
pipe and filter architectures. However, unlike a UNIX shell, ArchShell also supports the
modification of the architecture at runtime. It does this by dynamically loading and linking new
architectural elements into the architecture.

ArchShell provides a simple command oriented interface for issuing commands to the
system. The architect constructs the initial architecture by selecting components and connectors
out of a component repository and connecting them to one another. Once the initial architecture
has been constructed, the architect initiates its execution. The architect is then free to interact
with the newly constructed application and simultaneously issueArchShell commands to
modify its architecture. At runtime, new components and connectors may be added to the
architecture, andconnections between components andconnectors may be added or modified.
Newly added components orconnectors do not begin executing until explicitly initiated by the
architect. If a non-executing component or connector receives a message, the message is put on

3. Briefly, C2isa component- and message-based architectural style forconstructing flexible andextensible software
systems. AC2 architecture is a hierarchical network of concurrent components linked together byconnectors
(message routing devices) in accordance with a setof style rules. See [TMA-i-96] for a detailed exposition on the
C2-style.

the component's message queue and is delivered when the component begins execution.
Figure 1 shows a sample session with ArchShell in which a simple visualization of a Stack

data structure is constructed. New components and connectors are added to the architecture
using the ''new" command, and connected to one another using the "weld" command. The
"start" command initiates the execution of the architecture, which is depicted in Figure 2(a). The

DevShell

> new arch

ClassNarae? c2.framework.SimpleArchitecture (a)
Name? StackArch I
StackArch> new conq>onent StackADT
ClassName: c2.comp.StackADTThread
Name ; StackADT 1
StackArch> new conq>onent | I
ClassName: c2. comp.StackArtistGraphics * —i '
Name: StackArtlst i 1 i.
StackArch> new component
ClassName: c2.comp.graphics.GraphicsBinding StackArtlst
Name: GraphicsBinding
StackArch> new connector I
ClassName: c2.framework.ConnectorThread | bus2 |
Name: busl I
StackArch> new connector

ClassName: c2.framework.ConnectorThread Graphics
Name: bus2 Binding
StackArch> weld

Top entity: StackADT
Bottom entity: busl
StackArch> weld ,13^
Top entity; busl |
Bottom entity: StackArtlst StackADT
StackArch> weld

Top entity: StackArtlst I 1
Bottom entity: bus2 r •• ' •
StackArch> weld [busl j
Top entity: bus2 I 1
Bottom entity: GraphicsBinding
StackArch> start StackArtlst StackPieArtist
Entity: StackArch

StackArch> new component fbu¥2 |
ClassName: c2.comp.StackPieArtist ['
Name: StackPieArtist I
StackArch> weld Graphics
Top entity: busl Binding
Bottom entity: StackPieArtist '
StackArch> weld

Top entity: StackPieArtist
Bottom entity: bus2
StackArch> start

Entity: StackPieArtist

Fig. 1. An interactive session with ArchShell. Fig. 2. The StackADT component
The text In bold represents commands issued encapsulates the stack abstract data type, and
by the user. the StackArtlst provides a graphical depiction

of the stack using the GraphicsBinding
component, (a) A graphical depiction of the
initial executing architecture, (b) After the
StackPie Artist has been added and connected

in the architecture.

architect then uses ArchShell to add and connect the Stack Pie Artist component, which
provides a different depiction of the same stack ADT. The second "start" command initiates the
execution of the Stack Pie Artist. The modified architecture is depicted in Figure 2(b). On
startup, the Slack Pie Artist queries the current state of the StackADT so that it may be
accurately depicted.

ArchShell is written in the Java programming language using the Java C2 class framework
[MOT97]. The C2 framework is extensible and provides abstract classes for C2 concepts such as

StackArtlst

Graphics
Binding

StackADT

StackArtlst StackPieArtist

Graphics
Binding

Components,connectors, and messages. It implements several component interconnection and
message passing protocols. Components and connectors used in C2 applications are subclassed
from the appropriate abstract classes in the framework. The framework supports a variety of
implementation configurations for a given architecture: the entire resulting system may execute
in a single thread of control, or each component may run in its own thread of control or
operating system (OS) process

Our initial prototypeof ArchShell has facilitated exploration, but has many practical
limitations. It currently assumes that all components and connectors are written in Java using the
C2 framework. This allowed us to use the dynamic loading facilities provided by Java. In the
future, we plan on using language independent facilities, like those provided by CORBA and
OLE. ArchShell only operates on architectures constructed and executed within the tool. We
plan on extending ArchShell to enable it to attach itself to an executing application in much the
same as the GNU debugger, gdb, can attach itself to an application startedoutside the debugger.

Currently, the runtime modifications supported include the addition of new components and
connectors, and reconfiguration of the architecture topology. Specifically, we do not currently
support unloading unused components or replacing components by translating and transferring
their internal stale information. In the future, we plan on extending ArchShell to support more
diverse architectural modifications and to integrate it with Argo, our graphical design
environment [RR95].

4. Related Work

4.1 Architecture Description Languages
Architecture Description Languages, or ADLs, provide the formalism necessary to describe

software architectures. ADLs provide the syntax and semantics for modeling components,
connectors, and their interconnections. Since the focus of existing ADLs has been as a design
notation, their use has typically been limited to static analysis and system generation. As such,
existing ADLs typically provide a static description of the system, and provide no facilities for
making changes to the architecture at runtime.

Three notable exceptions are Rapide's where connection conditions [LV95], LILEANNA's
make statements [Tra93], and Darwin's dyn construct [MK96]. Although these constructs enable
runtime change, the modification must be "coded into" and compiled with the application. Since
the modifications must be described and planned for at system design time, these ADLs do not
support our notion of dynamic architecture.

4.2 Dynamic Language Environments
Many dynamic language environments provide dynamism similar to that discussed here. For

example, The InterLispenvironment [TM81] built using and for the Lisp programming language
allows system source code to be edited during execution.

These environments gain dynamism at the expense of heterogeneity. The entire application
must be written in the same programming language using either a single thread of control or
multiple threads in a shared address space. As previously discussed, many large-scale complex
systems cannot be constructed or rewritten using these assumptions.

Performance overhead is another concern of dynamic languages. Dynamism of dynamic
architectures stems from flexible component composition. The components themselves may be

compiled and written in a static language. The language designer dictates granularity of
dynamism for a dynamic language whereas dynamic architectures leave the choice to the system
designer.

5. Acknowledgments

The Java framework was built as a part of a class project with the help of Neno Medvidovic.
Richard Taylor, Neno Medvidovic, and Jason Robbins provided valuable comments on this
work.

6. References

[AG94]
[Broc94]
[Holz94]

[Med96]

[MOT97]

[MK96]

[OHE96]

[RR95]

R. Allen, D. Garlan. Formal Connectors, CMU Tech. Report 94-115. March 1994.
K. Brockschmidt. Inside OLE 2. Microsoft Press, 1994.
U. Holzle. Adaptive Optimization for Self: Reconciling High Performance with
Exploratory Programming. Dissertation, Stanford University, 1994.
N. Medvidovic. ADLs and Dynamic Architecture Changes. Second International
Software Architecture Workshop (lSAW-2), San Francisco, October 1996.
N. Medvidovic, P. Oreizy, R. N. Taylor. Reuse of Off-the-Shelf Components in
C2-Style Architectures. 7b appear at the Symposium on Software Reuse. May 1997.
J. Magee, J. Kramer. Dynamic Structure in Software Architectures. Fourth
SIGSOFT Symposium on the Foundations ofSoftware Engineering, San Francisco,
October 1996.

R. Orfali, D. Harkey, J. Edwards. The Essential Distributed Objects Survival Guide.
John Wiley & Sons, 1996.
J. Robbins, D. Redmiles. Software Architecture Design from the Perspective of
Human Cognitive Needs. Proceedings of the California Software Symposium. Los
Angeles, California, 1996.
M. Shaw, R. DeLine, D. V. Klien, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering, pages 314-335, April 1995.
M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, 1996.
D. Garlan, R. Monroe, and D. Wile. ACME: An Architectural Interconnection

Language. Technical Report, CMU-CS-95-219, Carnegie Mellon University,
November 1995.

D. Luckham and J. Vera. An Event-based Architectural Definition Language. IEEE
Transactions on Software Engineering, pages 717-734, September 1995.
W. Tracz. Parameterized Programming in LILEANNA. Proceedings ofACM
Symposium on Applied Computing SAC93, February 1993.
W. Teitleman, L. Masinter. The InterLisp Programming Environment. IEEE
Computer, pages 25-33. April 1981.
R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, J. E. Robbins, K.
A. Nies, P. Oreizy, D. L. Dubrow. A Component- and Message-Based Architectural
Style for GUI Software. IEEE Transactions on Software Engineering, pages 390-
406, June 1996.

