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Abstract—As the cost of data movement increasingly dominates
performance, developers of finite-volume and finite-difference
solutions for partial differential equations (PDEs) are exploring
novel higher-order stencils that increase numerical accuracy and
computational intensity. This paper describes a new compiler
reordering transformation applied to stencil operators that per-
forms partial sums in buffers, and reuses the partial sums in
computing multiple results. This optimization has multiple effects
on improving stencil performance that are particularly important
to higher-order stencils: exploits data reuse, reduces floating-point
operations, and exposes efficient SIMD parallelism to backend
compilers. We study the benefit of this optimization in the context
of Geometric Multigrid (GMG), a widely used method to solve
PDEs, using four different Jacobi smoothers built from 7-, 13-, 27-
and 125-point stencils. We quantify performance, speedup, and
numerical accuracy, and use the Roofline model to qualify our
results. Ultimately, we obtain over 4× speedup on the smoothers
themselves and up to a 3× speedup on the multigrid solver.
Finally, we demonstrate that high-order multigrid solvers have
the potential of reducing total data movement and energy by
several orders of magnitude.

Keywords—Compiler Optimization; Stencil; High-Order; Multigrid;
Mehrstellen;

I. INTRODUCTION

Finite-Volume/Finite-Difference solutions for partial differen-
tial equations (PDE) have, at their base, computations of
stencils. A stencil is a linear transformation of the form
L(a)i =

∑
j αjai+j. Here i, j are integer tuples, a is a multidi-

mensional array of floating-point data that approximates on a
rectangular grid the solution to some differential equation, and
L(a) approximates the application of a differential operator
to a function evaluated on a rectangular grid. The error in
the approximation is proportional to some integer power p of
the grid spacing (p is referred to as the order of accuracy
of the discretization). Most prior work on optimizing stencil
computations focus on lower-order methods (typically p = 2)
where there is limited reuse of data and computations are
notoriously memory bound. Much of this prior work reduces
the amount of data movement by fusing multiple stencil
sweeps through techniques like cache oblivious, time skewing,
wavefront or overlapped tiling [1–12].

For a given partial differential operator, the number of points
required in a stencil typically increases as a polynomial in
the order of accuracy. This is in contrast to the exponential
dependence on p in the reduction of the error. Furthermore,
larger stencils, while requiring larger numbers of floating-point
operations, can be organized to require a comparable degree
of main memory data movement as their lower-order coun-

terparts. Thus, with processor architectures becoming more
compute-intensive [13], high-order schemes are increasingly
important as they can achieve greater accuracy with less data
movement. This property, combined with the need for compu-
tational scientists to minimize the memory capacity required
to obtain a given level of error in their simulations, have
been motivating the effort to increase the order of accuracy
of stencil-based algorithms for PDE.

In this paper, we introduce and evaluate a novel compiler trans-
formation which implements array common subexpression
elimination [14] by recognizing and exploiting the high degree
of symmetry in stencil coefficients and generating code that
exposes efficient SIMD parallelism to backend compilers. By
recognizing that stencil computations are associative and can
be reordered, array common subexpression elimination iden-
tifies common floating point operations across loop iterations
and reuses these calculations. In this paper, we decompose
the three-dimensional stencils to a number of two-dimensional
planes, compute partial sums of the elements, and then buffer
these partial sums across iterations to derive the output values.
This optimization exploits data reuse, thus improving mem-
ory hierarchy performance, while also eliminating redundant
floating-point computation. Reducing floating-point computa-
tion is particularly valuable for large higher-order stencils, as
they can be compute bound, and their computation can also
stress the register capacity [15].

To investigate the efficacy of this approach, we apply it to
various discretizations of Poisson’s equation, with orders of
accuracy p ranging from 2 to 10. Numerical solutions to
Poisson’s equation are ubiquitous in simulations of a variety of
physical problems including fluid dynamics, astrophysics, elec-
tromagnetics, and plasma physics. In addition, the stencils used
here are good proxies for higher-order stencil operators from a
broad range of PDE problems arising in computational science.
We evaluate our approach in the context both of applying the
operators in a stand-alone fashion, and within a Geometric
Multigrid (GMG) method for solving Poisson’s equation us-
ing these discretizations. We combine partial sums with the
communication-avoiding and thread scheduling optimizations
of prior work [16, 17]. Our compiler’s ability to compose
transformations allows it to take a higher-order smoother,
remove its computation bottleneck and make it bandwidth-
limited, enabaling it to then further apply bandwidth-reducing
optimizations. Overall, this paper makes the following contri-
butions:

• We describe the partial sum optimization within the CHiLL
compiler [18], which goes beyond related manual [19–



21] and compiler optimizations [14, 15] by simultaneously
addressing DRAM and cache bandwidth while reducing
floating-point computation and facilitating SIMDization.

• Overall we demonstrate up to a 3× speedup for the entire
multigrid solver. Our study is in contrast to much of the prior
work in this area, which has been dominated by looking at
the stencil operator in isolation.

• We demonstrate our 10th order finite-volume method de-
livers roughly a 1000× increase in accuracy for every 8×
increase in memory vs. 32,768× increase in memory for the
2nd order (requisite memory ≈ error−3/order) with only a
factor of two difference in stencil performance.

II. STENCIL DEFINITIONS AND ACCURACY

We will consider a collection of test problems for stencil cal-
culations all of which are discretizations of Poisson’s equation
∆(φ) = f , where ∆φ ≡

∑d
i=0

∂2φ
∂x2

i
, Here f is some given

function, and we want to solve for φ. For this study, we will
assume that φ and f are periodic functions on [0, 1]d, i.e.
φ(x) = φ(x + q) for all integer tuples q, and similarly for
f . We compute approximate solutions on a rectangular lattice
φhi ≈ φ(ih) by solving the stencil equations (superscripts
denote grid spacing) Lhφh = fh, where fh = f(ih), h = 1/N
for some integer N. In that case, the periodicity of the exact
solution translates into periodicity on the lattice: φhi+q1 = φhi ,
and similarly for fh. Thus, we will evaluate our operator and
solve our equations on the grid [0, N−1]d, and use periodicity
to evaluate stencil dependences that are not on that grid.

In this work, we examine the four representative stencils
operators shown in Figure 1. Points with the same color have
the same value for the coefficient. Stencils with the high
degree of symmetry shown here are a consequence of the
use of centered-difference approximations on rectangular grids,
which is ubiquitous in discretizations of Poisson’s equation and
other constant-coefficient, elliptic operators on such grids. The
standard approximation for explicit integrations use either the
well known 7-point [22] or 13-point stencils [23], with second-
and fourth-order accuracy, respectively. The sixth-order (27-
point) and tenth-order (125-point stencils) in our study are
what are known as Mehrstellen stencils. They achieve their
stated accuracy only if the right-hand side is pre-processed.
Rather than solving Lhφh = fh, one solves Lhφh = Mfh,
where M is a stencil operator whose coefficients sum to 1.
This is a one-time operation applied to the right-hand side,
prior to applying whatever solution algorithm that is used (e.g.
geometric multigrid (GMG) as is used here), and hence does
not have significant impact on the performance of the solver.
The 27-point stencil and the associated Mehrstellen correction
stencil are classical, and can be found in [22]. The 125-point
stencil and its associated Mehrstellen correction stencil are
new, and will be published elsewhere [24]. For the purposes
of this paper, it is only necessary to know the symmetries of
the operator, which are summarized in Figure 1. The accuracy
claims for this method will be verified in Section V.

III. STENCIL REORDERING: PARTIAL SUMS

For almost all stencils, there is data and operation reuse
between neighboring points. This reuse is more significant for
higher-order stencils, which examine many more neighboring

(a) (b) (c) (d) 

Fig. 1. (top) Visualizations of the discretized 3D Laplacian operators
(stencils) used in this paper. (bottom) 2D cross sections through the centers of
3D stencils. Color is used to denote the coefficient associated with that point.
The 27- and 125-point stencils have complex symmetries that we exploit.

input points to compute each output point. In this paper, we
develop a compiler transformation that exploits this reuse to
reduce loads, while removing floating-point operations that
are redundant across multiple output calculations. Thus, we
improve both computation and memory costs of the higher-
order stencils. The transformation recognizes that stencil com-
putation can be reordered, and therefore computes and reuses
partial results in partial sums.

In stencil computations, out-of-place updates are loop nest
computations where the right-hand sides are read-only arrays
per stencil sweep (e.g., Jacobi). In-place stencil computations
read and write the same array each sweep (e.g., Gauss-Seidel).
Stencils may be the sum of pairwise products of two or more
arrays (variable-coefficient) or a weighted sum of a single
array (constant-coefficient). The partial sum transformation
described in this paper targets constant-coefficient, out-of-place
stencils. This section illustrates the partial sum transformation,
while details of the compiler implementation are presented in
Section IV, and performance impact as well as interaction with
other optimizations is described in Section V.

For an illustration of computing stencils via partial sums,
consider the 9-point 2D stencil of Figure 2(top). (This is the
2D analog of the 27-point 3D stencil of Figure 1(c).) When
calculating out[j][i], inputs in[j][i+1], in[j-1][i+1]
and in[j+1][i+1] are reused in the next two iterations of
the i loop. If we conceptualize the stencil as a box as shown
in the diagram of Figure 2(bottom), these points are the right
edge for iteration 〈j, i〉, the center for iteration 〈j, i + 1〉 and
the left edge for iteration 〈j, i+ 2〉. Therefore, we employ an
optimization that avoids loading all nine inputs, but instead
loads only the right edge while reusing data from the previous
two iterations of the i loop.

At iteration 〈j, i〉 the right edge, points in[j][i+1],
in[j-1][i+1] and in[j+1][i+1] are loaded. We capture
the contribution these points make to the outputs at 〈j, i〉,
〈j, i + 1〉 and 〈j, i + 2〉 by calculating the weighted sum of
the loaded edge with coefficients corresponding to the right,
left and center edge, as illustrated in Figure 3. The compiler
constructs an array of coefficients to be used in the partial sum
transformation. If we visualize the array of coefficients as a box
as in Figure 3, with its entries corresponding to coefficients of
the stencil, then the weighted sum of input array points with the



for (j=0; j<N; j++)
for (i=0; i<N; i++)
out[j][i] = w1*(

in[j-1][i ] + in[j+1][i ] +
in[j ][i-1] + in[j ][i+1]

) +
w2*(

in[j-1][i-1] + in[j+1][i-1] +
in[j-1][i+1] + in[j+1][i+1]

) + 1
w3*( in[j ][i ] );

R i

C i+1

L i+2

…

…

…

…

…

…

r1 = in[j][i+1];
r2 = in[j+1][i+1] + in[j-1][i+1];

out[j][i] = L[i] + C[i]+ R[i];

R[i]     = w1 * r1 + w2 * r2;

C[i+1] = w3 * r1 + w1 * r2;

L[i+2] = R[i];

(j,i)

(j,i+1)

(j,i+2)

1

2

3
2

1

3

Fig. 2. The input code for a 2D 9-point stencil (top). Partial sums are buffered
and then summed to produce the output (bottom).

right edge of the array of coefficients computes B0, the center
computes B1 and the left edge computes B2. B0 is used to
compute the output at 〈j, i〉, while B1 and B2 are buffered for
outputs at the next two iterations of the i loop.

As mentioned earlier, symmetries in stencil coefficients are
ubiquitous, and we exploit symmetry to reduce floating-point
operations in computing B0, B1 and B2. The colors in the
array of coefficients in Figure 3 represent symmetry, with each
color representing a unique coefficient. The code implementing
partial sums in Figure 2 can now be explained using Figure 3.
Symmetry about the j−axis means B0 and B2 (entries for
R[i] and L[i+2]) are equal and do not have to be recom-
puted. Symmetry about the i−axis means in[j-1][i+1]
and in[j+1][i+1] will always be multiplied by the same
coefficient, and thus we store their sum in r2; in[j][i+1]
is loaded to r1. B0 is the weighted sum of r1 and r2 with
coefficients w1 (blue) and w2 (green), respectively, and B1
with coefficients w3 (red) and w2 (green).

In a similar manner, for 3D stencils we compute partial sums
of 2D planes instead of 1D lines. Figure 4 shows a 2D cross-
section of a 3D stencil, and the symmetries present. Figure 5
shows simplified generated code for the 3D 27-point stencil.
Three buffers are allocated, for the left, center and right planes;
and three scalars are created for three unique coefficients in
each 2D plane. In the general case, the number of buffers
required is twice the radius of the stencil plus one (radius is 1
for 7- and 27-point stencils, 2 for 13- and 125-point stencils).

While a reference implementation of the 9-point stencil ne-
cessitates 11 floating-point operations (8 adds, 3 multiplies)
to compute each output point, our approach requires only 9
floating-point operations (3 adds and 4 multiplies for the partial
sums plus 2 adds to sum the symmetric partial results). The
reduction in floating-point operations becomes more significant
with the size and dimension of the stencil operator; for exam-
ple, the 125-point stencil has 124 adds, but once optimized it
has only 38, for a more than 3× reduction.

An additional advantage of this approach is that it results in
code amenable to SIMD code generation, AVX and SSE for

our target architectures. Intuitively, SIMDization is enabled
because the calculations in the loop, including the partial sum
calculations, have unit stride across the innermost i dimension.
While we are unable to isolate the SIMDization benefits, we
performed an experiment to illustrate the differences between
the 125-point stencil code before and after the partial sum
optimization. Using Intel Architecture Code Analyzer (IACA),
we profiled both versions of the code on an Intel West-
mere i5-540M platform.1 In the partial-sum-optimized code,
all floating-point adds use SIMD instructions, whereas only
about two-thirds of the adds in the baseline code use SIMD
instructions. However, L1 and shuffle bandwidth can limit the
ultimate benefit from increased SIMDization.

Comparison with Array Common Subexpression Elimina-
tion. A compiler formulation of a related reordering transfor-
mation called array common subexpression elimination was
described in [14]. Array common subexpression elimination
is implemented using an abstraction called a tablet, which
records the structure of the stencil inputs and their coefficients.
To capture reuse, redundancy conditions, heuristics and benefit
functions are used to generate subtablets of the tablet. The
subtablets are used to compute partial sums which are reused
via scalar temporary variables. This method of exploiting reuse
through the subtablets is more complex but more general than
the partial sums method. The subtablet construction allows for
reuse of points other than a plane and enables handling of
multi-statement stencils. However, exploiting reuse in scalar
registers introduces a scalar dependence across loop iterations
and inhibits instruction-level and SIMD parallelization by
native backend compilers.

In contrast, the partial sums approach always picks the leading
plane of points, and it buffers the computed partial results in
vectors. Picking the leading plane and explicitly looking for
symmetry to reduce redundant computation is simpler than
using heuristics, redundancy conditions and cost functions to
discover reuse and symmetry from subtablets. Further, partial
sums avoids introducing dependences and generates code eas-
ily vectorized by the native backend compiler. The resulting
code no longer has cross-iteration reuse in the innermost loop
and thus avoids the data stream alignment problem which
results in inefficient SIMD code, as described in [25].

Interplay with communication-avoiding optimizations. The
partial sum optimization reduces floating-point operations in
compute-bound kernels to make them more memory bound.
Once memory bound, communication-avoiding optimizations
can be used to further improve performance, such as over-
lapped tiling (via larger ghost zones), loop fusion and wave-
fronts [8, 16, 17, 26]. Overlapped tiling reduces inter-processor
communication. Loop fusion and wavefront computation re-
duce communication to DRAM by fusing multiple grid sweeps
into one. Wavefronts are generated by loop skewing followed
by loop permutation. Skewing breaks data dependences allow-
ing permutation, and, the loop skew factor must increase with
stencil radius. Wavefront exploits reuse but increases the work-
ing set, which may result in spills from faster caches. CHiLL
can generate nested parallel OpenMP code to reduce the
working set per thread. As will be empirically demonstrated in
Section V, if used together, partial sums and communication-

1IACA does not run on our target machines.
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Fig. 3. Illustration of deriving coefficients for partial sum. The right edge
from the input array is loaded and multiplied by weights stored in the array
of coefficients. The sum of products of the loaded points and the right, center
and left edges of the array of coefficients are BO, B1 and B2, respectively.
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Fig. 4. Increasing symmetries in coefficients allows us to increasingly
reduce floating-point computation. Symmetry about the j−axis (in b), permits
discarding half the coefficients, and symmetry about the i−axis (c) and the
diagonal (d) lets the compiler consider even fewer coefficients.

int radius = 1; // distance of farthest stencil point
// from origin per dimension

// allocate 2*radius+1 buffered partial sums,
// N is grid (box) dimension
// create (radius+1)*(radius+2)/2 temporaries
double B0[N], B1[N], B2[N];
double r1, r2, r3;

for (k=0; k<N; k++){
for (j=0; j<N; j++){
// preamble code sets up the pipeline
....
// steady state computation
for(i=0; i<(N-radius); i++){

r1 = phi[k][j][i+1];
r2 = phi[k+1][j ][i+1] + phi[k-1][j ][i+1] +

phi[k ][j-1][i+1] + phi[k ][j+1][i+1];
r3 = phi[k+1][j+1][i+1] + phi[k+1][j-1][i+1]+

phi[k-1][j+1][i+1] + phi[k-1][j+1][i+1];
B2[i] = w1*r1 + w2*r2 + w3*r3;
B1[i+1] = w2*r1 + w3*r2 + w4*r3;
B0[i+2] = B2[i];

}
for(i=0; i<(N-radius); i++)

phi_new[k][j][i] = B0[i] + B1[i] + B2[i];
...
// cleanup code to avoid extra computation
...
}

}

Fig. 5. Output code for 3D 27-point stencil, optimized using partial sums.

avoiding optimizations can achieve substantial performance
gains for high-order stencils.

IV. COMPILER IMPLEMENTATION

The partial sum transformation described in the previous sec-
tion has been implemented in the CHiLL polyhedral transfor-
mation and code generation framework [18] and extends previ-
ous communication-avoiding optimizations in CHiLL targeting
GMG [16, 17]. Building new transformations into a polyhedral
framework easily allows for composition of transformations as
long as data dependences are not violated. We compose partial
sums with loop transformations to target both computation and
communication bottlenecks.

The input to CHiLL is a source code written in C or Fortran

and a transformation recipe describing the set of transforma-
tions to be composed to optimize the provided source [27].
This recipe can be written by an expert programmer, or
derived automatically by a compiler decision algorithm. A new
script command for the partial sum transformation has been
implemented in CHiLL, which identifies the stencil statement
to which this transformation should be applied. In this paper,
which explores the impact of different optimization strategies,
the transformation recipes were manually written, extending
the recipes for communication-avoiding optimization described
in [16] to also invoke the partial sum transformation. This
section describes the abstractions used by the compiler in the
automation of the partial sum transformation.

We make the following assumptions about the input code
to our framework. As is standard with polyhedral compiler
frameworks, we require that all subscript expressions are
affine, or linear combinations of the loop indices and loop-
invariant variables. The partial sum optimization requires that
the subscript expressions are separable, such that each dimen-
sion references just a single loop index. Partial Sum applies
to out-of-place stencils. Out-of-place updates are loop nest
computations where the right-hand sides are read-only matrices
per stencil sweep (e.g. Jacobi). Currently we are limited to
constant coefficient out-of-place stencils.

Background on Polyhedral Compiler Frameworks. In most
representative applications, stencils are implemented as multi-
dimensional loop nest computations (all stencils are 3D in
this paper). In CHiLL, we represent this loop nest by an
iteration space IS, which mathematically describes polyhedra
corresponding to points in the 3D iteration space:

IS = {[l1, l2, l3] : 0 ≤ l1, l2, l3 < N} (1)

By convention, l3 is the innermost loop of a 3D loop nest.
It is standard to normalize iteration spaces to start at 0.
Bounds constraints can be far more complex, but for sim-
plicity of explanation, we show an upper bound that is a
constant or variable. The compiler applies a series of affine
transformations that map from the original iteration space to
transformed iteration spaces. A separate dependence graph
is used to determine the safety of the transformations to be
applied. When all transformations are completed, polyhedra
scanning is used to scan the iteration spaces and generate
transformed loop nests [28]. The array index expressions are
mapped to the new iteration space. In the following we will
describe the partial sum transformation, which modifies both
iteration spaces and statements.

Abstractions for Partial Sums. Examining the statement
associated with a stencil computation, the compiler builds
four abstractions to perform the partial sum optimization: (1)
StencilPoints refers to the set of points that comprise the
stencil, offset from a specific iteration in the 3D iteration space;
(2) BB is the axis-aligned bounding box of StencilPoints, such
that each dimension derives its lower and upper bound from the
minimum and maximum values in that dimension; (3) Coeff
is a 3D array the same size as BB to hold the coefficients
for the points in the stencil; and, (4) Buffer is a set of arrays
that are used to hold the partial sums in the generated code.
This subsection describes how these abstractions are derived
automatically by the compiler and used by the code generator



to produce code analogous to the example in Figure 5. For
simplicity, we assume a unit stride for the loop iteration spaces,
but extensions for non-unit-stride loops are straightforward.

Deriving StencilPoints and BoundingBox (BB). At every
iteration ~I = 〈i1, i2, i3〉 ∈ IS, we compute a single output of
the stencil. We can rewrite an out-of-place, constant-coefficient
p-point stencil as a weighted sum of p points, with wm
representing the coefficient for point m. A vector offset from
iteration ~I for each point m is then ~Om = 〈om1 , om2 , om3 〉.
The compiler computes BB from lower and upper bounds
for each dimension of these offsets (i.e., lb1 = minmo

m
1 ,

ub1 = maxmo
m
1 , . . .). This notation gives rise to the following

definitions:

out[i1][i2][i3] =

p∑
m=1

wm ∗ in[i1 + om1 ][i2 + om2 ][i3 + om3 ]

StencilPoints =

p⋃
m=1

~Om

BB = {[b1, b2, b3] : lb1 ≤ b1 ≤ ub1, lb2 ≤ b2 ≤ ub2,
lb3 ≤ b3 ≤ ub3}

Deriving Coefficients (Coeff). If StencilPoints and BB repre-
sent the identical volume, as in the 27-point stencil, we call
this a full stencil. The star-shaped 7-point stencil operators
of Figure 1(a) are not full.A set difference mathematically
determines the holes in the stencil.

The compiler creates an array Coeff, the same size as BB,
to store the coefficients for the partial sum. For simplicity
of explanation, we will assume Coeff is centered at 〈0, 0, 0〉
and allows negative indices. Points ~B = 〈b1, b2, b3〉 ∈ BB
which belong to StencilHoles are set to zero in the array
of coefficients, and others are assigned appropriate constant
values. We can then rewrite the stencil computation at each
output point ~I , using the following equations:

StencilHoles = BB− StencilPoints

Coeff[b1][b2][b3] =

{
0 : ( ~B) ∈ StencilHoles
wm : ( ~B = ~Om) ∈ StencilPoints

out[i1][i2][i3] =
∑
~B∈BB

Coeff[b1][b2][b3]∗
in[i1 + b1][i2 + b2][i3 + b3]

Deriving Partial Sums and Buffers. We form partial sums for
subsets of BB, planes for a 3D stencil or similarly, lines for a
2D stencil as in Figure 2. Planek is the p1, p2 plane inside the
BB at p3 = k. The BB can be partitioned into (ub3 − lb3 + 1)
such planes (corresponding to the stencil radius plus 1); there is
a corresponding plane in Coeff such that points in BB are array
indices for elements in Coeff. We can compute an output point
~I as a sum of partial sums PSk at each plane k ∈ BB, which
is staged in a buffer. There are (ub3− lb3 + 1) buffers, each as
wide as the trip count of the inner loop. Within the innermost
loop, the values in the buffers are summed to compute the
output. These rewrites of the stencil are captured as follows:

Planek = {[p1, p2, p3] : lb1, lb2 ≤ p1, p2 ≤ ub1, ub2; p3 = k}

PSk(~I) =
∑

~P∈Planek

Coeff[p1][p2][p3]∗
in[i1 + p1][i2 + p2][i3 + p3]

Bufferk[i3] = PSk(~I)

out[i1][i2][i3] =

ub3∑
k=lb3

Bufferk[i3]

Exploiting Reuse in Partial Sums. The optimizations derived
from partial sums recognize that loads associated with a plane
have reuse in the third dimension. At iteration ~I , the rightmost
plane Planer(~I) where r = ub3 is of particular importance.
This is the leading plane in the bounding box of the stencil (in
the direction of increasing third dimension), and it corresponds
to the right edge of the 2D stencil described in section III. We
load only this plane, and reuse it for other output points. Let
~Ik = 〈i1, i2, i3 + k〉 ∈ IS, 0 ≤ k ≤ (ub3 − lb3). Planer(~I) is
the same set of points as Planer−1(~I1), and Planer−k(~Ik) in
general. Planer(~I) can thus be used to compute (ub3− lb3+1)
partial sums. The partial sums are computed by using points
from Planer(~I) and sweeping through the planes of Coeff ; the
results are buffered in Bufferr−k[i3+k], for the range of values
of k. Buffer and output at (~I) are computed from PS as in the
previous step.

We can now derive the partial sums from just the load of
Planer(~I). The following is computed ∀k, 0 ≤ k ≤ (ub3−lb3):

PSr−k( ~Ik) =
∑

~P∈Planer

Coeff[p1][p2][ub3 − k]∗
in[i1 + p1][i2 + p2][i3 + p3]

Exploiting Symmetry to Reduce Floating-Point Operations.
Figure 4 shows that several coefficients in each plane of Coeff
have the same value. This means multiple points in Planer use
the same coefficient to compute partial sums. For each unique
coefficient, we sum the points in Planer that use it. This sum
is stored, and multiplied by the appropiate weight to calculate
the partial sums, and does not have to be recomputed. In our
current implementation we check for symmetry in BB about
the axes and diagonals in a plane and across planes before
implementing our floating-point reducing optimization. This
technique can be easily extended to work with fewer degrees
of symmetry. When all the symmetries are present, BB is a
cube such that upper and lower bounds are the same, lb = -ub,
and the coefficients in each 〈p1, p2〉 plane are symmetric about
the p2 and p3 axes and diagonals.

In any 2D plane of Coeff, the coordinates of unique coefficients
are defined as UC = {〈p1, p2〉 : 0 ≤ p1 ≤ p2 ≤ ub},
corresponding to the colored octant in Figure 4(d).
From reflections about the axes and diagonals, for
any point 〈p1, p2〉 ∈ UC, the set of reflected points
Ref(p1, p2) = {〈±p1,±p2, ub〉, 〈±p2,±p1, ub〉} in Planer
are weighted with the same coefficient Coeff [p1][p2][ub-k].
The sum of the points in the input in, corresponding to
〈p1, p2〉 is Rp1p2 . We rewrite partial sums using the factored
terms to exploit symmetry. For stencils with zero valued



Allocate buffer objects:
Assume stencil statement S0 has iteration space IS defined
in Eqn.(1).
Create ub3 − lb3 + 1 (2ub+1, when symmetrical) buffers,
Bufferlb3 , . . . , Bufferub3 . Each buffer is an array of length N
(from IS).
Create (1+ub)(2+ub)/2 scalars to hold sums Rp1p2 for each
unique coefficient in a plane.

Insert statements to compute buffers.
Create a new compound statement S1 that has (1+ub)(2+ub)/2
statements to compute the sums Rp1p2 .
To S1 append ub3 − lb3 + 1 statements to compute the
buffers.
Each statement is of the form in Eqn.(2).
Since all values in Coeff are constant, these are copied
directly into the statement (not an array reference).
Insert S1 lexicographically before S0.

Update S0 to use buffers.
Create a new statement S2 that computes the output at ~I
from the sum of all buffers.
Replace S0 with S2.

Update IS.
Decrease the number of iterations of IS to avoid going off the
end of the buffers.
Create new iteration space, IS’ = {[l1, l2, l3] : 0 ≤ l1, l2 <
N&& 0 ≤ l3 < N − (ub3 − lb3) }
Peel off remaining iterations and use S0.
Fig. 6. Code generation steps for partial sum transformation.

coefficients in Coeff, like the 7-point stencil, we take care
not to generate redundant factored terms. The following is
computed ∀k, 0 ≤ k ≤ (ub− lb):

Rp1p2 =
∑

〈x,y〉∈Ref(p1,p2)

in[x][y][ub]

PSr−k( ~Ik) =
∑

〈p1,p2〉∈UC

Coeff[p1][p2][ub− k] ∗ Rp1p2

Bufferr−k[i3 + k] = PSr−k (2)

Code Generation. Once the compiler has performed the
rewriting steps described above, it must generate the trans-
formed code. The steps of code generation are described
in detail in Figure 6. The compiler must create the buffer
objects, and compute their values using the rewriting shown in
Eqn.(2) directly above. It must also modify the original stencil
statement to refer to the buffers rather than the input code. As
we near the upper bound while iterating through the inner-loop,
there will be no need to calculate all the partial sums, and we
will go off the end of the allocated buffers. The figure shows
the restricted iteration space, and peeling to address this. We
also generate a code variant where IS’ equals the original IS,
which does extra computation, allocates buffers longer than the
loop bound, but has no cleanup code. Both the code variants
perform similarly.

Cray XC30 (Edison) Cray XE6 (Hopper)
CPU Intel Xeon E5-2695v2 AMD Opteron 6172

Core Frequency 2.4 GHz 2.1 GHz
D$ per core 32+256 KB 64+512 KB

Cores per CPU 12 6
L3 Cache per CPU 30 MB 5 MB

CPUs per Node 2 4
DP GFlop/s 460.8 201.6

STREAM 88 GB/s 48 GB/s
Compiler icc 14.0.2 icc 13.1.3

TABLE I. Overview of Evaluated Platforms

V. EXPERIMENTAL RESULTS

We now present performance results and analysis using our
optimizing compiler technology. Additionally, we apply the
Roofline performance model [13] to help quantify attainable
performance. The Roofline Model uses bound and bottleneck
analysis to represent architecture performance as a function of
requisite data movement and computation. As such, it provides
a nominal upper bound to attainable performance.

A. Evaluated Platforms

In this paper, we evaluate the benefits of our compiler technol-
ogy using the systems detailed in Table I. On each platform,
we used the installed Intel compiler with -O3 -fno-alias
-fno-fnalias and either -xAVX or -msse3.

Edison is a Cray XC30 MPP at NERSC. Each node contains
two 12-core Xeon Ivy Bridge chips each with four DDR3-
1600 memory controllers and a 30MB L3 cache [29]. Each
core implements the 4-way AVX SIMD instruction set and
includes both a 32KB L1 and a 256B L2 cache. With a high
flop:byte ratio (and exacerbated by TurboBoost), we expect
this machine to be memory-limited for most operations without
communication-avoiding optimizations. Note, Edison’s mem-
ory was upgraded to DDR3-1866 subsequent to this paper.

Hopper is a Cray XE6 MPP at NERSC. Each node contains
four 6-core Opteron chips each with two DDR3-1333 memory
controllers and a 6MB L3 cache [30]. Each core uses the 2-
way SSE3 SIMD instruction set and includes both a 64KB L1
and a 512KB L2 cache. Hopper’s lower machine balance may
result in the 125-point operator being compute-limited.

B. Evaluation Benchmark — miniGMG

Multigrid is a fast linear solver that uses an iterative and
recursive approach to solve elliptic PDEs. Each iteration of
a multigrid solve requires performing a V-Cycle. As shown
in Figure 7, a V-Cycle involves performing stencil operations
(smooths) on progressively coarser (smaller) grids, solving a
coarse grid problem, and then using that coarse-grid solution
to correct the fine-grid solution. Unfortunately, as one may
only apply the stencil four times during each smooth, there is
limited data reuse.

This paper uses the miniGMG compact multigrid bench-
mark which is over 2000 lines of C and includes a dozen
performance-critical routines [31]. Previous work studied some
of the performance and productivity aspects of miniGMG [16,
26]. The benchmark creates a block structured 3D grid parti-
tioned into subdomains (boxes) which are distributed among



progress within V-cycle	


Fig. 7. The Multigrid V-cycle for solving Luh = fh. Note, superscripts
denote grid spacing.

processes. In all experiments, our finest grid in miniGMG is
2563 cells. This 2563 grid is decomposed into disjoint 643
boxes (requiring ghost zone exchanges) distributed among
multiple processes on one compute node. To optimize for
NUMA, we run with one MPI process per NUMA node (2 per
Edison node and 4 per Hopper node). miniGMG implements
a multigrid V-Cycle that is terminated when each box reaches
43 cells. At each level, we apply four weighted Jacobi smooths
using the relevant stencil shown in Figure 1. Our experiments
run a fixed 10 V-Cycles with a point relaxation bottom solver
that performs 48 smooths.

To highlight the generality, productivity, and effectiveness
of our compiler optimizations, we decompose the smooth
operations into three separate loop nests: the first applies one
of the stencils to an array and writes to the temporary array,
the second reads the temporary array and forms either the
Poisson or Helmholtz operator, while the third performs a
weighted Jacobi update of the current solution. This structure
is slightly different than the manually-optimized version of
the code online [31] where a few combinations of stencil and
smoother were manually fused.

We construct a manufactured solution:

utrue = sin13(2πx)sin13(2πy)sin13(2πz)+

sin13(6πx)sin13(6πy)sin13(6πz) on [0, 1]3

and symbolically apply the Laplacian to it to find a nominal
right-hand side f . We then apply the appropriate Mehrstellen
correction and solve Lhuh = Mfh. We compare uh and utrue
under the l2 norm to calculate error.

C. Stencil Performance

To highlight the memory bottleneck on modern multicore
processors as well as differentiate ApplyOp (y = Ax) char-
acteristics from smoother characteristics, Figure 8 presents
ApplyOp (stencil in isolation) performance on the finest (2563)
grid using either the baseline implementation, or CHiLL with
the Partial Sums optimization. We provide a memory bound
based (blue circle) on the Roofline performance model [13]
derived from the size of the arrays (including ghost zones)
and the bandwidths of the target machines listed in Table I.
As the compiler does not generate the movntpd cache-bypass
instruction (verified with compiler flags), we assume 24 bytes
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Fig. 8. ApplyOp (y=Ax) stencil performance attained with the CHiLL
compiler by optimization, operator, and platform. Note, the Roofline memory
bound is for the non-communication-avoiding implementation. Partial sums
can move compute-limited operations towards a memory-limited state.

per stencil. As the 13- and 125-point operators require a 2-deep
ghost zone, their Roofline bound is slightly lower.

As shown in Figure 8 baseline performance is close to the
Roofline bound for most cases. The use of the partial sums
optimization to eliminate unnecessary floating-point adds and
regularize the computation for efficient SIMDization signifi-
cantly improved performance and ensured performance came
close to the Roofline bound. Note, however, that the compute-
intensive 125-point stencil fell well below its Roofline bound.

D. Smoother Performance on the Fine Grid

The core operation in a multigrid solver is a smoother. It
is applied multiple times in sequence on each level of the
multigrid V-Cycle. As such, we may apply a wavefront or
time-skewing technique to overcome the memory bandwidth
limit for ApplyOp. In this paper we use a fixed 2563 problem
for all experiments. Although this ensures we may compare
smoother performance when using different discretizations of
the Laplacian (different stencils) it also implies that the result
using a 125-point operator will be more accurate. Please note
that unlike a simple stencil operation (y = Ax), a smoother
( xnew = x+wD−1(b−Ax) ) requires significantly more data
movement including reading arrays for the right-hand side b
and the inverse of the diagonal D−1. As a result, our smoother
is nominally memory-limited for all operators.

Figure 9 presents smoother performance on the finest grid
(2563) as a function of operator, platform, and optimization.
Once again we have included a Roofline bound (blue circle) to
indicate the nominal performance bound of a smoother prior
to any kind of communication-avoiding algorithmic change.
Observe that the baseline implementation of the smoother is
well below the Roofline bound in all cases. This is a result of
the smoother being applied in two stages — application of the
linear operator, and using that result to correct x. Enabling the
operator “Fusion” optimization in CHiLL allows the compiler
to automatically fuse these operations and eliminate the access
to the intermediate temporary array. This significantly reduces
data movement and allows the more memory-intensive 7- and
13-point smoother to reach their Roofline bounds.
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Fig. 9. Jacobi smoother performance attained with the CHiLL compiler by
optimization, operator, and platform. NOTE, the Roofline memory bound is for
the non-communication-avoiding (no wavefront) implementation and is lower
than ApplyOp due to additional data movement like the RHS. The wavefront
transformation allows CHiLL to exceed this limit.

Unfortunately, the more compute-intensive 27- and 125-point
stencils demand efficient SIMDization to reach their Roofline
bounds. Enabling the “Partial Sums” optimization in CHiLL al-
lows the compiler to automatically restructure these stencils to
eliminate superfluous additions and regiment the computation
for SIMDization by the backend compiler. The benefit is clear
— a more than doubling of 125-point smoother performance
and performance near the Roofline bound for all operators.

Naively, one may conclude that reaching the Roofline-bound
represents the upper end of performance. However, this simply
implies that a new set of algorithmic optimizations are required
to further improve performance. As smooths are applied in
sequence within the multigrid V-Cycle, it is possible, to
view their execution as a quadruply nested loop. Manually
reordering these loops is beneficial, but unproductive [26].
Conversely, our additions to CHiLL allow the compiler to
automatically add ghost zones and restructure the loops into a
communication-avoiding “wavefront” without loss of accuracy
(the result is bit identical) or productivity. As seen in Figure 9,
our approach attains roughly a 2× performance boost for
the 7- and 27-point smoother on Edison. (Note, “All Opti-
mizations” include tuned nested OpenMP.) Whereas Edison is
heavily memory-limited, Hopper is not. As such, the benefit
of a communication-avoiding algorithm is limited on Hopper.
Communication-avoiding 13- and 125-point smoothers suffer
on two axes. First, generating wavefronts for these operators
require skewing loops by the larger stencil radius. This larger
skew factor increases the working set, increases cache pressure
and makes it difficult to fit the working set in the fastest
caches. Second, the 125-point operator is likely compute-
bound on Hopper and nearly compute-bound on Edison. Thus,
the potential benefit from communication-avoiding is small.

E. Smoother Performance Throughout the V-Cycle

Unlike simple explicit methods that only need to attain high
performance for a stencil on a large grid, multigrid requires
high performance on grids of exponentially varying size. In
Figure 10, we explore the performance of the 27- and 125-
point smoothers on Edison as they operate on coarser (smaller)
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Fig. 10. Jacobi smoother performance on Edison attained with the CHiLL
compiler as a function of level in the V-Cycle (2563 fine grids down to 163
coarse grids) for the 27- and 125-point operators. Observe that the reference
implementation of the memory-limited 27-point operator receives a cache
boost on the coarser levels while the compute-limited 125-point does not.

grids. Examining the baseline implementation for the 27-point
operator shows the expected rise in performance when moving
to the coarser grids, which nominally fit in ever lower levels of
cache. Note, the first smooth at each level will inevitably read
from DRAM. As such, high cache bandwidths only amortize
this slow initial smooth. On small grids, efficient 12-way
OpenMP multithreading becomes impossible and performance
drops. The 125-point smoother sees a similar behavior but to
a lesser degree as it is ultimately compute-limited.

As optimizations are enabled in CHiLL, we see the compiler
can nearly sustain constant performance for the 2563, 1283,
and 643 levels for the 27-point operator by automatically
tuning for the optimal optimizations. Similarly, Table II shows
the compiler continually shifts the set and parameterization of
the optimizations employed for the 125-point smoother at each
level of the V-Cycle. A manually-optimized implementation
would likely only target the fine grid and would thus deliver
lower performance on the coarse grids, while significantly
increasing programmer overhead.

The partial sums optimization requires a two pass approach
in which the first creates a few auxiliary results. The cost of
this initial pass is amortized on large arrays but becomes an
impediment on small arrays. Thus the benefit of partial sums
decreases on the smaller grids.

F. miniGMG Solver Performance and Error

Figure 11 presents the performance of the miniGMG multigrid
solver using either the existing Intel compiler (baseline) or our
optimizing CHiLL compiler as a function of discretization and
platform. Performance is expressed in millions of degrees of
freedom solved per second (DOF/s). For this scalar problem,
fine-grid cell is one degree of freedom. Thus, solving a
2563 grid in 1 second would equate to 16.78 million DOF/s.
Generally, the CHiLL compiler can provide an overall speedup
of about 2× using all available optimizations. The attained
speedup was a bit less on the 13-point operator as it did not
benefit from partial sums and achieving high performance on a
communication-avoiding wavefront is particularly challenging.
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Fig. 11. miniGMG performance (millions of degrees of freedom solved per
second) using either the Intel compiler (baseline) or the CHiLL compiler.
Note, the labels indicate the overall solver speedup attained via CHiLL. The
performance of the 10th order 125-point solver is within a factor of 2 of the
2nd order 7-point solver but provides nearly a million times lower error.

When comparing raw performance (MStencil/s), results show
that the 7- and 27-point operators were comparable with
the 125-point operator, attaining about half the throughput.
However, this only conveys half the story. As highlighted in
Figure 12, miniGMG with the Mehrstellen correction attains
roughly 2,370× and 377,000× better accuracy for our test
problem using the 27- or 125-point operators (respectively)
than miniGMG attained using the 7-point operator. As we
move to ever finer domains, the benefit increases. Thus, if the
goal were to solve to a particular numerical error, using the
Mehrstellen correction with these discretizations reduces total
data movement by several orders of magnitude.

VI. RELATED WORK

In the past, operations on large structured grids could easily
be bound by capacity misses in cache, leading to a variety
of studies on blocking and tiling optimizations [19, 32–37].
In recent years, numerous efforts have focused on increasing
temporal locality by fusing multiple stencil sweeps through

125-point smoother on Edison
Level 2563 1283 43 323 163

Box Size 643 323 163 83 43

Operator Fusion X X X X X
Partial Sums X X X X X

Wavefront Depth 2 - - - -
Nested OpenMP <4,3> <12,1> <12,1> <12,1> <12,1>

125-point smoother on Hopper
Level 2563 1283 43 323 163

Box Size 643 323 163 83 43

Operator Fusion X X X X X
Partial Sums X X X X X

Wavefront Depth 1 - - - -
Nested OpenMP <6,1> <6,1> <6,1> <6,1> <6,1>

TABLE II. CHILL WAS ABLE TO SELECT OPTIMIZATIONS UNIQUELY
FOR EACH MULTIGRID LEVEL AND PLATFORM. <#,#>DENOTES THE

NUMBER OF INTER- AND INTRA-BOX THREADS WITH NESTED OPENMP.

1.0E-15 

1.0E-12 

1.0E-09 

1.0E-06 

1.0E-03 

1.0E+00 

0.001 0.01 0.1 1 10 100 

O
bs

er
ve

d 
Er

ro
r (

L2
 n

or
m

) 

Requisite Memory per Vector (GB) 

High-Order Multigrid in miniGMG 

7pt (2nd order) 
13pt (4th order) 
27pt (6th order) 
125pt (10th order) 

Fig. 12. Error attained in miniGMG as a function of operator and grid
size. Note, a 1GB vector represents a single 5123 grid. Multigrid will require
several of these grids. Observe that the 10th order method delivers a three-
digit increase in accuracy for every 8× increase in memory.

techniques like cache oblivious, time skewing, wavefront or
overlapped tiling [1–12, 38]. In addition, domain-specific
compilers have recently been developed for parallel code
generation from a stylized stencil specification [39–41] or from
a code excerpt [42].

Prior work developed manual optimizations for multigrid that
incorporated communication-avoiding optimizations such as
fusion of operators, wavefront parallelism, and hierarchical
threading [26]. In addition, lower-level optimizations such as
explicit use of SIMD and prefetch intrinsics improved the per-
formance of the inner loops. Subsequently, the communication-
avoiding optimizations were implemented in an autotuning
compiler [16, 17]. In this paper, we expand the compiler-
directed optimizations to include partial sums. When opti-
mizing a complex proxy application such as miniGMG, we
have to optimize several stencil operators and how they work
together. To the best of our knowledge, the DSL Halide [43]
which focuses on image processing pipelines is the only other
framework to do so.

Manual optimization of stencil computations has developed
techniques such as semi-stencils to reduce loads [21] and
using array common subexpression elimination after unrolling
to reduce floating-point computations [19, 44]. In [19, 44],
the authors unroll the loops of the stencil computation to
expose array common subexpressions and reorder computation
to reduce floating point operations using a stencil-specific code
generator. Our approach is automated, and does not rely on
unrolling. As discussed in Section III, Deitz et al. describe
an automated approach to common subexpression elimination
in the ZPL compiler [14]. Polyhedral techniques for recon-
figurable computing construct custom storage structures to
exploit reuse [45], but are limited to reuse between consecutive
iterations and do not consider higher-order stencils.

Recent work reorders stencil computations from the direct
specification of the stencil as an update from a set of input
points [15]. Stencils are converted to a reduction and then loop
shifting exposes register reuse of the same input, contributing
to different output. Their approach does not reduce floating
point computations.



The data layout transformation (DLT) was developed to elim-
inate the data stream alignment problem in generating SIMD
code for stencil computations [25]. DLT transposes stencil in-
puts so that multiple computations can be performed in SIMD
registers without the costly shifting of data across iterations
of the innermost loop. Partial sums access aligned planes and
buffer them in separate arrays; thus, we have addressed stream
alignment without requiring the data transpose.

In summary, our compiler’s ability to compose transformations
allows it to take a higher-order smoother, remove its compu-
tation bottleneck with partial sums and make it bandwidth-
limited, and then further apply DRAM bandwidth-reducing
optimizations. No prior work has combined reducing floating-
point operations with communication-avoiding optimization
for higher-order stencils.

VII. CONCLUSIONS AND FUTURE WORK

High-order discretizations of the Laplacian often result in
compute-intensive stencils that perform more than an order
of magnitude more floating-point operations per point than
the traditional 2nd order discretization. The paradigm shift
from compute-limited architectures to bandwidth-limited ar-
chitectures has revitalized interest in these methods. In this
paper, we explored several novel augmentations to the CHiLL
compiler designed to improve the computational performance
of these stencils. Using the miniGMG multigrid benchmark,
we showed that the compiler could nearly quadruple the perfor-
mance of the 125-point Jacobi smoother on Edison and reach
the Roofline performance bound. Moreover, we showed the
compiler could tune optimizations independently by platform
and multigrid level.

To highlight the true potential of high-order methods, we
examined the reduction in error as we increase resolution.
We show that our 10th order method using the compact 125-
point stencil in conjunction with a Mehrstellen correction
attains 10th order accuracy and provides a 1000× increase
in accuracy for every 8× increase in memory. This has the
tremendous potential of reducing total data movement and total
energy (across a supercomputer) by many orders of magnitude
compared to the 2nd order multigrid solver.

Future work will explore integration of these techniques into
the HPGMG benchmark which implements a true distributed
V-Cycle. This will demonstrate the benefit of our optimizations
at large scale and will facilitate implementations on Xeon Phi
and GPU-based platforms. In addition, we plan to leverage task
based parallelism and explore tiling and threading strategies to
target the newer platforms.
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