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MULTIPARENTAL POPULATIONS

Dissecting the Genetic Architecture of Cystatin C in
Diversity Outbred Mice
M. Nazmul Huda,*,† Melissa VerHague,‡ Jody Albright,§ Tangi Smallwood,§ Timothy A. Bell,§

Excel Que,* Darla R. Miller,§ Baback Roshanravan,** Hooman Allayee,†† Fernando Pardo Manuel de
Villena,§ and Brian J. Bennett*,†,1
*Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, USDA, ARS, Davis, California 95616,
†Department of Nutrition, University of California Davis, California 95616, ‡Nutrition Research Institute, University of North
Carolina Kannapolis, North Carolina 28081, §Department of Genetics, University of North Carolina at Chapel Hill, North
Carolina 27599, **Department ofMedicine, Division of Nephrology, University of California, Davis, Davis, California 95616,
and ††Departments of PreventiveMedicine and Biochemistry &MolecularMedicine, Keck School of Medicine, University of
Southern California, Los Angeles California 90033

ORCID IDs: 0000-0003-2775-4470 (M.N.H.); 0000-0002-5738-5795 (F.P.M.d.V.); 0000-0002-0766-3195 (B.J.B.)

ABSTRACT Plasma concentration of Cystatin C (CysC) level is a biomarker of glomerular filtration rate in the
kidney. We use a Systems Genetics approach to investigate the genetic determinants of plasma CysC
concentration. To do so we perform Quantitative Trait Loci (QTL) and expression QTL (eQTL) analysis of
120 Diversity Outbred (DO) female mice, 56 weeks of age. We performed network analysis of kidney gene
expression to determine if the gene modules with common functions are associated with kidney biomarkers
of chronic kidney diseases. Our data demonstrates that plasma concentrations and kidney mRNA levels
of CysC are associated with genetic variation and are transcriptionally coregulated by immune genes.
Specifically, Type-I interferon signaling genes are coexpressed with Cst3 mRNA levels and associated
with CysC concentrations in plasma. Our findings demonstrate the complex control of CysC by genetic
polymorphisms and inflammatory pathways.
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The kidney is a complex organ responsible for excretion (Finco 1997),
secretion (Davis et al. 1961), reabsorption (Lemann et al. 1970), and
activating vitamin D (Fraser and Kodicek 1973). The gold standard
for assessing kidney function is the glomerular filtration rate (GFR),
but it is difficult to measure with precision. Therefore, GFR is often
estimated from circulating creatinine (Ferguson et al. 2015). Creat-
inine is an amino acid derivative, released by muscle, and freely
filtered by the kidney glomerulus (Narayanan and Appleton 1980).
However, the level of plasma creatinine is influenced by a number of
factors, including: diet, muscle mass, medication, chronic illness, age,

sex, and race, limiting its accuracy to represent true GFR (Stevens
et al. 2006). An alternative to creatinine is Cystatin C (CysC), often
used in research as the basis for estimating glomerular filtration rate.
CysC is produced by all mammalian cells, secreted into the blood,
filtered through the glomerulus, and catabolized by tubular cells
(Inker and Okparavero 2011). Plasma CysC had been found to be
unaltered by age, sex, race, and metabolic disorders and was proposed
as a clinical biomarker for GFR (Filler et al. 2005; Newman et al.
1995). Several clinical trials reported CysC as a superior marker
compared to creatinine (Plebani et al. 1998; Kyhse-Andersen et al. 1994;
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Harmoinen et al. 1999) while a few others could not show a
significant difference between CysC and creatinine (Donadio et al.
2001; Oddoze et al. 2001). Although CysC is not influenced by
physiological factors, several recent studies (Köttgen et al. 2010;
Köttgen et al. 2009; Hwang et al. 2007) have found associations
between SNPs near the Cystatin C gene (Cst3) and plasma CysC levels
or CysC-based estimated glomerular filtration rate (eGFRcys). How
these genetic variants relate to plasma CysC protein level or its mRNA
level remains to be determined.

In the current study, we focus on the genetic determination of CysC
protein andmRNA levels using a “SystemsGenetics” approach, which is
useful for the discovery of genes and pathways associatedwith a reduced
kidney function (Keller et al. 2012). We also perform co-expression
analysis and expression QTL (eQTL) analysis to further investigate the
control of CysC levels using the Diversity Outbred (DO) population,
which are derived from eight founder strains (A/J, C57BL/6J, 129S1/
SvImJ, NOD/ShiLtJ, NZO/HiLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ).
Since the DO is a highly recombinant population with immense genetic
and phenotypic variation (Svenson et al. 2012; Smallwood et al. 2014),
DO mice have been successfully used in studies focused on the genetic
response to environmental toxin exposure and diseases (French et al.
2015; Tyler et al. 2017). The DO mice capture the same set of allelic
variants as the eight founder strains, and their genetic backgrounds are
well-studied, which make them an excellent model for researching the
genetic susceptibility to disease. In this study, we focus on the genetic
variation associated with CysC gene expression and plasma CysC
concentration in DO mice. We then performed co-expression network
analysis to identify gene modules associated with CysC and identified
two gene modules associated with CysC levels.

MATERIALS AND METHODS

Study design and sample collection
Female diversity outbred (DO) mice (n = 120; J: DO; G16; stock
number 009376) were obtained from the Jackson Laboratory (Bar
Harbor, ME) at 4 weeks of age. These mice were used to generate
progeny for another study (Didion et al. 2015) and then aged. At
56 weeks of age, all mice were injected intraperitoneally with a volume
of sterile isotonic saline equivalent to 10% of their body weight and
urine was collected in a chilled metabolic cage system (Hatteras Inc,
NC). On the following day, mice were fasted for 4 hr, plasma was
collected from the retro-orbital sinus into EDTA-containing micro-
tubes and centrifuged. Mice were euthanized, dissected, and tissue
samples were snap frozen in liquid nitrogen. Biological samples were
stored at -80� until assayed. All procedures were approved by the
IACUC at UNC, Chapel Hill (IACUC Protocol Number 13-103).

Plasma and urine biochemical assays
Plasma CysC was measured by a commercially available quantitative
sandwich ELISA kit (R&D Systems, MN, USA) for mice according to

the manufacturer’s instructions. In brief, plasma samples were diluted
200-fold and incubated in a 96 well microplate pre-coated with CysC
specific antibody and CysC concentration was determined from the
color intensity of oxidized Tetramethylbenzidine (TMB) measured at
450 nm. Urinary total protein, creatinine and plasma blood urea
nitrogen were measured by COBAS INTEGRA 400 plus analyzer
(Roche Diagnostics, Rotkreuz, Switzerland). To measure urinary Na+,
samples were diluted 1500-fold with 1.0% v/v trace metal free nitric
acid and analyzed by using a Varian VISTA AX CCD Simultaneous
Inductively Coupled Plasma Atomic Emission Spectroscopy (Varian,
CA, USA). Standards Na+ for Inductively Coupled Plasma Mass
Spectrometry (Spex CertiPrep, NJ, USA) was used to make standards
ranging from 0.05 ppm to 5.0 ppm. Certified urine controls
(Seronorm, Stasjonsveien, Norway) and sample pool controls were
used to check the accuracy of the assay.

Kidney mRNA microarray
Total RNA was extracted from about 25 mg of kidney tissue using
automated instrumentation (Maxwell 16 Tissue LEV Total RNA
Purification Kit, Promega). RNA concentration was measured by
fluorometry (Picogreen Life Technologies), and RNA quality was
verified using a microfluidics platform (Bioanalyzer, Agilent Tech-
nologies). 95 RNA samples were chosen for microarray analysis and
1 sample was run in duplicate as a control. RNA was hybridized to
Affymetrix Mouse Gene 2.1 ST 96-Array Plate using a GeneTitan
instrument from Affymetrix according to the manufacturer’s proto-
cols. We used the robust multiarray average method (RMA) imple-
mented in the Affymetrix gene expression console with default
settings (median polish and sketch-quantile normalization) to esti-
mate the normalized expression levels of transcripts. All probes
containing known single nucleotide polymorphisms (SNPs) from
the eight founder inbred mouse strains of the DO mouse population
were masked (165,204 probes) during normalization by downloading
the SNPs from the Sanger sequencing website (http://www.sanger.ac.uk/
science/data/mouse-genomes-project) and overlapping them with
probe sequences. The data are available at NCBI Gene Expression
Omnibus (GEO) database under the accession ID GSE122061.

Genotyping
DNA was extracted and purified from tail samples using Qiagen
DNeasy kit (Qiagen, MD, USA) according to the manufacturer’s
instructions. Genotyping was performed using the Mega Mouse
Universal Genotyping Array (MegaMUGA) by GeneSeek (Neogen,
Lansing, MI) (Welsh et al. 2012). The MegaMUGA array is built on
the Illumina Infinium platform and contains 77,800 SNP markers
that are distributed throughout the genome at an average spacing
of 33 Kb. Genotypes of DO mice are accessible through UNC’s
Mutant Mouse Resource and Research Centers website (https://
www.med.unc.edu/mmrrc/genotypes/). We estimated heritability
(h2) from allele probability using a linear mixed model in R package
QTL2 version 0.18 (Broman et al. 2019).

QTL mapping
QTL mapping and Genome-wide association (GWAS) analysis were
performed using the R package QTL2 (Broman et al. 2019) on the
University of California, Davis’ high-performance cluster computing
system, which has 6,752 CPUs with 64 GB – 1 TB of RAM on
each node. Genotype probability was calculated from the allele calls.
The probability of a founder SNP haplotype was calculated from
genotype probabilities. QTL mapping was carried out by regressing
the phenotypes on the founder haplotypes with an adjustment for
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kinship matrix as a random effect of the linear mixed effect model in
the QTL2 “scan1” and “scan1perm” functions. Kinship matrix is a
measure of genetic similarity among individuals used to control for
the random polygenic effect in genome scanning. In this study,
we calculated a matrix of the proportion of matching alleles
per chromosome using the leave out one chromosome at a time
(type = “loco”) method in the QTL2 R package. Candidate genes were
identified by position based on the Wellcome Trust Sanger mouse
genomes database, www.sanger.ac.uk, release 1303 based on genome
assembly GRCm38/mm10 (Yalcin et al. 2011). QTL support intervals
were defined by the 95% Bayesian Credible Interval (BCI), calculated
by normalizing the area under the QTL curve on a given chromosome
(Chen and Kendziorski 2007). We used the Best Linear Unbiased
Predictors (BLUPs) model (Robinson 1991) in the QTL2 package
to estimate the allelic contributions of the 8 founder strains to the
significant QTL in which the founder allelic effect was identified using
a regression of the phenotype on the founder genotype probabilities at
the locus. The mapping statistic reported as a log of the odds ratio
(LOD). The significance LOD thresholds at P, 0.05 for each kidney
biomarker and gene probeset were determined by performing 1,000
permutations of genome-wide scans by shuffling genotype data in
relation to phenotype data to generate a null distribution from the
maximum LOD score (Churchill and Doerge 1994). A QTL or eQTL
was considered significant when the LOD score for the phenotype is
above the permutation LOD threshold at P, 0.05 for that particular
phenotype. Instead of estimating a single global LOD threshold from
permutation testing of a randomly selected subset of genes, we
performed permutation testing for each annotated transcript cluster
ID to determine its individual LOD threshold. A single LOD thresh-
old for all transcript cluster IDs allows variation of the significant
p-value cut off across transcript cluster ID, leading to possible
increases in both Type –I error for some transcript cluster ID and
type-II error for others (Figure S1). To accomplish . 23,000,000
genome scans, we utilized a high-performance cluster computing
system, which allowed us to perform the parallelization of CPU for
computationally intensive permutation genome scans to empirically
determine the significance threshold for each annotated transcript
cluster ID on the microarray. An eQTL for microarray data were
considered “cis” when a transcript cluster ID was located at the same
genomic position (within a 6 2Mb interval) of the probe (Bennett
et al. 2010). We compared the single empirical LOD threshold-based
eQTL results to the individual threshold method and identified
274 transcript cluster ID with Type-II error or false negative. Sim-
ilarly, the single empirical LOD based analysis incorrectly identified
1,495 non-significant eQTLs as significant (Type-I error or false
positive). Therefore, in our study, we found a single empirical
LOD threshold-based analysis had 49.5% Type-I error and 9.1%
Type-II error (Figure S1C).

Weighted Gene Correlation Network Analysis
Co-occurrence network analysis was performed by using R package
WGCNA-Weighted Gene Correlation Network Analysis (Langfelder
and Horvath 2008) version 1.66. Gene expression data were available
for 95 samples. A total of 23,612 transcript cluster IDs were filtered to
8,045 those were expressed above robust multi-array average (RMA)
value of 6 in more than 87.5% of the samples (Aylor et al. 2011).
4 samples were identified as outliers (Figure S2A) and removed,
resulting in 91 samples for gene module analysis. A soft threshold
approach was used with a power of 4 (based on scales free topology,
Figure S2B and S2C) in a WGCNA default unsigned network with
dynamic tree cutting (deep split = 2) and a min Module Size = 15 as

parameters for the dynamic tree cut function (Langfelder et al. 2007).
The module eigengene, defined as the first principle component of a
module’s gene expression matrix, was used to calculate the Spearman
correlation between a module and kidney biomarkers. Gene network
modules were visualized using Cytoscape 3.7.1 (Shannon et al. 2003).

Functional annotation
We performed gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis on each module
using Enrichr (Chen et al. 2013) with “GO biological process 2018”
and “KEGG 2019 mouse” dataset, respectively, to determine if any
gene set in the modules were associated with shared functional
annotations or biochemical pathway. For each term in the gene-
set library, the rank-based ranking of each of the GO termwas derived
from running Fisher’s exact test for many random gene sets to
compute a mean rank and standard deviation from the expected
rank and then z-score was calculated to assess the deviation from the
expected rank of the enriched GO term. The combined score for the
enriched GO term was computed by multiplying the z-score and -log
of the p-value of the Fisher exact test. Gene annotation for tissue-
specific expression was performed using several databases including:
DAVID (Huang et al. 2009) and BioGPS Mouse Cell Type and Tissue
Gene Expression dataset (Wu et al. 2013). The human GWAS data at
the CysC locus were obtained from the European population (Pattaro
et al. 2016) and was queried for LocusZoom (Pruim et al. 2010)
plotting. The effect of SNP and indel variation on protein function
was determined by a web-based tool Protein Variation Effect Ana-
lyzer -PROVEAN (Choi and Chan 2015). In silico transcription factor
(TF) binding site prediction was performed by using CiiiDER
(Gearing et al. 2019) with JASPAR 2020 motif database (Khan
et al. 2018). The functional relevance of SNPs located within the
predicted transcription motif was estimated by using R package for
tRAP (Thomas-Chollier et al. 2011).

Quantitative PCR
To validate the kidney genes expression we utilized archived kidney
samples from a strain survey of DO/CC Progenitor mice (O’Connor
et al. 2014) in which the mice were perfused prior to tissue collection.
Total RNA was isolated using MagMAX mirVana Total RNA Iso-
lation Kit (Thermo Fisher, MA, USA) and cDNA was synthesized
using High-Capacity cDNA Reverse Transcription Kit (Thermo
Fisher, MA, USA) according to the manufacturer’s recommendation.
The qPCR was performed using the primer listed in the Table S1
using PowerUp SYBR Green Master Mix (Thermo Fisher, MA, USA)
on QuantStudio 6 and 7 Flex Real-Time PCR Systems (Thermo
Fisher, MA, USA). PCR was run in triplicate and relative gene
expression was determined using an efficiency corrected method,
and efficiency was determined from a 2-log serial dilutions standard
curve made from cDNA pooled from all samples (Bennett et al. 2013)
and normalized by GAPDH expression.

Other statistical analyses for the phenotype data
Clinical phenotype data for DO mice were checked for normality.
Non-normally distributed data were transformed using log10, Box-
Cox power, or rank-normal functions before any statistical analysis.
The variables with Shapiro-Wilk “W” value.0.95 were considered as
normally distributed. The correlation between CysC and variables
indicating kidney biomarkers were determined by Spearman corre-
lation. Regression analysis involving CysC was adjusted for body
weight as a confounding factor. Data are presented as means 6 SD
unless otherwise indicated. Statistical analysis was performed using
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R 3.6.1 for windows release (R Core 2019). Correlation p-value was
adjusted for multiple comparisons using “Benjamini & Hochberg”
(Benjamini and Hochberg 1995), and an adjusted p-value ,0.05 was
considered significant for all analyses unless stated otherwise.

Data availability
Microarray gene expression data are available at GEO with the
accession ID GSE122061. Genotypes of DO mice are accessible through
UNC’sMMRRCwebsite (https://www.med.unc.edu/mmrrc/genotypes/).
Further information is available from the corresponding authors if
required. This study was approved by the IACUC at UNC, Chapel
Hill (IACUC Protocol Number 13-103). DO mouse kidney RNASeq
(DO-RNASeq) data are available at the NCBI’s Gene Expression
Omnibus (GEO) with the accession ID GSE121330 and also at
Dr. Churchill’s laboratory web site (https://churchilllab.jax.org/qtlviewer/
JAC/DOKidney). The C57Bl/6J mouse RNASeq (B6-RNASeq) data
(Söllner et al. 2017) is available at https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA375882 and EBI under the Array Express
ID: E-MTAB-6081; https://www.ebi.ac.uk/arrayexpress/experiments/

E-MTAB-6081/. Supplemental material available at figshare: https://
doi.org/10.25387/g3.10307972.

RESULTS

Characteristics of the study DO mice population
The mean body weight of the mice was 32.46 7.4g with a range from
19.0 to 58.5g; a variation of approximately 23% among our DO study
population (Table 1). Plasma CysC had similar variation as body-
weight, approximately 25% variation, with a mean concentration of
535.5 6 137.5 ng/mL and ranging from 260 to 922 ng/ml. Although
both body weight and plasma CysC had similar variations within the
population of mice they were not significantly correlated with each
other (r = 0.028, P = 0.80).

We also measured levels of the following urinary analytes: cre-
atinine, total protein, protein: creatinine ratio, total sodium, sodium
excretion rate, sodium: creatinine ratio, total potassium, potassium
excretion rate, and potassium: creatinine ratio. Additionally, blood
urea nitrogen was measured. We observed a significant variation

Figure 1 Plasma cystatin C QTL. (A) Genome scan of plasma CysC level. Red, solid golden, and broken golden lines show permutation-derived
(N = 1000) significance thresholds at P, 0.05, P, 0.10, and P, 0.63, respectively. (B) The Best Linear Unbiased Predictors (BLUPs) coefficient plot
of eight founder mice strains to the CysCQTL (top). Color represents the eight founder mice strains as indicated. The bottom portion represents the
LOD score for plasma CysC on the chromosome 2. (C) Zoomed view of the peak position with an additive SNP model and the known genes in that
region. Red dots indicate the significant SNPs at P, 0.05 (D) Genotype by phenotype plot of the top SNP located at the peak LOD for plasma CysC
concentration. Genotype: A – AA, B – GG and H – AG. Shaded areas on the figure B and C represent approximate 95% Bayesian credible interval.
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within urinary creatinine, urinary protein, urinary total protein:
creatinine, urinary total sodium, urinary sodium excretion rate,
and urinary sodium: creatinine (Table 1). To better assess how these
urinary markers are related to renal function, we correlated plasma
CysC and cystatin C (Cst3) gene mRNA expression levels with each
urinary analyte. Plasma CysC did not show any significant correlation
with other blood or urinary kidney biomarkers (Table 1). Cst3
expression level was significantly correlated with CysC (r = 0.498,
P = 1.22 · 10206) and Urinary K: creatinine (r = -0.249, P = 0.045;
Table 1).

Quantitative trait locus (QTL) analysis of plasma and
urinary traits demonstrate that plasma CysC
concentration is under genetic determination in the DO
We first assessed the heritability (h2) of plasma CysC which was
47.5% in our DO population, indicating a significant portion, nearly
50%, of the variation in plasma CysC is genetic. To identify if there are
specific loci regulating CysC levels, we next performed QTL analysis.
We identified a single locus regulating plasma CysC on Chromosome
2 at position 148.7 Mb with a logarithm of the odds ratio (LOD) score
of 10.6 which exceeded genome-wide threshold for plasma CysC as
determined by permutation testing (Figure 1A). The CysC QTL on
Chromosome 2 remained significant even after adjusting for the body
weight as an additive covariate (Figure S3). We determined the 95%
confidence interval by calculating the Bayesian Credible Interval
(BCI), and identified a 1 Mb region of Chr 2, from 148.6-149.4
Mb associated with CysC.

Human GWAS studies have identified several loci associated with
kidney disease and related physiological traits. Notably, the locus on
Chr 2 for CysC in DO mice corresponds to the homologous locus in

humans, on Chromosome 20, which has been replicated several times
(Akerblom et al. 2014; Suhre et al. 2017; Köttgen et al. 2010) for
measured human kidney function using CysC based estimates of
glomerular filtration rate (eGFRcys). This association for human
eGFRcys is near the Cst3 gene locus on human Chr 20 between
22 Mb and 25 Mb in a European population (Pattaro et al. 2016)
(Figure 2), which is a region of conserved synteny between humans
and mice.

To further characterize this QTL, we estimated the allelic con-
tributions of the 8 founder strains (Figure 1B and Figure 3A) and
found that the haplotypes separate into two groups, in which, DO
mice containing the 129, CAST, and B6 alleles have lower plasma
CysC levels thanmice harboring NOD andNZO haplotypes. We then
determine the distribution of the founder allele among our DOmouse
population and found that about 30.0%, 49.2%, 32.5%, 13.5%, 14.2%,
3.3%, 18.3% and 19.2% mouse are harboring genome from AJ, B6,
129, NOD, NOZ, CAST, PWK and WSB mouse, respectively either
as homozygous or heterozygous state at the significant haplotype
block of the CysC QTL (Table S2). This locus on the Chr 2 contains
32 pseudogenes and genes (Broman 2019; Yue et al. 2014) including
Cst3 (Cystatin C gene) (Figure 1C, Table S3). Among them, gene
expression values of 16 genes were available and only Cst3 mRNA
expression was found to be significantly correlated (r = 0.52, adjusted
p-value =6.57X1026) with plasma CysC concentration (Table S3).
Mice homozygous AA at the marker (UNC4197823, LOD = 10.3) had
a lower plasma CysC level compared to heterozygous AG and
homozygous GG (Figure 1D). To evaluate what other kidney gene
expression levels might be associated with plasma CysC protein level
we determined the correlation between plasma CysC level, and all
genes expressed in kidney. Plasma CysC significantly correlated with

Figure 2 Locuszoom association plot for human eGFR-cys at the Cst3 gene locus on human chromosome 20 between 22 Mb and 25 Mb. The
human data were obtained from the European population (Pattaro et al. 2016) and is a region of conserved synteny between humans and mice.
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a number of mRNA levels in kidney including Cst3 (cystatin C;
r = 0.52, adjusted p-value = 0.0048), Trav16d-dv11 (T cell receptor
alpha variable 16D-DV11; r = 0.52, adjusted p-value = 0.0048),
Pecam1 (Platelet/endothelial cell adhesion molecule 1; r = 0.50,
adjusted p-value = 0.0064), and Zfp768 (zinc finger protein 768;
r=-0.45, adjusted p-value = 0.043; Table 2). We also performed QTL
analysis of all other phenotypes listed on Table 1, which yielded a
number of suggestive loci (Table S4).

Genome-wide expression QTL (eQTLs) analysis of Renal
Gene Expression indicates CysC mRNA is under
genetic regulation
We performed individual QTL analysis for all annotated probesets
available on the microarray to identify genes with significant eQTL
(Methods). We determined the significant eQTL based on single
p-value cut off (P , 0.05), allowing for a unique LOD threshold for
each individual probeset as determined by permutation testing
(Methods), and observed a total of 3,022 significant eQTL hits (Figure
4) for 2,866 unique transcripts. The average genome-wide LOD
threshold at P , 0.05 for all annotated probesets was 7.94 6 0.67,
with a median of 7.79 (25th percentile= 7.69, 75th percentile= 7.93),
and a range 6.96– 21.27. Among the total 3,022 statistically significant
(P , 0.05) eQTL, a total of 2,004 were cis-eQTL (peak SNP within
62Mb of the gene start position (Bennett et al. 2010)) and 1,018 were
trans-eQTL (Figure 3). A list of all significant and suggestive eQTL
and their corresponding LOD threshold are provided in Table S5.

We next investigated the expression pattern and genetic deter-
mination of genes at the CysC locus. We found that the mRNA levels
of Cst3 has a heritability of 58.8% and has a significant cis-eQTL
(LOD = 16.0) at the same CysC locus on the Chr 2 (Figure 4A-C) with
a similar association with the peak SNP indicating a possible con-
nection between genetic architecture and plasma CysC level through
mRNA levels. Indeed, in our study, plasma CysC concentration was
associated with Cts3 mRNA level [b (se) = 254.3 (45.6), P , 0.001]
and remained significant even after adjusting with body weight
[b (se) = 254.3 (46.0), P , 0.001] (Figure 5D). Mouse harboring
theWSB, 129, and B6 alleles had lower Cst3 mRNA level compared to
mice harboring CAST, PWK, NOD and NZO alleles (Figure 3B).

Genetic variant analysis at the CysC locus
To better understand the genetic variation at the Cst3 locus, we
compared genetic polymorphism present in the 8 founder mouse
genome available on the Sanger Institute’s mouse database (www.san-
ger.ac.uk) and found that there are several 59 and 39 UTR variations,
splice region variants, upstream and downstream gene variant as
SNPs or insertion or deletion in the DO founders, which may lead to
the mRNA abundance. We took an in silico approach to predict
transcription factor (TF) binding sites using CiiiDER (Gearing et al.
2019) with JASPAR 2020 motif database (Khan et al. 2018). This
analysis predicted 426 potential TFs interacting to 2,657 TF motifs in
theCst3 promotor region (-1500 bps to +500 bps ofCst3 transcription
starting position). We next identified which of the sequence variants
from the DO founders are located within one of the TF binding sites.
The 8 founder strains of the DO contain 31 SNPs located within these
predicted transcriptionmotifs. To assess the functional significance of
these variants predicted changes in TF binding affinity was also
assessed in-silco using the R package tRAP (Thomas-Chollier et al.
2011), which calculates the affinity of transcription factors for a DNA
sequences on the basis of a biophysical model and determine which
TF is affected the most by a regulatory SNP (Thomas-Chollier et al.
2011). tRAP predicted that 50 transcription motifs alter binding
affinity at a level of .20% due to the presence of SNPs. A number of
these SNPs including rs225697750, rs27261906, rs244335261,
rs220753689, rs236432550, rs220753689, rs387212829, rs27261907,
rs581036327, and rs236432550 were distributed differently among
alleles arising from WSB and NOD, CAST, or PWK founder strains
(Table S6).

We also examined the Cst3 locus for structural variants using
publicly available data in addition to variants affecting transcription
(www.sanger.ac.uk). Among the 8 founder strains of the DO, two
missense SNP variants in the Cst3 gene are present in the CAST allele
at position 148872018 bp and 148875196 bp (rs27261909). Both of
these specific variants could potentially affect the protein function
and the effect of these polymorphisms was assessed using an in-silico
prediction tool, Protein Variation Effect Analyzer -PROVEAN (Choi
and Chan 2015). However, the both missense variants in the Cst3
gene were not predicted to have a known deleterious structural
consequence (Table S7).

Co-expression modules of kidney mRNA showed
association Between CysC and biologically related
gene sets
Our correlation/regression analysis identified that 24.8% of the
variation in plasma CysC protein could be accounted for by differ-
ences in the Cst3 gene expression. We hypothesized that additional
genes and pathways affecting CysC levels could be identified using
Weighted Gene Correlation Network Analysis (WGCNA). WGCNA

Figure 3 Regression coefficients of the association between genotype
marker UNC4197823 located on Chr2 and (A) plasma CysC level or (B)
Cst3 gene expression level for eight founder strain determined by BLUP
analysis.
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can identify genetic pathways or modules of genes associated with
clinical traits and provide a complementary approach to traditional
QTL analysis. We constructed a gene co-expression network from
8,045 expressed genes in the kidney using WGCNA, as described in
the method section. Out of these 8,045 genes, 4,166 transcripts
formed 25 co-expressed gene modules, which contain a varying
number of genes, ranging from 21 to 928 (Figure S4A-C). The
remaining transcripts (�3,900), had reduced topological overlap
and were not assigned to a module.

To determine the correlation between gene modules and kidney
biomarkers, we calculated the module eigengene (ME), which is the
first principal component for the module member gene expression
values. The average percent variance explained by the MEs was
27.0 6 5.3% and ranged from 20.7% (greenyellow) to 39.0%
(royalblue) (Table S8). In contrast, ME of the transcripts not
assigned to a module explained 3.6% variability. Then we per-
formed gene set enrichment analysis (Chen et al. 2013) for the GO
and KEGG terms (Tables S9 and S10, respectively), as described in
the method, on each module to determine their shared gene
ontology of the biological function. 16 out of 25 modules were
significantly enriched with biological process related GO terms
(Figure 6A) and 18 were significantly enriched with KEGG path-
way terms (Figure 6B).

The modules identified in the network were prioritized by their
correlation with CysC (Figure 6C). Two modules, brown and red,
showed significant positive (r = 0.33, adjusted p-value = 0.027) and
negative (r = -0.35, adjusted p-value = 0.027) correlation with plasma
CysC, respectively (Figure 6C). This indicates that the brown and red
modules explain about 10.9% and 12.3% variation of the plasma CysC

levels. The brown module contains 323 genes and is highly enriched
for genes related to the immune system, specifically Type-I interferon
signaling (GO:0060337, adjusted p-value = 1.05 x1025, Odd Ratio
=10.6, and combined score [Z-score x -log(p)] = 200.0 (Table 3).
The 50 most connected transcripts within the brown module
(Table S11) showed a strong correlation among themselves,
Cst3 gene, and CysC protein levels (Figure S5). We used Cytoscape
network to visualize the connectivity among these 50 transcripts in
the brown module and their connection with Cst3 mRNA level in
kidney and plasma CysC concentration (Figure 6D). Among these
50 transcripts are several well-characterized immune genes, in-
cluding Signal transducer and activator of transcription 1 (Stat1),
Signal transducer and activator of transcription 2 (Stat2), In-
terferon induced transmembrane protein 3 (Ifitm3), Nuclear an-
tigen sp100 (Sp100), Interferon-induced protein 35 (Ifi35), Sam
domain and HD domain, 1 (Samhd1), and Interferon regulatory
factor 9 (Irf9).

Additionally, the red module was negatively associated with
plasma CysC level (r =-0.340, adjusted p-value = 0.021). The red
module contains 195 genes including D-amino acid oxidase (Dao),
aldehyde dehydrogenase 2, mitochondrial (Aldh2), 4-hydroxy-2-
oxoglutarate aldolase 1 (Hoga1), proline dehydrogenase (Prodh);
proline dehydrogenase (oxidase) 2 (Prodh2), aldehyde dehydrogenase
family 7, member A1 (Aldh7a1), and aldehyde dehydrogenase 9,
subfamily A1 (Aldh9a1). KEGG pathway analysis revealed that the
red module is enriched with arginine and proline metabolizing
enzymes (adjusted p-value = 1.60 · 1024, OR = 14.36, and combined
Z-score = 207.6) (Table S10). The red module is also significantly
enriched with regulation of protein deubiquitination (GO:0090085,
adjusted p-value= 0.026) with an OR of 44.0 and combined score of
456.3 (Table S9).

Publicly available kidney gene expression datasets
support association Between CysC and Type-I interferon
signaling genes
In order to determine if the CysC-brown module association iden-
tified in the current study was robust we sought to identify appro-
priate publicly available datasets to investigate. We identified two
gene expression data sets which utilize RNAseq, one utilizing C57BL/
6J mice (EBI Array Express: E-MTAB-6081) as previously reported
(Söllner et al. 2017) and one utilizing Diversity Outbred mice (GEO:
GSE121330). We will refer to these as B6-RNAseq and DO-RNAseq.
First, we ensured that the genes named within the manuscript are in
fact expressed in the kidney. In supplemental Table S12 we list the
expression of each gene mentioned in the manuscript and the two
aforementioned datasets and found that they are expressed in the
kidney. Additionally, we calculated the average expression for all
genes in the datasets and listed this in the table along with the
corresponding average expression for all eQTL genes and genes used
in the Network analysis and found that they are comparable. Fur-
thermore, we correlated the average expression values of the all
common genes in our study, DO-RNAseq, and B6-RNAseq data
sets and identified that broadly the genes selected are highly corre-
lated (n = 16,599; r = 0.66; P, 0.001) and (n = 21,261; r = 0.60; P,
0.001), respectively). These data indicate that our measures of gene
expression via microarray are representative of RNAseq methods
and are reproducibly expressed in the kidney. We repeated this
analysis with the 8,045 genes used for WGCNA analysis and these
genes were also correlated between our data and renal samples of the
DO-RNAseq (n = 7,818; r = 0.58; P , 0.001), and B6-RNAseq
datasets (n = 7,825; r = 0.44; P , 0.001).

Figure 4 Locations of kidney eQTLs in the mouse genome. The
positions of the significant eQTLs (P , 0.05) are plotted against the
locations of the corresponding transcript (y-axis) alongwith the genome
(x-axis). The significance thresholds for each individual probeset were
determined by performing 1000 permutations of genome-wide scans
by shuffling genotype data in relation to individual gene expression
data for every single probeset on the microarray. Cis-eQTLs, occurring
within a 4-Mb (62Mb) genomic window, are located at the diagonal, all
other dots represent trans-regulated genes.
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In addition to these global analyses, we also focused on the
expression of brown module transcripts. We performed correlation
analysis of the 50 most connected brown module transcripts and Cst3
in the DO-RNAseq dataset. The correlation between these genes and
Cst3 was robust and ranged between r = 0.123 and 0.661. 48 of the
selected transcripts were significant after multiple comparison testing
(Figure S5). Most notable, the immune transcripts Stat1, Stat2, Ifitm3,
Sp100, Ifi35, Samhd1 and Irf9 were all significantly correlated with
Cst3 which is congruent with the immune system enrichment
identified in the brown module. As a final confirmation quantitative
PCR assays were performed on archived kidney samples from a strain
survey of DO Progenitor mice (O’Connor et al. 2014) in which the
mice were perfused prior to tissue collection and these transcripts
were expressed in perfused samples (Table S13).

DISCUSSION
Establishing the genetic architecture of kidney biomarkers remains
critical to the development of clinical strategies for understand-
ing kidney function. Advanced genetic mapping panels such as the

Diversity Outbred (DO) mice provide a tremendous opportunity to
examine the genetic determination of kidney function and disease. In
this study, we utilize DOmice to dissect the genetic architecture of the
renal biomarker CysC which yields 3 key results. The first is that CysC
is associated with genetic polymorphism in aged, female DO mice.
The second is that eQTL analysis identified a concordant eQTL for
CysC mRNA, revealing a positive correlation between Cst3 gene
expression and plasma CysC levels. The third is two module of genes
co-expressed associated with CysC levels. Each of these are discussed
in detail below.

We identified a QTL associated with plasma concentration of
CysC on Chromosome 2 at approximately 148 Mb. This locus
contains the gene Cst3 whose transcript is ultimately translated into
the Cystatin C protein. eQTL analysis identified a significant cis-
eQTL for the Cst3 gene at the same locus and there was a positive
correlation between Cst3 mRNA and plasma CysC protein levels.
Similar to our result, a meta-analysis of human GWAS data found
that the estimated GFR based on plasma CysC was associated with
SNPs proximal or within the physical location of Cst3 on Chr20 at

Figure 5 eQTL for Plasma Cystatin C (Cst3) mRNA. (A) Genome scan of CysC gene (Cst3) mRNA expression levels. Red, solid golden, and broken
golden lines show permutation-derived (N = 1000) significance thresholds at P , 0.05, P , 0.10, and P , 0.63, respectively. (B) BLUP coefficient
plot of eight foundermice strains to theCst3 eQTL (top). Color represents the eight foundermice strain as indicated. The bottom portion represents
the LOD score for Cst3 eQTL model on the Chr 2. The shaded area represents approximate 95% Bayesian credible interval. (C) Genotype
by phenotype plot of the top SNP located at the peak LOD. Genotype: A – AA, B –GG and H – AG. (D) Correlation between plasma cystatin C and
Cst3 mRNA level.
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23.6 Mb in human (Köttgen et al. 2010; Köttgen et al. 2009; Hwang
et al. 2007). The identification of a colocalized eQTL for the Cst3 gene
and the correlation between transcript and protein levels in the
current study suggest that a portion of the variable concentration
of plasma CysC could be transcriptionally mediated. However, the
potential causal variant(s) affecting mRNA levels remains to be
elucidated. Detailed sequence analysis and utilization of in-silico
prediction of the functional consequences of SNPs within the DO
founder strains on transcription factor and protein function highlight
the tremendous genetic variation contained in the DO at this locus.
More than a hundred SNP variants were identified at the Cst3 locus
(Keane et al. 2011). Our in-silico analysis predicted 50 SNPs which
could possibly affect Cst3 mRNA levels and plasma CysC concen-
trations. However, these results remain to be confirmed.

The correlation between Cst3 mRNA and plasma CysC suggests
complex regulation of CysC beyond a simple relationship between
mRNA levels and plasma CysC concentrations as only 24.8% of the
variation in plasma CysC protein could be accounted by the variation
in the Cst3 gene expression. It is well understood that genetic variants
are critically important factors affecting clinical traits, but we ac-
knowledge that many complex traits are affected by a multitude of

biological and environmental factors. One approach to address this
biological complexity is the use of gene co-expression network
analysis. Genes are often coregulated through complex biological
pathways and co-expressed gene network analysis allows us to
explore modulation of complex traits and disease phenotypes that
are not understood by focusing on single genes. Therefore, we also
identified a transcriptional networks (pathways) in the kidney asso-
ciated with plasma CysC concentrations by using WGCNA analysis.
Our gene module analysis showed that the plasma CysC level is highly
co-expressed with genes involved in Type-I interferon (IFN) signaling
pathway genes. Specifically, IFN-stimulated gene factor 3 (ISGF3),
comprised of Stat1, Stat2, and Irf9, are strongly associated with CysC
levels. To the best of our knowledge, this is the first report of local
renal Type-I interferon signaling pathway gene expression being
associated with transcriptional adjustment of CysC. The cell surface
receptor for Type-I IFN are expressed on most cells, including kidney
cells (Secombes and Zou 2017) and resident macrophages (York et al.
2007). When Type-I IFN binds with its receptor on the cell surface, a
signaling cascade initiates, causing phosphorylation and activation of
STATs (Schreiber 2017). We note that in-vitro experiments using
a reporter assay identified a cis element named IRF (interferon

Figure 6 Co-expression network analysis of kidney gene. (A) Top GO and (B) top KEGG pathway for each of the gene-module. (C) Correlation
coeffiencent of module eigengenes with plasma CysC. “�”, 0.05. (D) Cytoscape network visualization of to 50 hubgene in the brown module and
their relationship withCst3mRNA level is kidney and plasma CysC concentration. The brown nodes denote hubgenes in themodule and the yellow
nodes denote Cst3 gene and CysC protein concentration in plasma.
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regulatory factor)‐Ets composite sequence (IECS) that regulates both
cystatin C and cathepsin C expression (Tamura et al. 2005). These
data suggest a potential mechanism by which inflammatory signals
contribute to plasma CysC levels. We note that our network analysis
is non-directional and thus we cannot demonstrate a direct causal
effect of IFN signaling and CysC gene expression. Furthermore, the
relationship between CysC and Type-I IFN signaling genes is in-
triguing but complicated by the fact that CysC itself is expressed by
monocytes and dendritic cells (El-Sukkari et al. 2003) and may have
an important role in innate immune responses (Zi and Xu 2018). An
additional study is needed to determine if this module of genes is
regulating CysC or perhaps if CysC levels are influencing kidney
inflammation. The Cst3 gene expression only explained about 25%
variation of the plasma CysC concentration, indicating that in
addition to environmental factors, there might be some other genes
or cluster of genes that contributing plasma CysC concentration.

Our results indicate that the DO mice can be used to study renal
function in the context of varying genetic determination of Cst3

levels, similar to what occurs in humans. Thus, perturbations that
affect renal function through surgical or chemical manipulation could
be used in DOmice to evaluate their effect on both renal function and
CysC levels. Additionally, these studies are critical as studies in model
organisms are effective at eliminating the random environmental
factors. For example, studies in mice can tightly control the envi-
ronment which allows the determination of the genetic contribution
to the phenotype, independent of the environmental confounders.

The QTL, eQTL and WGCNA analysis identify a number of
interesting factors affecting plasma CysC in this relatively small study
utilizing DO mice. In addition to the sample size we acknowledge
several areas for future investigation. Plasma CysC was measured
only once at 56 weeks of age and thus we could not examine aging
related changes in circulating CysC levels, which may be critical
predictors of disease susceptibility. The DO cohort used in the current
study is small (n = 120) and thus we were only able to detect QTL with
strong effect size. We did not find QTL for kidney traits beyond
plasma CysC and the cis-eQTL for Cst3which could be a consequence

n■ Table 1 Characteristics of the study mice

Characteristics na Mean 6 SD Median (25th, 75th)

Correlation with
Cystatin C

Correlation with Cystatin C (Cst3)
mRNAb

r p r p

Body weight, g 120 32.4 6 7.4 31.5 (26.3, 37.3) 20.014 0.88 0.028 0.80
Plasma cystatin C, ng/mL 109 535.5 6 137.5 515.1 (427.7, 629.5) 1.000 NA 0.500 1.22 x 10206

Blood urea nitrogen, mg/dL 120 14.9 6 5.0 14.3 (11.9, 16.7) 20.079 0.41 20.097 0.38
Urine pH 111 6.6 6 0.8 6.5 (6.0, 7.2) 20.062 0.54 20.085 0.44
Urine Osmolality, mOsm/kg of water 117 534.8 6 201.2 491 (400, 625) 0.181 0.062 0.219 0.046
Urine volume, mL 120 826.4 6 651.4 745.0 (285.0, 1210.0) 20.126 0.19 20.007 0.95
Urinary protein, mg/L 83 369.4 6 321.7 255.6 (105.2, 570.4) 0.176 0.12 0.177 0.16
Urinary creatinine, mmol/L 83 0.3 6 0.2 0.3 (0.3, 0.5) 0.183 0.11 0.228 0.07
Urinary protein: creatinine, mg/mmol 83 2080 6 6530 789 (349, 1400) 0.121 0.29 0.112 0.37
Urinary total Na, ng 92 2415 6 1526 2060 (1296, 3380) 0.006 0.95 0.121 0.31
Na excretion rate, ng/h 92 1208 6 763 1030 (648, 1690) 20.003 0.98 0.113 0.34
Urinary Na: creatinine, ng/mmol 82 10.3 6 16.7 6.8 (4.8, 10.6) 20.122 0.29 20.128 0.31
Urinary total K, ng 92 1002 6 698 876 (514, 1326) 0.045 0.68 0.115 0.34
K excretion rate, ng/h 92 501 6 349 438 (257, 663) 0.020 0.85 0.078 0.52
Urinary K: creatinine, ng/mmol 82 3.7 6 5.0 2.9 (2.1, 3.8) 20.202 0.08 20.249 0.045
a
Number represents the number of successful mouse phenotype observes depending on the availability of the sample.

b
Gene expression data were available for 95 mice.

n■ Table 2 Genes significantly correlated with plasma Cystatin C, and their eQTLs

Gene name ENTREZID

Gene location Correlation eQTL

Symbol Chr Stand
Start
(Mb) r p adj.p

SNP
Position LOD

Chr Mb
T cell receptor alpha variable 16D-DV11 Trav16d-

dv11
547329 Chr14 + 54.20 0.522 2.98x1027 0.005

Cystatin C Cst3 13010 Chr2 — 148.87 0.517 4.11x1027 0.005 Chr2 148.7 15.99
Platelet/endothelial cell adhesion

molecule 1
Pecam1 18613 Chr11 — 106.65 0.502 9.67x1027 0.006 Chr6 136.7 9.50

Leupaxin Lpxn 107321 Chr19 + 12.80 0.500 1.09x1026 0.006
FYVE, RhoGEF and PH domain

containing 2
Fgd2 26382 Chr17 + 29.36 0.476 4.10x1026 0.019

Ribonuclease, RNase A family, 6 Rnase6 78416 Chr14 + 51.13 0.469 5.93x1026 0.023
Cytokine receptor-like factor 3 Crlf3 54394 Chr11 — 80.05 0.461 9.03x1026 0.030
Formin binding protein 1 Fnbp1 14269 Chr2 — 31.03 0.454 1.25x1025 0.037
Zinc finger protein 768 Zfp768 233890 Chr7 — 127.34 20.449 1.62x1025 0.043
Protein kinase C, eta Prkch 18755 Chr12 + 73.58 0.445 1.98x1025 0.043
Selectin, platelet (p-selectin) ligand Selplg 20345 Chr5 — 113.82 0.445 1.99x1025 0.043
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of our study population. Another limitation of our study is that we did
not perfuse the kidney with PBS before collection. Thus, we cannot
eliminate the possibility that differences in circulating white cells are
contributing in part to gene expression differences observed in this
study. To address this limitation and to confirm renal expression of
the genes discussed in this paper, we compared our data with two
different publicly available mouse kidney gene expression datasets.
Additionally, the expression of a number of transcripts was confirmed
by qPCR in kidney isolated from a set of DO progenitor mice which
were perfused before tissue collection. Our expression studies are
comprehensive but were performed on kidney tissue not specific cell
types and thus provide limited insight into the specific kidney cell
types mediating trait associations. Lastly, the results associating IFN
signaling pathway gene expression with CysC levels is intriguing, but
questions remain related to the temporal aspect of this association
and how perturbation of genes in this module affect plasma CysC
levels.

In conclusion, this study identified a locus on Chr 2 associated
with variation in both plasma CysC concentration and the Cst3 gene
expression and a correlation between transcript levels of Cst3 and
plasma CysC. In silico sequence analysis highlighted a tremendous
genetic variation contained in the DO population at this locus which
potentially may affect transcript and protein levels, but a putative
causal variant remained to be determined. Network analysis identi-
fied potentially novel inflammatory pathway associated with CysC
concentration. Future DOmouse investigations are needed to explore
the causal relationship between CysC, kidney inflammation and
filtration function and their implications for CKD progression and
adverse cardiovascular disease outcomes.
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