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Disparity in air pollution exposure arises from variation at multiple
spatial scales: along urban-to-rural gradients, between individual
cities within a metropolitan region, within individual neighbor-
hoods, and between city blocks. Here, we improve on existing
capabilities to systematically compare urban variation at several
scales, from hyperlocal (<100 m) to regional (>10 km), and to assess
consequences for outdoor air pollution experienced by residents of
different races and ethnicities, by creating a set of uniquely exten-
sive and high-resolution observations of spatially variable pollut-
ants: NO, NO2, black carbon (BC), and ultrafine particles (UFP). We
conducted full-coverage monitoring of a wide sample of urban and
suburban neighborhoods (93 km2 and 450,000 residents) in four
counties of the San Francisco Bay Area using Google Street View
cars equippedwith the Aclima mobile platform. Comparing scales of
variation across the sampled population, greater differences arise
from localized pollution gradients for BC and NO (pollutants domi-
nated by primary sources) and from regional gradients for UFP and
NO2 (pollutants dominated by secondary contributions). Median
concentrations of UFP, NO, and NO2 are, for Hispanic and Black
populations, 8 to 30% higher than the population average; for
White populations, average exposures to these pollutants are 9 to
14% lower than the population average. Systematic racial/ethnic
disparities are influenced by regional concentration gradients due
to sharp contrasts in demographic composition among cities and
urban districts, while within-group extremes arise from local peaks.
Our results illustrate how detailed and extensive fine-scale pollution
observations can add new insights about differences and disparities
in air pollution exposures at the population scale.

air pollution | environmental justice | air quality

Air pollution varies in complex patterns across the urban
landscape, arising from the interplay of emissions source

locations and atmospheric transport and transformation. Gradi-
ents exist at multiple spatial scales, reflecting regional, city-level,
and neighborhood-level phenomena, including highly localized
peaks near major sources (1–3). The uneven distribution of
sources has been shown in the United States to cause systemati-
cally higher outdoor concentrations for people of color and
communities facing disproportionate socioeconomic and envi-
ronmental stressors (4–10). Increased air pollution exposure is
associated with premature mortality and a multitude of chronic
health problems, as well as increased vulnerability to extreme
events such as wildfire pollution episodes and COVID-19 (11–13).
Measurement and analysis of this disparity in outdoor concen-
trations are vital for understanding how the causes of air pollution
(e.g., city zoning, infrastructure development, emissions sources)
affect differential health outcomes. This understanding can aid in
designing effective environmental justice measures and tracking
the effects of the evolving urban landscape on population-wide

and community exposure. Here, we use mobile monitoring
(in-motion measurements by vehicle-mounted instruments) to
observe highly localized air pollution patterns in a variety of urban
settings and consider the implications for the measurement and
mitigation of pollution exposure and environmental inequity.
The full complexity of multiscale patterns of air pollution is

largely unknown in most urban areas despite great advances in
measurement and modeling methods over the past few decades.
Regulatory monitoring sites are sparsely distributed and gener-
ally do not measure unregulated pollutants of health concern,
such as black carbon (BC) and ultrafine particles (UFP). While
satellite remote sensing provides nearly global spatial coverage,
most conventional products are limited in resolution to 1 to
5 km2 and do not include all pollutants of interest (14, 15).
Mechanistic models predict concentrations over broad domains
but are limited by computational constraints and data gaps (16).
Recent statistical models provide both high spatial resolution and
geographic coverage, but concentration predictions reflect gener-
alized patterns, tend to predict central tendencies better than
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extremes, and may miss local idiosyncrasies, especially for models
with broad (e.g., national) domains (17). Despite the growing
sophistication of these technologies, in many cases they are best
suited to depict patterns of pollutants that are predominantly
secondary, such as ozone and PM2.5, which tend to vary more over
the regional than neighborhood scale (17). In contrast, fine-scale
gradients dominate spatial variability for directly emitted (pri-
mary) pollutants like BC and for pollutants with highly localized
transformation dynamics like UFP and NO (1, 18–22). Both BC
and UFP are suspected to cause distinct health impacts (23–25),
but these effects—and the potential racial/ethnic and socioeco-
nomic health disparities—will remain poorly understood until
higher-resolution measurements are more widespread (25, 26).
Mobile monitoring and low-cost sensors are increasingly used

to detect fine-scale pollution gradients with applications ranging
from new risk estimates for cardiovascular disease to the iden-
tification of unexpected sources of exposure disparity (24, 27).
Low-cost sensors are used to supplement the density of existing
regulatory networks, but appropriate sensors are not available
for all pollutants and operation is limited by the capacity for
consistent calibration and maintenance (28). Mobile monitoring
has been used to measure multipollutant gradients in a wide range
of urban contexts (29–31). Example applications of mobile mon-
itoring include studies of short-range multipollutant variation at-
tributable to highway traffic (31–35), infrastructure geometry, such
as street canyons and near-road barriers (22, 36–38), and a variety
of specific local sources (37, 39–41). While mobile monitoring is a
flexible method, it is also labor intensive, requiring many repeated
visits to collect enough localized measurements to capture the full
temporal variation in conditions.
Because of the large resource requirement for long-term mobile

monitoring, only a small number of campaigns have measured
multiyear, high-resolution patterns over multiple neighborhoods
(19, 42). Few have attempted comprehensive coverage of all major
and residential streets of several contiguous neighborhoods (21,
41, 43). This study presents the results of 32 mo of mobile mon-
itoring along every street of 13 cities, towns, and urban districts
(93 km2) distributed through four counties of the San Francisco
Bay Area, providing over 2,100 h of sampling of four pollutants at
∼0.01 km2 (i.e., ∼100 × 100 m2). We employ two custom-equipped
Google Street View cars to repeatedly measure city block air
quality, providing estimates of outdoor air pollution for a year-
2010 population of ∼450,000 individuals and an opportunity to
characterize, quantify, and analyze multiscale gradients across the
urban landscape. We specifically consider implications for racial
and ethnic exposure disparities. We find that dense, urban
neighborhoods exhibit peaks that vary by pollutant in both loca-
tion and magnitude, reflecting complex interactions among di-
verse emission sources and urban microenvironments. Despite
high-magnitude hyperlocal peaks, we find that concentration dif-
ferences between sampling areas (i.e., among distinct neighbor-
hoods and cities) cause greater average concentrations for people
of color. These findings demonstrate the need to consider miti-
gation policies at multiple urban scales to address environmental
inequity.

Results and Discussion
High Variation in Air Pollution Observed from Hyperlocal to Regional
Scales. We create empirical maps of four air pollutants in 13
groupings of neighborhoods that constitute urban districts, cities,
or towns (total population: ∼450,000), ranging in land use, ur-
banization, traffic density, demographic composition, and his-
torical housing policy (SI Appendix, Figs. S1, S2, and S12 and
Tables S1–S3). We calculate census block scale concentrations
(see Materials and Methods) to best approximate conditions at
individual residences given the resolution of demographic data
(median block population: 36 people). Hereon, we describe out-
door concentration as “exposure” for block residents, terminology

consistent with literature linking health effects to census block
estimates (24, 44); we acknowledge that individual exposure also
depends on multiple other factors (e.g., diurnal activity, indoor
infiltration and dynamics, and physiology).
Study area maps (Fig. 1) reveal sharp concentration gradients

(∼2 to 5×) within groups of contiguous blocks, as well as marked
differences in the range of concentrations within different study
areas. In discussing spatial variation, we term gradients among
neighboring blocks (∼100 m) as “hyperlocal,” variation within
each study area (∼1 km) as “local,” and variation among study
areas (∼10 km) as “regional.” Among the four pollutants, NO
shows the highest-magnitude hyperlocal peaks, with a typical
ratio of 10× between a peak and local median (SI Appendix, Fig.
S4 and Table S5). BC, NO2, and UFP (peak ratios 3.1×, 2.7×,
and 2.6×, respectively) exhibit shallower hyperlocal gradients
and more diffuse peaks. Complex hyperlocal patterns reflect the
combined influence of traffic and point source emissions (e.g.,
local industry and restaurants) and dispersion and reaction dy-
namics within the built environment (e.g., street canyons, green
spaces). Local elevation of NO concentrations is strongly linked
to highways and major arterials, while the influence of highways
on BC, NO2, and UFP varies by study area, with roadways
showing the smallest influence on UFP (SI Appendix, Table
S6–S9). Differences in hyperlocal patterns among pollutants are
reflected in the moderate or low correlations of block-level
concentrations in some study areas, especially between BC and
UFP (SI Appendix, Fig. S5). These differences demonstrate the
importance of measuring multiple pollutants. Furthermore, these
patterns likely differ from those of other important pollutants like
fine particulate matter (PM2.5) and air toxics, both in location and
degree of local and regional variation.
Exposure variation reflects where residents live relative to

observed local and regional gradients, although residents may
also experience peaks in unpopulated areas during daily activities.
We find that the weighting of population within more homoge-
neous residential areas mildly diminishes the importance of local
variation, but both local and regional gradients contribute to the
broad range of exposures across the study domain. Fig. 2 shows the
full distribution of exposure levels within each study area. Com-
paring median exposures between the most- and least-polluted
study areas, concentrations varied by a factor of 4, 5, 6, and
28 for BC, NO2, UFP, and NO, respectively, while within-
neighborhood interdecile ranges showed variation up to a factor
of 4 for BC, NO2, UFP, and a factor of 19 for NO. Generally,
neighborhoods with higher BC and NO medians also display a
wider range of exposures, while NO2 and UFP ranges remain more
consistent across neighborhoods. To partition exposure variability
into local and regional components, we decomposed the sum-
of-squared deviation from the mean (SSD) of each resident ver-
sus the study area mean and of all study areas versus the grand
mean (SI Appendix, Table S12). We find that local gradients con-
tribute the majority of exposure variation for primary pollutants
(NO: 52% and BC: 63% of SSD) but the minority for NO2 and
UFP (37 and 28%, respectively), two pollutants where secondary
processes are a key source. A subset of study areas account for a
disproportionate share of local variation. For example, the San
Francisco (SF) Financial District and East Oakland (24% of study
population) account for roughly 50% of local exposure variation
for NO and BC and 40% for UFP and NO2. These study areas
represent denser urban settings with a greater mix of land uses. A
similar comparison of purely spatial units (SSD among blocks, SI
Appendix, Tables S10 and S11) finds that local variability is much
greater for the primary pollutants NO and BC (76 and 79% of the
SSD, respectively) and moderately higher for NO2 and UFP (NO2:
54% and UFP: 46%).
Our observations show a substantially expanded range of

exposure—both between and within neighborhoods—than cen-
sus block–level NO2 predictions from a national-scale predictive
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model similar to a land use regression (year 2015 integrated
empirical-geographic [IEG] model) (17). The national IEG
modeled estimates (Fig. 2, gray overlaid plots) show a ratio of 1.6
between highest and lowest neighborhood median exposure
compared to 4.6 from mobile monitoring and a total-population
interquartile range (IQR) of 2.2 parts per billion (IEG) compared
to 6.1 ppb from mobile monitoring data (SI Appendix, Fig. S6).
This result suggests that the national IEG model may miss some
localized influences and may underestimate total population dis-
parity and, by extension, the potential range of health risks. We
find that the IEG model predicts higher median and mean ex-
posure (2.8 ppb [36%] and 2.5 ppb [30%] higher, respectively)
across the total population, compared to mobile monitoring data.
No NO, BC, or UFP data at the same spatial resolution were
publicly available at the time of this analysis (45).

Systematically Higher Concentrations for Black and Hispanic/Latino
Groups Driven by Regional Variation. A stratification of pollutant
exposure by study area and US Census–reported race and ethnicity
(Fig. 3) reveals both a wide range in the measures of air pollution
within each racial/ethnic group and systematic differences in ex-
posure among groups. Fig. 3 highlights the role of regional de-
mographic patterns in shaping the distribution of exposure across
members of each racial/ethnic group. Study areas with a greater
share of a given race/ethnicity are represented by larger areas
within the shape of the distribution. For example, exposure for the
Asian community within our study areas is dominated by neigh-
borhoods in San Francisco (shades of pink), while exposure for
Black residents is almost entirely determined by concentrations in
Oakland neighborhoods (shades of blue). These aggregate expo-
sure profiles reveal an overall pattern of racial/ethnic disparities:

10

20

30

40

>50
Missing

10

20

30

40

>50

0.4

0.8

1.2

1.6

>2

15

30

45

60

>75

Missing

Missing

Missing

N

0.5 1.5 km 0.8 km0 0 1.5 km 1.5 km0

Fig. 1. Daytime median census block pollution levels for four selected study areas, calculated from ∼50 visits to each block. For the bar plots indicating race/
ethnicity, the White, Asian, Black, and Other race groups only include those identifying as non-Hispanic.
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higher concentration ranges in predominantly Black and Hispanic/
Latino neighborhoods result in higher mean exposure for those
groups. Notably, many of the neighborhoods with the highest av-
erage pollution exposures in our measurement dataset were sub-
jected to overtly racially discriminatory housing policies (i.e.,
redlining) during the twentieth century (SI Appendix, Fig. S12).
At the local level, there is wide overlap among the exposure

distributions of each racial/ethnic group (SI Appendix, Fig. S7).
While study areas do show weak patterns of local disparity—
census blocks with majority White residents showed modestly
lower concentrations than blocks with majority Black and His-
panic/Latino residents within the same study area—there are not
universal trends. In a few instances, a specific community shows
exceptionally high exposure, as exemplified by the Asian pop-
ulations of Downtown Oakland (all pollutants) and the SF Fi-
nancial District (UFP). Both districts include densely populated
corridors occupied by people of Asian descent.
In contrast, we find substantial disparity arising from regional

pollution gradients combined with the high intermunicipal racial
segregation in the Bay Area (46). On average, the White pop-
ulation is exposed to lower NO, NO2, and UFP than other groups,
with a median exposure 16 to 27% below the total-population
median, while medians for the Black and Hispanic/Latino pop-
ulations are higher by 8 to 30% depending on pollutant (Fig. 4A
and SI Appendix, Table S13). The spatial detail provided by our
method reveals nuance in disparity patterns beyond differences in
medians. Fig. 4B illustrates the weighting of each racial/ethnic

group within total-population exposure deciles. Overall, the White
population is strongly overrepresented in the lowest deciles of the
concentration distributions. The Asian population is overrepre-
sented at the extremes, with the high end driven by the previously
mentioned communities in Downtown Oakland and the SF Fi-
nancial District and the low end driven by the Richmond and
Sunset Districts. The Black and Hispanic/Latino populations are
strongly underrepresented at the low end and concentrated to-
ward the higher deciles, giving rise to higher average exposures for
those groups. Apart from distinctly higher ranges of NO2 and UFP
exposure among Black and Hispanic/Latino populations, the
range of exposures within racial/ethnic groups tends to be large
compared with the range among groups. This finding holds es-
pecially for the Asian population (Fig. 4A), which is bimodally
distributed between some of the cleanest (coastal) and most
polluted (downtown) areas.
Within our study domain, the national IEG model also pre-

dicts lowest mean exposure for the White population and highest
for the Black population, with moderately higher exposure for
the Hispanic/Latino population (SI Appendix, Fig. S5). However,
because of the narrower band of exposure estimates, IEG-
modeled disparity differs from observations. The IEG model
predicts a similar magnitude of exposure disparity between the
population median and medians for those of Black and Hispanic/
Latino descent, but a smaller difference for the White population,
and does not show a disproportionate share of people of Asian
descent in the highest-exposure categories. Thus, modeled

Fig. 2. Exposure distributions by neighborhood, based on daytime, weekday census block concentrations. Areas are shown in order of descending median
concentration. Whisker ends represent 10th and 90th percentiles, box boundaries represent upper and lower quartiles, the center bar marks the median, and
the circle represents the mean. Gray box plots in the NO2 panel represent modeled exposure estimates from a national-scale IEG regression model (17).
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disparity may miss an important dimension of racial/ethnic
exposure disparity.
Our conclusions come with several caveats. First, mobile mon-

itoring was conducted during daytime, weekday hours. Concen-
trations and spatial gradients may differ during nighttime and
weekend hours due to changes in emission patterns and atmo-
spheric dynamics (28, 33). Second, we assess here the implications
of temporally averaged patterns, which are associated with chronic
health effects. However, concentrations and spatial patterns show
strong diurnal and seasonal variation that may have acute effects.
While we believe that we sampled representative conditions (see
Materials and Methods), temporal pollution dynamics could add
another dimension to exposure disparity patterns. For this reason,
we recommend that in-depth neighborhood monitoring include
continuous fixed-site measurements in addition to mobile mea-
surements (28). Third, we found that our conclusions are likely
sensitive to the choice of neighborhoods, so we cannot assert that
the disparity patterns we found are fully representative of condi-
tions throughout the Bay Area (i.e., in unsampled neighborhoods).
Finally, disparities in personal exposure to pollutants of outdoor
origin depend not only on fine-scale patterns of outdoor air
pollution—as measured here—but also personal mobility and the
penetration of pollutants into the indoor environment. Future
developments in measurement and modeling could usefully refine

understanding of these dimensions of disparity. However, this study
affirms that assessments of racial/ethnic air pollution disparities in
the United States should include a broad range of representative
neighborhoods that capture the varied experiences of those within
each racial/ethnic group, considering the context of historic and
present day municipal-level segregation.

Implications for Future Exposure Assessments and Environmental
Justice Research. The problem of disparate exposures to envi-
ronmental pollution has become the focus of renewed policy
interest in the United States. Full-coverage mobile monitoring of
air pollution can support policy advances in several ways. High-
intensity mobile monitoring can reveal sources of localized hot-
spots (e.g., warehouses, metals processing, or restaurant clusters)
that may be the subject of community concern but are not always
detected by conventional monitoring (47). More broadly, the
range and spatial variability of exposures revealed by mobile
monitoring—not generally provided by conventional modeling
and regulatory measurement networks—support the development
of community-focused plans to improve air quality.
Our findings highlight the importance of identifying both

highly localized patterns and intraurban disparity for addressing
environmental injustice. We performed a set of stylized sensitivity
analyses, described in SI Appendix, to characterize the degree to

Fig. 3. Distribution of potential exposure stratified by race/ethnicity (not shown is the “Other” racial category, population: 10,000). The White, Asian, Black,
and Other race groups only include those identifying as non-Hispanic. Height on the y-axis indicates the population at a given concentration level summed
over all study areas. Because of significant differences in the racial and ethnic composition of each neighborhood, concentration distributions in some study
areas contribute much more to specific race/ethnicities (e.g., East Oakland for the Hispanic/Latino population, West Oakland for the Black population).
Vertical lines show the indicated statistics (mean, median, 10th, and 90th percentiles) for each race/ethnicity. Corresponding relative disparity values are
provided in SI Appendix, Table S13.
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which hyperlocal, local, and regional air pollution control inter-
ventions might help reduce racial/ethnic exposure disparities
within the San Francisco Bay Area. Consistent with our findings
that between-neighborhood patterns are the principal driver of
racial/ethnic disparities, interventions that only eliminate within-
neighborhood hotspots may not substantially reduce systematic
disparity, although such interventions address the concentration
extremes often experienced disproportionately by people of color.
In contrast, interventions that reduce the differences in back-
ground concentrations among neighborhoods have higher poten-
tial to address population-wide racial/ethnic exposure disparities
(SI Appendix). Higher-pollution areas often contain a variety of
features that individually cause hyperlocal peaks and as a group
contribute to elevated local background concentrations. Some
examples of these features include greater heavy-duty vehicle
traffic, adjacent high-emissions areas like ports and railyards, a
high density of industrial operations, and a lack of green space. A
community-centered approach to policymaking can account for
issues at both hyperlocal and local scales by first identifying a suite
of neighborhood features that contribute to higher pollution and
then seeking local, regional, or state support for targeted inter-
ventions. Such interventions may include incentives and infra-
structure to support zero-emission vehicles, accelerated emission
control retrofits for point sources, and city planning to restrict new
industrial facilities in disproportionately burdened communities.
The differences in disparity patterns among pollutants further
underscores the importance of multisource control policies. This

community-centered approach is exemplified by the West Oakland
“Owning Our Air” plan coauthored by the Bay Area Air Quality
Management District, the West Oakland Environmental Indica-
tors project, and a community-based steering committee and
the broader Community Air Protection Program (AB617) in
California, which includes West Oakland among 15 areas chosen
for targeted interventions (47, 48).
Continued monitoring is necessary for evaluating policy ef-

fectiveness. Regional monitoring strategies may benefit from the
multiscale approach of this study, as we identified some areas for
which a single “background” monitor would represent neigh-
borhood exposure within reasonable bounds, especially for sec-
ondary pollutants. Further investigation of the association of
peaks and regional variation with specific emission sources and
land uses is a useful direction for future research. We hypothesize
that expanding this approach to other urban or rural settings
would likely reveal different but similarly complex patterns and
advance our understanding of the interaction between demo-
graphic patterns, pollution sources, and the built environment.
Environmental policy efforts in the coming years will increase

the emphasis on addressing systemic racial/ethnic disparities in
air pollution exposure. We illustrate here how environmental
justice concerns arise from the confluence of multiscale patterns
of emissions, concentrations, and populations within urban
landscapes. Future efforts to address disparities will benefit from
recent advances in both extensive fine-scale measurement—as
we have demonstrated here—as well as source-oriented models

BA

Fig. 4. Variation in total exposure distributions by race/ethnicity group. The distributions shown in the box-and-whisker plots (A) include the median (central
bar), mean (white circle), upper and lower quartiles (box boundaries), and upper and lower 90th and 10th percentiles (whiskers). The division of the total-
population exposure distribution into concentration deciles (B) shows the division of the population within the decile by race/ethnicity, with decile boundary
concentrations indicated on the y-axis and the racial/ethnic color key provided by the box-and-whisker plots. The White, Asian, Black, and Other race groups
only include those identifying as non-Hispanic.
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that identify the specific causes and drivers of exposure dispar-
ities. Broader solutions to environmental injustice will also involve
greater partnership between scientists and community organiza-
tions, new approaches to synthesizing and communicating high-
resolution data, and innovations in inclusive policy making.

Materials and Methods
Measurement Methods. Mobile monitoring was conducted with two Google
Street View vehicles equipped with the Aclima mobile platform, which used
research-grade instrumentation to provide 1-Hz measurements of BC, NO,
NO2, and UFP (SI Appendix, Table S14), and Global Positioning System co-
ordinates with a nominal precision of ∼1 m. Detailed description of mea-
surement and calibration protocol is contained in Apte et al. (21). The inlet
and sampling manifold, mounted on the roof of each mobile laboratory,
was designed to minimize self-sampling (measurements of the vehicle’s own
exhaust) as well as particle- and gas-phase sampling losses, with an esti-
mated particle sampling loss of <5%. Raw measurement data were reviewed
and processed to exclude periods of poor instrument performance (49). Data
collection occurred over 32 mo from May 2015 through December 2017. The
average nonhighway driving speed of 9 m · s−1 provides a nominal spatial
resolution of ∼10 m.

Study areas were repeatedly visited on a rotating schedule designed to
assess long-term average concentrations indicative of typical weekday,
daytime conditions. During a visit, the driver would follow a Google Street
View–based driving protocol to visit every road segment within the neigh-
borhood at least once, driving with the normal flow of traffic. For large
study areas, a subunit would be assigned for full coverage in a single day’s
driving, with full sampling occurring over multiple days. Visits to each area
were distributed over different times of day and different seasons. Inci-
dental temporal sampling bias was assessed using fixed-site regulatory
monitors located in five of the sampling areas (SI Appendix)

Study Areas and Demographic Data. In total, 13 urban districts, cities, and
towns ranging in size from 2.4 to 15.7 km2 (total: 93 km2) were selected as
study areas to provide a range of land uses (e.g., industrial, commercial,
dense residential, and light residential), share of open or green space, traffic
density, demographic composition, and historical housing policy (SI Appen-
dix, Figs. S1, S2, S12, and S13 and Tables S1–S4). Study areas were distributed
within the counties of San Francisco, Alameda, San Mateo, and Santa Clara
in the San Francisco Bay Area, with one background location in Sonoma
County (SI Appendix, Fig. S5 and Table S6). Sampling areas include between
95 and 930 census blocks (median: 447), depending on population density
and spatial extent (SI Appendix, Table S4).

Population data from the US Census Bureau were retrieved from the
IPUMS National Historical Geographic Information System for the year 2010,
the most recent year for which block-level data are available (50). Using the
racial/ethnic designations provided by the US Census, we categorize all in-
dividuals identifying as Latino and/or Hispanic in one group, and then cat-
egorize non-Hispanic individuals by race: Asian, Black, White, and “Other,”
including those of Native American, Pacific Islander, multiracial, or other racial
identity. The racial composition of our study population is broadly represen-
tative of the Bay Area as a whole, although it includes more neighborhoods
with a high proportion of Black residents (SI Appendix, Fig. S2).

Data Processing. Concentrations for each block are calculated as the median
of surrounding roads, typically located within 50 to 100 m from the block
center point (SI Appendix, Fig. S3). The geographic assignment of on-road
measurements to census blocks involved a two-step process. First, concen-
trations were calculated for road segments: the raw longitude and lati-
tude values associated with each 1-Hz measurement were “snapped” to
30 m road segment points, as described by Apte et al. (21). To give equal
weight to each pass of a road segment and minimize the influence of
transient extreme events (e.g., vehicle plumes), measurements at each
road segment were averaged per drive pass: all consecutive measurements
made at a single road segment were summarized as a single mean value,
following methods described in Messier et al. (43). Long-term concentra-
tions at each road segment were calculated as the median of those drive
pass means, with the median statistic chosen to further reduce the influ-
ence of outlier events.

Second, census block concentrations were calculated as the median of
concentrations at every adjacent or intersecting 30-m road segment, using
10-m buffer to capture road segments a small distance from the census block
edge. This dataset of census block concentrations and demographic data has
been posted to an online repository (51). Blocks vary in size and shape but

typically cover an area of ∼0.01 km2 and are surrounded by roads, with a
median perimeter of 447 m. Accordingly, census block estimates integrated
measurements from 15 to 20 road segments (SI Appendix, Fig. S3). In some
cases—near highways and strong point sources—pollution gradients may
vary over finer spatial scales than those captured by census block spatial
units (∼110 m). However, the integration of multiple road segments pro-
vides an increase in total number of visits and total sampling time per
spatial unit, which reduces sampling error and measurement uncertainty
(52). While on-road measurements are not a perfect approximation of
concentrations throughout a census block, a previous comparison of on-
and near-road measurements in West Oakland showed no evidence of bias
in on-road concentrations due to increased proximity to on-road emissions
(52). The general spatial representativeness of on-road measurements
holds especially in low-traffic residential neighborhoods with mixed wind
conditions (34).

Uncertainty and Sensitivity Analyses. Because of the temporal sparsity of
mobile measurements relative to fixed-site monitoring, it is critical to con-
sider both the uncertainty inherent in a small sample size and the potential
for temporal bias based on the days and times of day sampled. To mitigate
temporal bias from lower sampling rates, we imposed the following stan-
dards for all data used in this analysis: Road segments were included if valid
measurements were made on at least 3 d, and census blocks were only in-
cluded if they integrated measurements from three or more road segments
and included a total of 100 s or more of valid sampling data. The median
cumulative sampling time of each block was 19 min, collected during a
median of 47 unique visits over 20 d.

A bootstrap resampling technique, described in SI Appendix, was used to
estimate uncertainty at different sampling intensities. The characteristic
sampling intensity for each study area is provided in SI Appendix, Table S4. A
Monte Carlo subsampling analysis of an exceptionally highly sampled area
(West Oakland) shows that with moderate sampling intensity (each block
visited 10 to 20 d) provides a 90% CI around the population-weighted me-
dian concentration of approximately ± 20% for NO2 and UFP, ± 30% for BC,
and ± 40% for NO, with CIs that are positively skewed (SI Appendix, Table
S15). At higher sampling intensity (20 to 40 d), the 90% CI is ± 20% for the
medians of all pollutants. Considering the influence of sampling intensity on
estimates of within-neighborhood variability, we find that even at high
sampling intensity the interdecile range is overestimated in 95% of simu-
lations, affecting both estimates of local variance and the total-population
variance. Despite this effect, we find that study areas that accounted for
large portions of SSD for NO, NO2, and UFP included some of the most-
sampled (Downtown Oakland and Berkeley) as well as moderately sam-
pled areas (SF Financial and Fruitvale Group; SI Appendix, Table S4). Nev-
ertheless, this finding serves as a caution against overinterpreting variation
in less-sampled areas.

Diurnal sampling bias metrics show that sampling of NO2, BC, and UFP was
broadly representative (± 15%) of daytime conditions, while the distribution
of hourly measurements resulted in a systematic low bias in NO concentra-
tions (SI Appendix, Table S16). Error tended to be in the same direction
across all study areas (e.g., 12 out of 13 are biased ∼10% lower for BC) and
thus had a small effect on the relative rankings of concentrations among
study areas (SI Appendix, Fig. S8). Annual representativeness ratios show less
consistent patterns across study areas, and the application annual adjust-
ment factor results in minor changes in the relative rankings of NO2 and BC
among study areas and increases the ranges of NO and UFP exposure dis-
tributions among high concentration study areas. Overall, these findings are
robust against the effects of temporal bias.

Data Availability. A dataset including concentrations and demographics by
census block has been deposited in figshare (10.6084/m9.figshare.15070314)
(51). All other study data are included in the article and/or supporting
information.
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