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Abstract

Evaluating population-level effects of water, sanitation, and hygiene interventions: methods
and applications

by
Jade De-Rong Benjamin-Chung
Doctor of Philosophy in Epidemiology
University of California, Berkeley
Professor John M. Colford, Jr., Chair

Background: Scientists and development stakeholders argue that health interventions proven
effective in randomized efficacy trials should be translated into large-scale programs to ben-
efit public health. Substantive evidence supports the scale-up of numerous health interven-
tions, such as water, sanitation, and deworming interventions, and since the establishment
of the Millennium Development Goals (MDGs) the funding and motivation for such scale-up
has grown. In the field of water and sanitation, numerous interventions have been demon-
strated to be efficacious in the reduction of diarrhea and soil-transmitted helminth infection.
However, scaling up these interventions to regional or national levels frequently presents
implementation challenges, and systematically studying the reasons for scale-up success or
failure is essential to refine and sustain public health programs. Another important feature
of scaling up interventions is determining how best to integrate interventions at scale and
whether intervention delivery should be focused at the individual, household, or community
level. Population attributable fraction (PAF) parameters and a new class of parameters
which build upon the PAF can be used to estimate the effect of large-scale programs on
population health. Evaluation of interventions at scale poses unique questions, and epidemi-
ologic designs and analyses need to be tailored to answer these particular questions. Modern
approaches to PAF estimation allow for parameter definition to be tailored one’s particular
research question and are well suited to the evaluation of population-level effects of large-
scale health interventions.

Methods: In this dissertation, I illustrate and apply methods to evaluate population-level
effects of water, sanitation, and hygiene interventions. I specifically focus on methods for and
applications with observational, cross-sectional data, and I discuss generalizations to other
study designs. In the first chapter, I quantify the association between deworming, improved
sanitation, and hygiene interventions and soil-transmitted helminths in a population in rural
Bangladesh. I assess the potential for interactions between these interventions and explore
associations at both the individual and village level. In the second chapter I assess the quality



of implementation of a large-scale water, sanitation, and hygiene intervention implemented
by UNICEF and the Government of Bangladesh in rural Bangladesh. It was found that this
intervention did not meet most of its health and behavior targets in an interim evaluation.
To help understand why, I envision a scenario in which implementation had been better in all
areas, and I estimate how much outcomes may have changed under this scenario compared
to the outcomes that were observed. In the third chapter, I discuss parameters appropriate
for estimating population-level effects of health interventions. Specifically, I describe the
estimation of the PAF and two modern parameters which build upon the PAF: the popula-
tion intervention model and stochastic intervention model parameters. I provide a didactic
description of the estimation of these parameters.

Significance: This dissertation illustrates the use of rigorous methods to systematically
evaluate the effect of individual and combined interventions at scale. Rigorous assessment
of water, sanitation, and hygiene interventions is difficult, even for small-scale interventions,
and very few large-scale WASH interventions have been evaluated rigorously. The parameters
[illustrated and estimated in this dissertation have broad applicability to similar assessments
of other large-scale public health programs. My findings contribute to the growing empir-
ical evidence base describing best practices for and barriers to delivering interventions at
scale. This evidence may contribute to improvements in design, delivery, and prioritization
of interventions which in turn could increase the health impact of such interventions when
delivered at scale.
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Chapter 1

Introduction

1.1 Motivation

Numerous health interventions have been shown to be efficacious at a small scale and in ran-
domized trials [1-3]. The establishment of the Millennium Development Goals (MDGs) has
spurred an increase in funding and motivation for the scale-up of such interventions to benefit
public health [4]. In the field of water, sanitation, and hygiene (WASH), numerous interven-
tions have been demonstrated efficacious to reduce diarrhea and soil-transmitted helminth
infection on small scales [11-24], and the scale up of these interventions is increasing. For
example, from 2007-2012, UNICEF and Government of Bangladesh delivered a WASH pro-
gram to 20.4 million people in Bangladesh [25]. Through the Water and Sanitation Program,
the World Bank has delivered and evaluated the impact of WASH interventions to tens of
thousands of people in India, Indonesia, Peru, Vietnam, and other countries [26-29]. The
field of neglected tropical diseases (NTDs) has increasingly explored the scale-up of WASH
interventions to prevent NTDs, and there has been a call for greater integration of large-scale
NTD programs, such as mass drug administration, and large-scale WASH interventions [30].

Scaling up health interventions frequently prompts questions about how interventions should
be delivered and integrated [31-34]. Epidemiologic designs and analyses need to be tailored to
answer these particular questions. First, questions related to the quality of implementation
arise: when compliance is poor or delivery is incomplete at a large scale, it can be difficult
to determine whether an observed lack of public health impact reflects a poor intervention
design or an intervention that could not be implemented well at scale. The reasons for poor
compliance or incomplete intervention delivery at scale frequently differ from the reasons in
small-scale settings. Few large-scale interventions, particularly in the WASH sector, have
been evaluated rigorously, and the evaluations that have been done of scaled up WASH
interventions found no effect on access to improved sanitation and mixed results related
to handwashing and diarrhea prevalence [27-29]. Second, when evaluating interventions at
scale, it is frequently the case that the population also receives other large-scale interven-



tions concurrently. For example, many WASH programs aim to reduce not only diarrhea
but also soil transmitted helminth infection. Populations targeted by WASH programs often
also receive school-based mass administration of deworming, and it is possible that when
deworming and WASH interventions are delivered concurrently, they interact synergistically,
yielding greater improvements in health than would be expected. Because reinfection with
soil-transmitted helminths typically occurs rapidly following deworming [35], in order to sus-
tainably reduce the burden at the population-level, provision of both deworming and WASH
intervenions may be needed. The existing literature has largely assessed these two sets of
interventions separately, but careful assessment of the potential interaction between them is
critical to planning scale up efforts for either intervention.

In evaluations of community-based public health interventions, randomized trials remain
the gold standard in epidemiology, and recently their use has grown in related fields, such
as economics [36]. The chief advantage of using trials is their high internal validity, however,
they can have limited generalizability and utility for important research questions in public
health, particularly when one’s aim is to assess the population-level effectiveness of interven-
tions. In addition, it is typically neither feasible nor ethical to randomize when evaluating
the effectiveness of a large-scale interventions known to be efficacious in ideal settings [37].
For these and other reasons, observational designs, while subject to many pitfalls of their
own, should not be overlooked. Analyses of observational data are often criticized because
their inference relies upon the statistical model rather than the study design [38]. Another
critique is that the choice of which quantity to estimate is often determined by the statis-
tical model used instead of by the research question [39]. Statistical approaches can never
remedy a poorly designed study. However, this dissertation demonstrates how to carefully
define parameters to estimate with observational data that are tailored to the specific re-
search question. These approaches are broadly applicable but are particularly useful when
evaluating large-scale interventions’ effects on population-level health outcomes.

1.2 Specific aims

In this dissertation, I illustrate and apply methods to evaluate population-level effects of
water, sanitation, and hygiene interventions. I specifically focus on methods for and appli-
cations with observational, cross-sectional data, and I discuss generalizations to other study
designs. My specific aims are as follows:

1. To explore potential interactions between deworming, sanitation, and hygiene inter-
ventions (Chapter 2).

2. To estimate the extent to which hygiene behavior and conditions may have improved
if the SHEWA-B program had been better implemented (Chapter 3).



3. To illustrate how to estimate and interpret the population attributable fraction, the
population intervention model parameter, and the stochastic intervention model pa-
rameter using simulated and empirical datasets (Chapter 4).

My first two aims analyze empirical data from an evaluation of SHEWA-B, the abovemen-
tioned large-scale WASH intervention implemented by UNICEF and the Government of
Bangladesh. I collaborated with the International Centre for Diarrhoeal Disease Research,
Bangladesh (ICDDR,B), which led the evaluation of SHEWA-B. My first aim utilizes data
from the evaluation but does not specifically evaluate the SHEWA-B program, whereas the
second aim does. The third aim has a methodologic focus, but it uses the SHEWA-B evalu-
ation data from the second aim to illustrate estimation in an empirical dataset.
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Chapter 2

The interaction of deworming,
improved sanitation, and household
flooring and soil-transmitted helminth
infection in rural Bangladesh

2.1 Background

The World Health Organization recommends mass drug administration (MDA) with an-
thelmintics as well as improved sanitation and personal hygiene to reduce the prevalence
and transmission of soil-transmitted helminths (STH) in endemic countries [1]. For example,
in Bangladesh where I conducted the present study, the Bangladesh Ministry of Health and
Family Welfare has implemented national MDA of mebendazole in schools twice annually
since 2008, and the program currently targets children aged 5 to 14 years. The Bangladesh
Expanded Program on Immunization deworms pre-school children in Bangladesh nationally.
In 2005, prior to MDA, an estimated 80% of Bangladeshi school-age children were infected
with STH [2]. Since the initiation of MDA in Bangladesh, to my knowledge there have not
been any systematic surveys of STH prevalence. Updated prevalence estimates will inform
government officials and other health providers in Bangladesh about whether to continue
MDA, modify it, or provide additional complementary interventions to control STH infec-
tions.

Despite the high efficacy of anthelmintics to reduce infection prevalence in the short term,
a meta-analysis estimated that within six months, 68% (95% CI 60-76%) of those treated
become reinfected with Ascaris, 67% (95% CI 42-100%) with Trichuris, and 55% (95% CI
34-87%) with hookworm [3]. A large body of evidence, largely from observational and cross-
sectional studies, suggests that improved sanitation can reduce the risk infection or reinfec-
tion with soil-transmitted helminths (STH) [4-7]. In addition to sanitation, there is strong



biological plausibility to support the provision of finished floors (i.e., cement or wood floors)
as an intervention to decrease the risk of STH infection. STH eggs must be deposited in the
soil to reach their infective stages; provision of finished floors to households with earthen
floors thus removes the majority infective stages from the indoor living environment, reduc-
ing the probability of transmission. While larvae and ova may still be present on surfaces in
households with finished floors, their survival time is likely to be shorter. Few studies have
systematically explored whether finished flooring reduces the risk of STH infection; three
studies identified an association between living in a household with an earthen floor and
increased risk of STH infection, however these studies did not adjust for household wealth,
a potentially strong confounder of this association [8-10].

There has been a call to consider the joint effects of anthelminthics and water, sanitation,
and hygiene together in order to identify more sustainable methods of reducing STH infection
and transmission [6, 11], yet few studies have done so [12-15]. Only one study has explicitly
explored finished floors as an intervention to reduce parasite infection, and it did not measure
STH infection [16]. Furthermore, no studies have formally explored whether water, sanita-
tion, and hygiene interventions and MDA interventions could yield greater risk reductions
when delivered in combination (i.e., whether there is evidence of synergy) [17]. Evidence of
a synergistic interaction between these interventions would motivate the development and
delivery of combined interventions to more sustainably reduce the incidence and transmission
of STH. Among practitioners and policymakers, control of STH and other neglected tropical
diseases has largely been a separate enterprise from control of enteric pathogens through
water, sanitation, and hygiene interventions [11]. This is the case in Bangladesh, where the
government administers MDA and large international non-governmental agencies, such as
UNICEF, BRAC, and the Grameen Bank, deploy the majority of sanitation and hygiene
interventions [18, 19].

Transmission models predict that increasing deworming and sanitation coverage at the com-
munity level would reduce the prevalence of infection [20-22]. Clustering of infection in
communities may reflect differences in susceptibility and immunological response due to ge-
netics, as well as household-level heterogeneity in exposure. Even though numerous studies
have described clustering of STH infection at the household level and high aggregation of
STH within communities [10, 20, 21, 23-29], extensive deworming, sanitation, or finished
flooring coverage would in theory result in reduced prevalence and transmission of STH be-
cause 1) individuals are likely to be exposed not only in their homes but also in other areas
of a village, for instance, while at school or work, and 2) empirical evidence and modeling
studies have described herd effects of deworming [22, 30, 31]. Specifically, they have found a
substantial decrease in STH prevalence following provision of school-based deworming with
over 90% coverage not only in school-age children but also younger children and adults [30,
31]. One study in Kenya found evidence of decreased STH infection among children who at-
tended schools that did not offer school-based deworming but were near those that did [32].
Understanding the extent to which cluster-level coverage of exposures is associated with STH
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infection would aid in the targeting of future interventions.

The objectives of this study were to: 1) estimate the prevalence of STH infection among
children and women of childbearing age in rural Bangladesh, 2) estimate associations with
deworming, hygienic latrines, and finished floors and STH infection, 3) explore potential
interactions between these exposures, and 4) estimate associations between cluster-level ex-
posures and cluster-level STH prevalence.

2.2 Methods

Study population and sample

This study was conducted as part of a larger study evaluating the Sanitation Hygiene Edu-
cation and Water Supply in Bangladesh (SHEWA-B) program, which was implemented by
UNICEF and the Government of Bangladesh. This particular study was not focused on the
evaluation of SHEWA-B itself, which is being conducted in part by the International Centre
for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), but it does leverage the cross-
sectional survey collected in 68 sub-districts and 19 districts of rural Bangladesh as part of
the endline evaluation of SHEWA-B in 2012. I conducted this study in the 100 intervention
and control village clusters selected for the SHEWA-B endline evaluation. The intervention,

selection of control areas, and sampling of clusters in the intervention and control areas for
the SHEWA-B evaluation have been described elsewhere [33].

In each selected village cluster, the field team identified the center point of the village and
the nearest eligible household. The team skipped the nearest two eligible households and
enrolled 18 households per cluster. Households were eligible if a child under five years resided
there at the time of data collection. In each cluster, the aim was to collect data from six
people within each of the following age and sex categories: children 1-4 years, children 5-14
years, and women 15-49 years. Within each cluster the field team determined the number
of eligible people in each age group. If there were less than six eligible individuals available
in a particular age group, the team enrolled an additional person from the next cluster. If
there were multiple persons available in a particular age group, the team chose the youngest
individual within the age group in the cluster. The field team collected stool samples and
initial questionnaires about socio-demographic information and deworming history in Oc-
tober 2012. In December 2012, the field team returned to households where stool samples
were collected and administered a questionnaire to measure household and environmental
exposures. These exposures were ascertained following stool sample collection due to field
logistics constraints and the need to complete stool collection prior to national MDA in early
November 2012.
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Stool specimen collection and analysis

Field workers provided households with plastic sheets and stool collection tubes in which to
collect stool samples and returned in 24 hours to collect the samples. Upon retrieving the
sample, field workers weighed 1g of stool and placed it in 20 ml of 4% sodium acetate-acetic
acid-formalin and thoroughly homogenized the stool in the formalin. The maximum time
between defecation and stool processing was 12 hours. Samples were transported to Dhaka,
Bangladesh for laboratory analysis. Helminth ova were detected using mini-FLOTAC, a
copromicroscopic diagnostic technique appropriate for preserved stool [34, 35]. Laboratory
staff centrifuged samples at 1500 RPM for 3 minutes and then discarded the supernatant and
suspended the sedimented stool in 20 ml of flotation solution 2 (saturated sodium chloride),
mixed the contents, and filled each of the two chambers of the mini-FLOTAC device with 1ml
of the mixed sample. Staff recorded the number of eggs of Ascaris lumbricoides, hookworm,
Trichuris trichiura, and FEnterobius vermicularis in each chamber. For each helminth, I
averaged the number of eggs in each chamber and multiplied the number by a factor of 10
to quantify the number of eggs per gram of stool.

Outcome and exposure definitions

Outcomes included presence of any helminth ova and intensity of helminth infection. Moder-
ate/high intensity infections were defined as >5,000 eggs/gram for Ascaris, >1,000 eggs/gram
for Trichuris, and >2,000 eggs/gram for hookworm [36]. Exposures include access to a
hygienic latrine, household flooring material (earth/bamboo or cement/wood), and self-
reported deworming in the last six months. I defined hygienic latrines as flush latrines
connected to piped sewer system, to a septic tank, or off-set pit latrine, pit latrine with slab
and functional water seal, pit latrine with slab, lid and no water seal, or a composting latrine.
I defined unhygienic latrines as those that fail to effectively separate feces from the environ-
ment: flush latrines connected to canal or ditch, pit latrines without a slab, pit latrines with
a slab, no or broken water seal or a hanging latrine. This definition was developed by the
ICDDR,B and is intended to more accurately categorize latrines that isolate feces from the
environment in the Bangladeshi context than the commonly used WHO Joint Monitoring
Programme (JMP) definition [37] (see Table A.1). Specifically, hygienic latrines require a
water seal or a lid on a pit to effectively separate collected feces from the environment, and
I do not consider sharing status of a latrine. For each person who provided a stool sam-
ple, the field team asked the respondent whether that person was dewormed in the last six
months and if so, approximately how many weeks or months ago the person was dewormed.
They also asked whether deworming was received as part of a campaign and the source of
deworming (e.g. clinic, school).

I calculated the cluster-level deworming coverage as the percentage of respondents in the
sample who reported being dewormed in the prior six months in a given cluster. To estimate
cluster-level sanitation and finished floor coverage, I calculated the percentage of respondents
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with each exposure in a cluster.

I identified potential confounders using directed acyclic graphs [38] (see Figure A.1), and
I controlled for these potential confoudners in statistical models used. These included age,
sex, cluster-level wealth, household wealth, and mother’s education level. The field team col-
lected information about the presence of household assets (e.g. refrigerator, mobile phone)
and used principal components analysis to develop an index of household wealth [39] (see
Table A.2). Households in the lowest three quintiles of the first principal component were
classified as lower household wealth and those in the highest two quintiles were classified as
higher household wealth. Cluster-level wealth was calculated as the percentage of households
in the fourth and fifth quintiles of household wealth.

Sample size

Since estimates of STH prevalence for the age and sex groups of interest were not available
for the study areas, to be conservative, I assumed the prevalence of all helminths was 50%. I
assumed a design effect of 2.6, which is based on intra-class correlation coefficients estimated
at the village level for Ascaris, hookworm, and Trichuris infection in children under 5 years
from a study of sanitation Tamil Nadu, India in 2008 since information from Bangladesh was
not available [40]. My calculations assumed a fixed sample size of 1,700 (100 village clusters
x 17 individuals per cluster). Under these assumptions, the precision associated with an
estimate of prevalence of 50% is +4% .

Statistical analysis

I calculated pooled and age- and sex-specific prevalence by type of helminth. To examine the
association between prevalence and cluster-level variables, I produced scatter plots of the ob-
served variables and used smoothed locally weighted scatter plot smoothing (i.e. LOWESS)
with normal-based 95% confidence bands to explore patterns in each scatter plot [41]. I also
estimated the intraclass correlation coefficient for each STH infection within each cluster
using a one-way analysis of variance.

To estimate adjusted prevalence ratios I used modified Poisson (i.e. log linear) regression
[42]. The model adjusted for the potential confounders defined above. I also estimated the
prevalence ratio using a semiparametric procedure with a data-adaptive machine learning
approach [43]. The learners included generalized linear models, Bayesian main-terms logistic
regression, lasso and elastic-net regularized GLM, generalized additive models, and stepwise
regression with only main effect terms based on the Akaike Information Criterion. Point
estimates from the more complex semiparametric estimator were similar to those from the
modified Poisson regression, so I present only the regression results. I estimated robust
standard errors clustered at the village level to account for potential within-village outcome
correlation. I excluded from the analysis individuals with missing outcomes, which assumes



13

that they were missing completely at random.

Standard statistical models for binary outcomes predict outcomes on the multiplicative scale,
and accordingly, interaction is often assessed on the multiplicative scale. However, there is
some consensus that in a public health context, interactions are better assessed on the ad-
ditive scale [17, 44, 45]. This is particularly the case when one’s aim is to assess synergy, or
departures from additivity of associations, rather than statistical interaction, or the inter-
dependence of two risk factors within a particular statistical model [44]. Since my aim is to
understand whether synergy is present, I estimated the relative excess risk due to interaction
(RERI), a measure of additive interaction that can be calculated from multiplicative models
[46]. Since I expected associations to be protective, I recoded variables prior to RERI calcu-
lation so that the stratum with the PR furthest from the null was reassigned as the reference
group [47]. I also estimated the ratio of prevalence ratios, which assess interaction on the
multiplicative scale [48]. T report prevalence ratios and their accompanying confidence inter-
vals within strata of deworming and strata of hygienic latrine access and finished flooring
coverage. Because data were clustered at the village level, I used the bootstrap and resam-
pled clusters to estimate 95% confidence intervals. I did not estimate confidence intervals
for any point estimates for which there were strata with fewer than 5 units. Analyses were
conducted in Stata version 12 and in R version 3.0.2.

2.3 Results

The field team collected stool samples and initial questionnaires from 1,795 individuals in
October 2012. In December 2012 they collected 1,655 surveys with exposure information,
including household access to an improved latrine and household floor material as well as
demographic information; 140 of the households visited in October were not home in Decem-
ber. Another 25 households had mismatched IDs. The complete dataset with both exposure
and outcome information used in this analysis contained 1,630 observations (Figure 2.1).

Less than half (40%, n=656) of mothers had at least a primary education. Household size
ranged from 2 to 18, with a mean of 5.5, and household size was not associated with STH in-
fection. About a third of households (32%, n=527) had access to a hygienic latrine, and 13%
(n=207) lived in households with finished floors. Respondents reported that 49% of children
1-4 years, 52% of children 5-14 years, and 21% of women of childbearing age took deworming
medication in the prior six months. Slightly under half (47%) of school-age children were
reported to have been dewormed at school, and for other age groups, the predominant source
of deworming was the home or a source in the village, such as a local pharmacy.

Approximately one third (32%) of individuals sampled had an STH infection, and 9% had
multiple infections (Table 2.1). Single and multiple infections were most common among
school-age children. Across all age groups, Trichuris was the most prevalent infection, in-
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fecting 17% of children 1-4 years, 28% of children 5-14 years, and 18% of women of child-
bearing age. Across all ages, 2.7% of respondents were infected with Enterobius, and 1.6% of
school-aged children were infected. For all helminths and age groups, less than 2% had mod-
erate/heavy intensity infections; there were no individuals with moderate/heavy intensity
hookworm infections.

Figure 2.1: Data collected

Stool sample collection
and initial questionnaire

(n=1,795)
Households not home
» during follow-up
(n=140)
Y

Follow-up exposure
data collection
(n=1,655)

- Mismatched IDs
d (n=25)

A

Complete data
(n=1,630)

I found protective associations with individual exposures of interest for Ascaris and hook-
worm prevalence, but associations were close to null for Trichuris prevalence (Table 2.2).
For Ascaris, the adjusted prevalence was 0.60-fold lower among those who were dewormed
compared to among those who were not and 0.52-fold lower among those with finished floors
compared to those with unfinished floors, and the associations were statistically significant.
The adjusted Ascaris prevalence was 0.88-fold lower among those with access to a hygienic
latrine compared to among those without, but the association was not statistically significant
(Table 2.2; Table A.1). For hookworm the adjusted prevalence ratio for the association with
deworming was 0.91, and it was not statistically significant. There was a stronger protective
association between hookworm and access to a hygienic latrine (aPR=0.75) and finished
floors (aPR=0.44), but these findings also were not statistically significant. For Trichuris,
the associations were close to the null and not statistically significant: the aPR was 1.02 for
deworming, 1.00 for access to a hygienic latrine, and 1.01 for finished floors. Household size
was not associated with STH infection.



Table 2.1: Helminth infection by respondent age, organism, and infection intensity

Child 1-4 Child 5-14 Women 15-49

years years years All
(n=549)  (n=b549) (n=532) (n=1630)
Female (%) 47.7 50.3 100.0 65.6
Dewormed in last six months (%) 49.3 52.4 20.9 41.0
Mean months since deworming 2.8 3.2 2.3 2.8
Source of deworming
Home/village 68.7 37.4 76.6 56.5
Health clinic 26.9 15.7 22.5 214
School 3.4 46.9 0.0 21.5
Other 1.1 0.0 0.9 0.6
Any infection* 25.7 40.1 30.3 32.0
Multiple infections* 7.8 12.4 7.5 9.3
Ascaris
Prevalence (%) 12.9 144 11.8 13.1
Mean eggs per gram 318 279 387 287
No infection (%) 87.1 85.6 88.2 86.9
Light infection (%) 11.8 12.6 10.7 11.7
Moderate/heavy infection (%) 1.1 1.8 1.1 1.3
Hookworm
Prevalence (%) 2.6 7.7 6.4 5.5
Mean eggs per gram 8 2 12 10
No infection (%) 97.4 92.3 93.6 94.5
Light infection (%) 2.6 7.7 6.4 5.5
Moderate/heavy infection (%) 0.0 0.0 0.0 0.0
Trichuris
Prevalence (%) 17.1 27.5 18.2 21.0
Mean eggs per gram 43 32 74 22
No infection (%) 82.9 72.5 81.8 79.0
Light infection (%) 16.8 26.4 18.0 20.4
Moderate/heavy infection (%) 0.4 1.1 0.2 0.6
Enterobius
Prevalence (%) 0.01 0.05 0.02 0.03
Mean eggs per gram 4 0 10 2

No infection (%) — . _ _
Light infection (%) — - _ _
Moderate/heavy infection (%) — - - .

*Includes Enterobius infections



Table 2.2: Prevalence ratios for deworming, hygienic latrine access, and finished floors
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Ascaris
PR (95% CI)

Hookworm
PR (95% CI)

Trichuris
PR (95% CI)

0.60 (0.46,0.80)
0.78 (0.59,1.04)
0.45 (0.26,0.77)

0.79 (0.52,1.21)
0.60 (0.37,0.97)
0.32 (0.12,0.86)

1.02 (0.84,1.24)
0.93 (0.75,1.14)
0.88 (0.66,1.19)

n
Unadjusted prevalence ratios
Deworming 1622
Access to hygienic latrine 1629
Finished floor 1630
Adjusted prevalence ratios*
Deworming 1605
Access to hygienic latrine 1612
Finished floor 1613

0.60 (0.45,0.79)
0.88 (0.65,1.19)
0.52 (0.30,0.90)

0.91 (0.60,1.39)
0.75 (0.44,1.25)
0.44 (0.15,1.29)

1.02 (0.84,1.24)
1.00 (0.80,1.24)
1.01 (0.73,1.39)

*PRs estimated using log binomial regression and adjusted for age, sex, sub-district, household wealth,

cluster-level wealth, and mother’s education level

To explore potential interactions, I plotted the prevalence under each individual and joint
exposure level (Figure 2.2) and estimated aPRs for separate and combined exposures and
measures of interaction on the additive scale (Relative Excess Risk due to Interaction —
RERI) and multiplicative scale (Ratio of Prevalence Ratios — RPR) (Tables 2.3 and 2.4).
Tables A.3 and A.4 display these results in accordance with presentation format recom-
mended by Knol and VanderWeele [48]. When the RERI is equal to zero, there is evidence
of no interaction on the additive scale. An RERI less than zero indicates that the combined
association is less than the sum of the individual associations (antagonistic or subadditive),
and when it is greater than zero, the combined association is greater than the sum of the
individual associations (synergistic) [44, 47]. When the exposures of interest are associated
with only a lower or higher prevalence (i.e., they are monotonic), an RERI>0 indicates a
synergistic interaction between exposures [49, 50]. If the exposures are not monotonic then
the RERI must be greater than 1 for synergistic interaction to be present [49, 50].

Table 2.3 assesses potential interactions between access to a hygienic latrine and deworming.
For Ascaris, the aPR was 0.63 for deworming alone, 0.97 for hygienic latrine access alone,
and 0.44 both. The RERI was -0.43, indicating that the joint aPR was closer to the null
than the sum of the individual aPRs; however, the RERI was not statistically significant
(95% CI -2.40, 0.48). The RPR was 0.77, suggesting interaction on the multiplicative scale,
but it was not statistically significant (95% CI 0.35, 1.53). I found a similar pattern for
hookworm: the aPR was 0.82 for deworming alone, 0.55 for access to hygienic latrines alone,
and 0.81 for both. The RERI was 0.45 but was not statistically significant (95% CI -0.88,
1.15), suggesting a possible synergistic interaction between deworming and hygienic latrine
access for hookworm. For Trichuris, the aPR was 1.20 for hygienic latrine access alone, 1.20
for deworming alone, and 0.87 for both. The RERI for the potential interaction between
hygienic latrine access and deworming for Trichuris was -0.65 (95% CI -1.34, -0.12), indi-
cating a statistically significant interaction on the additive scale. While the value of the
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RERI was negative and thus does not indicate synergy, from a public health perspective, the
finding that joint exposures were protective and individual exposures were not supports the
exploration of combined interventions to reduce Trichuris prevalence.

Table 2.4 explores interaction between living in a household with finished floors and de-
worming. For Ascaris, the aPR was 0.60 for deworming alone, 0.54 for finished flooring
alone, and 0.29 for both. The RERI was 0.51, indicating that the aPR for both exposures
jointly exceeded the sum of the individual aPRs and indicating synergistic interaction under
the monotonicity assumption; however, the results were not statistically significant (95% CI
-3.67, 1.91). The aPRs for hookworm were 0.94 for deworming alone, 0.50 for finished floors
alone, and 0.26 for both. The RERI for hookworm was negative, and the confidence intervals
for the RERI and RPR for hookworm were not estimated due to sparse data. For Trichuris,
a similar pattern to that for the interaction between deworming and access to hygienic la-
trines was observed with finished floors: the aPRs were 1.05 for deworming alone, 1.10 for
finished floors, and 0.96 for both. The RERI was -0.23 (95% CI -1.59, 0.37). While many of
the findings in tables 3 and 4 were not statistically significant, the aPRs were consistently
more protective for joint than individual exposures across helminths.

I plotted the cluster-level prevalence of each helminth across the observed range of cluster-
level deworming coverage (Figure 2.3), cluster-level hygienic latrine coverage (Figure A.2),
and cluster-level finished floor coverage (Figure A.3). For Ascaris and hookworm, the preva-
lence stayed approximately the same across different levels of cluster deworming coverage.
The prevalence of Trichuris increased as cluster deworming and sanitation coverage in-
creased. Ascaris prevalence was nearly constant across the range of cluster-level sanitation
coverage. Hookworm prevalence decreased as sanitation coverage increased. For Trichuris
there was a slight increase in the cluster-level prevalence around 40% cluster-level deworm-
ing coverage, but overall no substantial increase. The cluster-level prevalence of Ascaris
decreased from around 15% to 8% as cluster-level finished floor coverage increased from 0%
to 60%. Overall there appeared to be no association between cluster-level prevalence of
hookworm and Trichuris and cluster-level finished floor coverage. The village cluster level
intraclass correlation coefficients were 0.11 (95% CI 0.08, 0.16) for Ascaris, 0.02 (95% CI
0.00, 0.05) for hookworm, and 0.21 (95% CI 0.15, 0.27) for Trichuris.
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Figure 2.2: STH prevalence by exposure to deworming, hygienic latrines, and finished floors
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Figure 2.3: Cluster-level STH prevalence by cluster-level deworming coverage
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2.4 Discussion

In this cross-sectional study of rural, low-income households in Bangladesh, where national
school-based deworming has been implemented for the last five years, prevalences among
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school-aged children were 14% for Ascaris, 8% for hookworm, and 21% for Trichuris; 40%
of school-aged children had at least one STH infection, and 12% had multiple infections. In
addition, 26% of children 1-4 years and 30% of women of childbearing age were infected with
at least one STH. There were very few moderate/heavy STH infections in the study popula-
tion. Approximately half of children under 15 years were reported to have been dewormed in
the prior six months. When I estimated associations between individual exposures (deworm-
ing, hygienic latrines, and finished floors) and STH prevalence, I found protective adjusted
prevalence ratios for Ascaris and hookworm but nearly null associations for Trichuris. When
I considered joint exposure to deworming with hygienic latrines or finished floors, I found
that across helminths the joint exposures were consistently associated with a lower prevalence
than individual exposures. Contrary to what I would expect based on transmission models, I
found that STH prevalence was approximately the same across levels of cluster-level deworm-
ing coverage or sanitation coverage, suggesting that household level access to deworming or
improved environmental conditions was more important than cluster-level coverage in this
setting. These findings support further exploration of improved sanitation and finished floors
as interventions to complement MDA to sustainably reduce STH transmission in Bangladesh.

Because this study was cross-sectional, I have estimated associations between exposures
and STH prevalence; because I did not measure incident infections, I could not assess the
effect of exposures on incidence and transmission of STH. A limitation of this design is that
the exposure measurement occurred following outcome measurement. This is suboptimal
because it is possible that the outcome status of an individual would trigger a change in
their exposure, leading to reverse causation. However, for the exposures of interest — access
to a hygienic latrine and finished floors — I consider it highly unlikely that the respondents’
exposure status changed between October and December 2012. Furthermore, respondents
were unaware of their outcome status throughout the study so a response to the October
measurement seems highly improbable. While the study population included both SHEWA-
B intervention and control areas without the SHEWA-B intervention, there was a range of
exposures across both groups and do not consider intervention group status to be a potential
confounder. Furthermore, the interim evaluation of SHEWA-B found that the intervention
did not strongly improve health behaviors or child health [18]. T assumed that the sanita-
tion and flooring infrastructure available at the time of stool sample collection were present
when deworming occurred six months earlier. I consider this to be a reasonable assumption,
however, if this assumption was not true sanitation and flooring exposures may have been
misclassified, prevalence ratios would be biased towards the null and the effects on measures
of interaction would be unpredictable [51].

To estimate cluster-level coverage, I averaged across approximately 18 households per clus-
ter, and most households were within a few minutes walking distance from each other. I
averaged across the three age groups sampled, and typically there were six people per age
group per cluster. A larger sample of individuals per age group in each cluster would have
likely provided more accurate and precise estimates of cluster-level sanitation and deworming
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conditions.

We collected stool samples once per individual; in the context of MDA, it has been shown
that a single stool sample is sometimes insufficient to detect STH infection using Kato-Katz
and that ideally multiple serial samples should be collected per individual [52]; as a result,
prevalence may be underestimated in this study. However, Knopp et al. found that FLOTAC
on single stool sample was more sensitive than Kato-Katz on three serial stool samples [53].
While such validation has not yet been done for mini-FLOTAC, given the similarity of mini-
FLOTAC and FLOTAC, it is likely that findings may be similar, and sensitivity may have
been high in this study even with a single stool sample.

Another limitation of this study is that one of the main exposures of interest, deworm-
ing in the past six months, was self-reported. In a study of recall of disease symptoms and
medication use in Kenya, Feikin et al. found that recall of anti-malarial and antibiotic use
decreased as the number of days since visiting a health clinic increased [54]. They argue that
recall of medication will be under-reported with longer recall periods. However, it is also
possible that reporting was subject to courtesy bias so that deworming was over-reported.
Given that it is unlikely that respondents knew whether or not they or their children had an
STH infection at the time of the interview, I posit that any misclassification of deworming
use likely did not differ by STH infection status; thus, if non-differential misclassification
occurred, the point estimates would be biased towards the null [55]. However, given the rel-
atively long recall period for deworming, it is possible that individuals who were dewormed
in the prior six months were reinfected prior to stool collection in this study. For this reason
and because of the possible misclassification of deworming due to poor recall, the associ-
ations between deworming and STH infection do not necessarily measure the reduction in
STH attributable directly to deworming.

In this study population, moderate and heavy intensity infections were rare; since inten-
sity of infection drives the rate of transmission, this finding suggests that transmission may
be waning in this study population and that the MDA program in Bangladesh may have
introduced a new steady state of transmission [29]. T also found that prevalence of any STH
infection among school-aged children was 40% compared to the prevalence of 80% reported
by the Ministry of Health and Family Welfare prior to the initiation of school-based deworm-
ing [2]. The prevalence observed is consistent with studies of school-based deworming with
one-year follow-up and very high coverage [56-58]. Prevalence is typically expected to be
lower among young children and adults, and transmission theory [20-22] and empirical find-
ings [30, 31] suggest that prevalence decreases in pre-school age and adult populations when
coverage is high. T found that 26% of children 1-4 years and 30% of women of childbearing
age had an STH infection. The similar prevalence in these two groups to prevalence among
school-aged children may suggest that school-based deworming alone might be insufficient
to interrupt transmission.
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When I explored associations with STH infection and deworming, finished floors, and hy-
gienic latrines, I found protective associations of each exposure with Ascaris and hookworm
but no associations between the individual exposures and Trichuris. The association with
deworming was statistically significant and protective for Ascaris but was not statistically
significant for hookworm or Trichuris. These findings are consistent with those of ran-
domized controlled trials, which have found cure rates for single dose mebendazole and
albendazole are greater than 90% for Ascaris, 30-90% for hookworm, and around 40% for
Trichuris [59-61]. I found protective but not statistically significant adjusted associations
with hygienic latrines for Ascaris and hookworm and no association with Trichuris. In a
meta-analysis, Ziegelbauer et al. estimated that the odds ratio for availability of toilets of
any kind was 0.46 (95% CI 0.33, 0.64) for Ascaris, 0.56 (95% CI 0.46, 0.70) for Trichuris,
and 0.58 (95% CI 0.45, 0.76) for hookworm [6]. These results may differ due to differences
in exposure definition. I observed a strong protective association with living in a household
with a finished floor for Ascaris and hookworm, although the result was not statistically
significant for hookworm. There was no association between finished floors and Trichuris.
The findings related to finished floors are consistent with findings in the literature [8-10],
although few studies have examined the association with all three helminths considered here.
The null associations for all three individual exposures with Trichuris, the most prevalent
helminth in this population, are noteworthy. There is some evidence that the prevalence of
Trichuris decreases more slowly than that of other STH and that reinfection with Trichuris
occurs more rapidly following intervention [62-64]. This may be because of longer survival
of adult worms or because Trichuris has a higher reproductive rate than other STH [62,
63]. The higher observed prevalence of Trichuris compared to Ascaris and hookworm in this
study likely reflects these parasite-specific differences in biology and response to intervention.

I assessed the potential for interaction among deworming, hygienic latrines, and finished
floors, and I found a consistent pattern across organisms that suggests possible synergis-
tic interactions. Across helminths and combinations of exposures, aPRs for joint exposures
were consistently more protective than those for individual exposures. The sample size was
powered to estimate prevalence but not to estimate interactions between exposures. Thus,
my estimates of the RERI and RPR were in most cases underpowered — particularly for
improved floors, which were relatively rare in this population. Evidence of interaction on the
additive scale can suggest causal interaction [47]; however, due to the cross-sectional nature
of the design, I cannot attribute this finding to causation. Nevertheless, the results support
further exploration of these interactions using a prospective design that is powered to explore
interaction. One would expect based on transmission theory that increasing coverage of de-
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worming, improved sanitation, and finished floors at the cluster level would be associated
with decreased STH prevalence [20-22]. For example, MDA typically targets school-aged
children and not the whole community because school-aged children usually have a higher
burden of infection and thus drive transmission in communities [21]. Due to herd effects, I
would expect MDA to reduce the burden of STH not only among school-aged children but
also among younger and older age groups. Following deworming, herd effects occur when
the decreased shedding of infective stages in feces into the environment reduces transmission
community-wide [22]. Such herd effects are also biologically plausible for improved sanitation
and finished floors. Contrary to what has been predicted by transmission models [20-22],
I found that individual deworming and household sanitation had a stronger protective as-
sociation than living in a village cluster with high deworming or sanitation coverage. Yet,
I also found relatively large intraclass correlation coefficients (ICCs) at the village level for
Trichuris (ICC=0.25) and a moderate ICC for Ascaris (ICC=0.11); these findings are sim-
ilar to ICCs reported in the literature [65]. For Trichuris, the most prevalent STH in this
population, the ICC indicates that approximately a quarter of the variance can be explained
by village membership. Thus, village membership appears to be an important predictor of
STH infection, but cluster-level deworming, hygienic latrine, and finished flooring coverage
do not appear to be the most important predictors at the cluster level. It is possible that my
finding is specific to the prevalence level in this population; if prevalence were higher, herd
effects might be stronger, and community-level exposures might have a stronger association
with community prevalence.

A large body of evidence describes clustering of STH infection within the household [10,
23-26, 28, 66]; such clustering could reflect shared environmental exposures, hygiene behav-
iors, infrastructure (e.g. flooring), or genetics and immunological responses. Moraes and
Cairncross found that the extent of household clustering of STH infection depended upon
the household’s access to drainage and sewerage and that household clustering was stronger
in communities where community-level drainage was in place than in communities without
drainage [27]. Their finding may suggest that when community level intervention coverage
is high, household transmission dominates, whereas when community level coverage is low,
both forms of transmission are important. Such a pattern may explain the lack of association
I found between village-level coverage of interventions and village-level prevalence. Alterna-
tively, it is possible that community-level exposures are stronger drivers of prevalence and
transmission in a high prevalence setting. This could be because herd effects may be stronger
when community-level prevalence is higher, yet when it is lower, household level exposures
may be more strongly associated with infection than exposures in the greater community.

One potential factor I did not explore that could affect the extent to which cluster-level
coverage is associated with STH prevalence is population density. In dense villages where
households are located very close together, the probability of transmission resulting from
other people’s unimproved sanitation rather than one’s own sanitation is higher [67]. Simi-
larly, the impact of high village-level deworming coverage may be stronger in densely popu-
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lated villages than in low-density villages since the extent of transmission between individuals
is likely to be greater in higher density settings. Thus, population density may be an impor-
tant effect modifier of the relationship between sanitation, deworming, and STH infection.
Indeed, in an analysis considering population density and urban extents, Pullan et al. found
that hookworm prevalence was greatly reduced in urban areas and that Ascaris and Trichuris
prevalence were higher in slums in peri-urban areas [68]. Halpenny et al. found that in rural
Panama chronic Giardia spp., Entamoeba histolytica, and Entamoeba dispar infections were
associated with living in a higher density area, but spatial clustering of STH infections was
associated with lower household density [69, 70]. Further work is needed to explore the role
of population density and the extent to which it modifies the effect of deworming and sani-
tation exposures or interventions on STH infection.

In summary, I found that STH infections were prevalent among school-aged children (de-
spite targeting by school-based MDA for the last five years) and also among pre-school aged
children and women of childbearing age in the same community. There was evidence that
individuals who were dewormed and had access to hygienic latrines and finished flooring in
their household had a lower prevalence of STH than those with deworming alone. These re-
sults suggest that coupling MDA with sanitation and flooring interventions to yield greater
or more sustained reductions in prevalence of STH infection is a strategy that should be
evaluated rigorously, perhaps in a randomized trial. By randomizing the provision of de-
worming, sanitation, and flooring interventions and measuring infection prospectively, such
a trial would be able to attribute reductions in STH incidence and intensity to particular in-
terventions and could compare reinfection rates following deworming under sanitation versus
flooring interventions. Considering the growing concerns about the potential for resistance
to anthelminthics [71, 72], provision of sanitation and flooring are promising complementary
interventions with the potential to more sustainably reduce STH transmission. The research
and programming community focusing on neglected tropical diseases including STH have
largely focused on preventive chemotherapy, and the water sanitation and hygiene sector has
largely worked independently of the neglected tropical disease sector [11]. This study is one
of the first to examine the independent and combined effects of exposures from each sector,
and the findings suggest the need for further intersectoral collaboration and exploration of
sanitation and flooring as complementary interventions to deworming.
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Chapter 3

Assessment of a national-scale water,
sanitation and hygiene intervention in
rural Bangladesh: Measuring the
effect of implementation quality

3.1 Background

Scientists and development stakeholders argue that health interventions proven effective in
randomized efficacy trials should be translated into large-scale programs to benefit public
health [1-4]. Substantive evidence supports the scale-up of numerous health interventions [5—
7], and since the establishment of the Millennium Development Goals (MDGs) the funding
and motivation for such scale-up has grown [2, 8-10]. Translating interventions shown to be
efficacious on a small scale to large-scale programs presents implementation challenges, and
systematically studying the reasons for scale-up success or failure is essential to refine and
sustain public health programs [11-14]. A growing body of literature documents barriers to
and facilitators of scale-up, yet there currently is little empirical evidence about how best to
scale up [9, 13, 15-22|. A systematic review of such models advocated a data-based approach
to determining constraints to and facilitators of scale-up [15].

In low-income countries, enteric infections continue to account for one of the largest dis-
ease burdens among young children, and dozens of efficacy studies have demonstrated that
in trial conditions decentralized water, sanitation, and hygiene (WASH) interventions can
dramatically reduce enteric infection risk [23-34]. The few existing rigorous evaluations of
large-scale WASH interventions found no effect on access to improved sanitation and mixed
results related to handwashing and diarrhea prevalence [35-37]. Empirical evidence about
the implementation of large-scale WASH interventions would improve our understanding of
how best to scale-up and contribute to reduced diarrheal disease and mortality and may
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contribute to improved scale-up of interventions in other sectors. As governments and stake-
holders begin to deliver WASH and other intervention programs at a national scale, there is
a scientific imperative to evaluate program impacts on health and to document reasons for
intervention success or failure [11, 38].

One of the largest WASH interventions in a low-income country to date is the Sanitation
Hygiene Education and Water Supply in Bangladesh (SHEWA-B) program, which was imple-
mented by UNICEF and the Government of Bangladesh. SHEWA-B targeted approximately
20.4 million beneficiaries from 2007 to 2012. The intervention aimed to promote hygiene prac-
tices and reduce diarrhea and other water and hygiene-related diseases among the poorest in
rural Bangladesh. UNICEF and the Government of Bangladesh partnered with local govern-
ment institutes and a large network of local non-governmental organizations (NGOs), which
recruited local residents to serve as community hygiene promoter (CHPs) and provided them
with training and supervision.

An interim assessment of SHEWA-B in 2009 found little to no improvement in measures
of behavior or child health, such as handwashing, or the prevalence of diarrhea and respi-
ratory illness among children under five years [39]. These results could reflect a suboptimal
intervention that needed to be better tailored to the target population or an appropriate in-
tervention that needed to be better implemented. This study’s objective was to estimate the
extent to which hygiene behavior and conditions might have improved if SHEWA-B had been
better implemented. Such information can be used by UNICEF and other similar organiza-
tions to improve the design and/or implementation of future large-scale WASH interventions.
I expect that the assessment methods in this chapter will have broader application for the
assessment of large-scale program implementation quality beyond the WASH sector.

3.2 Methods

The SHEWA-B Intervention

UNICEF implemented SHEWA-B in under-served areas without other large-scale WASH
interventions in 2007 (Figure 3.1). UNICEF and the Bangladesh Department of Public
Health Engineering (DPHE) recruited local NGOs that recruited CHPs from the communities
that they worked in. CHPs received 15 days of initial training in 2007 and 12 total days
of refresher between 2009 and 2012. UNICEF partnered with international and Bangladesh
NGOs including Water Aid Bangladesh, Plan International, and Dhaka Ahsania Mission to
train, coach and monitor local NGOs. At the time of this study, each CHP was responsible to
conduct household visits and community meetings for approximately 1200-1500 households
every three months. There was little migration in the SHEWA-B target population over
the course of the intervention, and typically target beneficiaries (mothers of children under
five) were available during the day to participate in CHP-run activities. CHPs received an
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incentive of 140 Bangladeshi Taka approximately 1.80 US dollar per day, which is roughly
half the daily wage of an unskilled laborer. In response to the interim assessment results in
2009, UNICEF attempted to address major problems in delayed CHP funds disbursement,
which may have reduced field implementation activities (we provide additional details on
UNICEF’s response to the interim assessment in the appendix). SHEWA-B installed around
17,606 new safe water points among under-served and un-served rural communities. Non-
governmental organizations were responsible for motivating the intervention communities
to develop plans to install latrines. Further details about the SHEWA-B intervention are
provided elsewhere [39].

Figure 3.1: Map of SHEWA-B implementation areas

Blue areas indicate upazilas (sub-districts) in which
SHEWA-B was implemented, and white areas indicate up-

azilas in which it was not implemented.

Cross-sectional survey

A cross-sectional study was implemented in a sample of intervention villages between June
2011 and April 2012 by 142 field staff trained by ICDDR,B. Individuals were eligible to
participate in the survey if at least one child under five years resided in their household. Data
were collected within village-level clusters. The questionnaire measured UNICEF target
outcomes, such as respondents’ self-reported hygiene and sanitation practices. Field staff
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conducted spot checks and asked respondents about their health behaviors. Respondents
were asked if any CHPs visited their homes, and if so, the name of the CHP, how often
s/he visited, and what topics they discussed. Staff attempted to interview each CHP in
the sampled clusters about how often they visited households and conducted community
meetings and asked them to recall key SHEWA-B messages.

Focus groups and in-depth interviews

Field staff collected qualitative data to identify barriers to SHEWA-B promoted practices and
CHPs’ work. From August 2011 to April 2012, staff conducted 40 in-depth interviews with
SHEWA-B recipients, seven focus group discussions with community members in SHEWA-B
areas, and six interviews with key informants including school teachers, religious leaders, and
local leaders. The interviews and focus groups were conducted in urban and rural SHEWA-
B implementation areas in seven different regions of Bangladesh. To better understand
factors affecting implementation quality, staff conducted additional in-depth interviews of 18
SHEWA-B recipients and six CHPs from June-July 2012. I classified sub-districts as high or
low performing using initial cross-sectional survey results and conducted interviews in areas
with high and low performance and a high and low percentage of target health behaviors.
Interviews were recorded and transcribed in Bengali. Qualitative researchers at ICDDR,B
manually coded the data and translated results into English and performed thematic content
analysis.

Sample size calculation and sampling

The sample size was designed to be large enough to detect differences in outcomes between
sub-districts. I assumed the design effect=2, alpha=0.05, power=0.8 and 28 observations
per cluster and estimated mean outcomes using data from the 2009 SHEWA-B assessment.
I calculated a required sample of 1,160 clusters in the 58 intervention sub-districts, yielding
a total planned sample size of 32,480 households. The field team planned to interview
1,164 CHPs in 1,160 clusters (some CHPs were responsible for more than one cluster). The
number of clusters per union (the geographic unit below an sub-district) was determined
using probability proportionate to size (PPS) sampling based on the population size of each
union. For each selected union, the number of village clusters was randomly selected. Villages
that were previously sampled for other SHEWA-B assessments (e.g., diarrheal disease [39])
were excluded to minimize responding fatigue from repeated assessment. In selected clusters,
field staff identified the center point of the village and used proximity sampling to select 28
households. Households with at least one child under five years were eligible for inclusion.

Implementation quality measurement

Since implementation quality was not defined a priori, I created an index using informa-
tion from UNICEF about the factors they considered important predictors of CHP success.
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ICDDR,B researchers employed the Delphi method to gather structured, qualitative feed-
back from 12 UNICEF staff that worked on SHEWA-B at the national headquarters and
at the district level [40]. Each participant independently assigned points to variables from
the cross-sectional survey and CHP survey that could measure implementation quality on a
five-point scale (1=weak measure of implementation quality, 5=strong measure of implemen-
tation quality). Following the first round, researchers calculated the mean points per item,
and reported the mean points per item individually to each participant, and asked partici-
pants if they wanted to change their initial point allocations. At each step participants gave
qualitative feedback about the items. Researchers solicited suggestions for additional items
in both rounds, and participants assigned points to these items.

We generated an implementation quality index using the average number of points in the
second round for each item. I excluded items from the index that UNICEF staff did not
consider useful and incorporated new items suggested by UNICEF if data was available.
Each item included in the index received a weight equal to the mean points received. After
reviewing the CHP survey responses, I chose to exclude most items from the CHP survey
because I was concerned that CHPs had an incentive to report activities that they should
have done rather than those they actually did. The only variable I retained from the CHP
survey was recall of key SHEWA-B messages, which was less likely to be biased. I scaled the
index so that the maximum value equaled 100 and the minimum equaled 0.

An index value of zero indicates that the respondent reported that they never met a SHEWA-
B CHP nor ever heard about or attended a CHP community meeting and that the CHP in
their community could not recall any of the key SHEWA-B messages. An index value of 100
indicates that the CHP visited the household in the last month and the respondent either
heard of or attended a community event in the last month, knew the CHP’s name, recalled
that the CHP demonstrated key messages in the last year, and that the CHP could recall
all key SHEWA-B messages.

Outcome definition and measurement

We measured selected target outcomes from UNICEF’s log frame for SHEWA-B and sev-
eral additional outcomes that could provide more objective measures of their targets. The
outcomes were: 1) correct caregiver demonstration of handwashing (she used soap, water,
both hands); 2) presence of a dedicated handwashing location within 10 feet of the place of
defecation with water and soap (or if soap was not present, the respondent could retrieve
soap within one minute); 3) observed clean child and caregiver hands (palms, finger pads,
and fingernails were observed to be free of visible soil); 4) availability of a private, improved
latrine according to the JMP (UNICEF/WHO) definition [41]; 5) observed no feces on the
latrine slab or floor; 6) observed hygienic drinking water collection point (the platform at the
water collection point was not broken or water logged, and there were no feces or garbage
around it); 7) drinking water container was observed to be covered; 8) having received at
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least one water, sanitation, and hygiene promotion message from a SHEWA-B CHP; 9) and
having ever received any water, sanitation, or hygiene promotion messages from a SHEWA-B
CHP. With the exception of outcomes related to key messages, all outcomes were collected
using spot checks.

Measurement of potential confounders

I pre-specified potential confounders as variables that could impact implementation quality
and outcomes either directly or through intermediates. Using directed-acyclic-graphs, shown
in Figure B.1, [42] I determined that sub-district-level poverty, the season of data collection,
and geographic features (flood-prone and drought-prone areas) were potential confounders for
all outcomes except for having an improved latrine, for which only sub-district-level poverty
was a potential confounder. I used data from the 2000 Bangladesh Household Income and
Expenditure Survey for the sub-district-level poverty variable [43]. Because NGOs recruited
and trained CHPs, it is possible that in poorer areas, the education level of CHPs was
lower or the training they received was of poorer quality. Lower education of respondents
in poorer areas may also have affected the extent of behavior change. I defined cool season
as September-February, hot season as March-May, and rainy season as June-August. In the
rainy season, CHPs may have had more trouble traveling to assigned villages. I divided study
areas into three geographic types: regular, haor area, and drought-prone areas. Haor areas
are wetlands that are especially prone to flooding. CHPs may have had trouble traveling
to villages in haor areas, particularly during the cool season, when paths becomes muddy.
Households in drought-prone areas may have had limited access to water mainly in the dry
season, which may have affected their handwashing and drinking water storage behaviors. I
explored effect modification by each of these pre-specified, potential confounders for outcomes
for which I considered effect modification to be plausible.

Analysis

We calculated summary statistics for outcomes and covariates and estimated 95% confidence
intervals with robust standard errors adjusted for clustering at the village level [44]. T calcu-
lated the mean of target outcomes at the cluster-level within strata of sub-district poverty
level, season, and geographic area and compared differences in means using a Wald test with
standard errors adjusted for clustering.

In epidemiologic exposure analyses, a useful parameter of interest for measuring the health
improvement attributable to either the removal or enhancement of an exposure is the popu-
lation attributable risk and the related population attributable fraction, which quantify the
change in health if an exposure were to be changed to a counterfactual distribution holding
all other exposures at their observed values [45]. The population intervention parameter de-
fined by Hubbard and van der Laan compares the prevalence of a disease at its counterfactual
level to the current prevalence of disease in the population sample and estimates the popu-
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lation attributable risk within a causal inference model [46]. Such a parameter is useful for
practitioners interested in understanding how an intervention could result in population-level
changes given the current distribution of the intervention in the population. The population
intervention parameter can also be used to assess the extent to which an intervention could
have improved outcomes if implementation quality had been high compared to its observed
level.

We measured the effect of implementation quality on outcomes by estimating a causal at-
tributable risk (see Hubbard 2008 [46], for example) [47, 48]. Specifically, I estimated the
difference in the mean probability of outcomes in clusters under the observed level of imple-
mentation quality and under a counterfactual scenario estimated from a model in which all
clusters with an implementation quality index below the 75th percentile of the index were
raised to that standard. I used a simple substitution estimator, which relies on a linear re-
gression of outcomes versus the intervention of interest and confounders. I also fit the same
model with a much more nonparametric procedure, using a data-adaptive, machine learning
algorithm [49]. T used the following learners: generalized linear models, Bayesian main-terms
logistic regression, lasso and elastic-net regularized GLM, generalized additive models, and
stepwise regression with only main effect terms based on the Akaike Information Criterion.
Results were similar using both estimation methods, so I only present the results from the
standard linear regression using maximum likelihood. I also imputed the cluster-level mean
probability of each outcome over values of the index. I then plotted the predicted values
of the outcome across values of the index. I used a non-parametric bootstrap with 1,000
replicates to estimate standard errors and 95% confidence intervals for my estimates. Effect
modification was considered to be statistically significant when at least two of the stratum-
specific confidence intervals for point estimates did not overlap. To detect possible residual
confounding of the association between implementation quality and target outcomes, I re-
peated the analysis using a negative control outcome: the number of neonatal deaths the
respondent recalled in the last year [50].

3.3 Results

Sampling frame, response rate, and household characteristics

To reach the planned sample of 32,480 in 1,160 clusters, 33,134 households in 1,182 village
clusters were invited to participate; 33,027 households consented to participate (response
rate=99%), as shown in Table B.1. T attempted to reach all 1,164 CHPs, and were able
to interview 1,110 CHPs in 1,126 clusters (95%). On average, 47% of respondents in a
cluster reported that a CHP visited their households in the four months prior to the survey
(n=1,126), and 26% of respondents in a cluster had heard of CHP-led community meetings
(n=1,126). Table 3.1 summarizes the socio-demographic characteristics of respondents and
sub-districts. Twenty-five percent of mothers and 38% of fathers had no education.



Table 3.1: Socio-demographic characteristics of upazilas, households, respondents.

Percent/
n N mean
Male household head 30,307 31,465 96
Average household size NA 31,465 5
Mother’s education NA NA
None 7,986 31,441 25
Up to primary 12,877 31,441 41
Up to secondary 10,340 31,441 33
Above secondary 238 31,441 1
Father’s education NA NA
None 11,997 31,284 38
Up to primary 10,201 31,284 33
Up to secondary 8,193 31,284 26
Above secondary 893 31,284 3
Proportion who own NA NA
Electricity 15,635 31,416 50
Mobile phone 23,015 31,416 73
Television (B/W) 3,716 31,416 12
Television (color) 4,892 31,416 16
Refrigerator 1,537 31,416 )
Motorcycle 1,298 31,416 4
Home 29,633 31,445 94
Average amount of homestead land (acres) NA 28,165 102
Average amount of land other than homestead (acres) NA 15,054 170
Upazila-level poverty * NA NA
0-24% poverty x 6,551 31,465 21
25-30% poverty x* 4,900 31,465 16
31-36% poverty * 6,384 31,465 20
37-55% poverty 13,630 31,465 43
Season of data collection NA NA
Cool season 22,287 31,464 71
Hot season 2,273 31,464 7
Rainy season 6,904 31,464 22
Geographic features of upazila NA NA
Drought-prone area 5,376 31,465 17
Haor area 2,884 31,465 9
Regular area 23,205 31,465 74
Average amount of homestead land (acres) NA 28,165 102
Average amount of land other than homestead (acres) NA 15,054 170

x Poverty incidence is defined as “the proportion of individuals living in that area who are in house-

holds with an average per capita expenditure below the (lower or upper) poverty line” according to
a World Bank report using Bangladesh Bureau of Statistics data from 2001 (World Bank 2004).
1 I defined cool season as September-February, hot season as March-May, and rainy season as June-

August.
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Forty-three percent of households sampled were in sub-districts in which 37-55% of residents
were estimated to live below the poverty line. The majority of data (71%) was collected in
the cool season and in non-haor areas not prone to drought (74%).

Features of the implementation quality index

Table 3.2 presents the percentage of households with each of the variables included in the
implementation quality index. Forty-seven percent of households (n=14,622) reported meet-
ing a SHEWA-B CHP at least once. Only 31% of households reported meeting a CHP in
the last four months (n==8,328). Under half (47%) of CHPs surveyed could recall all three
general key messages of SHEWA-B (n=>561), and they were most likely to recall the message
promoting handwashing with soap.

The first plot in Figure 3.2 shows the observed distribution of the implementation qual-
ity index. The mean index at the cluster level ranged from 0 to 90, with a mean of 28 and
SD of 21 (n=1,126). The value of the index at the 75th percentile was 42— less than half the
maximum possible value. The second plot in Figure 3.2 shows the distribution of the index
under the counterfactual scenario.

Table 3.2: Inputs into implementation quality index.

Percent
Input n (95% CI)*
CHP visited household at least once 14,622 47 (45,48)
CHP visited household in the last month 5471 19 (17,20)
CHP visited household in the last 4 months 8,328 31 (29,32)
Respondent ever heard of/attended a community event 7,892 26 (24,27)
Respondent heard of/attended a community event in the last month 3,341 1 (10,12)
Respondent heard of/attended a community event in the last quarter 5,821 9 (18,20)
Respondent knows a SHEWA-B CHP by name 8,663 28 (26,29)
Respondent recalls that a CHP gave safe water messages in the last year 8,076 26 (24,27)
Respondent recalls that a CHP gave handwashing messages in the last year 9,120 29 (28,31)
Respondent recalls that a CHP gave sanitation messages in the last year 9,128 29 (28,31)
Respondent recalls that a CHP gave at least 3 messages in the last year 7,584 24 (23,26)
CHP can recall all key SHEWA-B messages f 561 47 (44,50)

x Standard errors were adjusted for clustering at the cluster level.
1 Data used to create this variable is from the CHP survey. If a cluster was covered by multiple CHPs, the
values were averaged so that the N is the total number of clusters. The number presented in the “Percent”

column is the mean across all clusters.

Table 3.3 presents the mean index values and 95% confidence intervals for potential con-
founders. The mean index value was lowest in the sub-districts with the lowest percentage
of households under the poverty line. The mean was significantly higher in the cool and hot
season than in the rainy season (30, 30, and 18, respectively). There was no statistically



41

significant difference in the mean between different geographic areas. Figure 3.3 illustrates
how to interpret the index values at 0, the 75th percentile (a score of 42), and 100 using four
of the variables included in the index.

Figure 3.2: Histogram of the implementation quality index

Observed distribution of implementation quality
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Outcomes stratified by whether respondent ever met a CHP

Because such a large proportion of respondents never met a SHEWA-B CHP, it is possible
that outcomes would be closer to UNICEF targets among those who had ever met a SHEWA-
B CHP. In Table 3.5, I stratified the percentage of respondents with each outcome by whether
they reported ever meeting a SHEWA-B CHP and compared the percentages using a Wald
test. The percentage was significantly higher except for access to a private improved latrine,
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having no feces present on the latrine slab or floor, observed hand cleanliness, and having
a hygienic drinking water point; however, note that even quite small differences that may
not be programmatically meaningful are statistically significant due to the large sample size.
The similarity in target outcome percentages among those who did and did not ever meet
a CHP suggests that these outcomes were not sensitive to the CHP intervention. I also
explored whether the probability of outcomes increased with the frequency of CHP visits;
there was an increasing pattern for correct caregiver handwashing and having received water,
sanitation, and hygiene messages from a SHEWA-B CHP (see Table B.2).

Table 3.3: Index mean stratified by covariates.

Covariate n Mean (95% CI)*
0-24% poverty { 6,551 21 (19,23)
25-30% poverty 4,900 31 (28,35)
31-36% poverty T 6,384 33 (30,36)
37-55% poverty 13,630 27 (25,29)
Cool season 22,287 31 (29,32)
Hot season 2,273 (26 34)
Rainy season 6,904 8 (15,20)
Drought-prone area 5,376 (26 29)
Haor area 2,884 31 (26,36)
Regular area 23,205 28 (23,28)

* Standard errors were adjusted for clustering at the cluster
level.

1 Poverty incidence is defined as “the proportion of individuals
living in that area who are in households with an average per
capita expenditure below the (lower or upper) poverty line”
according to a World Bank report using Bangladesh Bureau of
Statistics data from 2001 (World Bank 2004).

Outcomes compared to UNICEF targets

Performance was close to UNICEF targets for 1) having no feces on the latrine slab or floor
(observed: 50%, target: 59%), 2) presence of a dedicated handwashing location (observed:
57%, target: 55%), 3) no open defecation (observed: 94%, target: 97%), and 4) covering
drinking water containers (observed: 43%, target: 45%). Performance was substantially
below target for 1) access to a private, improved latrine (observed: 23, target: 75%), 2)
having a hygienic drinking water point (observed: 28%, target: 82%), and 3) receiving
messages from a SHEWA-B CHP (observed: 45%, target: 82%). These results are displayed
in Table 3.4.
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Table 3.4: Outcomes and UNICEF endline targets
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UNICEF

Percent endline
Outcome n N* (95% CI)t  target
Private, improved latrine available 6,725 29,586 (22 24) 75
No feces on latrine slab or floor I 14,284 28,360 0 (49,51) 59
Handwashing station available 17,988 31,431 (56 59) 55
No open defecation 29,523 31,449 94 (93,94) 97
Correct caregiver handwashing 18,096 29,894 61 (59,62)
Caregiver hands observed to be clean § 13,587 31,291 43 (42,44)
Child hands observed to be clean § 8,455 29,340 29 (28,30)
Received at least 1 W,S;H message from CHP || 10,948 31,170 35 (44,47) 82
Respondent heard any messages from a SHEWA-B CHP || 14,169 31,254 45 (34,37) 82
Drinking water point is sanitary 8,801 31,312 28 (27,29) 82
Drinking water container covered 5,305 12,253 43 (42,45) 45

*Although the index is calculated at the cluster level,

level, so the N is shown at the household level. 1,178 clusters had non-missing values for the index.

outcomes are

t Standard errors were adjusted for clustering at the cluster level.

calculated at the household

1 In the UNICEF log frame, this indicator is for the percent of rural latrines, but I have estimated it as the

percent of rural households with latrines.

& No visible presence of dirt on nails, palms or finger pads

|| The UNICEF log frame corresponding to these items was somewhat general, so these variables may

estimate something slightly different than what UNICEF intended.

q Environmental sanitation is considered maintained if the water point’s platform is not broken and not

water logged and has no garbage, dirt, or feces around it.

Table 3.5: Outcomes stratified by whether respondent ever met a CHP

Outcome

Private, improved latrine available

No feces on latrine slab or floor

No open defecation

Has dedicated handwashing location

Correct caregiver handwashing

Caregiver hands observed to be clean

Child hands observed to be clean

Received at least 1 W,SH message from CHP
Respondent heard any messages from a SHEWA-B CHP
Drinking water container covered

Drinking water point is sanitary

0.609
0.412
0.001
0.000
0.000
0.304
0.552
0.000
0.000
0.001
0.000

% if never % if ever
N met CHP  met CHP p-value
99,434 23 23
98,212 51 50
31,288 93 95
31,271 55 60
29,746 57 65
31,134 44 43
29,217 29 29
31,035 0 76
31,155 0 97
12,209 42 46
31,146 30 26
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Effect of implementation quality on outcomes

Figure 3.4 shows the estimated effect the SHEWA-B intervention would have had for each
outcome if it had been implemented at the 75th percentile or higher in all clusters compared
to the effect of the intervention given the observed level of implementation quality. I present
stratified estimates for outcomes for which effect modification was present; otherwise main
effects are presented. No open defecation was modified by sub-district-level poverty and
season, and clean caregiver hands were modified by season. There was a significant increase
in the probability of no open defecation under the increased implementation quality scenario
in the cool season, no statistically significant difference in the hot season, and a decrease
in the rainy season. Clean caregiver hands and correct caregiver handwashing had the
largest effect sizes; the probability of correct caregiver handwashing increased 6.0% (95%
CI 4.5%, 7.5%) in households living in sub-districts with 37-55% of households below the
poverty line when improving the quality of implementation of the intervention to at least
the 75th percentile of the index in all households. The effect size was smaller for households
in relatively wealthier sub-districts. Interestingly, the probability of clean caregiver hands
increased the most for households measured in the rainy season (4.2%; 95% CI 2.1%, 6.6%)
and decreased in the other seasons. For the majority of outcomes, increases in the probability
of the outcome associated with improved implementation quality were less than 2 percentage
points, indicating that increased implementation quality was not associated with improved
outcomes (see Table B.3). The point estimate for the negative control outcome of neonatal
deaths in the past year was 0.0008, indicating no association between this variable and the
index.

Dose-response relationship between implementation quality and
outcomes

We explored the potential for a dose response relationship between implementation quality
and the probability of each outcome. Figure 3.5 shows the observed and predicted values for
having a private, improved latrine by the implementation quality index. The predicted values
from the regression model suggest a miniscule increase in the probability of the outcome as the
index increases but no clear dose response pattern. The observed data is not clustered tightly
around the smoothed line from the regression. This pattern was similar for all outcomes.

CHP survey results

The field team asked CHPs an open ended question about problems in their work; the
most commonly reported problems were that beneficiaries did not have time to listen during
community meetings (n=495, 45%) and household visits (n=376, 34%), that beneficiaries did
not have enough money to buy soap (n=375, 34%) and that beneficiaries were not interested
in attending community meetings (n=365, 33%). The majority reported that they met with
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Figure 3.4: Prevalence of outcomes under observed implementation quality and under coun-
terfactual scenario
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their supervisor at least weekly (n=814, 73%) and that supervision was sufficient (n=908,
82%). The majority also reported satisfaction with the content (n=934, 84%) and duration
of their training (n=709, 64%). Only 72 (6%) CHPs reported that they had other jobs. The
majority reported that their stipend was insufficient (n=961, 87%) and was not paid on time
(n=721; 65%). When asked to recall specific key messages of SHEWA-B, on average, CHPs
recalled 2.9 out of 5 messages about safe water storage, 4.5 out of 6 about handwashing, and
4.5 out of 9 about latrine usage.

Findings of in-depth interviews and focus groups

All people invited to participate in the August 2011 - April 2012 focus groups and interviews
agreed to participate. Of the 25 people invited to participate in the June-July 2012 in-depth
interviews, one declined. Table 3.6 contains the demographic characteristics of respondents.
Half of SHEWA-B recipients had at least a secondary level education, and more than half
considered themselves to have a low income.

Barriers to intervention uptake

SHEWA-B recipients reported scarce physical resources and limited land on which to install
improved latrines. In areas with poor health outcomes, almost all participants reported lim-
ited resources to buy soap, limited time, lethargy, and tradition as barriers to handwashing.
SHEWA-B recipients reported limited available land to install tubewells, limited availability
of safe drinking water in the dry and rainy seasons, and having to walk long distances and
wait a long time to collect water from shared water sources. Respondents mentioned insuf-
ficient promotion of behavior change by CHPs and disinterest in CHPs. In low performing
areas, the majority of respondents reported that CHPs only delivered SHEWA-B messages
and never followed up with participants. The majority also reported a lack of willingness
give time to CHPs, unwillingness to follow CHP suggestions, and unwillingness to attend
CHP meetings.

In low performing areas, 11 out of 18 SHEWA-B recipients reported that they did not
see any local leaders attend the CHP-led community meetings. Two CHPs reported that
local leaders were not interested because they did not receive financial remuneration and
were more interested in hardware distribution programs. In low CHP performance areas, re-
spondents reported that another large non-governmental organization (NGO) had provided
improved latrines with easy credit installments there since mid-2010. A female CHP from
Comilla said, “A big NGO is providing free latrines to its beneficiaries. But we do not have
provision to distribute any hardware support like them. Do you think people will listen to
us if we do not give them anything except words?”
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Figure 3.5: Example of potential dose-response relationship
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Motivators for intervention uptake

The majority (10 out of 18) of SHEWA-B recipients reported attending community meetings
and that performances with songs and pictures were effective drivers of behavior change. In
high performing areas, six out of eight participants reported that CHPs visit their households
regularly, reminded them about hygiene promotion, inspected latrine cleanliness, and made
suggestions about how to solve any problems. In these areas, CHPs reported that community
leader involvement contributed to their success.

Barriers to CHP performance

In all three areas, almost every CHP reported that their stipend was too low and was often
paid irregularly. A male CHP from Panchagar said, “We receive only 98 taka [approximately
1.27 USD]| per day which is less than half of a daily laborer’s payment. If T were not
unemployed, I would not do this job at all.” Focus group respondents reported that political
influences affected about 20-30% of the CHP hires and that CHPs hired in this fashion
showed less interest in their job duties. In contrast with the results of the CHP survey, focus
group respondents reported that over a quarter of CHPs were involved in other work, such
as business, or were full time students.
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Table 3.6: Demographic characteristics of focus group and in-depth interview respondents

August 2011-April 2012 June-July 2012
Assessment Assessment
In-depth Focus group In-depth
interviews discussions interviews In-depth
with key ~ with SHEWA-B with SHEWA-B interviews
informants recipients recipients with CHPs
Demographic characteristics (n=40) (n=40) (n=18) (n=6)
Gender
Male 0 28 0 1
Female 40 12 18
Age
18 - 23 yrs 9 7 7 2
24 - 29 yrs 16 4 6 2
30 - 35 yrs 11 6 5 2
36 - 41 yrs 3 6 0 0
42 - 59 yrs 1 8 0 0
60 - 65 yrs 0 9 0 0
Education
No education 14 8 3 0
Primary level 22 27 6 0
Secondary level 4 3 8 0
Higher secondary 0 0 0 4
Over higher secondary 0 2 1 2
Self-reported economic status
Poor 16 11 6 0
Lower middle class 13 11 4 4
Middle class 0 0 4 2
Upper middle class 11 13 2 0
Rich 0 5 2 0

3.4 Discussion

This large-scale (N=33,027 households), population-based assessment of SHEWA-B is among
the largest assessments ever conducted of a WASH program. Delivery of SHEWA-B was sub-
optimal: the majority of respondents did not recall ever meeting a CHP. Low exposure to
CHPs was the main factor driving observed suboptimal implementation quality as assessed
by the quality index. Outcomes were only marginally better among households who had met
a CHP. Despite the reports of successful performance of individual CHPs in some areas from
the qualitative assessment, the observed distribution of implementation quality suggests that
implementation quality did not meet UNICEF’s ideal in any area. Although some outcomes
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were close to UNICEF targets, the small associations between implementation quality and
outcomes suggest that observed health behaviors may be better attributed to factors out-
side of SHEWA-B than to SHEWA-B itself. For instance, sub-district-level poverty was a
stronger predictor of access to a private, improved latrine than how frequently a CHP visited.
These modest findings highlight the difficulty of maintaining high quality implementation at
scale. The forthcoming endline SHEWA-B assessment results include a control group and
should reveal whether outcomes improved concurrently outside of SHEWA-B areas during
the intervention.

Our implementation quality index was developed through a systematic process with UNICEF
staff who designed and implemented SHEWA-B, but it remains possible that it was poorly
defined. The credibility of my findings are strengthened because I found no association
between the index and a negative control outcome (neonatal deaths), suggesting that the
association I report between implementation quality and target outcomes was not likely to
be a result caused by residual confounding. Future studies of large-scale interventions would
benefit from concise, a priori definition of the intervention and intervention fidelity measures
to allow for rigorous, generalizable assessment [51, 52]. Because the observed range of the
index did not reach the maximum possible value, I was unable to estimate the effects under a
scenario in which all households received a perfectly implemented intervention. If more data
had been available for higher values of the index, I could have defined the counterfactual
scenario at, for example, the 90th percentile rather than the 75th, and I may have observed a
larger effect size. Given the available, observed data, doing so would have relied on a model
to extrapolate beyond the information in the observed data and would be prone to bias.

It is possible that recall bias, respondent bias, and measurement error occurred. The field
team used rapid observations of hygiene practices and conditions because they are efficient
and have been shown to be valid, reliable indicators for many hygiene outcomes [53]. T also
augmented UNICEF’s target outcome list with additional outcomes which have been shown
to be less biased, such as observed hand cleanliness [53]. A major limitation was that CHP
survey responses were not consistent with the findings of the cross-sectional survey and qual-
itative assessment, suggesting considerable response bias from CHPs. Such bias, though not
surprising, highlights the difficulty of evaluating CHPs in large-scale interventions and the
value of qualitative data.

There are a number of ways in which the SHEWA-B intervention could have been better de-
signed. The CHP literature suggests that sufficient supervision and remuneration contribute
to CHP success [21, 54, 55]. The number of households SHEWA-B CHPs were responsible for
may have been unreasonable (1200-1500 per CHP). Even if the workload was manageable,
there was likely a high opportunity cost, particularly considering that the majority of CHPs
considered their stipend to be insufficient [54], and focus group respondents reported that
some CHPs had other jobs. Other international non-governmental organizations working
in rural Bangladesh paid similar types of workers approximately 2.50 USD per day at that
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time. Although CHPs reported satisfaction with their training, it is possible that the train-
ing was insufficient. Indeed, CHPs appeared to need more training: on average, CHPs could
only recall 2.9 out of 5 messages about safe water storage, 4.5 out of 6 about handwashing,
and 4.5 out of 9 about latrine usage. The intervention may have been more successful if
SHEWA-B had provided facilitative hardware, such as handwashing devices, to each partic-
ipating household in addition to health promotion messages, as other local NGOs did [56].
See Appendix 2 for a list of all hardware provided by SHEWA-B. There is a growing body
of evidence suggesting that hygiene behavior in low-income countries does not change in
response to health education but rather to other factors, such as social acceptance and dis-
gust with feces [57-59]. Researchers are also exploring whether subsidizing water, sanitation,
and hygiene hardware results in higher uptake than offering free or market-rate hardware,
although there are concerns that such approaches fail to reach the poorest of the poor, who
were targeted by SHEWA-B [60-62].

Even though many CHPs reported sufficient supervision, inadequate supervision may have
contributed to suboptimal CHP performance. Some studies found that improved supervision
and audits with feedback improved CHP performance and increased CHP job satisfaction
and motivation [21]. Although UNICEF and DPHE conducted performance assessments of
CHPs and higher-level staff, the results suggest that assessments did not result in high level
CHP performance in most areas. Political influence during the process of hiring CHPs may
have also indirectly contributed to suboptimal CHP performance, as has been noted in the
CHP literature [54]. Focus group respondents mentioned that NGOs were subject to political
and social influences and that in these cases CHPs showed less interest in their job duties.
As has been noted in the literature, in future CHP interventions, a higher salary, improved
supervision and training, more thorough assessment, and a more transparent hiring process
would likely contribute to improved CHP performance [21, 54, 55].

The results of this large assessment demonstrate the difficulty of maintaining intervention
quality while expanding coverage on a large scale, as has been reported by others [13]. On
the whole, these findings echo those of the few, existing assessments of large-scale WASH
interventions: in Indonesia, Peru, and Vietnam found no effect on access to improved sanita-
tion and mixed results related to handwashing and diarrhea prevalence [35-37]. A large-scale
sanitation intervention in India was found to greatly increase sanitation coverage but did not
reduce disease [63].

The literature on scaling up has reported that factors for successful interventions at scale
include strong leadership and management, realistic arrangements for financing, country
ownership of the intervention, and technical innovation [13]. As such, when interventions
are similar at the household or community level, differences in the impact of scaled inter-
ventions between countries may be explained by higher level factors such as governance. I
was unable to explore the role of factors such as management and financing of SHEWA-B
because of the complexity of implementation. Implementing organizations could conduct
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further qualitative research to improve their understanding of how these factors might have
affected implementation quality and outcomes.

These results illustrate the use of rigorous methods to systematically evaluate implemen-
tation quality for programs at-scale and demonstrates their potential value for improving
and refining program delivery. Rigorous assessment of WASH interventions is difficult, even
for small-scale interventions [64], and very few large-scale WASH interventions have been
evaluated rigorously [65]. In particular, assessment of implementation can be difficult when
not built into the assessment from its inception. I evaluated the impact of improved im-
plementation of the SHEWA-B program by employing statistical methods developed in the
causal inference literature as well as qualitative methods. My approach using population
intervention models has broad applicability to similar assessments of other large-scale public
health programs. These findings contribute to the growing empirical evidence base describing
best practices for and barriers to delivering interventions at scale. Such evidence may con-
tribute to improvements in design and delivery of interventions which in turn could increase
the health impact of such interventions when delivered at scale [13].
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Chapter 4

Advances in the estimation of the
population attributable fraction:
application of a causal inference
technique to simulated and empirical
datasets

4.1 Introduction

Randomized trials have long been considered the gold standard for evaluating community-
based public health interventions in epidemiology. More recently, related fields, such as
economics, have increasingly used trials [1]. While trials are often highly internally valid,
they are also often subject to limitations that restrict their generalizability and utility for
important research questions in public health. When one’s goal is to evaluate the effective-
ness of a large-scale intervention that is known to be efficacious in ideal settings, it is often
neither feasible nor ethical to randomize [2]. Because randomization necessitates delivery of
an intervention and clear differentiation between intervention and control groups, the range
of exposure measurement in trials is often limited. Measurement is also often limited to a
few key outcomes because research questions are narrowly focused. The contrasts between
exposure states are limited by the design of the trial. Poor compliance to trial interventions
can limit inference, and reasons for poor compliance in a trial may differ from in other set-
tings, limiting generalizability. In addition, the populations enrolled in trials are often not
representative because they are selected to answer a focused research question or to ensure
high compliance. For these reasons, observational designs are an alternative that should not
be overlooked. While subject to many pitfalls of their own, observational studies can yield
highly relevant, generalizable findings, particularly when they are designed and analyzed
thoughtfully.
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For any study design, careful definition of the quantity to be estimated (i.e. the param-
eter) is critical to ensuring that the analysis estimates a quantity that helps answer the
research question. When one is interested in understanding the population-level impact of
an intervention the population attributable fraction (PAF) is often an appropriate parame-
ter [3]. A variety of formulations of the population attributable fraction have been proposed;
here I specifically refer to the parameter defined by Levin (1953), which compares the ob-
served probability of an outcome (Y') to the probability under a counterfactual scenario in
which an exposure (A) was removed (PAF=(P(Y)— P(Y|A=0))/P(Y)) [4]. Bruzzi, Green-
land, Drescher, and others have described model-based methods for estimating population
attributable fractions that adjust for covariates and allow for continuous exposures [5-7].

Morgenstern and Bursic (1982) proposed the generalized impact fraction (GIF), which ex-
tended the PAF to allow the counterfactual to be defined in a variety of ways [8]. They
defined the parameter as GIF=(P(Y) — P(Y™*))/P(Y'), where P(Y*) denotes the probability
of Y under a modified distribution of exposure. The counterfactual (Y*) can be defined such
that an exposure or intervention is modified or reduced rather than eliminated, and it can be
estimated for binary, categorical, or continuous exposures. More recently, Hubbard and van
der Laan proposed the population intervention model (PIM), which is akin to the generalized
impact fraction in that it allows the investigator to tailor the definition of the parameter to
answer particular research questions. The PIM parameter compares the observed mean in
the population to the mean outcome under a counterfactual scenario of one’s choice [9]. The
parameter is defined as E[Y4« — Y], where Y. denotes the counterfactual outcome under a
modified treatment, and frequently treatment is modified to be improved compared to the
observed level of treatment. For example, if one is interested in estimating the proportion
of global mortality that could be prevented by water and sanitation interventions, one could
compare the mortality under the current global setting, in which a large portion of the world
does not have access to functional piped water and sewerage, compared to an ideal counter-
factual setting in which over 90% of people in each country had access. PIM parameters can
be defined as a single quantity comparing mortality under these two scenarios.

Most parameters used in epidemiology assume that interventions are deterministic (i.e., that
receiving the intervention always results in a particular outcome). However, one can also
define parameters that allow for stochastic interventions or counterfactuals, which assume
that those receiving an intervention have a particular probability of the outcome but that the
outcome is not guaranteed to occur. The distinction between stochastic and deterministic
interventions is especially important when studying interventions that cannot be controlled
or manipulated by the investigator, and thus it is not realistic to assume that they are deter-
ministic. For example, if policy was implemented to reduce levels of air pollution with the
goal of reducing asthma attacks, a deterministic policy would always result in a reduction in
asthma attacks, while in a stochastic program, some individuals would have fewer asthma
attacks and others would not. It is much more reasonable to assume a stochastic intervention
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for this particular example since a policy to decrease air pollution might not yield equivalent
air pollution reductions in all areas and because individuals’ responses to air pollution reduc-
tions might be a function of current health status, immunity, personal level of exposures, and
other factors. When interventions are concerned with social and behavior phenomena, such
as health education or handwashing promotion interventions, assuming that interventions are
stochastic is generally more appropriate. Responses to interventions can also be stochastic
in studies of biologic measures; for example, Cain et al. defined stochastic counterfactuals in
a study comparing outcomes when HIV treatment was initiated after CD-4 cell counts drop
below different thresholds [10]. Deterministic interventions can be considered a special case
of stochastic interventions in which the probability of the outcome is equal to zero or one for
each individual [11].

Epidemiologists have defined stochastic counterfactuals since the late 1980’s [11-13], and
more recently Munioz and van der Laan proposed the stochastic intervention model (SIM)
parameter, which extends PIM parameters to allow the intervention variable in the estimated
counterfactuals to be assigned stochastically [14]. In contrast with PIM parameters, SIM pa-
rameters build in the random nature of exposure or uptake of an intervention. Thus, they are
frequently a more realistic choice of parameter when evaluating a program or policy. Both
PIM and SIM parameters can be defined for any type of intervention variable (e.g. binary,
continuous) and are particularly useful with continuous intervention or exposure variables.
In certain cases, SIM parameters are less susceptible to estimation-related problems than
other commonly used approaches with continuous interventions, such as parametric regres-
sion models, or marginal structural models (MSMs) [15-17].

The purpose of this chapter is to illustrate how to estimate and interpret the population at-
tributable fraction and its more modern variants (population intervention model and stochas-
tic intervention model parameters) using simulated and empirical datasets. I will utilize a
motivating example which applies these methods to understand the potential impact of a
public health intervention that was imperfectly deployed. Specifically, using both the sim-
ulated and empirical datasets I will explore whether a program would have yielded better
outcomes if it had been implemented perfectly. Frequently when interventions are deployed
at a large scale or in a real world setting, their implementation is imperfect due to challenges
in delivering interventions at scale or in obtaining high uptake among participants [18-23].
When implementation is imperfect, estimates of an intervention’s effect will be closer to the
null than would be expected if the intervention had been implemented perfectly. The pa-
rameters discussed in this chapter can be used to estimate the effect of the intervention if
it had been implemented perfectly. Specifically, if information about the quality of program
delivery is available, one can use these parameters to estimate if outcomes would have been
better on average if all individuals received a better implemented intervention.

This chapter is organized as follows: I describe the research question and define parame-
ters to estimate to answer this question. I then describe the simulation of several datasets
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that mimic data that would be produced by a sanitation program with imperfect imple-
mentation. The data simulated fall under four different scenarios which mimic the differing
levels of data quality that may arise in empirical settings. Next, I describe the steps used to
estimate and interpret each parameter from a single simulation under a scenario with ideal
data. The description of parameter estimation is intended to be didactic, and accompanying
code for these steps is provided in the Appendix. After describing the estimation of all four
parameters in detail, I discuss the performance of three of the parameters across 1,000 simu-
lations under more realistic data scenarios likely to arise in empirical settings, and I describe
the variability of a single parameter estimate by examining its bootstrap distribution. I
then estimate these parameters in an empirical dataset from an evaluation of a large-scale
water, sanitation, and hygiene program implemented by UNICEF and the Government of
Bangladesh in rural Bangladesh.

4.2 Data simulated

I have simulated data which mimics data from the empirical data from the UNICEF pro-
gram described in forthcoming sections. I will use the simulated data to examine the effect
of the implementation quality of a hypothetical sanitation program on a target outcome of
interest. The variables used in the simulation are listed in Table 1. In this hypothetical
program, participants received an improved latrine as well as promotion for use and mainte-
nance of the latrine. Community health workers deliver the health promotion messages, and
their interactions with participants can be of varying quality levels. Some community health
workers may visit more frequently, and some may have better adherence to their job duties,
and these differences result in a range of implementation quality. The key outcome of interest
is “exclusive toilet use”, which is commonly measured by asking respondents whether they
have recently defected in bushes or fields rather than inside a latrine. By providing improved
latrines, the program aims to eliminate the practice of open defecation (i.e., 100% exclusive
toilet use).

The hypothetical study to answer this research question is cross-sectional. Table 4.1 lists
the variables used in the simulation. I created a continuous index of implementation quality
(A) in which a value of 0 indicates that the intervention was not implemented, a value of
50 indicates that the intervention was partially implemented (e.g. latrine installed but no
promotion occurred), and a value of 100 indicates perfect implementation. The outcome of
interest (Y') is exclusive toilet use. Regional poverty level (I¥) is a potential confounder.
The research question is: What would the difference in the probability of open defection have
been if all individuals had received a well-implemented program compared to the probability
under the observed distribution of implementation quality?

I generated four simulated datasets with n=1,000 observations for each of the variables
listed in Table 4.1. The dataset in Scenario 1 was designed to have ideal conditions, and the
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datasets in the remaining scenarios had features frequently found in observational data which
could complicate parameter estimation. Table 4.2 lists the data generating distributions for
the four scenarios.

Table 4.1: Variables simulated

Variable Notation Description
exclusive toilet use Y 1=exclusive toilet use, 0=open defecation
Implementation quality A Continuous measure in which 0 indicates poor quality

and 100 indicates good quality

Regional poverty level W, 1=live in an area in the 1st quartile of regional poverty
Wy 1=live in an area in the 2nd quartile of regional poverty
W3 1=live in an area in the 3rd quartile of regional poverty
Wy 1=live in an area in the 4th quartile of regional poverty

e In Scenario 1, the scenario with ideal conditions, Y is evenly distributed, A is evenly
distributed, and strata of W are well-balanced with no sparse strata.

e In Scenario 2, Y is evenly distributed, A is right-skewed, and strata of W are well-
balanced. This scenario could occur if the range of implementation quality observed
was low on average and if no individual received a perfectly implemented program.

e In Scenario 3, Y is rare, A is normally distributed, and strata of W are well-balanced.
This situation could occur if the association between implementation quality and ex-
clusive toilet use is low and if open defecation is commonly practiced in the study
population.

e In the Scenario 4, Y is evenly distributed, A is normally distributed, and strata of W
are imbalanced. If the intervention was targeted to regions with a high poverty level,
there would be fewer observations in the strata of W for lower poverty level regions.
Furthermore, it is possible that certain values of A might never be observed within
certain strata of W. For example, in the highest poverty region, it is possible that
there would be no values of A above the median because implementation quality was
poorer there.

In each scenario, I included interaction between A and W. For this hypothetical research
question, it is plausible that the association between implementation quality and no open
defection or other outcomes would be modified by regional poverty level. For example, in less
impoverished areas, it is possible that the program would be better implemented because
potential community health workers might be better educated or because transportation
systems were better and thus community health workers can more easily reach intervention
recipients.
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4.3 Parameters

I consider three parameters in this analysis: the population attributable fraction (PAF),
population intervention model (PIM), and stochastic intervention model (SIM). Each of
these parameters involves two scenarios: the observed scenario and a counterfactual scenario
which improves upon the observed scenario. For this study, I have defined parameters on
the additive scale (i.e. differences), however, it is also possible to define them on the relative
scale (i.e., ratios). The definition of the parameters is very similar; what distinguishes them
is the decision rule (d) used to assign the counterfactual level of the intervention (A).

1. The population attributable fraction (PAF) estimated in this simulation com-
pares the observed expectation of exclusive toilet use (Y') to the expectation if everyone
had received a perfectly implemented program (A=100):

WA = E[Yyear(,)] — E[Y] (4.1)

where d™F = a. In this study, I consider a counterfactual in which if everyone had
received a perfectly implemented program (a=100). This definition of the population
attributable fraction draws upon the variant of the PAF defined by Levin, which was
defined as (E[Y] — E[Ya—o])/E[Y] because the measure was applied to scenarios in
which one imagines removing a deleterious exposure (A = 0) [4]. However, since I
evaluated an intervention that is intended to be beneficial, I redefined the PAF to yield
a positive result. To make the PAF comparable with the other parameters discussed
below, I also did not divide by E[Y]. Although the parameter I have defined is not a
fraction, I will refer to it as the PAF.

2. The population intervention model (PIM) parameter compares the observed
expectation of the outcome (Y) to the expectation under an improved scenario.

G = Bl e p)] — B[Y) (4.2)

dPIM

where is a decision rule defined as follows:

d"™(a,A) =A-I(A>a)+a-(1—-1(A>a))

where a is a pre-defined level in the data of relevance to the research question and
I(A > a) is an indicator of whether the observed value of A is greater than or equal to a
for a given observation. In this study, I consider a counterfactual in which everyone with
an observed value of implementation quality below the 75th percentile was reassigned
to the value at the 75th percentile and everyone with an observed value above the
75th percentile retained their observed value (A = a*™). For example, if the 75th
percentile of the distribution of A is 60, then the decision rule is d*™ (60, A) = A-1(A >
60) +60- (1 — I(A > 60)). If an individual’s implementation quality is observed to be
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50, they are reassigned to 60; if their observed value is 80, their value remains 80. This
parameter can accomodate control for potential confounders and averages over them
in order to estimate the parameter for the whole study population.

3. The stochastic intervention model (SIM) parameter compares the observed ex-
pectation of the outcome (Y') to the expectation of ¥ under an improved scenario, but
the counterfactual in the improved counterfactual is defined stochastically.

PI™M = E[Yysna(, 0] — E[Y] (4.3)

dSIM

where is a decision rule defined as follows:

d™(a, A)=A-TI(A>a)+ A" (1 - 1(A>a))
A* ~ P,(AlA > a)

The random variable A* is the value drawn from the empirical distribution of A above
the pre-determined value a. In this study, the improved scenario of interest is one
in which everyone with an observed value of implementation quality below the 75th
percentile was reassigned to a value drawn from the empirical distribution of A above
the 75th percentile and everyone with an observed value above the 75th percentile
retained their observed value. For example, if the 75th percentile of the distribution
of A is 60 and an individual’s implementation quality is observed to be a score of 50,
their value of A is drawn from the empirical distribution of A ranging from 60 to the
maximum observed value of A. If their observed value is 80, their value of A remains
80.

4.4 Simulation procedures

First, I estimated each parameter of interest under each of the four data scenarios. To
understand the performance of the parameters under the four scenarios of interest, I repeated
the simulation 1,000 times for each parameter and each scenario. 1 calculated the true
parameter estimates and estimated the proportion of times the 95% confidence interval for
a given simulation’s parameter estimate (L/S) included the true value of each parameter (1))
(i.e., the coverage probability). I calculated the true value of the PAF for each scenario
analytically. To determine the true value of the PIM and SIM parameters, I estimated each
in a simulation with 1,000,000 observations. I plotted the kernel density estimates of the 1,000
estimates of each parameter under each scenario using a Gaussian kernel. To understand the
variability of parameter estimates, I bootstrapped a single parameter estimate with 1,000
replicates and plotted the kernel density estimates of the bootstrapped parameter estimates
of each parameter under each scenario. I used R version 3.0.2.
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4.5 Estimation

The target parameters in this study can be estimated using methods from the causal inference
literature including G-computation [24], inverse probability of treatment weighting (IPTW),
and targeted maximum likelihood, a form of double robust estimation [25]. Ahern et al. and
Snowden et al. describe estimation of the average treatment effect using G-computation [26,
27], and Fleischer et al. estimated the population intervention model parameter using IPTW
[28]. Munoz and van der Laan utilized IPTW and TMLE in their paper proposing SIM pa-
rameters [14]. I have used G-computation to estimate the parameters in this chapter because
it is straightforward and easy to implement relative to other estimators, and two didactic
papers targeting epidemiologists already describe estimation in detail [26, 27]. For simplicity,
I will use maximum likelihood to estimate these parameters, but it is important to note that
these parameters can also be estimated with alternative semi-parametric techniques which
make fewer assumptions about the data and may produce less biased and in some cases less
variable results [25].

At least two didactic papers targeting epidemiologists have been published describing the
steps used to implement G-computation. I provide a brief description of G-computation
estimation steps here and refer readers to Ahern et al. and Snowden et al. for more details
[26, 27]. G-computation separates estimation into two steps: 1) the estimation of the mean
of Y (E[Y|A,W]) and 2) the estimation of the parameter using the estimate of E[Y|A, W].
G-computation can be envisioned as a process which imputes unobserved counterfactual
outcomes for each unit. For example, to estimate the population attributable fraction with
G-computation, one would impute the probability of exclusive toilet use for each individ-
ual if they had received a perfectly implemented program (A=100). These counterfactual
outcomes are unobserved because in the observed data, many individuals did not have a
value of A equal to 100. G-computation allows estimation of E[Y'|A, W] to be performed
using methods other than regression, such semi-parametric, data-adaptive approaches [29].
Thus, the parameter is not necessarily tied to its estimation method and can be defined to
estimate a quantity optimal to answer one’s particular research question. For simplicity, I
only estimated F[Y|A, W] using maximum likelihood estimation, but semi-parametric esti-
mation techniques could also be used which require fewer difficult-to-validate assumptions
than logistic regression.

In this section I describe the estimation steps and interpret the results for each parame-
ter under scenario 1, in which data is intended to be well-behaved. In later sections, I
describe and interpret results for the remaining scenarios. Table 4.4 contains the parameter
estimates for a single simulation under each scenario. In each scenario, I used the correct
data distribution when specifying statistical models: I included main effects for A and W
as well as an interaction between A and each level of W. However, it is important to note
that in practice, one never knows the true data generating distribution, and thus parameter
estimates will likely be at least somewhat biased.
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Estimation steps

Step 1: Estimate the expectation of the outcome (Y) under the improved
counterfactual scenario

1. Impute values of A for each individual under the improved scenario. Table
4.3 below contains hypothetical data in which the 75th percentile of the observed
distribution of A is equal to 70, the observed value of A, and the imputed values (a*)
vary by parameter. For the PAF, all individuals’ values are imputed to be 100. For the
PIM parameter, the value of A for the first five individuals is below the 75th percentile,
so their values are imputed as 70. The remaining individuals retain their original values
of A. For the SIM parameter, the approach is similar as for PIM except that the first
five individuals’ values are imputed by drawing from the empirical distribution between
70 and 98.

Table 4.3: Hypothetical observed and counterfactual values of A

Observed Counterfactual a*

? a PAF PIM SIM
1 0 100 70 76
2 13 100 70 95
3 55 100 70 88
1 69 100 70 71
Y 74 100 74 74
6 82 100 82 82
7 90 100 90 90
n 98 100 98 98

2. Estimate the expectation of Y controlling for A and W (E[Y|A, W]). T used
a generalized linear model (GLM) with a binomial family and logit link (i.e., logistic
regression) because the outcome is binary, however different models can be chosen
depending on the nature of the data in the study. As a toy example, let us consider a
model in which I assume there is a single binary confounder (WV):

| ( EY = 1|A, W]

1—E[Y:1]A,W]) = bo + 1A+ SV

For example, the results of this step could be: 5y=-3, 5,=0.05, 82=0.005.
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3. Estimate the probability of the outcome for each individual under the
improved counterfactual scenario within strata of W (E[Y;|A;, W;]) using the
imputed values of A and the coefficients from the previous step. For example, for
observation ¢ = 1 in Table 4.3, if W =1, the predicted probability of exclusive toilet use
for the PAF counterfactual equals 1/(1 +exp{—(—3+0.05 x 100+ 0.005 x 1)}) = 0.88,
the probability for the PIM counterfactual equals 1/(1+exp{—(—3+0.05x7040.005 x
1)}) = 0.62, and for the SIM counterfactual it equals 1/(1 4+ exp{—(—3 + 0.05 x 76 +
0.005 x 1)}) = 0.69.

4. Estimate the average probability of Y under the improved counterfactual
scenario within strata of W. This step allows us to estimate a parameter for the whole
study population rather than within strata of W.

P 1 <&
Ew [EY|Aia.a, W] =~ E[Yi|Aua.a, Wi

=1

Step 2: Estimate the empirical mean of the outcome under the observed

A

scenario (E[Y]).

One can simply take the empirical mean of Y;.

Step 3: Subtract the observed mean of the outcome (from Step 2) from the
mean under the improved scenario (from Step 1).

)=

S|

Z E[KlAd(a,Ai)a Wz] - 1 Z Y;
i=1 -

N J/
~

Improved scenario Observed scenario
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Interpretation of parameter estimates for Scenario 1

The data simulated for Scenario 1 were intended to be ideal, and parameter estimates are
shown in the first row of Table 4.4. In this scenario, the estimate of the PAF was 0.303.
Thus, if all individuals had received a perfectly implemented program, I would expect that
the probability of exclusive toilet use would be 30.3% higher than it was observed to be. In
comparison, the PIM parameter estimate for scenario 1 is 0.118. To interpret this parame-
ter, if everyone had received a program with at least the 75th percentile of implementation
quality, the probability of exclusive toilet use would have been approximately 11.8% higher
than it would have been at the observed level of implementation quality. It is to be expected
that the PIM parameter estimate is lower than the PAF estimate because the PIM param-
eter compares the observed scenario to an improved scenario, while the PAF compares the
observed scenario to a scenario with 100% perfect implementation.

The SIM parameter estimate was 0.163: if everyone had received a program at least the
75th percentile of implementation quality, the probability of exclusive toilet use would have
been approximately 16.3% higher than it would have been at the observed level of implemen-
tation quality. At first glance, the interpretation of PIM and SIM parameters are identical,
but the underlying counterfactual data are generally more realistic for SIM because the dis-
tribution of A more closely resembles what one might see in practice. Generally, the SIM
estimate will exceed the PIM estimate because there are more observations with higher val-
ues of A, whereas in the PIM counterfactual many values are assigned to the 75th percentile.
The standard errors were the smallest for the PIM parameter followed by the SIM parameter.
It is possible that the higher SE of the PAF reflects the greater extent of model extrapola-
tion in this parameter estimate. The PIM is likely less variable than the SIM because the
counterfactual distribution of A is less variable. In Figures 4.1, 4.2, 4.3 and C.1, which show
the observed and counterfactual distributions of A under PIM and SIM.

Table 4.4: Results from a single simulation

PAF PIM SIM
¥ (SE) ¥ (SE) ¥ (SE)
Scenario 1: Y and A are evenly distributed, W not sparse 0.303 (0.028) 0.118 (0.013) 0.163 (0.017)
Scenario 2: Y is evenly distributed, A is right-skewed, W not sparse  0.496 (0.045) 0.161 (0.017) 0.272 (0.032)
Scenario 3: Y is rare, A is normally distributed, W not sparse 0.341 (0.055) 0.041 (0.006) 0.091 (0.014)
Scenario 4: Y and A are evenly distributed, W sparse 0.698 (0.018) 0.155 (0.011)  0.296 (0.021)
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4.6 Comparison of parameter estimates across 1,000
simulations

In this section, I compare the results for the simulations repeated 1,000 times across scenarios
1 through 4, which are intended to illustrate more realistic data quality scenarios that may
occur with observational data. Results from a single simulation are listed in Table 4.4, and
Figure 4.4 displays the kernel density estimates for the parameter under estimates from 1,000
simulations under each scenario. Table 4.5 lists the coverage probability for each parameter
and scenario, which is defined as the proportion of times the 95% confidence interval for
each of the parameter estimates included the true parameter value. Ideally the coverage
probability should equal the 95% for a 95% confidence interval in order to indicate that
the type I error rate is properly accounted for; if it is less than 95%, it could indicate that
a slightly greater than type I error rate and that one will incorrectly conclude there is a
statistically significant finding more than 5% of the time.

Scenario 1: ideal data

In Scenario 1, in which Y was evenly distributed and A was normally distributed with no
sparse covariate strata, the distribution of estimates for each parameter was approximately
normal for each parameter. For each parameter, the distribution of estimates from the
1,000 simulations was centered on the true value, indicating minimal bias in the parameter
estimates. The width of the distribution indicates the variability of parameter estimates.
The distribution of PIM estimates was the narrowest, followed by the distribution for SIM
and then the PAF. The PIM was likely less variable than the SIM parameter because the
counterfactual distribution of A is less variable because many values were reassigned to the
75th percentile. The variability of the SIM and PAF estimates was similar. It is possible
that this is because in the counterfactual distribution of A under PAF all values were set
to 100, where there were few observed values in the data. Thus, PAF estimation required
more model extrapolation than estimation of the PIM and SIM parameters. The coverage
probabilities (Table 4.5) were similar for each parameter and were all close to 95%, indicating
that the type I error rate over the 1,000 simulations was close to 5% as desired.

Scenario 2: A is right-skewed

In Scenario 2, the estimates of each parameter were on the whole evenly distributed, but they
were slightly more variable but the distribution of SIM estimates was approximately normal.
As shown in Figure C.1, the maximum value of A in Scenario 2 was 91, and many of the
observed values of A equal 0. The distributions of each parameter were not centered around
the true values, indicating that parameter estimates were more biased in this scenario. The
distributions were also wider for each parameter than in Scenario 1, and they followed the
same pattern (PIM was the narrowest followed by SIM and PAF). In this scenario the distri-
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bution of PAF estimates was somewhat wider than in Scenario 1. Scenario 2 required more
model extrapolation than Scenario 1 because there were fewer observed values of A around
the 75th percentile than in Scenario 1. There were approximately 50 observations within 2
units of the 75th percentile of A in Scenario 1 compared to approximately 20 observations
in Scenario 2. Thus, there was less observed information to support the estimation of the
probability of Y around this value of A in Scenario 2, which may explain the bias observed.

Scenario 3: Y is rare

In Scenario 3, as shown in Table 4.2, the prevalence of Y in this scenario was 8.5% compared
to 61.1% in Scenario 1. The distributions of parameter estimates were centered around true
values for each parameter, indicating little bias. The PIM was considerably less variable
than in Scenario 1, and the SIM was slightly less variable, but PAF estimates were much
more variable, as indicated by the wide distribution of PAF estimates. The PAF’s high
variability likely reflects the fact that in this scenario the probability of Y is very small at
most values of A, but the probability increases rapidly when A exceeds the 75th percentile.
Thus, when reassigning the value of A to 100 in the counterfactual scenario, the probability
of Y will change greatly for observations starting with low values of A but will not change
substantially for those with higher values of A. Thus, the PAF as I have defined it may be
highly variable when the outcome is rare.

Scenario 4: W is sparse

In Scenario 4, W was sparse within strata of Y and A. Specifically, there were very few
observed values of W3 and W),. For each parameter, the distributions were centered around
the true values, indicating little bias. The variability of the parameter estimates was also
quite similar to Scenario 1. These results suggest that having sparse covariate strata, at least

as observed in this simulation, does not strongly impact the bias or variance of estimates of
the PAF, PIM, or SIM.

To further evaluate the variability of parameter estimates, I plotted the distribution of boot-
strapped parameter estimates from a single simulation for each parameter and scenario (Fig-
ure C.2). The patterns are similar to those observed in Figure 4.4. With the exception of the
distribution of PIM in Scenario 1, the distributions were smooth and unimodal, indicating
that the assumptions needed to use bootstrap were likely met in this analysis.

4.7 Application to empirical data: evaluation of
SHEWA-B program

In this section I illustrate the application of these parameters to an empirical dataset from
an evaluation of a water, sanitation, and hygiene program in rural Bangladesh. From 2007
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Figure 4.4: Distribution of parameter estimates over 1,000 repetitions for each scenario
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Table 4.5: Coverage probability* for each parameter and scenario

PAF PIM SIM

Scenario 1: Y and A are evenly distributed, W not sparse 95% 96% 96%
Scenario 2: Y is evenly distributed, A is right skewed, W not sparse  95% 94% 94%
Scenario 3: Y is rare, A is normally distributed, W not sparse 89% 93% 93%
Scenario 4: Y and A are evenly distributed, W not sparse 97% 93% 93%

*The coverage probability is the proportion of times the 95% confidence interval ’lZ)Z * 21—a/2 X SE(1/AJZ)

includes the true parameter value (¢) for ¢ = 1, ..., 1000 bootstrap replicates.

to 2012 UNICEF and the Government of Bangladesh delivered a program called Sanitation
Hygiene Education and Water Supply in Bangladesh (SHEWA-B), which targeted approx-
imately 20 million beneficiaries in rural Bangladesh. The intervention promoted safe hy-
giene and sanitation practices and its objective was to reduce diarrhea and other water and
hygiene-related diseases among the poorest in rural Bangladesh. In 2009, an interim assess-
ment conducted by the International Centre for Diarrhoeal Disease Research, Bangladesh
(ICDDR,B) found little improvement in measures of hygiene sanitation behavior and no
improvement in child diarrhea and respiratory illness [30]. To explore whether these results
reflected suboptimal intervention design versus suboptimal intervention implementation, I
collaborated with ICDDR,B to develop an index of SHEWA-B implementation quality and
estimated the extent to which target outcomes would have improved if SHEWA-B had been
better implemented. In this section I estimate the PAF, PIM, and SIM parameters as defined
above with the SHEWA-B evaluation data. Details on the data collected, implementation
quality index, and evaluation design are described in Chapter 1. To briefly summarize, the
index of implementation quality ranged from 0 to 100 in possible values, and it was calcu-
lated at the village cluster level since the intervention was essentially delivered at the village
level. T also consider exclusive toilet use as the outcome in this analysis.

Figure 4.5 shows the observed distribution of implementation quality in SHEWA-B. The
distribution resembles that in Scenario 2 of the simulation: there are many clusters with a
index score of zero (i.e., the intervention was not implemented), and none had a score of
100 (perfect implementation). Table 4.6 lists the estimates and standard errors for each pa-
rameter in this empirical dataset. The PAF parameter compares the probability of exclusive
toilet use in the observed data to the probability if everyone received perfect implementation
quality (index=100). The PAF estimate was 0.034, which indicates that the probability of
exclusive toilet use would have increased by 3.4% if implementation was perfect. The PIM
and SIM compare the observed scenario to one in which all clusters received implementation
quality equal to the 75th percentile of the index in this dataset (index=42). The PIM esti-
mate was 0.008 and the SIM estimate was 0.013. As in the simulation, the PIM estimate is
the closest to the null, and the PAF has the largest effect size. All estimates are quite small
and suggest that even if implementation quality had been better, the program would have
not have greatly increased exclusive toilet use.
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I have estimated the PAF with a counterfactual assuming perfect implementation to be
consistent with the definition of the PAF in the simulation. However, because there were
no village clusters with an observed implementation quality index value at that level, it is
generally not advisable to do so because it requires one to extrapolates beyond the observed
data used to generate the model. It is also very unlikely that a program targeting such a
large population would achieve perfect implementation in all areas, so the counterfactual
for improved in the PIM and SIM parameters is more realistic than the counterfactual of
perfect implementation in the PAF. In this case, the PIM and SIM estimates both have small
effect sizes, and their standard errors are identical to the third decimal place. The SIM is
slightly more realistic than the PIM; one would expect that the SHEWA-B program, which
mostly promoted health behaviors, would result in a probability of increased exclusive toilet
use rather than deterministically resulting in exclusive toilet use. Thus, given the identi-
cal variability of the SIM and PIM estimates and the more realistic definition of the SIM
counterfactual, the SIM parameter is preferable in this setting.

Figure 4.5: Distribution of implementation quality in empirical example
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Table 4.6: Empirical results

Parameter Point estimate SE
PAF 0.034 0.011
PIM 0.008 0.002
SIM 0.013 0.002
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4.8 Discussion

Key findings

In this study, I explored methods of estimating the population-level effect of a public health
intervention using observational simulated and empirical data. I estimated the association
between the quality of implementation of a hypothetical sanitation program and the prob-
ability of exclusive toilet use using four different parameters. The goal was to understand
what the difference in the probability of the outcome would be under an improved scenario.
Each of the three parameters answers the research question in a slightly different way — the
population attributable fraction estimates how different the probability would have been if
everyone received a perfectly implemented program. The PIM and SIM parameters estimate
how different the probability would have been if more people received a better implemented
program. The interpretation of PIM and SIM is quite similar, but the counterfactual distri-
bution of SIM is more realistic because it accounts for the fact that individuals’ responses
to this behavior change intervention will follow some probability distribution rather than
deterministically resulting in a particular response.

Repeating the simulation 1,000 times allowed of investigation of the properties of these
parameters under different data conditions, some of which are likely to arise in observational
data. I found that the PIM estimates were closer to the null than SIM parameter estimates
in all scenarios. This is because the counterfactual distribution of the intervention variable
had greater mass closer to the mean under the PIM counterfactual than under SIM counter-
factual. The PIM estimates were less variable than SIM estimates across all scenarios. The
PAF estimates’ variability was similar to the SIM parameter’s when under ideal data con-
ditions and when the covariates were sparse, but when the intervention variable was skewed
or the outcome was rare, the PAF was highly variable. All parameters were biased when the
distribution of the intervention variable was skewed, and PAF was particularly susceptible
to bias in that scenario. Thus, investigators interested in applying these parameters in their
data should carefully explore features of their data prior to parameter definition and estima-
tion, and if the distribution of the intervention variable is skewed, estimate these parameters
with caution.

In studies evaluating the population-level effects of health interventions, randomized tri-
als are typically considered the optimal study design. However, they are often subject to a
number of limitations, such as limited generalizability and measurement of a limited set of
outcomes, and they are not feasible for a number of important research questions. While
observational designs are subject to a number of limitations as well, thoughtful application
of methods such as those I have demonstrated here can yield highly generalizable findings of
great utility to public health practitioners and policymakers. Common critique of analyses
of observational data are that the inference relies upon a statistical model rather than upon
the study design [31] and that the choice of which quantity to estimate is driven by the sta-
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tistical model used rather than by the research question [25]. This is more often the case for
observational studies than trials because many trials can be analyzed non-parametrically if
their randomization was effective, whereas observational designs typically employ statistical
models to control for potential confounders. While statistical approaches can never remedy a
poorly designed study, this study demonstrates an approach to analyzing observational data
that can overcome such pitfalls through careful definition of parameters that are tailored to
the specific research question and evaluation of the extent to which the parameter can be
estimated with one’s data.

Estimation methods for different study designs

The parameters and estimation methods used here can be applied to any observational study
design, although estimation techniques vary by design. The key quantities needed to estimate
the PAF, PIM, or SIM are the expectation of the outcome (E[Y]) and the expectation of the
outcome conditional on the exposure or intervention (E[Y|A, W]). Here I have considered
a cross-sectional study design in which sampling was independent of exposure and outcome
status. Thus, both E[Y] and E[Y|A, W] can be estimated directly from the data using
maximum likelihood or other semi-parametric approaches for independent and identically
distributed data. In cohort studies, if the follow-up time is equal for all subjects and the
sampling is independent of exposure, these parameters can be estimated as if the study was
cross-sectional. However, if the probability of exposure is set by design, neither quantity can
be directly estimated without corrections for the sampling probabilities. If follow-up time
varies, E[Y|A, W] must be estimated using survival analysis techniques, such as Poisson
regression or Cox models [6, 7]. In case-control studies, neither E[Y] or E[Y|A, W] can be
estimated directly from the data because sampling is conditional on outcome status. An
alternative formulation of the PAF is recommended, and it can be used to estimate the
PIM and SIM parameters as well: (P(A)(RR —1))/(1 + P(A)(RR — 1)), where P(A) is
the probability of the intervention and RR is the measure of association (e.g. relative risk,
odds ratio). P(A) can typically be estimated from the controls [5-7]. Estimation of the RR
requires the analytical technique appropriate to the particular type of case-control design (e.g.
case-cohort, nested case-control, etc.) [7]. Estimation of these parameters is also possible in
trials, but for the reasons discussed above, the interpretation of the parameter will depend
on the design and features of each particular trial (e.g. nature of intervention allocation,
compliance, etc.).

Application of stochastic intervention models to other research
questions

As discussed above, stochastic intervention parameters are frequently more realistic than
deterministic ones. Stochastic intervention model parameters are broadly applicable to other
research questions, and Table 4.7 contains a list of such questions. These may include
interventions which target biologic measures, such as CD-4 T-cell counts, environmental
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measures, such as exposure to diesel exhaust, behavioral variables, such as hours of physical
activity per week, and measures of intervention coverage, such as the proportion of the
population with access to piped water and sewerage. Another useful application of these
models is to estimate the potential impact of a health intervention for planning purposes.
For example, prior to scaling up an intervention, one could estimate the extent to which the
prevalence of disease would decrease if the intervention were fully scaled up. This kind of
analysis lends itself well to analysis of many publicly available datasets, such as Demographic
and Health Surveys datasets.

Table 4.7: Other potential research questions for which stochastic intervention model pa-
rameters may be appropriate

Topic Question

HIV How would patient outcomes vary under treatment regimes
initiated based on differing thresholds of CD-4 T-cell counts? [10]
Recreational water | Would the risk of gastrointestinal illness be significantly lower
than its current level if mean concentration of fecal indicator
bacteria was always below the EPA recommended level?
Nutrition How would the prevalence of coronary heart disease differ if the
whole population consumed trans fatty acid consumption at the
level equal to or less than the lowest quintile of consumption
compared to the current level?

Occupational health | How would the risk of lung cancer differ among workers if the
number of years working in jobs with high exposure to asbestos
was reduced to 10 years compared to the observed number of

years? [11]
Global burden of How much lower would the mortality rate attributable to water
disease and sanitation be if everyone in the world had access to fully
functional sewerage and piped water?
Chronic disease How would the prevalence of Type II diabetes differ if the whole

population increased the amount they exercised per week from
their current level by one hour?

Neglected tropical If 100% of the population received mass drug administration for
diseases five years, would the prevalence of lymphatic filariasis decrease
sufficiently from its current level to interrupt transmission?

SIM parameters can be defined in a variety of ways and estimated with data from a range
of study designs. In this simulation, I have defined a SIM parameter for a continuous
intervention variable, but they can also be defined for binary or categorical intervention
variables. I have illustrated the estimation of these parameters with observational data, but
they can also be estimated with data from other study designs (e.g. case-control, randomized
controlled trial). However, one of the advantages of analyses with observational data over
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data from a trial is that the investigator can define counterfactuals of interest, whereas in
trials counterfactuals are fixed by design [16].

Estimation techniques

I have used G-computation for the estimation of the parameters, but other estimation tech-
niques can be used, such as inverse probability of treatment weighting (IPTW) and targeted
maximum likelihood (TMLE). Fleischer et al. used IPTW to estimate PIM parameters [28],
and Munoz and van der Laan used both IPTW and TMLE to estimate SIM parameters [14].
All of these methods decouple estimation of the mean adjusting for potential confounders
and estimation of the parameter itself. While I have used maximum likelihood estimation
in this simulation, this separation of estimation steps allows for estimation of the mean of
the outcome using other semi-parametric techniques which make fewer assumptions about
the underlying data, such as SuperLearner [29] or other machine learning algorithms. I con-
ducted my analysis in R, but for investigators interested in using Stata, Stata version 13
now includes commands for inverse probability weighting and doubly robust methods, and
similar packages are available in R as well.

Assumptions underlying estimation

If one aims to make causal inferences, a set of assumptions are required. I refer readers to
Ahern et al. (2009) for a discussion of these assumptions in the context of G-computation
[26]. One of these assumptions — the positivity assumption — is important to consider even
when the goal is not causal inference because it affects both the bias and variance of esti-
mates [15]. The assumption states that there is a positive probability of each level of the
intervention variable within each level of covariate strata. When the exposure or interven-
tion variable is continuous, technically the experimental treatment assignment assumption
is always violated because one cannot observe all levels of treatment in each strata of the
covariates. Thus, it is necessary to extrapolate beyond the observed data using a statistical
model.

Fortunately, the positivity assumption can be assessed using the observed data by examining
the distribution of A within strata of W. Figure C.3 shows the distributions of propensity
scores (the probability of the intervention controlling for covariates) in each scenario. When
the propensity score values are close to zero, there is a high probability of a violation of the
positivity assumption [15]. In Figure C.3, very few observations have a propensity score of
zero in Scenarios 1, 3, and 4, but there are numerous observations with propensity scores
close to zero in Scenario 2. Thus, there is likely an ETA violation in Scenario 2, in which the
distribution of the intervention variable was skewed. This is not surprising given that the
range of the intervention variable in this scenario did not reach the maximum possible value,
and the distribution was right-skewed. When there is a positivity violation, to estimate the
probability of the outcome at certain values of the intervention variable requires reliance
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upon a statistical model and extrapolation beyond the data in the model. Doing so warrants
caution since it is possible that the model parameters would have differed if more data was
available.

Petersen et al. describe methods of diagnosing and responding to positivity violations in
detail [15]. In the case of SIM and PIM parameters as I have defined them, if one observes
a skewed distribution of the intervention variable, one potential solution is to define the pa-
rameter such that the counterfactual level above which the intervention variable is reassigned
is in a region where there is a reasonable amount of support in the data. For instance, in
Scenario 2, I could define the SIM and PIM counterfactuals around the 60th percentile in-
stead of the 75th percentile of the observed distribution of A in an attempt to avoid reliance
on extrapolation of model results generated from a small number of observations at higher
values of A. While redefining the parameter in this way can help avoid severe positivity
violations, they also change the interpretation of the parameter — using the 60th instead of
the 75th percentile would mean comparing the observed scenario to a less improved coun-
terfactual scenario.

Another assumption discussed at length in the causal inference literature is consistency,
which refers to whether or not assignment to a particular intervention level or value will al-
ways yield the same outcome [32-35]. This assumption is problematic when an intervention
or exposure can result in a range of different responses. For example, there are a number
of ways in which someone could have received poor implementation quality that may lead
to differing probabilities of the outcome. If someone was disinterested in the program, their
demeanor may have reduced the community health worker’s motivation to try to change
their behavior. Alternatively, someone may have been very interested in the health promo-
tion offered by the community health worker but lived in a remote area that was difficult for
the health worker to reach. The probability of exclusive toilet use is likely to be different
for these two scenarios even under the same value of implementation quality. As with other
assumptions made in causal inference, it is rarely the case that we can safely assume consis-
tency, even when one is able to implement or manipulate the intervention of interest.

However, defining stochastic parameters can allow one to relax the consistency assumption,
which can have advantages in a number of settings. This is because when counterfactuals are
defined stochastically, it is no longer necessary for the potential outcome to be identical for a
given level of treatment, but instead, the distribution of potential outcomes must be the same
for a given level of treatment [33]. Comparing distributions of potential outcomes allows for
a range of outcomes to be observed, potentially caused by different mechanisms of obtaining
a given level of A. The consistency assumption also arises in mediation analyses. In order to
decompose the total effect of an intervention into direct and indirect effects, the consistency
assumption is needed [36]. Stochastic counterfactuals can also relax this assumption when
assessing mediation.
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Conclusion

In conclusion, there are a number of modern parameters akin to the population attributable
fraction that may be appropriate to estimate for a wide range of research questions. These
parameters are particularly useful in evaluating potential effects of exposure or intervention
that are measured as continuous variables. For any study design or research question, it is
important to thoughtfully define one’s parameter of interest and carefully assess whether it
can be estimated with one’s observed data. While observational data are never perfect, when
collected and analyzed thoughtfully, they can yield powerful findings that are more broadly
applicable than results of a randomized trial.
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Chapter 5

Conclusion

5.1 Key Findings

Findings of Chapter 2: The interaction of deworming, improved
sanitation, and household flooring and soil-transmitted helminth
infection in rural Bangladesh

Objective 1: to estimate the prevalence of STH infection among children and
women of childbearing age in rural Bangladesh

No systematic surveys have been done to estimate STH prevalence in rural Bangladesh since
national school-based MDA was initiated in 2008. I found that 40% of school-aged children,
26% of pre-school aged children, and 30% of women of childbearing age in rural Bangladesh
in late 2012 had an STH infection. There were very few moderate or heavy STH infections
in the study population. Because intensity of infection is the major driver transmission, the
low intensity observed may indicate that transmission is waning in this study population,
potentially as a result of the MDA program. The WHO recommends estimating prevalence
after 5 years of school-based MDA [1]. For populations receiving MDA in which prevalence
is between 10 and 50%, WHO recommends continuing MDA at its previous frequency for
four more years and to “reinforce measures for safe water, sanitation and health education”
[1]. Thus, my findings suggest that the MDA program has been successful in reducing STH
prevalence in rural Bangladesh, continuation of the MDA program in conjunction with im-
provement of WASH conditions is necessary to further reduce STH prevalence.

Objective 2: to estimate associations with deworming, hygienic latrines, and
finished floors and STH infection

I found protective associations with deworming, hygienic latrine access, and finished floors for
Ascaris and hookworm prevalence, but associations were close to null for Trichuris preva-
lence. The majority of the associations with hookworm prevalence were not statistically
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significant, but this could reflect the small sample size. The deworming results are consis-
tent with those of randomized controlled trials [2—4]. The results for hygienic latrine access
were not statistically significant for any organism and differ from those reported in the lit-
erature, but most studies used different definitions of latrine access/quality which are less
likely to indicate whether latrines prevent fecal contamination of the environment [5]. For
finished floors, the results are consistent with those in the literature [6-8].

Objective 3: to explore potential interactions between these exposures

For each type of helminth, the joint exposures were consistently associated with a lower
prevalence than individual exposures. Unfortunately my estimates of the RERI and RPR
were in most cases underpowered. Despite that, the consistent pattern of prevalence I found
supports further exploration of improved sanitation and finished floors as complementary
interventions to reduce STH transmission.

Objective 4: to estimate associations between cluster-level exposures and
cluster-level STH prevalence

Although mathematical models would suggest that increasing cluster-level coverage of de-
worming, hygienic latrines, and finished floors would reduce cluster-level STH prevalence, I
found no meaningful decrease in prevalence for any cluster-level exposure. These findings
warrant further investigation. Population density may be an important effect modifier of
these associations that should be accounted for in future analyses.

Findings from Chapter 3: Assessment of a national-scale water,
sanitation and hygiene intervention in rural Bangladesh:
Measuring the effect of implementation quality

Ojective: estimate the extent to which hygiene behavior and conditions may
have improved if SHEWA-B had been better implemented

To pursue this objective, my team and I conducted an assessment of one of the largest WASH
programs ever conducted. I found that implementation of SHEWA-B was suboptimal: the
majority of respondents did not recall ever meeting a community health promoter (CHP).
Low exposure to CHPs was the main factor resulting in suboptimal implementation quality.
However, outcomes were only marginally better among households who had met a CHP.
While the qualitative assessment found that some CHPs performed well in certain areas, the
observed distribution of implementation quality suggests that implementation quality did
not meet UNICEF’s ideal in any area. Even though some outcomes were near UNICEF’s
targets, the modest associations between implementation quality and targeted knowledge
and behavior outcomes suggest that these outcomes may be better attributed to factors
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other than participation in SHEWA-B. These findings highlight the difficulty of maintaining
high quality implementation at scale.

Findings from Chapter 4: Advances in the estimation of the
population attributable fraction: application of a causal inference
technique to simulated and empirical datasets

Objective: illustrate how to estimate and interpret the population attributable
fraction, population intervention model, and stochastic intervention model
parameters using simulated and empirical datasets

For the simulation, I generated four datasets with varying levels of data quality. I focused
on a hypothetical research question inspired by the question explored in Chapter 3, and I
estimated the three parameters with each simulated dataset as well as the empirical dataset
from Chapter 3. I also repeated the simulations 1,000 times to investigate the properties of
each parameter. I provided a didactic description of how to estimate each parameter and
discussed their differing interpretations and applicability to a range of research questions.
Stochastic intervention model parameters account for the random nature of exposure or
uptake of an intervention. As a result, they are often a more realistic choice of parameter
when evaluating a program or policy.

5.2 Discussion

This dissertation describes methods and applications of such methods to the evaluation of
population-level effects of water, sanitation, and hygiene interventions. The specific inter-
ventions considered include deworming, hygienic latrines, finished floors, and promotion of
hygiene behaviors (e.g. handwashing). All interventions considered here have been found to
be efficacious at a small-scale, and many are now being scaled up. There are several lessons
from this dissertation which can be considered in planning future evaluations of population-
level effects of large scale interventions:

1. It is important to clearly define the intervention prior to implementation.
While in some cases it is very easy to do so (e.g. provision of a deworming tablet), for
more complex interventions, such as behavior change programs, there are numerous
ways in which an intervention could be defined. Definition in advance of evaluation is
critical to ensuring that both a process and impact evaluation can be done thoughtfully.

2. Measurement of implementation quality can shed light on reasons for sub-
optimal estimates of intervention impact. As discussed in Chapter 3, when a
program is found not to have an impact, one often wonders whether the intervention
itself could have been better designed or if the design was sufficient but implemen-
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tation was flawed. To explore the latter question, measurement of implementation
quality during the implementation process is critical.

3. Assessment of interaction between interventions can identify strategies for
reducing disease prevalence more sustainably. As discussed in Chapter 2, inter-
ventions that affect the same disease transmission pathways (e.g. fecal-oral) are often
considered separately because of silos within the field of public health practice and
research (e.g. the WASH and neglected tropical disease sectors). Assessing whether
interventions delivered together can yield greater reductions than the total reductions
from either intervention alone can help determine whether interventions could be de-
signed to be complementary. In many cases, complementary interventions could yield
great savings in cost and resources and could more sustainably reduce disease burden.

4. Careful selection of one’s parameter of interest can strengthen inference
from observational data. For reasons discussed in previous chapters, observational
designs are often most appropriate for evaluation of large-scale interventions. Even
though analyses with observational data require control for potential confounders, one
need not select the target parameter based solely on the statistical model used. Chap-
ter 4 discussed three specific parameters relevant to understanding population-level
effects of interventions and illustrated how to define and estimate parameters tailored
to specific research questions.

As mentioned above, there has been increased funding and motivation for the scale-up of ef-
ficacious public health interventions since the establishment of the Millennium Development
Goals (MDGs) in 2000 [9]. We are nearing 2015, the date the UN set to evaluate progress
towards the goals defined in 2000. In 2010, the UN General Assembly held a meeting to
discuss the post-2015 of called for both the scale-up and integration of efforts proven to be
successful to improve maternal and child health, and it specifically called for the scale up
of WASH interventions to reduce child mortality [16]. The analytic methods illustrated in
this dissertation can be applied to the evaluation of many other public health interventions;
such an application would help to generate evidence both to support prioritization of scarce
resources and to measure progress toward public health goals (such as the Millennium De-
velopment Goals for 2015 as well as country-specific health targets). These methods are also
highly applicable to many specific areas of public health. A few relevant examples include:
evaluations of interventions targeted at HIV; evaluations of progress toward elimination of
neglected tropical diseases; evaluations of population risks from heart disease or diabetes;
and evaluations directed toward understanding the social underpinnings of health. Finally,
these methods have direct applicability for estimation of the global burden of numerous
diseases and the contributions of specific exposures to those diseases.
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Appendix to Chapter 1

Figure A.1: Directed acyclic graph used to identify potential confounders
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Table A.1: Prevalence ratios for improved vs. hygienic latrine access*

Ascaris Hookworm Trichuris
PR (95% CI) PR (95% CI) PR (95% CI)

Unadjusted prevalence ratios
JMP improved sanitation 0.99 (0.76,1.30) 1.41 (0.92,2.14) 1.04 (0.84,1.29)
ICDDR,B hygienic latrine 0.78 (0.58,1.06) 0.60 (0.36,0.98) 0.93 (0.74,1.17)
Adjusted prevalence ratios’
JMP improved sanitation 1.07 (0.81,1.41) 1.66 (1.08,2.54) 1.09 (0.88,1.36)
ICDDR,B hygienic latrine 0.88 (0.64,1.22) 0.71 (0.42,1.19) 1.03 (0.81,1.32)

* ICDDR,B developed a definition of “hygienic” latrines which differs from the WHO Joint Monitoring

Programme (JMP) but may be a more accurate categorization of latrines that isolate feces from the

environment for the types of sanitation found in Bangladesh. Hygienic latrines include flush latrines
connected to piped sewer system, to septic tank, or off-set pit latrine, pit latrine with slab and functional
water seal, pit latrine with slab, lid and no water seal, or a composting latrine. Unhygienic latrines are
those that fail to effectively separate feces from the environment: flush latrine connected to canal or ditch,

pit latrine without slab, pit latrine with slab, no or broken water seal or a hanging latrine.

This definition differs from the JMP definition in two ways. Hygienic latrines require a water seal
or a lid on a pit to effectively separate collected faeces from the environment and does not consider sharing
status of a latrine. “No access to a latrine” included households who reported no facilities, defecating in
open spaces, fields or near water bodies. Field workers also recorded self reports of the latrine ownership

and sharing status from the respondents.

T PRs estimated using log binomial regression and adjusted for age, sex, sub-district, household

wealth, cluster-level wealth, and mother’s education level
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Table A.2: Means of each variable used in the principal
components analysis by quintile of the index

Quintile of wealth index

Variable 1 2 3 4 5

Electricity 0.040 0.076 0.115 0.170 0.200
Almirah 0.015 0.045 0.112 0.176 0.198
Table 0.033 0.122 0.163 0.190 0.198
Chair 0.044 0.134 0.175 0.190 0.201
Clock 0.008 0.031 0.063 0.091 0.168
Khat 0.039 0.077 0.135 0.186 0.199
Chouki 0.141 0.144 0.130 0.130 0.137
Radio 0.001 0.001 0.004 0.008 0.025
Black and white TV 0.001 0.005 0.018 0.022 0.053
Color TV 0.000 0.007 0.015 0.062 0.137
Refrigerator 0.000 0.000 0.002 0.014 0.057
Bicycle 0.011 0.034 0.053 0.048 0.097
Motorcycle 0.000 0.000 0.001 0.003 0.045
Sewing 0.004 0.005 0.016 0.018 0.056
Mobile phone 0.083 0.138 0.170 0.194 0.201
Sofa 0.000 0.000 0.001 0.005 0.040
Car 0.000 0.001 0.002 0.004 0.010
Land 0.016 0.016 0.009 0.011 0.005
Homestead 0.178 0.189 0.190 0.198 0.199
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Figure A.2: Cluster-level STH prevalence by cluster-level sanitation coverage
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Figure A.3: Cluster-level STH prevalence by cluster-level finished floor coverage
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Appendix B

Appendix to Chapter 2

Figure B.1: Directed acyclic graphs used to identify potential confounders and select covari-
ates for statistical models
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latrine access
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Table B.1: Planned and actual sample size

Planned Actual* Response rate (%)

Cross-sectional survey

Upazilas 58 o8

Clusters 1182 1182

Households 33096 33027 99.7
Community hygiene promoter survey

Upazilas 58 o8

Clusters 1182 1126

CHPs 1164 1110 95.2

x In the first two sub-districts, we collected data in 31 clusters each rather than 20 clusters each.
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Appendix C

Appendix to Chapter 3
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Figure C.1: Observed and counterfactual distributions of A under PIM and SIM - Scenario
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Figure C.2: Distribution of bootstrapped parameter estimates with 1,000 repetitions for each

scenario
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Figure C.3: Distribution of propensity scores for each scenario
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