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Indoles and Alkynes via Rh-Hydride Catalysis
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§ School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan 
Road, Shanghai, 200240, China

† Department of Chemistry, University of California, Irvine, CA 92697 USA

Abstract

We report an enantioselective coupling between alkynes and indoles. A Rh-hydride catalyst 

isomerizes alkynes to generate a metal-allyl species that can be trapped with both aromatic and 

heteroaromatic nucleophiles.

Graphical abstract

Aryl and heteroaryl rings can be used to increase non-bonding and electrostatic interactions 

between a small molecule and its macromolecule target.1 Among the top selling 

therapeutics, more than half contain such aryl structures (Figure 1A).2 Given the relevance 

of chirality in medicine, inventing enantioselective tools for introducing aromatic 

nucleophiles warrants pursuit.3 The hydroarylation of alkynes is a modern strategy for 

functionalizing aryl-structures,4 where two simple functional groups are coupled with high 

atom economy.5 To date, however, this approach has been limited to generating achiral 

olefins (Figure 1B, Eq. a). Classic alkyne hydroarylations generate achiral vinylated-arenes 

via mechanisms that involve alkyne activation with π-acids or arene activation to access 

aryl-metal species 4d–n In contrast, we imagined using metal-hydride catalysis to couple 

arenes with alkynes to form allylated products (Figure 1B, Eq. b).6 In this communication, 

we disclose a regio-and enantioselective alkyne hydroheteroarylation using indoles.7–9

On the basis of previous studies, Rh-hydride catalysts can isomerize alkynes (2) to allenes 

(6) via a Rh-vinyl species (5) as depicted in Figure 2.10 Subsequent allene insertion into a 
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Rh–H generates a Rh-π-allyl species (7). Various oxygen-,11 sulfur-,12 and nitrogen-based13 

nucleophiles have been used to trap 7 and generate carbon-heteroatom bonds with 

stereocontrol. However, enantioselective C–C bond formation has thus far been only 

achieved with aldehydes via enamine catalysis.14e We recognized that the key challenge to 

achieving alkyne hydroarylation would be trapping Rh-π-allyl 7 with an arene 1 (an 

inherently weaker nucleophile) to generate 3, with high enantio-and regiocontrol. However 

we were encouraged by Carreira’s Ir-catalyzed polyene cyclization that demonstrates the use 

of arenes and hetereoarenes as terminating nucleophiles.15

To test this hypothesis, we examined the coupling of various arenes and heteroarenes 1 and 

1-phenyl-l-propyne (2a) (Table 1). Successful trapping of the Rh-π-allyl species affords 

either the branched (3) or the linear regioisomer (4). Using a combination of a Rh-

bisphosphine and diphenyl phosphate,11c,14e we observed that arenes and heteroarenes with 

a wide range of nucleophilicities, based on the Mayr scale (N= 1.33 to 11.63), were 

successful coupling partners.16, 21 Initial studies using [Rh(COD)C1]2, dppf and diphenyl 

phosphate showed that the structure of the nucleophile impacted which regioisomer was 

favored. For example, with benzofuran and 1,3-dimethoxybenzene, we observed the linear 

isomers as the major product, in accordance with previous studies using Brønsted acid 

catalysis (>20:1 rr. 29% and 35%, respectively).17 In contrast, 3-ethyl-2,4-dimethyl pyrrole 

and indole generated the branched isomers upon addition to alkyne 2a (>20:1 rr, 24% and 

65%, respectively). On the basis of related studies on alkyne hydroamination, we imagine 

that regioselectivity can be controlled by tuning the catalyst and acid.13a

Indoles can be site-selectively prenylated at the N, 2-, 3-, 4-, or 7-position via enzymatic or 

synthetic processes.18 Despite the diverse reactivity of indoles, we observed selective bond 

formation at the 3-position upon coupling of alkyne 2a and indole to yield 3 as the only 

regioisomer.

With this promising reactivity demonstrated, we focused on developing an enantioselective 

coupling using indoles due to the importance of these heterocycles in natural and 

pharmaceutical products.19 We found that a protocol consisting of [Rh(COD)Cl]2, (R)-Ph-

BINAP (L1), and diphenyl phosphate gave the desired branched product (3a) in 5% yield 

and 20% ee (Table 2).20 In contrast to previous studies where carboxylic acids were used,
14a–d more acidic acids (e.g., sulfonic and phosphoric acids) were necessary for reactivity. 

Increasing the steric bulk of the phosphine substituent improved enantioselectivity (L2, 28% 

ee and L3, 93% ee). The electron-rich DTBM-BINAP (L3) also dramatically improved the 

yield to 81% yield. Other biaryl bisphosphine ligands bearing the DTBM-phosphine 

substituents such as SEGPHOS (L4), GARPHOS (L5), or MeO-BIPHEP (L6) provided 

similar enantioselectivity but lower reactivity (18–31% yield). With ligand L3, we found that 

a number of solvents could be used but found that using cyclopentyl methyl ether (CPME) 

was optimal; 3a was obtained in 92% yield and 91% ee, with lower (2.5 mol%) catalyst 

loadings.21

With this protocol in hand, we explored the hydroheteroarylation of alkyne 2a with various 

indoles (Table 3). Efficient and selective indole-alkyne coupling occurs with a variety of 

indole substitution patterns. For example, a methyl group can be incorporated at the N-, 5-, 
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and 7-positions of indole to afford the corresponding allylated indoles with up to 96% yield, 

>20:1 rr, and 92% ee (3ba, 3ga, 3oa). In comparison, lower ee is observed with 2-methyl 

indole (3ca, 69% ee). In general, we observe lower enantioselectivity with 2-methyl indole 

using various aryl-substituted alkynes.21 However, when a phenyl or tert-butyl group is 

incorporated at the 2-position higher ee is observed (3qa and 3ra, 92% and 86% ee, 

respectively). Halogenated indoles were successfully coupled with high selectivities (3da, 

3ea, 3fa, 3ja, 3na, 3pa). Chemoselective C–C bond formation was observed in the presence 

of a nucleophilic phenol (3ia) and an electrophilic methyl ester (3ka). A substrate bearing a 

pinacol borane, a convenient functional handle was transformed smoothly (3la).

Next, we studied the coupling of indole 1a with structurally diverse alkynes (Table 4). 

Electron-rich alkynes with alkyl or ether substitution undergo efficient and selective 

coupling with indole (3ab–3ae, 70–88%, >20:1 rr, 82–93% ee). Fluorinated and chlorinated 

alkynes act as efficient coupling partners (3af and 3ag, 82–93%, >20:1 rr, 88–90% ee). In 

addition, electron-deficient alkynes with trifluoromethyl substitution undergo hydroarylation 

with indole to provide 3ai in 97% yield and 92% ee. Chemoselective functionalization 

occurs even in the presence of electrophilic ethyl ester (3ah). Aromatic and heteroaromatic 

alkynes (3-thiophene and 1-naphthalene) also undergo hydroarylation (3aj and 3ak). We 

found that an aromatic or heteroaromatic group on the alkyne is critical for reactivity. For 

example, an alkyl-substituted alkyne, such as 2-octyne, proved to be unreactive under these 

conditions (3al).

To support the intermediacy of an allene, we replaced alkyne 2a with phenylallene 6a (Eq. 

1).21 Under standard reaction conditions, the desired coupling product 3aa was obtained 

with similar enantio-and regioselectivity, although in lower yield (33% yield, 91% ee, and 

>20:1 rr). This result supports the possibility of an allene intermediate. But the diminished 

yields suggest that high concentrations of allene may be detrimental due to competing 

decomposition and thus, in situ generation results in better efficiency.11c, 13a

(1)

We have demonstrated a regio-and enantioselective way to hydrofunctionalize alkynes using 

indoles. The use of Rh-hydride catalysis to isomerize alkynes has enabled access to a 

complementary hydroheteroarylation motif. Moreover, our study demonstrates the potential 

of generating C–C bonds under mild conditions using both aromatic and heteroaromatic 

motifs. Given these promising results, our future studies will focus on enantio-and 

regioselective coupling using other classes of aromatic nucleophiles.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Inspiration for asymmetric alkyne hydroarylation.

Cruz et al. Page 6

J Am Chem Soc. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Proposed Rh-hydride catalyzed alkyne hydroarylation.
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Table 1.

Alkyne Hydroarylation using Arenes with a Range of Nucleophilicities
a

a
1 (0.1 mmol), 2a (0.12 mmol), [Rh(COD)Cl]2 (4.5 mol%), dppf (9.0 mol%), (PhO)2P(O)OH (50 mol%), DCE (0.2 mL), 60 °C,

b
Nuclcophilicity in DCM.

c
Nucleophilicity of furan.

d
Nucleophilicity in MeCN.
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Table 2.

Ligand Effects on Alkyne-Indole Coupling
a–c

a
1a (0.1 mmol). 2a (0.12 mmol), [Rh(COD)Cl]2 (4.5 mol%), ligand (9.0 mol%), (PhO)2P(O)OH (50 mol%), DCE (0.2 mL), 60 °C, 3 hours.

b
Yields determined by 1H NMR with 1,2,4,5-tetramethylbenzene as internal standard.

c
Enantioselectivities determined by chiral SFC.
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Table 3.

Alkyne Hydroheteroarylation with Various Indoles
a

a
1 (0.1 mmol), 2a (0.12 mmol), [Rh(COD)Cl]2 (2.5 mol%), (R)-DTBM-BINAP (5.0 mol%), (PhO)2P(O)OH (50 mol%), CPME (0.2 mL), 60 °C. 

Isolated yields. rr’s (3:4) determined by 1H NMR analysis of the unpurified reaction mixture. Enantioselectivities determined by chiral SFC.
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b
Values in parentheses are for the transformation performed on a 1.0 mmol scale.
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Table 4.

Hydroheteroarylation of Various Alkynes with Indole
a

a
1a (0.1 mmol), 2 (0.12 mmol), [Rh(COD)Cl]2 (2.5 mol%), (R)-DTBM-BINAP (5.0 mol%), (PhO)2P(O)OH (50 mol%), CPME (0.2 mL), 60 °C. 

Isolated yields. rr’s (3:4) determined by 1H NMR analysis of the unpurified reaction mixture. Enantioselectivities determined by chiral SFC.
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