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ABSTRACT OF THE DISSERTATION 
 

 

Dynamic population activity in the striatum during associative behavior 

 

by 
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Professor Sotirios Masmanidis, Chair 

 
 
The basal ganglia are a set of subcortical nuclei that are thought to play important roles in motor 

control, action selection, goal-directed actions, motivation, and non-declarative learning. The 

striatum is the main input area to the basal ganglia, receiving diverse excitatory input from 

nearly every cortical area, thalamus, amygdala, and other subcortical structures. The striatum is 

an important site of plasticity in the basal ganglia, and also contains a complex local 

microcircuitry. Together these three elements are thought to interact to generate striatal output 

signals that modulate the rest of the basal ganglia nuclei. Despite decades of study, both the 

roles that these computations play in generating behavior, and how these dynamics arise, are 

not well understood. Here, I describe my work using large-scale in vivo recordings from 

populations of striatal neurons in mice performing a Pavlovian learning task. In chapter 1, I 

study the structure of spontaneous spiking activity to show that striatal populations that are 

involved in specific behavior are more likely to show significant correlated activity. This suggests 

that these neurons share specific inputs, most likely as a result of plasticity at glutamatergic 

synapses. In chapter 2, I focus on task-related population dynamics in striatal activity to address 
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how these dynamics may be involved in animals’ ability to time their actions. I use machine 

learning techniques to make direct comparisons between the striatum and one of its input areas, 

the orbitofrontal cortex, showing that the striatum out-performs the OFC in telling time. These 

results suggest that the representation of time is not uniform in the brain, and that the striatum 

may have a privileged role in time representation. Lastly, in chapter 3, I use optogenetic 

inhibition to causally test the necessity of corticostriatal input for generating striatal population 

dynamics during anticipatory behaviors in our task. Here, I find that suppressing inputs reduces 

firing rates in the striatum, but does not eliminate the striatum’s dynamic properties. These 

suggest that local network interactions may still play an important role in 

shaping striatal activity, and that striatal output is driven by a balance of excitation and local 

microcircuit activity. 
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Introduction 

The basal ganglia are a series of non-laminar structures situated subcortically in the cerebrum. 

These nuclei that comprise the basal ganglia can be divided into four major substructures, the 

striatum, the globus pallidus, the subthalamic nucleus, and the substantia nigra. While the 

anatomical interconnections of the basal ganglia are well characterized, a large amount of 

speculation remains as to the actual function of the basal ganglia in the brain. Here, I focus on 

the main input area of the basal ganglia, the striatum. I outline two problems that I have 

attempted to address in my graduate studies: 1) How learning and experience shapes striatal 

networks, and 2) The function and origin of complex striatal dynamics in cognition. My work 

focuses on using in vivo recording approaches to study striatal networks during the generation 

of predictive behaviors in mice. In addition to employing novel experimental approaches to 

these problems, these studies are also based on applying large-scale statistical analysis 

methods on the resulting data. 

 

Problem 1: Organization of the striatal microcircuit by external inputs 

The striatum receives excitatory input from a diverse number of brain areas. Inputs from distinct 

brain regions are thought to converge and interact at the level of the striatal microcircuit, forming 

the basis of associative learning and contributing to motor output. However, how these 

interactions ultimately shape striatal output and contribute to behavior is a problem that is only 

beginning to be addressed. In this section, I will describe two cell types of the striatal 

microcircuit whose activity depends on external excitatory signaling, the anatomy of excitatory 

corticostriatal inputs, and how plasticity at the corticostriatal synapse is thought to play a role in 

learning skilled actions. In chapter 1, I describe experiments and analyses that show how 

plasticity mechanisms may shape striatal network organization in behaving animals.  

 

Striatal microcircuitry and its glutamatergic drive 
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The principal cell class in the striatum is the medium spiny neuron (MSN), which makes up 95% 

of the neuronal population in the structure (Kita and Kitai, 1988). These neurons are the sole 

projecting population of the striatum, and are GABAergic (Kita and Kitai, 1988). MSNs display a 

relatively hyperpolarized resting membrane potential of -70mV (Calabresi et al., 1987), and 

eliciting action potentials from MSNs with current injections is impeded by outward potassium 

currents (Nisenbaum et al., 1994; Surmeier et al., 1988). Morphologically, the MSN appears to 

be a neuron that is especially specialized in receiving inputs: its dendritic arbor, approximately 

500 µm in diameter (C. J. Wilson and Groves, 1980) is densely anointed with spines (Cajal, 

1899; C. J. Wilson et al., 1983). Most corticostriatal synapses are formed with the dendritic 

spines of the MSNs, which makes the MSNs the major input recipient of the striatum (Kemp and 

Powell, 1971; Somogyi et al., 1981). 

As the sole output cell type of the striatum, MSNs perform a transformation on incoming 

excitatory signals to form spiking activity. Even though the MSNs perform both input and output 

functions, it is believed that these signals are shaped by local microcircuit interactions. Two 

major types of interaction are thought to exist: feedback and feedforward inhibition. With the 

development of intracellular filling techniques, it was found that in addition to sending long-range 

axonal projections out of the striatum, MSNs also produced extensive collateral arborizations 

that overlap and often extend past the territory of their dendrites (Kawaguchi et al., 1990; C. J. 

Wilson and Groves, 1980). The predominant targets of these GABAergic collaterals are the 

dendrites and dendritic spines of other MSNs (Somogyi et al., 1981).  

These feedback projections were proposed to mediate lateral inhibition. While initial in 

vitro experiments examining the existence of such lateral inhibition revealed no evidence for 

inhibition (D. Jaeger et al., 1994), the presence of relatively sparse connections that are 

sensitive to GABA antagonists are now generally accepted (Taverna et al., 2004; Tunstall et al., 

2002). Interestingly, both studies determined that MSN-MSN inhibition was largely 

unidirectional, which, together with the sparse coupling probability (~30% pairwise connection) 
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and a high failure-rate of synaptic transmission, still calls in to question the importance of these 

interactions in driving striatal output (Tepper et al., 2008). Thus, while the striatal microcircuit 

must contain numerous feedback connections, their functional role in striatal function is not well 

understood.  

With the lack of strong experimental evidence for viable feedback inhibition in the 

striatum, research focus on local microcircuit interactions has shifted to the relatively stronger 

source of inhibition in the striatum: local GABAergic interneurons. While there are several types 

of interneurons in the striatum (Silberberg and Bolam, 2015), the best studied is the 

parvalbumin (PV)-expressing interneuron (Cowan et al., 1990). In contrast with the MSNs, the 

PV interneurons make up a far smaller fraction of the striatal neuron population at 0.7% (Tepper 

et al., 2008). They receive multiple excitatory synapses from individual corticostriatal projections 

that also contact MSNs (Ramanathan et al., 2002). It is believed that these cells are more 

sensitive to weak stimulation of striatal afferents than MSNs, in that they more readily express 

immediate early genes than projection neurons (Parthasarathy and Graybiel, 1997). Indeed a 

later study demonstrated that these neurons generated more action potentials than MSNs to 

cortical stimulation (Mallet et al., 2005). While they are hyperpolarized in the acute slice 

preparation, it is less so than MSNs, and sufficient depolarization results in a sustained, high 

firing state that tends to be organized into bursts (Taverna et al., 2007).  

Perhaps most importantly, PV interneurons synapse perisomatically onto MSNs (Koós 

and Tepper, 1999). The axonal arborizations of PV interneurons extend further than their 

dendritic arbor (Kawaguchi et al., 1995), and synapse onto neighboring MSNs at a rate of 25% 

(Koós and Tepper, 1999). This is remarkable considering the infinitesimal population size of 

these cells relative to the MSNs. MSNs do not form synapses recurrent synapses onto PV 

interneurons, suggesting that these interneurons play a large role in shaping MSN activity. In 

addition, PV interneurons synapse onto each other and also show gap-junction coupling (Kita et 
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al., 1990; Russo et al., 2013). Thus striatal interneurons share many properties with interneuron 

populations in the cortex (Isaacson and Scanziani, 2011). 

 The role of feedforward inhibition in the striatum is a topic of great interest in the study of 

the striatal microcircuit and only recently has PV interneuron activity been studied in vivo. This is 

facilitated by the assumption that these cells can be identified in extracellular recordings by their 

spiking characteristics. In vivo these cells are referred to as fast-spiking interneurons (FSIs), as 

they display higher firing rates than MSNs, show a shorter-duration spike waveform and bursts 

in their firing activity (Berke et al., 2004; Mallet et al., 2005). Despite the ability for PV 

interneurons to exert feed-forward inhibition onto MSNs in slice experiments, in vivo, FSIs 

cooperate with MSN populations rather than simply inhibit them. FSIs show modulations during 

behavioral tasks that suggest that they operate together with MSNs and not necessarily in 

opposition to them (Bakhurin et al., 2016; Gage et al., 2010; K. Lee et al., 2017). Together, the 

MSNs and PV interneurons form the best-understood microcircuit elements in the striatum. 

However, their interactions in the intact brain and how they operate in the context of 

glutamatergic inputs to shape the striatal output signal is an area of active study.  

 

The organization of excitatory inputs of the striatum 

Anatomical tracing studies of striatal afferents have been instrumental in guiding our 

understanding of the role the structure may play in brain function. One fundamental principal of 

corticostriatal inputs is that there exists a topographic organization of projections into the 

striatum (Flaherty and Graybiel, 1991; Hintiryan et al., 2016; Kemp and Powell, 1970; Künzle, 

1977; Oh et al., 2014) and rodents (Hintiryan et al., 2016; McGeorge and Faull, 1989; Oh et al., 

2014). Similar functional cortical areas (e.g. associative cortices vs. somatosensory-motor areas 

vs. limbic cortices) converge together into specialized subdomains of the striatum. Thus several 

functional pathways, or “loops”, recruit their own domains in the striatum (Alexander et al., 

1986), but may potentially interact within the basal ganglia circuitry (Joel and Weiner, 1994). 
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The organization of corticostriatal inputs to the best studied sensorimotor loop in the putamen 

exhibits a complex somatotopy (Graybiel et al., 1994). First, the striatal somatotopic 

representations are arranged such that caudal regions of the body are oriented medially and 

rostral areas more laterally (Carelli and West, 1991; Cho and West, 1997; Künzle, 1975). 

Second, within each single body part representation domain however, injections of anterograde 

tracers into a single somatosensory region of the cortex result in labeling of projections in 

multiple patches of the putamen in the monkey (Flaherty and Graybiel, 1994; Selemon and 

Goldman-Rakic, 1985) and to a lesser extent in the rodent (L. L. Brown, 1992). Third, using two 

distinct anterograde tracers, it has been shown that the closer two representations of body parts 

are in the somatosensory cortex, the closer will be the patches of innervation from the two 

cortical areas in the striatum (Malach and Graybiel, 1986). Lastly, corresponding regions of 

motor and sensory cortices that homologous body part representations show partial overlap in 

the striatum (Hoffer and Alloway, 2001).  

Cortical inputs to the striatum have large axonal arborizations that are broadcast within 

the striatal volume (Zheng and C. J. Wilson, 2002). The origins of these inputs can either be 

collaterals from descending cortical efferents in the internal capsule (Levesque et al., 1996), or 

are collaterals of intratelencephalic cortical projections that do not terminate in deeper structures 

(Lei et al., 2004). They are either focal, about 0.5 mm in size, or more distributed, being >1 mm 

in size (Kincaid and C. J. Wilson, 1996; Levesque and Parent, 1998). The axons contain 

varicosities that are distributed along the axon with an average spacing of 12.5 µm, with each 

varicosity containing a single presynaptic density (Kincaid et al., 1998). Because the varicosities 

do not cluster and are instead widely distributed within the striatal volume, an individual cortical 

projection neuron makes few connections with any one MSN (Bolam et al., 2000). As a result, 

an individual MSN receives only a tiny fraction of its input from any one cortical projection, and 

suggests a large degree of convergence from many different cortical inputs onto each striatal 

projection neuron: over 5000 different cortical input sources per MSN (Kincaid et al., 1998). 
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Altogether, the morphology and physiology of the striatal MSN, the sparse receipt of 

individual corticostriatal inputs, and the partial overlap of functionally similar inputs suggests that 

the striatum integrates activity from distinct, but related input areas (L. L. Brown, 1992; Kocsis et 

al., 1977). This allows for the possibility that non-adjacent cortical areas that are involved in a 

given behavior have the opportunity to interact at the level of the striatum (Goto and Grace, 

2005; Hoffer and Alloway, 2001; Reig and Silberberg, 2014). A given MSN activity profile may 

therefore reflect an integrated transformation of distributed cortical activity (Zheng and C. J. 

Wilson, 2002). In addition, because of their reticence to generate action potentials, a concerted 

and coordinated input onto individual MSNs is required for them to activate (Bolam et al., 2000). 

Within these constraints one can imagine that any coordinated activity that can excite MSNs 

must have functional relevance. Indeed, these findings have supported ideas that the striatum 

plays a fundamental role in associative forms of learning.  

 

Striatal based learning and plasticity 

Prior to definitively linking the striatum with non-declarative forms of learning, it had been known 

for decades that the brain used multiple memory systems as patients with hippocampal lesions 

were able to learn new motor skills (B. Milner et al., 1998). However, the regions that mediated 

these forms of learning were not determined until analogous tasks were developed for animals 

(Morris et al., 1982). Using radial arm-maze tasks, it was shown that rats could keep track of the 

spatial position of reward-locations and avoid reentering those same locations. Rats would show 

slower learning rates and more errors after hippocampal lesions (Packard et al., 1989). This 

was consistent with human patients’ impaired declarative memory. In the same study, lesions of 

the dorsal striatum did not result in as severe an impairment in the spatial navigation task as 

hippocampal lesions. However, these rats showed impaired learning in tasks that used cues to 

guide arm-entry. These results linked the striatum with forms of associative learning in which 

specific stimuli were linked with specific actions. The double dissociation was later 
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demonstrated in humans with either amnesia or neurodegenerative disorders targeting the 

basal ganglia (Knowlton et al., 1996).  

 Decades prior to any of these discoveries, behavioral psychology had delineated a 

learning strategy-landscape that sought to characterize the various ways that animals learn to 

link environmental stimuli with actions. This framework has been influential in shaping our 

understanding of striatal function. Such associative behavior is typically classified as 

instrumental or Pavlovian. Instrumental learning enables animals to gain control of the 

environment by using movements to control how events occur around them. Traditionally, 

instrumental learning was considered to describe responses that are gradually acquired in the 

presence of specific stimuli after they were reinforced (for example by a sugar reward). This 

form of learning, labeled Stimulus-Response (S-R) implies that actions are reactions to specific 

environmental events. However, the logical interpretation of this organization is that any time the 

Stimulus is presented, animals will perform the Response. To stop performing the response 

requires experience with the lack of a reward such that the S-R association would weaken. 

However, it was demonstrated that the association can be weakened by either weakening the 

direct relationship between the Response and the reward presentation, or by giving overfeeding 

animals on the reward prior to testing for Responses (Balleine and Dickinson, 1998). In both 

cases, animals will generate fewer Responses even though the stimulus that should initiate S-R 

behavior is still present. This suggested that animals make associations between their 

Responses and the Outcome (the reward) itself, and identifying R-O learning.  

 In Pavlovian learning, animals learn to anticipate environmental events based on their 

antecedent events. Often this also results in concomitant behavioral responses to those 

antecedent events, which acquire meaning for the animal. This is a powerful form of learning 

and is obviously evolutionarily adaptive, but unlike with instrumental learning, its limitation is that 

it renders animals subject to the vagaries of their environment. Pavlovian learning is generally 
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also sensitive to Outcome devaluation, but as it is not dependent on any actions, the association 

is labeled as S-O.  

 The striatum because of its convergent inputs and cells that seem to integrate across 

many diverse inputs is a strong candidate for mediating these different forms of learning, which 

have been mapped on to distinct striatal subregions. Within the realm of instrumental learning, 

two subregions of the dorsal striatum have been associated with mediating R-O or S-R 

responding. The dorsomedial striatum is associated with R-O learning, as this area receives 

input from predominantly associative cortices, such as the frontal cortex. In addition, lesions of 

this subregion result in animals learning instrumental actions in an S-R manner in that they are 

less sensitive to outcome devaluation (Balleine et al., 2007) or action contingency degradation 

(Yin and Knowlton, 2004). In contrast, the dorsolateral region of the striatum has been linked to 

S-R forms of learning. This area of the striatum receives input from sensorimotor and infralimbic 

cortex. While with enough training on a specific action renders animals insensitive to outcome 

degradation, animals with dorsostriatal lesions never transition into this habit-like state (Yin et 

al., 2004). This double dissociation of striatal function suggests that its subregions perform 

distinct functions during the acquisition of instrumental tasks and their eventual transition into 

habits.  

 The striatum’s role in Pavlovian conditioning has been typically ascribed to ventral areas 

of the structure, the nucleus accumbens. This region has long been associated with the linkage 

of motivational drives with actions, as it receives convergent input from a variety of areas that 

are known to be involved in eliciting movements (Mogenson et al., 1980). One of these inputs 

are the dopamine projections from the midbrain (Beckstead et al., 1979; Joel and Weiner, 

2000), whose activity patterns reflect changes in the cue-reward relationships (Schultz et al., 

1997), and fit well with the Rescorla-Wagner model describing Pavlovian learning (Fanselow 

and Wassum, 2016). Lesions of the ventral striatum in rats has deleterious effects on Pavlovian 

approach behaviors (Cardinal et al., 2002), and dopaminergic blockade in this region also 
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affects acquisition and expression of conditioned behaviors in Pavlovian tasks (Parkinson et al., 

2002; Saunders and Robinson, 2012). In addition, the nucleus accumbens has been shown to 

also mediate Pavlovian components of instrumental behaviors in Pavlovian-to-Instrumental 

Transfer experiments (Corbit et al., 2001). 

If the striatum is the site of these various forms of associative learning, it can then be 

assumed that it is an important site of plasticity in the brain. In vitro, high frequency stimulation 

protocols similar to what had been applied in the hippocampus (Bliss and Lomo, 1973) results in 

long-term synaptic depression at corticostriatal synapses that is DA dependent (Calabresi et al., 

1992a; Lovinger et al., 1993). LTD has been shown to occur on both direct and indirect pathway 

MSNs, to be dependent on DA activity on cholinergic interneurons (Z. Wang et al., 2006), and 

require endocannabinoid signaling (Kreitzer and Malenka, 2007). However, another study 

showed that DA does indeed promote LTD in indirect pathway MSNs, but blocks LTD in direct 

pathway neurons, consistent with the rate model of the basal ganglia in which DA potentiates 

the direct pathway (Shen et al., 2008).  Evidence in support of the more canonical form of long-

term synaptic plasticity, long-term potentiation, also supports this form of learning as occurring 

in the striatum (Calabresi et al., 1992b; Kreitzer and Malenka, 2008; Shiflett and Balleine, 2011). 

Despite the challenge to translate the results of LTD and LTP induction protocols performed in 

vitro, several studies have demonstrated evidence for striatal plasticity in vivo. 

More direct measures of circuit modification have demonstrated that synaptic 

potentiation is also a valid form of plasticity. Ex vivo studies that record MSN sensitivity to 

corticostriatal stimulation can reveal synaptic potentiation of excitatory synapses in MSNs in the 

dorsal striatum after animals acquire new skills, suggesting that striatal plasticity can also show 

forms of LTP (O’Hare et al., 2016; Shan et al., 2014; Yin et al., 2009). In addition, a variety of 

studies have shown evidence for alterations in striatal activity with learning using extracellular 

recording in animals. These studies report changes in single neuron firing across time as 
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learning progresses (Atallah et al., 2014; Costa et al., 2004; Santos et al., 2015), or 

reorganization of entire striatal populations (Barnes et al., 2005; Thorn et al., 2010).  

Lastly, several studies have gone further to demonstrate selective potentiation of 

corticostriatal circuitry that is task-specific in behaving animals. In one series of studies, 

synchrony between striatal and motor cortical neurons developed as animals learned to control 

a BMI interface with M1 cortical neuron activity. Coherence specifically was highest between the 

specific cells selected to control the machine (Koralek et al., 2013; 2012). Another study showed 

complementary results in that only corticostriatal projections that were tuned to reward-

predicting stimuli showed potentiation at striatal synapses (Xiong et al., 2015). These studies 

underscore the importance of learning in these circuits.  

I have discussed evidence that the striatum is involved in non-declarative forms of 

learning. What are the consequences of learning on striatal networks? One of the fundamental 

principles of learning and plasticity is that networks of neurons form assemblies through 

experience (R. E. Brown and P. M. Milner, 2003; Yuste, 2015). This mechanism has been highly 

influential in explaining the brain’s high level of organization. Assemblies of neurons form in 

small networks as observed in slices of hippocampus (Bonifazi et al., 2009) and cortex (Perin et 

al., 2011). At the opposite end of the spatial scale is the existence of long-range organization of 

functional brain networks (Bullmore and Sporns, 2009; Raichle, 2010). It is presumed that the 

brain’s functional organization at these various levels arises because of plasticity mechanisms. 

I have also introduced the wide-ranging, convergent, topographically organized 

excitatory input to the striatum, it being a massive release site of dopamine, and evidence for 

plasticity at the corticostriatal synapses. Thus I anticipated that neural assemblies in the 

striatum might show functional organization as a result of plasticity at corticostriatal synapses. 

The work I discuss in chapter 1 investigates several functional relationships within the striatal 

microcircuitry in awake, behaving animals (Bakhurin et al., 2016). Primarily, I show that 

populations of neurons in the sensorimotor striatum whose activity tracked behavior in a 
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Pavlovian odor association task show higher likelihoods of statistical association while animals 

were at rest outside of the task. In addition, I demonstrate that FSI populations closely mimic 

MSN responses during the task, and preferentially form associations with task-modulated 

MSNs.  

 

Problem 2: The role of striatal population dynamics in timing predictive behavior and 

their origins 

The brain is fundamentally a prediction machine that receives sensory information and attempts 

to anticipate future events in the world (Clark, 2015). How it performs this function is an open 

question in neuroscience. In this section, I will describe a theoretical framework on how nervous 

systems naturally predict future events, with an emphasis on the neural encoding of time. Within 

the last decade, it has become clear that many brain areas, including the striatum, in behaving 

animals generate complex activity patterns during behavior.  In chapter 2, I describe my 

research into the encoding of time in such complex network activity found in the striatum of 

behaving animals. Although we can readily observe and describe these dynamics, how they 

arise from the striatal microcircuitry is not well understood. Their patterns are thought to arise 

from a complex interaction of the excitatory inputs that the striatum receives and local recurrent 

inhibitory network activity. In chapter 3, I present new work that explores this balance of inputs 

and local microcircuit activity in the generation of complex striatal output signals.  

 

Time as an emergent property of dynamic neural systems 

Nervous systems have a remarkable degree of flexibility and vast learning capacity. Learning 

and memory functions of the brain are thought to arise from the activity of large populations of 

neurons, but how activity across many cells leads to actual neural computation is not well 

understood. As discussed earlier, neurons can use plasticity mechanisms to associate together 

into functional assemblies (Fregnac, 2003). These assemblies appear to have functional 
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properties that form via their interactions, such as oscillatory activity in central pattern 

generators (Prinz et al., 2004). By assembling together into functional units, neurons can 

achieve new operations that are impossible for single neurons to perform (Hopfield, 1982; 

Yuste, 2015). While biology has had to approach understanding these assemblies in a bottom-

up manner, computational neuroscience has had many insights using models of groups of 

neurons as to how brains may learn and use memories to make predictions. 

Neural networks are often modeled in two general architectures. One class is called a 

feed-forward network (Rosenblatt, 1958). In these systems, information flows in a unidirectional 

manner, often between multiple layers. By adjusting the strengths of connections between 

layers, these systems are well suited to performing sophisticated classification and 

discrimination tasks. However, to approximate neural computation, a second class of network 

design better mimics canonical cortical networks that contain mostly excitatory neurons and 

some inhibitory interneurons that are interconnected using specific rules (Hopfield, 1982). 

Recent developments in this class of recurrently connected networks have been able to show 

properties similar to those observed in vivo, namely activity patterns that are continuously 

changing (Maass et al., 2002). It is the recurrent network that provides us with a compelling 

framework within which we can understand how the brain may tell time at subsecond 

timescales. 

 Time plays a fundamental role in nearly every aspect of natural neural function. For 

example, time is an essential dimension of speech in that the brain extracts meaning from the 

temporal relationships between sounds. Skilled movements, such as tying one’s shoes or 

playing a musical instrument, require the brain to keep track of specific actions and keep them 

in precise temporal register with each other. In all three examples, the time scales of 

timekeeping are generally shorter than one second. The neural mechanisms that mediate this 

time scale are poorly understood. 
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If we consider the brain as a dynamic system that operates using varying activity that is 

distributed across neural assemblies, it can be proposed that time is an inherent property of 

neural function itself (Goel and Buonomano, 2014). Such a model suggests that the brain can 

learn to keep track of time by monitoring the evolution of its own activity. In order to appreciate 

this perspective, one can consider that any continuously changing system can be used to tell 

time by keeping track of the evolution of the change in its configuration. A common example of 

such a system is the patterns of ripples that are caused by dropping pebbles in a still pool of 

water at specific time intervals. By taking serial photographs of the pool as the ripples evolve, 

one can make an estimate as to how much time has passed from the configuration of ripple 

patterns in each photograph. Replacing the pool of water with a network of neurons, the pebbles 

with stimuli, and the camera with populations of cells that learn to listen to these dynamics, one 

can begin to understand how time can naturally emerge from network activity.  

Two important considerations on neural networks are required in order to understand 

how they can be good time keeping mechanisms. First, such systems can keep track of serial 

order between events because of their dynamic properties. Short-term plasticity in these 

models, such as paired-pulse facilitation, synaptic depression, or long vs. short acting 

GABAergic signaling can shift or alter the underlying subthreshold membrane activity of a 

network of neurons. This can create so called ‘hidden states’ (Stokes, 2015), making the 

network sensitive to temporal order of events occurring at the sub-second timescale 

(Buonomano, 2000; Buonomano and Merzenich, 1995; Mauk and Buonomano, 2004). 

Presenting identical stimuli with different inter-stimulus intervals will therefore generate unique 

activity patterns across the population of the same network, activity at a given moment in time 

dependent on the state of the network in the prior moment (Buonomano, 2000; Maass et al., 

2002). Thus stimulus A or stimulus B will result in dynamics that are distinct from stimuli 

presented in quick succession (AB or BA).  
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Second, dynamic systems contain naturally occurring noise or variability in their activity. 

This is thought to underlie the variability seen in recordings of real neural systems (D. Lee et al., 

1998). Neural networks also generate random activity because of their intrinsic sources of 

excitation, and thus their state-dependent dynamics are sensitive to this variability to the degree 

that the same stimulus will rarely replicate the same activity pattern in these neural networks 

(Buonomano and Maass, 2009; Sompolinsky et al., 1988). This is because moment-to-moment 

configurations of the network are always dependent on prior states. Such chaotic activity will be 

challenging to learn for a read-out system. However, by adjusting the strengths of 

interconnectivity within the recurrent network, these networks can become a reliable source of 

time (Goel and Buonomano, 2014; Laje and Buonomano, 2013). The network can essentially 

learn to reproduce activity patterns, and can thus read-out mechanisms can extract meaningful 

information from a given state. Like the pool of water, the brain can be used to tell time. 

Three essential questions remain within the state-dependent models of timing. 1) How 

are biologically realistic learning rules applied to the network in order for it to become a reliable 

clock? 2) Are such state-dependent networks implemented in the brain in order to keep track of 

time? 3) If they are found in the brain, are they employed in some brain regions more than 

others? The first question will likely require further work with network models (Sussillo and 

Abbott, 2009). Several studies using in vivo recordings provide support for the second question: 

Dynamic network trajectories have been reported in a wide variety of different brain areas, 

including the hippocampus (M. A. Wilson and McNaughton, 1993), parietal cortex (Harvey et al., 

2012), motor cortices (Churchland et al., 2012), and prefrontal cortex (Fujisawa et al., 2008; 

Pinto and Dan, 2015). The third question is addressed in chapter 2.   

Recently, the striatum has been shown to also generate these kinds of dynamic activity 

patterns. Dynamic striatal network-level activity has been reported in vitro after applying tonic 

NMDA to striatal slices (Carrillo-Reid et al., 2008). Furthermore, dynamic activity patterns have 

been reported in rodents during serial-process decision making tasks (Gage et al., 2010), during 
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navigation toward rewards in a maze (Thorn and Graybiel, 2014). While one could speculate 

with regard to the computational roles of these dynamics, they have been shown to be involved 

in tasks requiring temporal processing (Gouvêa et al., 2015; Mello et al., 2015; Rueda-Orozco 

and Robbe, 2015). 

 

Striatal dynamics and time 

The basal ganglia have received extensive attention with respect to the brain’s ability to tell 

time. This focus originated from understanding that the striatum is involved in learning and 

expressing sequential actions (Graybiel, 2008). Furthermore, experiments showing that 

pharmacological manipulations of DA could bidirectionally change animals’ performance in a 

peak-interval procedure (Meck, 1983) and some reports of altered temporal processing in 

patients with Parkinson’s disease (Allman and Meck, 2012). In addition, human imaging 

experiments reveal activation in the striatum under a variety of different timing tasks (Coull et 

al., 2010).  

Most models for timing at sub-second timescales incorporate the basal ganglia. Some of 

the first models for timing mechanisms in the brain were based on a centralized pacemaker and 

counter mechanism. In this model, upon perceiving a trigger stimulus that instructs the 

beginning of an interval, a switch initiates a counter that reads out repeating signals from the 

pacemaker. A comparator mechanism would compare the number of pulses to a memorized 

store of previously experienced pulse numbers, thereby estimating the passage of time (Gibbon, 

1977). Dopaminergic signaling (Meck, 1983) and basal ganglia oscillators (Plenz and Kital, 

1999) known to have pacemaker-like tonic firing patterns were thought to serve as the counter. 

However, efforts to identify neural correlates of the accumulator component of the model have 

not been as conclusive (Buhusi and Meck, 2005). An alternative proposal relies more on the 

dependency of striatal activity on its convergent, excitatory inputs. The striatal beat-frequency 

model suggests that multiple oscillators operating at different frequencies in the brain, 
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particularly within corticostriatal interactions can be monitored and used as a time-keeping 

mechanism. At specific intervals, different oscillators will show unique overlap in phase 

relationships, and plasticity mechanisms can be used to train readouts to identify those 

coincident signatures of distinct intervals (Matell and Meck, 2004).  

The previous proposals are based on a general hypothesis that specific circuitry evolved 

in the brain in order to explicitly track time. However, the state-dependent models described 

earlier provide an elegant solution for subsecond timing in the brain that does not require that 

new circuitry evolved specifically for that purpose. This framework also suggests how the same 

neural mechanisms can be recruited for different tasks that are performed under the same 

temporal constraints. The striatum has been shown to employ these kinds of population 

dynamics to explicitly encode the passage of time (Gouvêa et al., 2015; Mello et al., 2015). 

While these studies identify population clock-like dynamics in the striatum, these findings return 

to the potential scenario that specific brain areas are specialized for encoding time. While in 

Chapter 1 I show additional evidence for population trajectories in striatal networks, I pursue 

their relationships to timing of behavior in chapter 2. There I use machine-learning approaches 

to demonstrate that multiple brain areas are capable of encoding time at the single-trial level 

and that this function seems to be distributed across multiple brain areas. The striatum and a 

cortical input area, the orbitofrontal cortex, were differentiated in their reliability and capacity to 

tell time. To support the argument that striatal networks are related to timing, I demonstrate that 

its population codes scale with anticipatory movement onset time. As this sensitivity to 

movement timing was found only in the striatum, I propose that that this brain region may have 

a privileged role in representing time.  

 

Origins of striatal dynamics 

How striatal dynamics arise requires some consideration, particularly since the striatum is an 

inhibitory network with sparse recurrent feedback, and thus cannot follow the same principles as 
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the recurrent networks based on cortical connectivity (Tepper et al., 2008). Early network 

models of the striatum involved creating mutually inhibitory, competing populations that 

operated in a “Winner-take-all” fashion (Beiser and Houk, 1998; Connolly and Burns, 1993; 

Fukai and Tanaka, 1997; Wickens et al., 1995). In these frameworks, convergent input onto a 

specific population of MSNs will lead to a large enough depolarization leading to action potential 

generation. These MSNs thus inhibit other populations that do not receive the same convergent 

input or do not reach firing threshold. These mechanisms have been suggested to support the 

striatum’s role in action selection by arbitrating between signals from the cortex (Mink, 1996; 

Redgrave et al., 1999). It is conceivable that such a mechanism, if action switching occurred 

quickly enough, could result in apparent activity dynamics.  

The assumptions made by these early models with respect to strong, mutual inhibition 

among MSNs are not supported by physiological data. Feedback inhibition is currently thought 

to be weakly influential in generating spiking activity in neighboring neurons, and is largely 

unidirectional (Taverna et al., 2004; Tepper et al., 2008; Tunstall et al., 2002). More 

contemporary models of the striatal network have incorporated more accurate MSN 

interconnectivity with one another and striatal interneurons and incorporate the possibility that 

there may be modular channels or preferred paths through which feedback inhibition operates 

(Plenz, 2003). Lastly, correctly employing correct feedback connectivity in network models of 

the striatum allow striatal networks to form clusters of synchronized neurons that continuously 

alternate their relative firing rates (Humphries et al., 2009; Ponzi and Wickens, 2010). These 

models thus provide evidence that inhibitory striatal networks with weak recurrent connections 

can still generate complex dynamic activity patterns. 

 While contemporary models of the striatum have made attempts to simulate naturalistic 

statistics of excitatory input into the striatum, we still have very little understanding as to the 

nature of these inputs in the intact brain. Furthermore, striatal models have not yet incorporated 

the topographic organization of striatal inputs, which should provide unique spatiotemporal 
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inputs in a task-dependent manner. In chapter 3 I provide preliminary data that investigates the 

relative contributions of glutamatergic input and local striatal microcircuitry to the generation of 

striatal dynamic activity. Using optogenetic inhibition of a task-relevant glutamatergic signal from 

cortex to a recipient area of the striatum, I show that striatal output is a complex interaction of 

local microcircuit activity and excitatory input. This study is among the first to causally test the 

role of glutamatergic signaling on striatal activity with high temporal resolution.  
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Chapter 1: Temporal correlations among functionally specialized striatal neural 

ensembles in reward conditioned mice  

Animals must rapidly learn to discriminate environmental cues associated with beneficial 

outcomes from irrelevant cues. In the vertebrate nervous system, the basal ganglia are a set of 

interconnected nuclei whose activity has been extensively linked to reward-guided learning and 

action selection (Graybiel, 2000; Kravitz et al., 2012). Within these circuits, the striatum serves 

as the primary input structure to the basal ganglia as well as an important site of synaptic 

plasticity (Gerfen and Surmeier, 2011; Kreitzer and Malenka, 2008). Previous efforts to 

understand the role of striatal electrophysiological activity in guiding behavior revealed that this 

region is strongly modulated by primary rewards, stimuli that predict rewards, and action (Nicola 

et al., 2004; Roitman et al., 2005; Setlow et al., 2003; L. Tremblay et al., 1998). Furthermore, a 

number of studies have reported changes in striatal activity that accompany learning (Costa et 

al., 2004; Jog et al., 1999; Koralek et al., 2013; Tang et al., 2009; Thorn and Graybiel, 2014; L. 

Tremblay et al., 1998; Xiong et al., 2015; Yin et al., 2009). These effects are consistent with a 

neural circuit that can become tuned to select specific behavioral responses in anticipation of an 

appetitive outcome. Yet despite a substantial amount of work on neural dynamics in this area, 

relatively little is known about how striatal neurons are functionally organized at the network 

level. 

In contrast to the organization of cortical microcircuits which contain strong local 

excitation (Ko et al., 2014), the striatum is a largely inhibitory structure consisting of GABAergic 

medium spiny projection neurons (MSNs) coupled with a small population of interneurons 

(Kreitzer and Berke, 2011; Tepper et al., 2008; Tepper and Bolam, 2004). At millisecond 

timescales, striatal activity is likely to be strongly influenced by shared glutamatergic signaling 

from cortical, thalamic, and limbic inputs (Cowan and C. J. Wilson, 1994; Kasanetz et al., 2006; 

Kincaid et al., 1998; Plenz and Kitai, 1998; Reig and Silberberg, 2014; Stern et al., 1998). It is 

believed that the striatum integrates these convergent streams of information, with the resulting 
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activity acting on basal ganglia output nuclei connected to association and motor control areas 

in the cortex (Alexander et al., 1986). Computational and experimental studies suggest that the 

converging input to the striatum leads to the formation of functionally specialized subsets of 

MSNs with temporally correlated activity patterns (Adler et al., 2012; Carrillo-Reid et al., 2008; 

Humphries et al., 2009; Ponzi and Wickens, 2010; Yim et al., 2011). These findings in the 

striatum, and a large body of work focusing on cortical circuits (Averbeck and D. Lee, 2006; Bair 

et al., 2001; Cohen and Maunsell, 2009; Mitchell et al., 2009; Shadlen and Newsome, 1998; 

Zohary et al., 1994), implicate correlated activity in neural computation and behavior. This 

evidence raises the possibility that temporal correlations preferentially occur among task-related 

groups of neurons in the striatum.  

To study this relationship, we used multielectrode probe recordings to simultaneously 

monitor activity from over 100 units in head-fixed mice undergoing Pavlovian reward 

conditioning. The large scale of these measurements enabled systematic analysis of 

correlations among behaviorally and electrophysiologically identified groups of cells. The results 

of this study reveal a potential organizational principle for the dynamics of striatal neurons that 

encode similar features during the behavioral task. 

 

Materials and Methods 

 

Animals and surgical procedures 

All procedures were approved by the University of California, Los Angeles Chancellor’s Animal 

Research Committee. Singly housed male C57Bl/6J mice (n=9, 12-16 weeks old, The Jackson 

Laboratory) were used in the experiments. Animals underwent an initial surgery under isoflurane 

anesthesia in a stereotaxic apparatus to bilaterally fix stainless steel head restraint bars (10 mm 

x 7.5 mm, 0.6 g) on the skull. Animals were anesthetized with isoflurane for a second surgery on 

the recording session day to make a craniotomy for acute microprobe insertion. Rectangular 
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craniotomies (0.5 mm AP x 2 mm ML) were centered on the following striatal coordinates 

relative to bregma: AP, 1.25-1.3 mm, ML, 0.95 mm. An additional craniotomy was made over 

the posterior cerebellum for placement of an electrical reference wire.  

 

Behavioral task 

After recovery from the first surgery, animals were food restricted and fed daily after each 

training session to maintain ~90% of their baseline weight. They received water ad libitum. 

During daily training sessions, animals were mounted on the head bar bracket on the recording 

rig and stood on a polystyrene spherical treadmill (200 mm diameter, Graham Sweet Studios) 

that rotated along a single axis during forward/backward ambulation. The treadmill velocity was 

monitored with an optical mouse. Delivery of the reward solution (5 µL, 10% sweetened 

condensed milk) was from a tube positioned between an infrared lick meter (Island Motion), and 

was controlled by an audible solenoid valve actuation (Neptune Research). We studied the 

behavioral and electrophysiological profiles of previously inexperienced mice trained with odors 

for the first time. Before conditioning, animals were habituated to head fixation by receiving 

rewards alone (maximum 100 rewards per daily session, 13-21 s inter-trial interval, ITI), and 

exposed to a constant flow of odorless air (1.5 L/min) through a tube. After animals successfully 

consumed 90% of delivered rewards for two consecutive days, they underwent surgery for 

recording and began conditioning with olfactory cues using an olfactometer. Odorants were 

introduced by bubbling air (0.15 L/min) through aromatic liquids diluted 1:10 in mineral oil 

(Sigma-Aldrich), and mixing this product with the 1.5 L/min stream of air. The task involved two 

stimulus conditions consisting of either a 1 s olfactory cue (CS+) followed by a temporal delay of 

1.5 s and subsequent delivery of a reward solution, or a different 1 s olfactory cue (CS-) that 

was not followed by reward (Fig. 1.1A). Odors were presented in pseudorandom order (1 s 

duration, 17-29 s ITI). The CS+ consisted of amyl acetate and the CS- consisted of citral. 

Correct CS+ hit trials were defined as those containing anticipatory licking activity detected 
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between t=0-2.5 s from the cue onset, i.e., prior to reward delivery. Correct CS- withholding 

trials were defined as the absence of any licking activity between t=0-5 s from the cue onset. 

Mice underwent recording on the first day of odor conditioning. During the recording animals 

received 100 CS+ trials paired with reward delivered at 2.5 s after cue onset and 100 CS- trials 

with no reward. 

 

Electrophysiological recordings 

Silicon microprobes (Shobe et al., 2015) were fabricated in a silicon microelectromechanical 

systems foundry (Innovative Micro Technology). Each silicon microprobe contained a total of 

256 electrodes (10 µm x 10 µm electrode dimensions, ~30 µm electrode spacing) distributed on 

multiple silicon prongs. Recordings were performed using one of two device designs. The 

prongs of each device type were arranged to provide high-density electrophysiological 

measurements across a large area of the striatum. Type I probes had 4 prongs positioned at 

fixed depths, with 64 electrodes per prong distributed along 1 mm at the tapered tip of each 

shaft. Type II probes had 5 prongs distributed at different depths, with 50 or 52 electrodes per 

prong. Recording and spike sorting procedures are described in (Shobe et al., 2015). 

 

Striatal unit classification 

All analysis was carried out with custom Matlab scripts. We used spike waveform trough-to-

peak (ttr-pk) duration and coefficient of variation (CV) of baseline firing rate to classify units into 

putative MSNs, fast spiking interneurons (FSIs), and tonically active interneurons (TANs) 

(Aosaki et al., 1994; Bennett and C. J. Wilson, 1999; Gage et al., 2010; Mallet et al., 2005). FSIs 

were separated from non-FSIs by their narrow waveform (maximum FSI ttr-pk=0.475 ms, 

minimum non-FSI ttr-pk =0.55 ms, and maximum non-FSI ttr-pk =1.25 ms). TANs were separated 

from other non-FSI units by the regularity of their baseline firing (maximum TAN CV=1.5), 

leaving units that exceeded this CV as putative MSNs. Around 9% of all units were not classified 
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in any of these three categories and were excluded from further analysis. 

 

Histology 

After recording, animals were overdosed with sodium pentobarbital and perfused with 10% 

formalin solution. Brains were extracted and fixed overnight at 4°C. To confirm the correct 

targeting of the microprobe, tissue was stained for tyrosine hydroxylase (TH) using sheep anti-

TH primary (Millipore, 1:500) and TRITC-conjugated donkey anti-sheep secondary antibodies 

(Jackson ImmunoResearch, 1:100). Microprobe tracks were determined by locations of DiD 

fluorescence in images of TH-stained sections. We confirmed that recordings were located at 

approximately the same coronal section of the striatum (range of AP positions relative to 

bregma: 1.1 to 1.4 mm). We could subsequently determine the approximate mediolateral and 

dorsoventral silicon prong positions, and thus cell position.  

 

Discriminating cell identification 

Cue-triggered firing rate, R(t), was calculated from the average firing rate of CS+ trials with 

anticipatory responding (correct hits) and CS- trials without licking (correct withholding). The 

time bin size was 50 ms. The baseline period was defined as the 5 s interval preceding cue 

presentation, and the average firing in this period was used to calculate the baseline-subtracted 

change in firing, ΔR(t). The mean baseline subtracted and normalized firing rate was obtained 

with the expression ΔR(t)/ΔRmax. Discriminating units were determined by comparing the 

distributions of firing rate during correct CS+ hit, RCS+(t), and correct CS- withholding, RCS-(t), 

trials using a permutation test on individual time bins (10,000 iterations). For each time bin, we 

shuffled the labels of firing activity for each trial to create two distributions of firing rates, 

RCS+,shuffled(t) and RCS-,shuffled(t) shuffled, that could be expected by chance for each trial type. We 

defined a unit as being discriminating if the absolute value of the difference between RCS+(t) and 
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RCS-(t) for at least two consecutive time bins was higher than the 99th percentile of the 

distribution of differences between RCS+,shuffled(t) and RCS-,shuffled(t).  

 

Behavior correlations 

Pearson correlations between spiking activity of individual units and lick rate or treadmill velocity 

were calculated over the entire recording, in time bins of 50 ms.  

 

Signal and resting state correlations 

For signal correlations, we calculated the Pearson correlation coefficient on the RCS+(t) signal of 

simultaneously recorded units, using 50 ms time bins from t=0 to 2.5 s after cue onset on 

correct CS+ hit trials. We defined resting periods as intervals of at least 2 s during which 

animals did not make any detected movements (running, licking) and were not presented with 

any external stimuli (cues and reward). To find the resting state spike count correlations, we 

serially concatenated spiking activity occurring within these epochs to create a continuous time 

series vector (500 s, 10 ms bins) representing the resting state firing rate, Rrest(t). We calculated 

resting state activity for each individual unit, and then obtained the Pearson correlation 

coefficient using these vectors. To detect significant correlations, we used the permutation test 

for correlations on each unit pair containing spiking activity in the resting state. This test 

involved shuffling Rrest(t) for one unit in the pair and recalculating the correlation coefficient 

(1000 iterations). This resulted in a distribution of possible correlation coefficients that could be 

expected by chance. We determined significance if the absolute value of the observed 

correlation exceeded the 99 percent confidence interval of the absolute value of shuffled values. 

The correlation probability is the fraction of significant pairs detected out of all possible 

simultaneously recorded pairs separated by 0.025 to 1 mm. We excluded pairs of units closer 

than 0.025 mm from all temporal correlation analysis, to minimize any effect of possible spike 

sorting errors.  
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Spike time cross correlations 

We calculated the spike time cross correlogram (CCG) between pairs of units using 1 ms time 

bins and a lag of ±25 ms. We used spike trains from the entire recording session for this 

analysis. To identify significant cross correlations we recalculated the CCG after adding a 

random 0-5 ms jitter to the spike train (500 iterations), and determining the confidence interval 

from this distribution (Fujisawa et al., 2008).  

 

Statistical tests 

We performed nonparametric permutation tests to determine the significance of linear 

correlation analysis (Shobe et al., 2015). We used 1,000 to 10,000 shuffles per test. Paired t-

test analysis was performed using standard Matlab functions. ANOVAs were performed using 

GraphPad Prism software.  

 

Results 

Mice learn a stimulus discrimination task 

To combine large-scale neural recordings with a behavioral assay of stimulus discrimination, we 

implemented a Pavlovian reward-based odor discrimination task in head-restrained mice 

(Shobe et al., 2015). Animals typically learned the association between odor presentation and 

reward delivery within one recording session (Fig. 1.1B). To examine how responding to the two 

trial types changed over time we divided the training session into blocks of 25 trials (Fig. 1.1C). 

On average, hit rate increased relative to false alarm rate during training. A two-way repeated-

measures ANOVA revealed a significant interaction between time and trial type (p=0.002, 

F3,48=5.94). Moreover, mice were more likely to respond to CS+ trials than CS- trials in the last 

block (p<0.05, Sidak’s test for multiple comparisons). The difference between hit rate and false  
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Figure 1.1. Head restrained mice demonstrate single-session discrimination learning. A: 
Experimental setup and trial schematic. Head-fixed mice were placed on a spherical 
treadmill and were presented with olfactory cues and liquid rewards while licking activity 
and treadmill velocity were monitored. Trials consisted of either 1 s of odor (CS+) followed 
by a 1.5 s pause and a reward, or a different 1 s odor (CS-) followed by no outcome. B: 
Licking activity rasters during CS+ and CS- trials for one representative animal. Shaded 
rectangles represent the olfactory cue presentation period. Black and red tick marks 
indicate individual licks during trials with correct and incorrect responses, respectively. Red 
triangles indicate the time of reward delivery. C: Learning curves for all animals (n=9) 
showing the mean probability of licking after CS+ (black) and CS- (red) trials in blocks of 25 
trials. A two-way ANOVA, repeated measures revealed a significant effect of trial block 
(p=0.003) and a significant interaction between trial types (p=0.0016, *p<0.05, Sidak’s test 
for multiple comparisons). D: Evolution of the mean discriminatory behavior rate in blocks 
of 25 trials (p=0.0021, one-way, repeated measures ANOVA). Error bars represent SEM. 
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alarm rate was used to quantify discriminatory performance on the task. This measure steadily 

increased across blocked trials (p=0.005, F3,24=8.4, one-way, repeated measures ANOVA; Fig. 

1.1D). Together, these results indicate that on average mice were able to develop selective 

anticipatory responding to CS+ and withholding of licking to CS- in a single training session. 

 

Large-scale recordings reveal a population of discriminating MSNs 

To examine the dynamics of large populations of striatal neurons during the stimulus 

discrimination task, we employed silicon microprobes with 256 recording sites. We used two 

customized designs that allowed recordings from either dorsal or ventral (nucleus accumbens) 

striatal subregions, or simultaneously from both. In all cases the recording sites spanned a large 

extent of the striatum along the mediolateral axis (Figs. 1.2A, 1.2B). Recordings captured 

spiking activity distributed across the microprobe (Fig. 1.2C), with each session yielding an 

average of 115 (range: 51-188) simultaneously measured units. The spike waveforms had a 

median signal-to-noise ratio of 9 (Fig. 1.2D). We used spike waveform width and the CV of 

baseline firing rate to classify units as putative MSNs, FSIs, and TANs (Figs. 1.2E, 1.2F). We 

found that 52% of TANs showed burst/pause responses to rewards (Fig. 1.2F, bottom), which 

are characteristic firing properties of this cell type (Aosaki et al., 1994). MSNs and TANs 

displayed wider spike waveforms than FSIs, and MSNs showed lower firing rates (mean±SD: 

1.1±1.4 Hz) than both FSIs (mean±SD: 8.7±12.4 Hz) and TANs (mean±SD: 4.0±1.8 Hz, p<0.05, 

unpaired t-test, Bonferroni corrected; Fig. 1.2G). MSNs and FSIs represented the highest 

proportion of recorded units (Fig. 1.2H), and we therefore focused the majority of our analysis 

on these two subpopulations. 

When visualized at the population level, striatal MSNs exhibited distinct activity patterns 

during correct CS+ hit and correct CS- withholding trials (pooled data from 9 animals, n=841 

MSNs; Fig. 1.3A). Since the network appeared to distinguish between the two stimulus 

conditions, we quantified the fractions of MSNs whose firing rate significantly differed between  



	 28	

  

Figure 1.2. Large-scale striatal recordings with silicon microprobes. A: Illustration of the two 
256 electrode silicon microprobe designs used to record in the striatum. Each silicon prong 
contains a high-density electrode array, with the geometry shown in magnified images of the 
tips. Short scale bars represent 10 µm. B: Fluorescence image of silicon microprobe tracks 
(white) embedded in a TH-labeled section of the striatum (orange). White outline represents 
the perimeter of the striatum. Scale bar represents 0.5 mm. C: Samples of measured signals 
from 10 representative recording sites, filtered offline from 600 to 6500 Hz. Columns show 
simultaneously recorded data from two sets of adjacent recording sites. D: Representative 
waveforms of three putative cell types, medium spiny neurons (MSNs), fast spiking 
interneurons (FSIs) and tonically active neurons (TANs) identified in this study. E: Scatter 
plot of baseline firing rate versus spike waveform trough-to-peak time with color representing 
putative cell identity. Gray circles denote unclassified units. F: (left) Representative 
waveforms of three putative cell types, medium spiny neurons (MSNs), fast spiking 
interneurons (FSIs) and tonically active neurons (TANs) identified in this study. (right) 
Corresponding mean firing rate during CS+ trials for each representative unit depicted at left 
aligned to the cue onset. Shaded rectangle represents odor cue delivery time. Red triangles 
indicate reward delivery. Rates are averaged over all correctly performed trials. G: Mean 
baseline firing rate across all recorded MSNs, FSIs, and TANs in the study (p<0.05, 
Bonferroni-corrected t-test). H: Percentages of each cell class that composed the combined 
dataset. 
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correct CS+ hit trials and correct CS- withholding trials between the cue onset (t=0 s) and 

reward delivery time (t=2.5 s; Fig. 1.3B). These units are referred to as discriminating cells. On 

average, 23% of MSNs were found to have firing rates that discriminated between these trial 

types (Fig. 1.3C). All discriminating MSNs showed higher firing to CS+ relative to CS- cues. In 

addition to showing different firing rates to the two cues, discriminating MSNs showed overall 

higher firing rate responses during correct CS+ hit trials as compared to their non-discriminating 

MSN counterparts (p=0.0004, paired t-test; Fig. 1.3D). This indicates that non-discriminating 

MSNs tend to be a less active population during CS+ trials. We next inquired whether these 

populations differentially respond to movements that were concurrently measured in the 

experiment (licking and running). We correlated spiking activity of discriminating and non-

discriminating MSNs with lick rate and treadmill velocity. We found that discriminating MSN 

firing rate was more correlated to lick rate than non-discriminating MSNs (p=0.0002, paired t-

test; Fig. 1.3E). On the other hand, discriminating and non-discriminating MSNs were equally 

correlated to treadmill velocity (p=0.9, paired t-test). These observations show that 

discriminating MSNs were more selective for licking, and were equally selective for running 

speed relative to non-discriminating MSNs. Thus, it appears that some discriminating MSNs are 

modulated by both licking and running, which is consistent with a study showing that MSNs can 

multiplex multiple aspects of behavior (Rueda-Orozco and Robbe, 2015). Furthermore, our 

definition of discriminating cells does not preclude that these neurons encode other behaviors, 

including non-motor aspects of the task.  

Taking advantage of the high throughput recording capabilities of silicon microprobes, 

we mapped neural activity across a large extent of one section of the anterior striatum. Using 

their estimated position, neurons were assigned to one of twelve subregions forming a 4 x 3 

compartment grid (Fig. 1.4A). The activity of the pooled population in each compartment was 

then averaged. Mean cue-triggered firing was found to be heterogeneous across the different 

grid compartments (Fig. 1.4B). Most strikingly, the responses to CS+ and CS- trials were most  
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Figure 1.3. Identification of a cue-discriminating subpopulation of striatal MSNs. A: Mean 
baseline subtracted and normalized firing rates for 841 MSNs obtained from 9 animals during 
correct CS+ trials (top) and correctly withheld CS- trials (center). Units in both plots are 
sorted by latency to peak firing during CS+ trials (top plot). Cues are presented between 0 
and 1 s, indicated by colored rectangles. Reward delivery during CS+ trials is indicated with 
the red triangle. Bottom panel shows the mean baseline subtracted firing rate for all neurons 
depicted in the heat plots. The orange rectangle represents the odor delivery time. B: Mean 
baseline subtracted firing rate for two MSNs during correct CS+ trials (blue) and correctly 
withheld CS- trials (magenta). Odor delivery time is depicted with the orange rectangle. Top: 
a representative discriminating MSN defined by differential firing between the CS+ and CS- 
trial conditions. Bottom: a representative non-discriminating MSN. Discrimination was 
determined on the interval from 0 to 2.5 s following cue onset. C: Pie chart showing the mean 
fraction of cue-discriminating MSNs. D: Mean value per animal of baseline subtracted firing 
rate between 0 and 2.5 s during correct CS+ trials for discriminating and non-discriminating 
MSNs (p=0.0004, paired t-test). E: Mean Pearson correlation coefficient between spiking 
activity of discriminating and non-discriminating MSNs, and lick rate (p=0.0002, paired t-test) 
or treadmill velocity (p=0.9, paired t-test). Each point represents one animal. All error bars 
represent SEM. 
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segregated in the lateral portions of the striatum. We also found that discriminating MSNs were 

more likely to be found on laterally positioned electrodes (discriminating MSN mediolateral 

position: 1.74 mm, 1 SD=0.15 mm, non-discriminating MSN mediolateral position: 1.5 mm, 1 

SD=0.15 mm, p=0.02, n=9, paired t-test; Fig. 1.4C). In agreement with these two observations, 

the mediolateral position of individual MSNs was correlated with greater differences between 

correct CS+ and CS- firing (r=0.2, p<0.0001, permutation test for correlations; Fig. 1.4D, left). 

We did not detect a corresponding correlation between CS+ and CS- firing and dorsoventral unit 

position (r=-0.05, p=0.18, permutation test for correlations; Fig. 1.4D, right). Altogether, MSN 

population firing activity in the lateral striatum was more likely to show discriminatory firing, and 

that discriminating MSNs are more selective for licking than non-discriminating MSNs. 

Previous work has shown that striatal neuron firing is altered as training progresses (L. 

Tremblay et al., 1998), suggesting that similar effects may be present in our recordings. We 

therefore investigated how discriminating and non-discriminating MSN firing changed over time 

by measuring the difference between mean CS+ and CS- evoked firing in blocks of 25 trials 

(Figs. 1.5A, 1.5B). We observed a steady change in discriminating MSN firing activity across 

trial blocks, but did not see this pattern in non-discriminating MSNs. A two-way, repeated-

measures ANOVA revealed a significant effect of trial block (p<0.0001, F3,48=11.3), and MSN 

population (p=0.0003, F3,48=21.83) and showed an interaction between trial block and MSN 

population (p<0.0001, F3,48=10.76). These results suggest that discriminating MSNs underwent 

a significant divergence from the remaining MSN population in encoding correct hit and 

withholding trials over time (Fig. 1.5C).  

Discriminating MSNs form a temporally correlated ensemble 

The large scale of our silicon microprobe measurements provided a unique opportunity to 

analyze correlated dynamics among hundreds of simultaneously recorded striatal cell pairs in 

order to study how these populations interact at the network level. Numerous studies suggest 

that correlated spontaneous neural activity reflects the underlying connectivity of the network  
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Figure 1.4. Mapping discriminatory activity across the striatal cross-section. A: Outline of 
the cross-section of the striatum spatially divided into a 4x3-compartment grid. Values 
represent the total number of recorded MSNs allocated into each of the grid’s 
compartments based on the estimated recording position of each unit. B: Mean baseline 
subtracted firing rates for all MSNs positioned in each of the 12 boxes illustrated in A. Color 
conventions are identical to Fig. 3A. C: Combined map of the location of discriminating 
(blue) and non-discriminating (gray) MSNs recorded in all mice. Centers of all recordings 
were all aligned along the dotted line. D, left panel: Difference between the mean correct 
CS+ and CS- firing rates for all neurons binned by their mediolateral recording position. 
Right panel: Difference between the mean correct CS+ and CS- firing rates for all neurons 
binned by their dorsoventral recording position. Correlations were performed between 
position and difference in rate for MSNs pooled from all recordings (n=841). 
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(Ko et al., 2014; Ringach, 2009; Stern et al., 1998). As such, the resting state has become an 

important measurement modality in neuroscience (Cole et al., 2014; Raichle, 2010; Reimer et 

al., 2014). To focus on spontaneous activity we calculated pairwise spike count Pearson 

correlations of units recorded in the same session during intermittent periods when animals 

were at rest. This corresponded to times when mice were neither moving on the treadmill, nor 

licking or receiving explicit olfactory or reward stimuli (Fig. 1.6A). 

We found that the strength of resting correlations decreased as a function of MSN pair 

separation (p<0.0001, F(9,24695)=63.75, one-way ANOVA; Fig. 1.6B). This spatial clustering 

suggests that neighboring cells are more likely to share information, possibly via overlapping 

input. We next tested whether correlated resting state dynamics show any resemblance to 

correlated activity during the behavioral task. Indeed, we identified a significant relationship 

between resting and task-evoked signal correlations during correct CS+ hit trials (p<0.0001, 

r=0.104, permutation test for correlations; Fig. 1.6C). Since the small magnitudes of resting 

state correlation coefficients are difficult to interpret (Cohen and Kohn, 2011), we identified 

correlations that could not occur by chance (p<0.01, permutation test for correlations, see 

Materials and Methods). We found that MSNs with significant resting correlations had a higher 

signal correlation coefficient than uncorrelated MSNs (p=0.0008, paired t-test; Fig. 1.6D). 

Together, these results demonstrate that the resting state of the striatal network contains an 

intrinsic organization that is related to behaviorally modulated dynamics. This relationship is 

consistent with a model in which common input drives correlated spontaneous as well as task-

evoked striatal activity. Using resting state correlation analysis, we asked if discriminating cells 

were distinct from the remaining population in terms of their likelihood of showing significant 

resting correlations. Indeed, we found that discriminating MSNs were more likely to exhibit 

significant correlations with one another than to non-discriminating MSNs (p=0.0096, paired t-

test; Fig. 1.6E). In addition to being more correlated in their spontaneous activity, discriminating 

MSNs were more excitable as revealed by their higher spontaneous firing rate (p=0.0109,  



	 34	

  

Figure 1.5. Evolution of activity in discriminatory MSNs during training. A: Mean 
baseline subtracted firing rate for all discriminating MSNs during the period starting 1s 
before cue onset until reward delivery for all CS+ trials (blue) and all CS- trials 
(magenta). Each panel depicts firing activity for each trial type in blocks of 25 trials. B: 
Same as A for non-discriminating MSNs. C: Mean firing rate difference between CS+ 
trials and CS- trials for discriminating and non-discriminating MSNs in blocks of 25 
trials. A two-way, repeated measures ANOVA revealed a significant effect of trial block 
(p<0.0001) and population (p=0.0003) and a significant interaction between the two 
variables (p<0.0001). Averages were computed across individual animals, n=9. Error 
bars represent SEM. 
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paired t-test; Fig. 1.6F). We next investigated whether discriminating MSNs changed their 

correlation strengths over time during the course of the recording session. The recording was 

divided into four blocks corresponding to 25 CS+ trials, and network connectivity was analyzed 

separately during resting periods occurring within each block of trials. We found that there was 

no effect of time in either the probability of significant correlation among discriminating MSNs or 

between discriminating and non-discriminating MSNs (p=0.143, F(3,48)=1.85, two-way, repeated 

measures ANOVA; Fig. 1.6G). Similarly, there was no significant effect of time in the resting 

state firing rates (p=0.8, F(3,48)=0.34,  two-way, repeated measures ANOVA; Fig. 1.6H). These 

findings suggest that resting state correlations among discriminating MSNs remains relatively 

stable over the course of the first training session. However, we cannot rule out the possibility 

that resting correlations or firing change over more extended periods of training. 

Firing rate is known to influence neural correlations between cells (Cohen and Kohn, 

2011; la Rocha et al., 2007). On one hand, there may be a biological basis for this relationship: 

for example, experiments in cortical circuits show that highly active cells are more likely to be 

coupled (Yassin et al., 2010). But to examine whether temporal correlations are purely 

explained by higher firing, we looked at the relationship between resting firing rate and 

correlation probability. As expected, the probability of finding significant resting state 

correlations was greatest when both MSNs had relatively high (>1 Hz) firing rate (Fig. 1.6I). 

Next, to account for the effects of firing rate we examined the correlation probability for pairs of 

cells whose resting rate did not exceed 1 Hz. Discriminating MSNs remained more likely to be 

correlated to one another than to non-discriminating MSNs (p=0.042, paired t-test; Fig. 1.6J) 

despite their no longer having significantly higher resting state firing (p=0.3, paired t-test; Fig. 

1.6K). Together, these results show that with respect to non-discriminating MSNs, 

discriminating neurons represent a functionally specialized network in the striatum that is more 

tightly correlated during both spontaneous and task-evoked activity. 

FSIs contribute to striatal microcircuit synchrony  
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Figure 1.6. Correlated resting state activity in the striatum. A: Sample data depicting resting 
state identification. The black circles and magenta traces represent individual licks and running 
speed on the treadmill, respectively. Blue shaded regions label a 5 second window following 
cue onset. Gray shaded regions depict resting periods that would be concatenated with other 
resting periods for resting state analysis. B: Mean resting correlation coefficient for all MSN 
pairs plotted as a function of pairwise distance (p<0.0001, one-way ANOVA). Data are binned 
in 0.1 mm increments. C: Mean resting correlation coefficient for all MSN pairs plotted as a 
function of the pair’s signal correlation during correct CS+ trials. Binned data show a strong 
relationship between these parameters, and unbinned data are also correlated  (n=23758 
pairs, permutation test for correlations). Removing the outlier point in the left-most bin did not 
change the significance of the correlation (p<0.0001, r=0.104, permutation test for 
correlations). D: Mean signal correlation coefficient for functionally connected (FC) and non-FC 
MSN pairs during spontaneous activity in the resting state. Points represent mean values of 
individual animals (p=0.0008, paired t-test, n=9). E: Probability of finding significant resting 
correlations (i.e., functional connections) among discriminating MSN pairs, and between 
discriminating to non-discriminating MSN pairs (p=0.0096, paired t-test). Points represent the 
fraction of pairs spaced within 0.025 to 1 mm recorded from individual animals. 
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Figure 1.6 (continued). F: Mean resting state firing rate of discriminating MSNs and non-
discriminating MSNs (p=0.011, paired t-test). Points represent the mean rate in individual 
animals. G: Resting state correlation probabilities among discriminating MSN pairs and 
between discriminating to non-discriminating MSN pairs calculated during resting times that 
occurred in different blocks of the recording. Each trial block represents resting periods 
detected within blocks of 25 CS+ trials. H: Resting firing rates for discriminating and non-
discriminating MSNs calculated during blocked resting periods. I: Mean probability of finding 
significant pairwise resting correlations, as a function of the firing rate of each cell in the pair. 
Color scale represents significant correlation probability. J: Resting state correlation 
probabilities among pairs of discriminating and between pairs of discriminating to non-
discriminating MSNs that had firing rates less than or equal to 1 Hz (p=0.042, paired t-test). K: 
Mean resting state firing rate of discriminating MSNs and non-discriminating MSNs having 
firing rates < 1 Hz. (p=0.3, paired t-test). All error bars are SEM. 
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The striatal microcircuit contains a population of fast spiking interneurons which are thought to 

be involved in regulating striatal output signals (Berke, 2011; Koós and Tepper, 1999). As 

observed for MSNs, FSIs activity was modulated during the task, forming trajectories that 

qualitatively resembled the MSN population in their responses to CS+ and CS- trials (Figs. 

1.7A). We found that FSIs were even more likely to be classified as discriminating than MSNs 

(p=0.011, paired t-test; Fig. 1.7B) and were more correlated to licking rate (p=0.016, paired t-

test; Fig. 1.7C) and running velocity (p=0.012, paired t-test) than MSNs. Approximately 15% of 

the recorded units were putative FSIs, providing a sufficiently large population for resting state 

correlation analysis. Resting state firing between FSIs was also more likely to be correlated than 

between MSNs (p<0.0001, paired t-test; Fig. 1.7D). We found that discriminating FSIs were 

more likely to be correlated in their resting state activity to discriminating MSNs than to non-

discriminating MSNs (p=0.04, paired t-test, Fig. 1.7E). We also compared the distributions of 

resting correlations among discriminating MSN pairs and pairs of discriminating MSNs and FSIs 

as a function of pairwise distance. We found that there were significant effects of both 

population (p<0.0001, F(9,4446)=31.66, two-way ANOVA; Fig. 1.7F) and pairwise distance 

(p<0.0001, F(9,4446)=4.96), suggesting that discriminating FSIs are more likely to be coupled with 

discriminating MSNs at greater distances than discriminating MSNs are coupled to each other. 

Together, these results show that discriminating FSIs and MSNs form a temporally correlated 

ensemble.  

We next searched for potential microcircuit mechanisms for how striatal cell types might 

interact locally. We analyzed spike time cross correlations to assess the temporal relationship 

between cells on a millisecond timescale. We used a spike time jitter test (Fujisawa et al., 2008) 

to identify pairs with significant low latency cross correlations, consistent with the occurrence of 

direct synaptic coupling between these cells. To characterize average significant cross 

correlation trends we performed an analysis on the entire recording session and pooled results 

from all animals in the study (n=9 mice). Only 0.1% (38/28452 pairs) of MSN pairs showed  
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Figure 1.7. Discriminating FSIs and MSNs form functional ensembles. A: Mean baseline 
subtracted and normalized firing rates for all 178 FSIs recorded from 9 animals during correct 
CS+ trials (top) and correctly withheld CS- trials (center). Units in both plots are sorted by 
latency to peak firing in the top plot. Cues are presented between 0 and 1 s, indicated by 
colored rectangles. Reward delivery during CS+ trials is indicated with the red triangle. Bottom 
panel shows the mean baseline subtracted firing rate for all FSIs depicted in the heat plots. 
Orange rectangle represents odor delivery time. B: mean fraction of cue-discriminating MSNs 
and FSIs (p=0.011, paired t-test). C: Mean Pearson correlation coefficient between spiking 
activity of all MSNs or FSIs, and lick rate, (p=0.016, paired t-test) or treadmill velocity (p=0.012, 
paired t-test) behavior. D: Probability of finding significant resting correlations among pairs of 
MSNs and FSIs (p<0.0001, paired t-test).  E: Probability of finding significant resting 
correlations among pairs of discriminating FSIs and MSNs and between pairs of discriminating 
FSIs and non-discriminating MSNs (p=0.0395, paired t-test). F: Mean resting correlation 
coefficient for all discriminating FSI and MSN pairs and all discriminating MSN pairs plotted as 
a function of pairwise distance. A two-way ANOVA revealed a significant effect of population 
(p<0.0001) and pairwise distance (p<0.0001). Data pooled from all animals are binned in 0.1 
mm increments. Error bars are all SEM. 
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evidence of low latency cross correlations typical of monosynaptic coupling (Fig. 1.8A). FSIs 

may also contribute to MSN activity through local interactions. Because of gap junction coupling 

FSIs form a highly interconnected network (Hjorth et al., 2009; Koós and Tepper, 1999; Lau et 

al., 2010; Russo et al., 2013). In agreement with their predicted synchrony, we found that FSIs 

had a higher interaction rate than MSNs (5.2%, 63/1221 pairs; Fig. 1.8B), and their cross 

correlation showed positive and symmetric coupling. Furthermore, we found that a subset of 

FSIs are coupled with MSNs (0.75%, 77/10323 pairs; Fig. 1.8C) in a manner consistent with 

feedforward inhibition (Koós and Tepper, 1999). Our results show that the likelihood of finding 

significant FSI-MSN interactions with this analysis is relatively small, and another study failed to 

find these interactions altogether (Gage et al., 2010). We also detected a small population 

(~4%) of tonically active neurons in our recordings, and found that some FSIs were coupled to 

TANs (2.4%, 9/381 pairs; Fig. 1.8D). We detected very sparse TAN-MSN (0.05%, 1/2085 pairs) 

and zero TAN-TAN connections (0/88 pairs). Taken together the cross correlation analysis 

suggests that FSIs form a highly synchronized subnetwork of cells that can alter the timing of 

MSN activity, although the impact of these interactions on circuit activity during behavior is not 

yet fully understood. 

Discussion for Chapter 1 

This study used large-scale neural recordings to characterize striatal network activity in mice 

learning to associate specific odor cues with rewards. We initially focused our analysis on 

single-unit activity during the task and identified a subpopulation of putative MSNs whose firing 

responses discriminated between correctly performed CS+ and CS- trials. Similar responses in 

individual striatal units have been previously reported during cue discrimination tasks (Nicola et 

al., 2004; Setlow et al., 2003; L. Tremblay et al., 1998). When compared to non-discriminating 

units, discriminating MSNs displayed higher firing rate change during CS+ trials. The entire 

population of discriminating MSNs also responded with higher activity to CS+ trials than to CS- 

trials. These discriminatory responses were not uniformly distributed in the striatum. By mapping  
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Figure 1.8. A, top panel: Spike time cross correlogram between one pair of MSNs exhibiting 
significant cross correlation. Blue lines represent upper and lower 99% confidence intervals of 
the time-jittered cross correlation. Bottom panel: Mean jitter subtracted and normalized cross 
correlogram for all MSN pairs exhibiting significant cross correlation. The fraction (0.1%) 
indicates the proportion of MSN pairs recorded within 0.025 to 1 mm that exhibited significant 
cross correlation according to the jitter test. Dotted red lines are aligned to a time lag of 0 s. B: 
Same as A but for FSI pairs. C: Same as A but for MSN-FSI pairs. D: Same as A but for TAN-
FSI pairs. Error bars represent SEM. 
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the recorded neural activity, we showed that discriminating MSNs were more likely to be found 

in the lateral side of the striatum. This appears to be consistent with the known anatomical 

organization of this structure; specifically, that the dorsolateral striatum receives significant input 

from the sensorimotor areas of the overlying cortex (Alexander et al., 1986; McGeorge and 

Faull, 1989). Furthermore, single-unit measurements in the lateral striatum of rodents have 

been previously found to represent sensory and motor activity of different body parts, including 

those of the orofacial area and forelimbs (Cho and West, 1997). In our study, discriminating 

MSNs were significantly more correlated with lick rate than non-discriminating MSNs. Hence, 

this discriminating population could be involved in generating striatal output signals that mediate 

stimulus-specific anticipatory licking. We also showed that discriminating MSNs were modulated 

by running speed. However, running speed was equally correlated to both discriminating and 

non-discriminating neuron firing. This may also be evidence that some discriminatory neurons 

are modulated by both types of behaviors, supporting a report on the multiplexed coding 

properties of striatal neurons (Rueda-Orozco and Robbe, 2015). These results do not rule out 

that other aspects of the task also contribute to discriminating MSN coding.  

Since there have been reports that the dorsomedial striatum is engaged during early 

stages of procedural learning (Thorn et al., 2010; Yin et al., 2009; 2005), it was slightly 

unexpected that we observed little change in activity in the medial striatal subregions (Fig. 

1.4B). This might reflect differences in learning or behavioral strategies between our study and 

other work. The dorsolateral striatum has been implicated in mediating stimulus-response 

associations that appear in well-trained animals (Corbit and Janak, 2007). However, some 

studies have reported that lesions to the dorsolateral striatum also impair acquisition of 

stimulus-response associations as well (Featherstone and McDonald, 2005). Our results show 

that at least in the case of the Pavlovian reward association task employed here, the lateral 

striatum appears to be more active than the medial regions in the early stage of training. Further 

work needs to elucidate the role of specific microcircuits in the lateral striatum in acquiring and 
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expressing this behavior. In addition to evidence that the medial and lateral striatal subregions 

have different functional contributions to behavior, the ventral striatum (nucleus accumbens) is 

also known to have unique reward processing functions in comparison to the dorsal striatum. 

This is thought to be partially based on the limbic inputs that this area receives (Voorn et al., 

2004). We did not detect a strong relationship between MSN position along the dorsoventral 

axis and the degree of differential coding between CS+ and CS- trials. This was evidence that 

the dorsolateral and ventrolateral striatum both contained discriminating units. Thus as an 

approximation, we assumed no difference in temporal correlation properties among pairs of 

discriminating neurons throughout the striatum. Although this is likely to be an oversimplification, 

our recordings lacked the single-unit throughput to reliably examine differences in correlations 

between the dorsal and ventral striatum. Furthermore, our assumption does not imply that these 

subregions encode identical information, and indeed, the ability to map activity across a section 

of the striatum revealed marked differences in cue-evoked neural dynamics.  

   We took our analysis of discriminating units in a new direction by investigating temporal 

correlations among this population. In order to avoid the potentially confounding effects of 

behavior and stimuli on neural activity and correlations, we examined spontaneous activity, 

which coincided with periods when animals were at rest. An extensive body of literature has 

shown that spontaneous neural activity is related to behaviorally evoked activity (Arieli et al., 

1996; Raichle, 2010; Ringach, 2009). We extended this principle to striatal microcircuits by 

demonstrating that resting state MSN correlations are correlated to signal correlations. We 

speculate that experience-dependent plasticity in the striatum may establish neural ensembles 

whose synaptic connectivity predisposes them to fire together both during behavior (leading to 

high signal correlation), and thus also during rest (leading to high resting correlation) (Fregnac, 

2003). A novel finding of this study was that discriminating units are more likely to be exhibit 

significant resting state correlations to each other than to non-discriminating units. Correlated 

activity among neurons is attributed to common sources of input (Cohen and Kohn, 2011). We 
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therefore postulate that an important factor that mediates the observed pattern of correlations 

between discriminating MSNs is shared glutamatergic connections (Stern et al., 1998; C. J. 

Wilson, 2013). Glutamateric axons that innervate the striatum are widely distributed (Kincaid 

and C. J. Wilson, 1996), which may enable multiple MSNs to receive the same excitatory 

signals. But since individual axons form only a few synapses with any individual MSN, eliciting 

action potentials may require coordinated glutamatergic activity from many axon terminals 

representing a diverse range of input (Kincaid and C. J. Wilson, 1996). This may explain why 

the activity of the recorded MSNs was correlated with more than one type of behavior (e.g., 

licking and running).  

We did not find that discriminating neurons became more correlated in their 

spontaneous activity during learning, nor did they show a change in their excitability. This 

observation could be explained either because our analysis methods did not have the temporal 

resolution to observe the changes, or that the discriminating MSN ensemble was already 

established prior to the experiment. In the latter scenario, discriminating neurons may already 

have been established by an animal’s past experiences in its home cage prior to training, which 

would have involved some form of licking and running behaviors. Future work will be required to 

better understand how striatal neurons are selected to participate in a specific ensemble and 

how resting state correlations are shaped by experience. Training animals on tasks in which 

they must perform arbitrary movements that they never encountered before may be a promising 

direction.  

In addition to shared glutamatergic inputs, temporal correlations among MSNs are likely 

to be mediated by striatal interneurons such as FSIs, which are thought to control MSN firing on 

millisecond timescales (Damodaran et al., 2014). FSIs receive input from many of the same 

external sources as MSNs (Fino and Venance, 2011) and are thus able to encode behaviorally 

relevant information. Indeed, we found that FSI firing rate was correlated to licking and running 

to an even greater degree than MSNs, and FSIs were more likely to be classified as 
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discriminating units than MSNs. Discriminating FSIs were also more likely to be correlated with 

discriminating MSNs over non-discriminating MSNs. Many studies have shown that FSIs 

provide feedforward GABAergic inhibition of MSN spiking activity (Gittis et al., 2010; Koós and 

Tepper, 1999; Mallet et al., 2005; Taverna et al., 2007). We found 0.75% of FSI-MSN pairs 

exhibited significant cross correlations in vivo, providing evidence for direct interactions between 

these two subpopulations of striatal neurons. It is interesting to note that another study did not 

find any significant cross correlations between these cell types in vivo (Gage et al., 2010). This 

suggests that FSI-MSN interactions may also occur over long timescales relative to single 

action potentials because of polysynaptic network effects in the striatum. FSI-FSI connectivity is 

complex as it involves both chemical and electrical synapses (Berke, 2011; Fukuda, 2009; Kita 

et al., 1990; Russo et al., 2013), whose collective influence on network activity in the intact 

brain, or behavior is not well understood.  

Another possible mechanism by which MSN activity can be correlated is through direct 

MSN-MSN connections. Despite a well-known effect of lateral inhibition among MSNs 

(Czubayko and Plenz, 2002; Taverna et al., 2004; Tunstall et al., 2002), the role of this inhibitory 

coupling in striatal computation is still unclear (Tepper et al., 2008). Our cross correlation 

analysis found very few significant low latency interactions among nearly 30,000 MSN pairs 

(only 0.1%), suggesting that individual MSN-MSN interactions are weak compared to other 

factors that influence MSN activity (D. Jaeger et al., 1994). Furthermore, inhibitory post-synaptic 

potentials (IPSPs) between MSNs have been found to be weak (Tunstall et al., 2002) relative to 

IPSPs evoked by FSIs on neighboring MSNs (Koós and Tepper, 1999). Interestingly, the ratio of 

these IPSPs is in the same order of magnitude as the ratio of significant FSI-MSN to MSN-MSN 

cross correlation pairs in our study, suggesting that cross correlations are sensitive to synaptic 

strength between two neurons. Thus, our work appears to show that MSN-MSN interactions are 

sparsely detected using cross correlation analysis, and that FSI-MSN coupling is 7.5 times more 

prevalent at the level of individual cell pairs. However, because of the abundance of MSNs in 
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the striatum compared to FSIs, which only represent ~1% of the total population (Berke, 2011), 

the cumulative effect of lateral inhibition may have a significant impact on striatal microcircuit 

dynamics, particularly during periods when large groups of MSNs are synchronized (Carrillo-

Reid et al., 2008).  

Finally, temporal correlations in striatal microcircuits are believed to strongly depend on 

neuromodulatory signals such dopamine and acetylcholine. Dopamine has a well-known role in 

modulating MSN activity and plasticity (Gerfen and Surmeier, 2011). Abnormally low levels of 

dopamine found in Parkinson’s disease have been linked to excessive synchrony of striatal 

ensembles (Jaidar et al., 2010), as well as altered FSI-MSN connectivity (Gittis et al., 2011), 

both of which could also significantly impact temporal correlations. Cholinergic interneurons are 

sparsely distributed in the striatum, but have been shown to significantly impact striatal activity 

(English et al., 2012). In addition to modulating the release of dopamine (Cachope et al., 2012; 

Threlfell et al., 2012) and GABA (Nelson et al., 2014) from midbrain dopaminergic terminals, 

cholinergic signaling has also been shown to regulate the efficacy of corticostriatal input in 

eliciting action potentials in MSNs (Pérez-Ramírez et al., 2015; Shen et al., 2005). Cholinergic 

interneurons are thought to correspond to putative TAN units (Aosaki et al., 1994). We found 

only 1 significant MSN-TAN cross correlation out of over 2000 pairs (<0.05%), which appears 

consistent with TANs influencing MSN activity on long timescales relative to single action 

potentials. On the other hand, significant FSI-TAN cross correlation events were relatively 

common (9/381, 2.4%). Coupling between these cells (Koos and Tepper, 2002) may indirectly 

influence MSN correlations as well. However, the role of interactions between TANs and other 

interneurons in coordinating MSN dynamics remains unclear.  

In conclusion, large-scale neural recordings enabled an examination of temporal 

correlations among hundreds of electrophysiologically defined striatal neurons in animals 

undergoing reward conditioning. We identified a population of cue discriminating striatal neurons 

that were more highly correlated to each other than to non-discriminating units. These results 
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suggest that discriminating units represent a functionally specialized ensemble with a higher 

occurrence of shared connections from both external as well local sources. Thus, temporal 

correlations among specialized neurons may help to pattern a strong output signal that is sent to 

downstream basal ganglia nuclei in order to facilitate behavior.  
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Chapter 2: Differential encoding of time by prefrontal and striatal network dynamics 

Introduction: 

Anticipating events that will happen in the future is among the most important functions the brain 

performs. Indeed, it has been increasingly stressed that learning and memory are prospective 

brain functions—that is, they are only adaptive to the extent that they help animals anticipate 

and prepare for the future (Dudai and Carruthers, 2005; Schacter and Addis, 2007). In order to 

anticipate when events will happen, the brain has evolved mechanisms to tell time across a 

wide range of temporal scales (Buhusi and Meck, 2005; Buonomano, 2007).  

  Timing on the scale of hundreds of milliseconds to a few seconds is of particular 

importance in that it allows animals to predict and prepare for events unfolding within the 

immediate future. Within this range animals discriminate the temporal features of sensory 

stimuli—such as those used for communication—and generate timed motor responses to 

prepare for external events—such as expected rewards. The neural mechanisms underlying the 

brain’s ability to tell time on the scale of seconds remains unknown (Mauk and Buonomano, 

2004; Merchant et al., 2013a); but a rapidly growing literature has reported that dynamically 

changing patterns of neural activity encode information about the amount of time elapsed since 

a given stimulus. These patterns of activity—which have been referred to as population clocks 

(Buonomano and Karmarkar, 2002; Buonomano and Laje, 2010; Buonomano and Maass, 

2009)—have now been observed in a wide range of different brain areas, including the striatum 

(Bakhurin et al., 2016; Chiba et al., 2008; Gouvêa et al., 2015; D. Z. Jin et al., 2009; Matell et 

al., 2003; Mello et al., 2015), prefrontal cortex (Brody et al., 2003; Carnevale et al., 2015; 

Genovesio et al., 2009; D. Z. Jin et al., 2009; Kim et al., 2013; Merchant et al., 2011; Oshio et 

al., 2008), parietal cortex (Crowe et al., 2010; Janssen and Shadlen, 2005), hippocampus 

(Kraus et al., 2013; Pastalkova et al., 2008), as well as in the bird song system (Hahnloser et 

al., 2002; Long et al., 2010). Additionally, pharmacological, lesion, and neuroimaging work 
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suggests a role of the basal ganglia (Coull et al., 2011; Meck, 1996) and prefrontal cortex 

(Dietrich and Allen, 1998; Kim et al., 2009; M. Xu et al., 2014) in timing. 

  The diversity of areas implicated in timing likely reflects the range of tasks and temporal 

scales examined. But additionally, it is possible that even within the same task, different areas 

track time in parallel (D. Z. Jin et al., 2009; Matell et al., 2003). To date, however, no single 

study has directly quantified the degree to which two different circuits encode time through 

simultaneous multiple-region recordings. Here we directly contrast the ability of two circuits, the 

striatum and orbitofrontal region (OFC) of the prefrontal cortex to encode time.  

  We examined the neural representation of time during a Pavlovian conditioning task in 

which a food reward is presented at a specific interval after a conditioned stimulus (CS). Mice 

exhibited anticipatory licking during the fixed cue-reward delay period. Silicon microprobe 

recordings of dozens of units from either the striatum or OFC, or both simultaneously, revealed 

that population activity in both circuits encoded an internal representation of elapsed time. This 

code was quantified by feeding the trial-by-trial spike pattern into a pattern classifier, and 

training it to read out elapsed time. The quality of the striatal population code for time was 

significantly better than that of the OFC. Our results support the hypothesis that many different 

brain areas simultaneously encode time, but that the striatum may play a privileged role in 

timing relative to the OFC as it holds a more accurate clock. We hypothesize that by 

continuously sampling the changing patterns of activity unfolding throughout the cortex and 

other inputs, the striatum implements a robust code for elapsed time via a temporal winners-

take-all mechanism. 

Materials and Methods: 

Animals and surgical procedures 

All procedures were approved by the University of California, Los Angeles Chancellor’s Animal 

Research Committee. Singly housed male C57Bl/6J mice (n = 11, 15-22 weeks old at the time 

of recording, The Jackson Laboratory) were used in the experiments. Animals underwent an 
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initial head bar implantation surgery under isoflurane anesthesia in a stereotaxic apparatus to 

bilaterally fix stainless steel head restraint bars on the skull with dental cement. After training, 

animals underwent a second surgery under isoflurane anesthesia on the recording day to make 

craniotomies for acute microprobe recordings. An additional craniotomy was made over the 

posterior cerebellum for placement of an electrical reference wire. All behavioral training and 

recording sessions were carried out in fully awake head-restrained animals. 

 

Behavioral task 

After a one week recovery period following the initial head bar implantation surgery, animals 

were food restricted and fed daily after each training session to maintain ~90% of their baseline 

weight. Water access was ad libitum. During daily training sessions, animals were mounted on 

the head bar restraint bracket on the recording rig and stood on a polystyrene treadmill ball (200 

mm diameter, Graham Sweet Studios) that rotated along a single-axis during forward/backward 

ambulation. Animals were initially habituated to the head-fixed recording rig and trained to 

consume a liquid reward (5 µL, 10% sweetened condensed milk). The reward was delivered 

from a tube positioned between an infrared lick meter (Island Motion) by actuation of an audible 

solenoid valve (Neptune Research). During daily reward-only training sessions, animals 

consumed 100 rewards and were exposed to a constant stream of pure air through a tube 

positioned next to the nose (100 rewards per session, 13-21 s inter-trial interval (ITI), sampled 

from a normal distribution, 1.5 L/min air flow). Once animals could consume ≥ 90% of the 

rewards for two consecutive days, they began conditioning with olfactory cues using an 

olfactometer. Odorants were introduced by bubbling air (0.15 L/min) through aromatic odorants 

diluted 1:10 in mineral oil (Sigma-Aldrich), and merging this product with the 1.5 L/min stream of 

pure air. The constant flow of pure air into which odors are introduced decreased the possibility 

that animals used decaying concentrations of odorant as a temporal cue. During daily training 

sessions, animals received pseudorandom presentations of each odor stimulus (1 s duration, 
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17-29 s ITI, sampled from a normal distribution). Isoamyl acetate served as the CS+ odor, as its 

offset was followed by a 1.5 s delay and a reward delivery. Citral served as the CS- odor as it 

was not followed by any explicit outcome. Animals received 100 presentations of each trial type 

in random order during each training session. The solenoid valves controlling the odors were 

sound isolated and thus inaudible to the mouse. Typically during the first or second day, animals 

began predicting the delivery of the reward by licking in anticipation during the interval between 

the odor and the reward. Correct CS+ trials were defined as those trials during which licking 

was initiated prior to reward delivery (between 0.7 and 2.5 s following stimulus onset). Correct 

CS- trials were defined as those containing no licking activity for 5 s following stimulus onset. 

False alarm CS- trials were defined as those trials during which licking was initiated between 0.7 

and 2.5 s following stimulus onset. Once animals demonstrated correct responding on ≥90% of 

trials, they underwent surgery for recording. During the recording session, animals received 100 

CS+ trials with 85% reward probability and 100 CS- trials. Animals performed between 54 and 

99 correct CS+ trials and between 1 and 56 false alarm CS- trials. 

 

Electrophysiological recordings 

Procedures for developing and recording with silicon microprobes are described elsewhere 

(Shobe et al., 2015). One recording was performed per animal. Each area was targeted with a 

silicon microprobe containing a total of 256 electrodes that were divided across 4 or 5 prongs. 

The electrodes spanned between 0.825 to 1.05 mm of the distal tip of the prongs. Data in this 

study were aggregated from two groups of animals. In the first group (n = 5), recordings took 

place in the anterior striatum only (silicon prong tip positions: 1.2 mm anterior, 0.8 to 2.2 mm 

lateral, -3.4 to -5.7 mm ventral relative to bregma). In the second group (n = 6), we 

simultaneously recorded from the orbitofrontal region of the prefrontal cortex (2.2 mm anterior, 

0.26 to 2.05 mm lateral, -3.6 mm ventral relative to bregma), and both the anterior and posterior 

regions of the striatum (anterior striatum: 1.2 mm anterior, 0.78 to 2.1 mm lateral, -5 mm ventral; 
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posterior striatum: -0.5 mm anterior, 2.4 to 3.2 mm lateral, -4.3 mm ventral tip position relative to 

bregma) using multiple 256 electrode probes attached together (Shobe et al., 2015). Thus the 

striatal dataset analyzed in this study was composed of the anterior striatal recordings 

performed in the first group, combined with anterior and posterior striatal recordings performed 

in the second group. The OFC dataset was composed of orbitofrontal recordings performed in 

the second group. Because of the wide spatial distribution of recording sites above the prong 

tips, the anterior striatal dataset contained units sampled from both dorsal and ventral striatal 

areas. Positions of units included in analysis are illustrated in Figure 2.5A. Spike sorting was 

performed on the data using custom, semi-automated software written in MATLAB (Mathworks, 

Cambridge MA). The placement of silicon probes was confirmed histologically at the end of 

each experiment by coating the prongs with a fluorescent dye (Di-D, Thermo Fisher) prior to 

implantation. 

 

Delineation of anatomical subregions 

In each animal, the recordings in the anterior striatum consisted of predominantly ventral or 

dorsally positioned units, with one recording containing units evenly distributed in each area. We 

used the mean electrode position of -4.2 mm DV to divide the anterior striatal recordings into 

dorsal or ventral regions. To divide the OFC into medial and lateral subregions, we used the 

mean electrode position of 1.19 mm in the OFC. 

 

Unit classification 

Analysis was performed on putative principal neuron populations, i.e., pyramidal cells in the 

OFC and medium spiny neurons (MSNs) in the striatum. We used spike waveform trough-to-

peak duration to distinguish putative MSNs and pyramidal neurons from non-principal neurons. 

Putative fast spiking interneurons (FSIs) were separated from principal cells in both the OFC 

and the striatum by their narrow waveform (maximum FSI ttr-pk = 0.475 ms, minimum principal 



	 53	

neuron ttr-pk = 0.55 ms, and maximum MSN ttr-pk = 1.25 ms (Bakhurin et al., 2016)). We also 

used a measure of firing rate regularity (coefficient of variation, CV) to exclude putative tonically 

active neurons from the striatal recordings (maximum CV = 1.5, (Bennett and C. J. Wilson, 

1999)). We recorded a total of 690 putative MSNs out of a total of 1115 striatal units and 505 

putative pyramidal cells out of a total of 654 cortical units.  

 

Identification of lick-modulated units 

We determined licking modulated units by correlating estimated firing rates with licking rate 

around lick episodes that occurred throughout the recording, including within and outside of trial 

periods. Licking episodes were defined as containing two licks that were separated by at most 

250 ms (4 Hz). Licking episodes could not occur within 5 s of each other. To calculate the 

correlations, we binned individual licks occurring within a 2 s window around each lick episode 

into 50 ms time bins. For each unit, we binned spikes occurring around each licking episode 

within a 2 s window into 50 ms bins. The resulting episode vectors reflecting licking and spiking 

counts for each episode were concatenated into 2 vectors and convolved using a Gaussian 

function (SD = 100 ms) to obtain licking and spiking rate estimates across all lick episodes in 

the recording. A Pearson correlation was performed between the lick-rate vector and each 

spiking rate vector for each unit. We considered a unit to be lick-rate-modulated if it 

demonstrated a positive correlation coefficient with a p-value below 0.01.     

 

Elapsed time prediction analysis 

All analyses were performed independently on data collected from each animal and each brain 

region, using correctly performed CS+ trials or CS- trials with false alarm licking. All decoding 

models were generated using only simultaneously recorded cells from individual animals. For 

each trial, neural population activity was analyzed over the 2.5 s interval between cue onset and 

reward delivery. Over this interval, we transformed the activity of each neuron in the 
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simultaneously recorded population into an analog rate code estimate by: (1) convolving its 

spike train with a decaying exponential function (τ = 100 ms); (2) calculating its firing rate 

estimate as a binned average (100 ms time bins) of its convolved spike train. This procedure 

resulted in 25 population firing rate vectors, one per 100 ms time bin, in the trial. 

 Elapsed time was decoded from the population firing rates in each trial by requiring a 

classifier to label each rate vector in the trial as coming from one of the 25 time bins. The 

classification task was performed with a multi-class support vector machine (SVM) with a radial-

basis function (RBF) kernel, as implemented in the LIBSVM library (v. 3.20, (Chang and Lin, 

2011)). This SVM uses a one-against-one multi-class approach to distinguish the population 

firing rates encoding a given time bin from those encoding each of the 24 other time bins (Hsu 

and Lin, 2002; Knerr et al., 1990; Kreßel, 1999). In the one-against-one multi-class approach, 

binary classifiers are trained to distinguish between the population codes for each pair of distinct 

time bins (i, j), for a total of 300 binary classifiers. SVM output is represented in 25 readout 

units, one per time bin. Given a test population rate vector, readout i generates a classification 

score indicating how closely this vector resembles the population code encoding bin i. It is 

calculated as an aggregate of the outputs of the 24 binary classifiers (i, 1), (i, 2), ... , (i, i-1), (i, 

i+1), … , (i, 25). The SVM predicts that the test vector encodes time bin k, whenever readout k 

produces the highest score of all 25 readout units (Fig. 2.2).  

 Individual animals showed varying numbers of correctly performed trials. To ensure that 

the decoding performance across animals was compared under equivalent conditions, the 

predicted time bins in all figures were generated with a Monte-Carlo cross-validation strategy. 

The rate vectors from each trial were tested on 30 independently trained SVMs, where each 

SVM was trained on the rate vectors from M randomly sampled trials excluding the test trial. 

Because the minimum number of correct CS+ trials for an individual animal was 54, we chose M 

to be 53.  
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 We controlled for the number of simultaneously recorded units used to train and test the 

models. The number of simultaneously recorded cells, N, used to generate each decoding 

model, and the number of animals used for averaging is always indicated on the figure, or in the 

figure caption. N varied from 29 to 55 because of subregion-specific limitations in the number of 

simultaneously recorded units. Furthermore, to test the effect of the population size on model 

performance (Figs. 2.3, 2.4, 2.9), we compared random samples sizes of 5, 10, 15, 20 and 40 

units taken from the entire striatum or entire OFC. During each of the 30 repetitions of the 

Monte-Carlo cross-validation, we also randomly sampled N distinct units from the population for 

training and testing. To maximize decoder performance, the RBF SVM regularization 

parameters were optimized for each brain region of each animal. Specifically, the 

misclassification cost parameter, C, and the data complexity parameter, γ, were optimized via a 

grid search with five-fold cross-validation. Across all datasets, the predominant value of C was 4 

(range: 1-16), and of γ was 0.25 (range: 0.0156-0.25). 

 

Comparing population coding between correct CS+ and false alarm CS- trials 

To determine the extent to which the CS+ code for time generalized to CS- trials, we trained the 

classifier in the same way as described above, using 55 cells per area and using M = 53 trials 

per Monte-Carlo cross-validation repetition. We then tested the models on the 25 rate-vectors 

generated for each false alarm CS- trial available for each animal (identical binning and rate 

estimation procedure as done for CS+ trials). This procedure was repeated 30 times, whereby 

random combinations of 55 units and 53 trials were employed in training the model.   

 

Lick onset prediction analysis 

For each trial, neural population activity was transformed into estimated population firing rate 

vectors using 100 ms bins, as in the elapsed time prediction analysis. This sequence, or 

trajectory, of neural population activity started 1 s before cue onset and ended 200 ms after the 
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latest lick onset time of all correctly performed CS+ trials. As a result, the number of time bins 

(and population rate vectors) analyzed per trial varied between 31 and 37 across animals.  

Lick onset bins were predicted from the population firing rates in each trial with an RBF 

SVM binary classifier. The SVM’s output is represented by a single readout that scores how 

closely each population vector in the test population trajectory predicts lick onset. The predicted 

lick onset bin was the one in which the readout was at its highest value. Testing was performed 

with a Monte-Carlo approach similar to the elapsed time prediction whereby each trial was 

tested on 30 SVMs independently trained on M = 53 randomly sampled trials. The dataset 

contains disproportionately fewer lick onset bins than non-lick onset bins, because only a single 

bin out of the 31 to 37 bins per trial can be a lick onset bin. To avoid the resulting bias in the 

SVM model, the training set for each SVM was altered by (i) randomly down-sampling the 

subset of non-lick onset bins by 75%, and (ii) expanding the set of SVM target bins to include 

one bin immediately preceding and one bin immediately following the actual lick onset bin in 

each trial, for a total of 3 target bins per trial. The misclassification cost and data complexity 

regularization parameters for the RBF SVMs were optimized for each brain region of each 

animal similarly to the elapsed time prediction analysis. Across all datasets, the predominant 

value of C was either 2 or 8 (range: 2 to 128), and of γ was 0.125 (range: 10-7 to 0.5). 

The binary SVMs were retrained for each pre-lick time to determine how far in advance 

the neural trajectory could predict lick onset (Fig. 2.10D). At each pre-lick time, the SVMs were 

retrained to predict a new set of target bins that were appropriately shifted backward in time 

from the actual lick onset bin. During training, the data down-sampling procedure was 

accordingly altered to down-sample the subset of non-target bins 

 

Trial shuffling 

Trial shuffling was used as a control for elapsed time prediction. This procedure disrupts 

correlations in simultaneously recorded population activity, but preserves the correct bin order 



	 57	

for each unit. To create trial shuffled activity, each unit’s firing rate estimate in each time bin of 

each trial was replaced with the same unit’s firing rate estimate in the same time bin of a 

randomly selected trial. This control could not be performed with the lick onset prediction 

analysis because of the resulting dissociation between lick onset times and unit activity. 

 

Bin shuffling 

Bin shuffling was used to generate population responses that were dissociated from their 

correct temporal order. To create bin shuffled activity, each unit’s firing rate estimate in each 

time bin was replaced with the same unit’s firing rate estimate in a randomly selected bin of the 

same trial. Prediction analyses from trial and bin shuffled data involved training and then testing 

on the respectively transformed datasets. To allow for direct comparisons between observed, 

trial shuffled, and bin shuffled controls, care was taken to make sure that we subsampled the 

same units and trials for analysis.  

 

Temporal warping of internal time representation 

Given our hypothesis that the population code for elapsed time and lick-onset time share a 

common internal timing representation, the population’s encoding of the animal’s internal 

representation of time should co-vary with the lick onset time. To measure this effect, correct 

CS+ trials were divided into three approximately equally sized sets corresponding to each of the 

terciles of the animal’s lick onset distribution, and SVMs were trained to classify elapsed time in 

the 1st (3rd) tercile trials, and then tested on the 2nd and 3rd (1st) tercile trials. Biases in the 

resulting error distribution would then reveal an underlying comodulation. A more direct 

measurement of this effect was performed by comparing the temporal relationship between trial-

averaged trajectories of 1st and 3rd tercile trials—if the 3rd tercile trajectory was consistently 

slower than the 1st tercile trajectory, this would indicate that the two timing variables co-

modulate one another. Population spike trains were convolved with a Gaussian function (mean 
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= 0, SD = 100 ms) and then trial averaged separately over the 1st and 3rd tercile trials, to 

produce characteristic 1st (T1) and 3rd (T3) tercile trajectories. These trajectories were compared 

by temporally aligning them as follows: (i) a Euclidean distance matrix was constructed by 

comparing the population code at each moment along T1 to the population code at each 

moment along T3 resulting in an NT× NT distance matrix (Fig. 2.7C), where NT = 2500, given the 

time resolution of the spike trains (1ms); (ii) T3 and T1 were temporally aligned with a dynamic 

time warping procedure that calculated the deviation of T3 from T1, over the course of time, as 

the path along the distance matrix between the beginning and the end of T1 with minimum 

cumulative distance (black trace in Fig. 2.7C). The relative speed (temporal warping) of T3 with 

respect to T1 was indicated by the difference between the respective times at which the two 

trajectories were temporally aligned (Fig. 2.7D)—When T3 ran slower than T1, this difference 

would be positive and monotonically increase, and when it ran faster the difference would be 

negative and monotonically decrease. 

 

Effective dimensionality 

The effective dimensionality of each recorded population was calculated from trial-averaged 

population firing rate estimates. To control for the difference in the number of units measured 

across different recordings, the effective dimensionality for each recording was calculated as a 

mean over 30 randomly sampled subpopulations of size 55. Performing principal component 

analysis (PCA) on the dynamics of a single such sample produced a list of 55 principal 

components (PCs) ordered by the percentage of variance in the population dynamics explained 

by each PC. The effective dimensionality was calculated as the minimum number of PCs 

required to explain 95% of the variance in the dynamics (Rajan et al., 2016). 

 

Statistical analysis 
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To determine the efficacy of the SVM models in elapsed time prediction, we calculated the 

correlation between the correct bin number and the predicted bin number. A single correlation 

coefficient was calculated from all the test data (i.e., 25 time bins per correct CS+ trial in the 

dataset, 30 repetitions each) for a given brain region of a given animal. For clarity, graphs 

display correlation coefficients but statistical analysis was performed using Fisher’s z-statistic for 

correlation coefficients (Fisher transformation). For the lick onset time prediction analysis, model 

accuracy was measured by the root mean squared error (RMSE) of the predicted lick onset 

bins. A single RMSE value was calculated from all the test data (i.e., 30 repetitions for the lick 

onset bin in each of the correct CS+ trials) for a given brain region of a given animal. During 

hypothesis testing, we assumed that the population size used in the analysis represented a 

repeated measure because units were sampled from the same population of units. Brain region 

(i.e., striatal versus OFC networks) was considered a repeated measure only when recorded in 

the same animal (Figs. 2.5D, 2.6B, 2.6E, 2.9, 2.10). Two-way repeated-measures and mixed-

model ANOVA analysis was performed using GraphPad Prism (version 6.0). Two-sided paired 

and unpaired t-tests were performed using standard functions in MATLAB.  

 

Results: 

Behavior 

We obtained large-scale recordings from the striatum and OFC in head-fixed mice (n = 11 mice) 

previously trained to perform an odor discrimination task (Bakhurin et al., 2016; Shobe et al., 

2015). In this task, mice were presented for 1 second with one of two olfactory stimuli. One of 

the odors (CS+) was followed by a reward delivered 2.5 s from cue onset. The delivery of the 

reward was not contingent on any instrumental actions of the animal. The second odor (CS-) 

was followed by no specific outcome (Fig. 2.1A). Following repeated presentations of the CS+ 

trials, animals learn to generate anticipatory licking behavior that preceded the reward delivery 

(Fig. 2.1B). Previous experiments from our group have demonstrated that animals time their  
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Figure 2.1. Large-scale recording of OFC and striatal networks during reward-predictive 
behavior. A: Task schema. Mice received pseudo-randomly ordered presentations of a CS+ 
odor that predicted reward delivery 2.5 s after odor onset and an unrewarded CS- odor. 
Rectangles represent odor-on time. Red triangle and vertical blue dashed line indicate reward 
delivery. B: Example of anticipatory licking behavior of one mouse during CS+ trials. Shaded 
blue rectangle represents odor presentation time. Black tick marks indicate individual licks, and 
red ticks denote lick onset times that are used for subsequent analysis. Trials are sorted by 
descending latency to first lick. C: Cumulative distributions of lick onset times during CS+ trials 
for all mice included in the study (n = 11 mice). D: Distribution of the trough-to-peak width (ms) 
recorded from striatal units (top), and OFC units (bottom). Vertical dotted lines depict the 
threshold margin (0.475 to 0.55 ms) for segregating putative FSIs (red histograms) from 
putative principal cells (striatal MSNs and OFC pyramidal cells, blue histograms). Gray bars 
reflect unclassified cells. E: Individual population-level recordings from the striatum (top) and 
the prefrontal cortex (bottom) during correctly performed CS+ trials. Each row in a matrix 
represents the mean normalized firing rate of one recorded putative projection neuron in the 
corresponding brain area. Units are sorted by their latency to maximum firing rate. Blue 
rectangles indicate CS+ odor presentation time and red triangles mark the time of reward 
delivery. 
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anticipatory licking response depending on the cue-reward delay duration (data not shown), 

consistent with timed reward-guided behavior found in many other studies (Bermudez and 

Schultz, 2014). Our recordings were performed in animals that had experienced 5-10 training 

sessions and were performing above a criterion of at least 90% correctly performed trials (see 

Methods) prior to the recording day. The onset of anticipatory CS+ licking responses was 

concentrated during the cue-reward delay period for all animals studied (mean lick onset time = 

1.8 s, SD = 0.25, Fig. 2.1C). We focused our analysis on correct CS+ trials, as these displayed 

discrete behavioral evidence that animals timed their behavior to anticipate the reward. 

 

Large-scale striatal and orbitofrontal recordings 

After animals reached criterion performance on the task, we used silicon microprobes (Shobe et 

al., 2015) to record population activity from either the striatum, OFC, or simultaneously from 

both of these areas, as the mice performed the task. We focused our analysis on putative 

principal cells in these brain regions: striatal MSNs and cortical pyramidal cells. If these brain 

areas contain a code for time, principal cells would be the most likely to transmit that signal to 

downstream brain regions (Buonomano and Merzenich, 1995). To identify these populations, 

we measured the action potential duration of each unit and used a threshold margin to 

segregate putative principal cells from fast spiking interneurons. In both the striatum and OFC, 

the distribution of spike widths across all cells was bimodal (Fig. 2.1D). Based on the separation 

of these distributions we only included putative principal cells in our analysis. We analyzed data 

from animals containing at least 55 principal units per region (n = 9 striatal recordings, and 6 

OFC recordings). Our datasets contained between 55 and 120 simultaneously recorded 

principal neurons. We found that on average, the population of striatal and prefrontal neurons 

exhibited highly heterogeneous firing activity during the cue-reward interval (Fig. 2.1E). This 

observation is qualitatively similar to the sequential firing patterns reported from other cortical 

(Crowe et al., 2010; Harvey et al., 2012; Stokes et al., 2013) and striatal recordings (Bakhurin et  
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Figure 2.2. Schematic of the support vector machine decoding of elapsed time. A: 
Training the SVM. Single-trial spiking activity of each unit in a simultaneously recorded 
population (only 3 units represented) is transformed into a firing rate estimate for the unit 
during the 2.5 s interval following odor presentation onset (not shown here). The rate 
estimates are binned (100 ms time bins) to construct 25 population activity patterns per 
trial. Using a one-against-one multiclass strategy, the SVM trains a set of binary 
classifiers to distinguish the population activity pattern in each time bin from every other 
time bin. SVM output is conceptualized as 25 readout units, one per target time bin, that 
learn to distinguish activity patterns in their respective target time bin from those in all 
other bins. B: The model is tested using a Monte-Carlo cross-validation approach in 
which each activity pattern from novel trials (i.e. those excluded from the training set) is 
tested on trained SVM models. Illustrated is the testing of bin #2 of the test trial. C: 
Readout units score each test activity pattern for how closely it corresponds to their 
respective target bins. The target time bin of the readout with the maximal value is 
chosen as the predicted time in a winner-take-all manner (marked with a red vertical line). 
Actual readout values are depicted here. 
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al., 2016; Gage et al., 2010; Mello et al., 2015; Rueda-Orozco and Robbe, 2015; Thorn and 

Graybiel, 2014). However, from the average firing rate representation it was not evident whether 

the dynamics were robust at the single-trial level. We thus examined whether it was possible to 

decode elapsed time and lick onset time on a trial-by-trial basis during correctly performed CS+ 

trials. 

 

Decoding time from network dynamics 

To investigate the possibility that neural network activity could provide a mechanism for the 

stable representation of time, we used a support vector machine (SVM) decoder to detect and 

measure the reoccurrence of dynamic population activity in striatal and OFC networks on a trial-

by-trial basis. An SVM was trained to identify population activity in each of the 25 time bins (100 

ms bin duration) between stimulus onset and reward delivery.  

 Each unit’s firing rate for the 25 time bins of a given trial was estimated from its spike 

train over that trial (see Methods). Next, population firing rate dynamics across multiple trials 

were used to train the SVM classifier (Fig. 2.2A). During testing, population activity from time 

bins of novel trials were presented to the trained SVM. SVM output for the population activity in 

a given time bin was represented by a vector of values generated by 25 readout units, where 

each readout value i represented a prediction score that the input pattern was from time bin i. 

This resulted in a vector of 25 readout values per test time bin (Fig. 2.2B). For each test time 

bin, the SVM predicted its bin label as the index of the maximal readout (Fig. 2.2C). Testing was 

performed with a Monte-Carlo cross-validation approach that controlled for the variance in the 

number of trials and size of the simultaneously recorded population across brain regions and 

animals (see Methods). 

 

Elapsed time encoding by striatal and cortical networks 
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We first investigated the ability of striatal MSN dynamics during single CS+ trials to be sorted 

into the correct temporal order by an SVM. Strong SVM performance would suggest that striatal 

neuron populations stably encode an internal representation of time elapsed from stimulus 

onset, and may provide a mechanism by which downstream regions could readout temporal 

information from striatal activity. We found that the highest SVM readout values during testing 

generally fell along the diagonal line in single trial cross-temporal classification matrices (Fig. 

2.3A).  

Figure 2.3B, top illustrates the average classification matrix over all trials in a single 

striatal recording and reveals the presence of a time code in the recorded dynamics. For each 

recording, we repeated the analysis on two different control patterns. First, to evaluate the 

temporal encoding efficacy of striatal population dynamics, we trained and tested an SVM on 

the dataset after scrambling its temporal dynamics by bin shuffling, wherein the sequence of 

firing activity for each unit within each trial was independently shuffled (see Methods). The 

control confirmed that bin shuffling completely eliminated the ability of the SVM to identify a 

code for elapsed time in the population activity (Fig. 2.3B, center). Since the above analysis 

was based on a set of 55 simultaneously recorded cells, we are able to determine the effect of 

noise correlations on the time code (Averbeck et al., 2006; Averbeck and D. Lee, 2006; 

Nirenberg et al., 2001; Schneidman et al., 2003)—in other words, does decoding based on 

simultaneously recorded cells hamper or improve performance. To do this, we measured 

decoding performance after independently shuffling the firing activity of each unit across trials 

(see Methods). While bin shuffling population activity rendered time bin predictions entirely 

random, trial shuffled controls performed very similarly to models trained on observed data (Fig. 

2.3B, bottom).  

In order to quantify performance, and the effects of bin and trial shuffling on the quality of 

the time code, we calculated the Pearson correlation coefficient between the correct and 

predicted time bin values in each recording (Fig. 2.3C). Across all striatal datasets, population 
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Figure 2.3. Striatal networks encode elapsed time. A: Cross-temporal classification 
matrices visualizing SVM model performance on striatal network data recorded during 
individual correctly performed CS+ trials. Each column represents the normalized readout 
values normalized across SVM readout units for the activity pattern from the corresponding 
correct time bin (X-axis). Peaks in each column reflect the predicted time chosen by the 
model. The black dotted line lies along the diagonal. B: Top, average of classification 
matrices generated across all correct CS+ trials for one striatal recording. Center, average 
classification matrix across all correct CS+ trials after bin shuffling each unit’s activity in the 
same recording. Bottom, average classification matrix across all correct CS+ trials after trial 
shuffling each unit’s activity in the same recording. C: Scatter plot of predicted versus 
correct time bins across 80 correctly performed CS+ trials for one striatal recording. 
Predicted bin numbers (Y-axis) were jittered (Gaussian noise, mean = 0, SD = 0.2) to 
separate overlapping points. The blue solid line represents the regressed line describing 
the correlation between actual and predicted time. The red dotted line lies along the identity 
line. D: Mean correlation coefficients between predicted and correct time bins across all 
striatal recordings (55 units per animal, n = 9) for observed, bin shuffled and trial shuffled 
data types. SVM classification of population activity was repeated 30 times (see Methods). 
SVM models trained on trial shuffled activity performed better than when trained on 
observed (non-shuffled) activity patterns (p = 0.023, paired t-test). Bin shuffled models 
performed at chance level, significantly worse than non-shuffled models (p < 0.0001, paired 
t-test).  
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Figure 2.3 (continued). E: Comparison of SVM performance using non-shuffled and trial 
shuffled network activity as a function of the number of units used for training and testing. 
There was a significant effect of data type (F1,8 = 7.9, p = 0.023), and number of units (F6,48 
= 109.7, p < 0.0001, two-way repeated-measures ANOVA). F: Bin shuffled models 
performed worse than non-shuffled models for each population size used in the model (F1,8 
= 178.0, p < 0.0001, two-way repeated-measures ANOVA). All error bars are SEM. 
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dynamics were highly predictive of elapsed time during the task (mean Pearson correlation 

coefficient = 0.85, SD = 0.069, n = 9). However, while bin shuffling reduced time prediction to 

chance levels, elapsed time decoding performance on the trial shuffled control was slightly, but 

significantly, better than on the observed data (mean Pearson correlation coefficient = 0.88, SD 

= 0.064, p = 0.024, paired t-test on Fisher transformed coefficients, Fig. 2.3D). This shows that 

the neurons are not noise independent and that the noise correlations—the within trial 

correlations between neurons—impair decoding.  

Next, we examined if performance was dependent on the size of the striatal population 

used in decoding time. A two-way, repeated-measures ANOVA detected a significant effect of 

population size on classification performance (F6,48 = 109.7, p < 0.0001). The analysis again 

revealed a significant effect of trial shuffling (F1,8 = 7.9, p = 0.023, Fig. 2.3E). These results 

show that under physiological conditions, striatal noise correlations are detrimental for neural 

coding of elapsed time, in agreement with the detrimental role of correlations found in other 

studies (Averbeck et al., 2006; Averbeck and D. Lee, 2006; Cohen and Maunsell, 2009; Mitchell 

et al., 2009; S. Tremblay et al., 2015). A separate two-way, repeated-measures ANOVA 

comparing observed and bin shuffled data at different population sizes also revealed a 

significant effect of bin-shuffling (F1,8 = 178.0, p < 0.0001, Fig. 2.3F). 

 We next applied these same analyses to OFC pyramidal cell dynamics using the same 

procedures and numbers of cells. We found that OFC network dynamics also encoded elapsed 

time during the task (Fig. 2.4A). Interestingly, in contrast to the striatal code, we found no 

significant difference in the encoding efficacy between observed (mean Pearson correlation 

coefficient = 0.7, SD = 0.104, n = 6) and trial shuffled OFC network activity (mean Pearson 

correlation coefficient = 0.72, SD = 0.13, p = 0.21, paired t-test, Fig. 2.4B). While a two-way, 

repeated-measures ANOVA demonstrated that decoding performance using OFC population 

dynamics also depended on population size (F6,30 = 49.6, p < 0.0001), the analysis did not show 

a significant difference between the encoding efficacy of observed and trial shuffled data (F1,5 = 
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2.4, p = 0.18, Fig. 2.4C). These findings suggest that temporal encoding in OFC dynamics is 

potentially less sensitive to noise correlations than in the striatum. Finally, as expected, bin 

shuffling the OFC dynamics eliminated the temporal code and resulted in chance level decoding 

performance (two-way, repeated-measures ANOVA, F1,5 = 109.5, p < 0.0001, Fig. 2.4D). 

 

Striatal networks outperform prefrontal networks in encoding elapsed time 

Consistent with the striatal results above, other experimental studies have reported the 

presence of a time code in the striatum (Gouvêa et al., 2015; Mello et al., 2015). We found that 

OFC networks also encode time, suggesting that this information is distributed throughout 

multiple brain areas. An important and unaddressed question pertains to the relative quality of 

this neural code in the striatum and OFC. We thus compared the performance of OFC and 

striatal network dynamics in encoding elapsed time. SVM classification performance was 

significantly better when trained and tested on striatal activity than on OFC activity (p = 0.0092, 

unpaired t-test, Fig. 2.4E). A two-way mixed-model ANOVA between brain region and 

population size revealed that this effect was consistent across a broad range of population sizes 

(F1,13 = 9.5, p = 0.01, Fig. 2.4F). These results suggest that striatal networks show a significantly 

more robust representation of time compared to the OFC.  

 

Dorsal and ventral striatum equally encode elapsed time 

In the above analysis we adopted an unbiased approach for quantifying temporal coding in the 

striatum, in that we incorporated units from both anterior and posterior areas of this structure 

(Fig. 5A, left and center). Most of our recorded units were from the anterior striatum, but it is 

unclear to what extent this subregion by itself contained a better neural code than the OFC. We 

therefore repeated our comparative analysis after excluding posterior striatal MSNs (this 

reduced the minimum number of simultaneously recorded cells from 55 to 48). We found that 

the anterior striatum alone continued to have an improved code for time over the OFC (Pearson  
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Figure 2.4. Striatal networks encode elapsed time better than OFC networks. A: Average 
cross-temporal classification matrix across all correct CS+ trials for one OFC recording. 
Color scale is the same as in Fig. 3B. B: Mean correlation coefficients across all OFC 
recordings (55 units per animal, n = 6) for observed, bin shuffled and trial shuffled data 
types. SVM classification of population activity was repeated 30 times (see Methods). 
SVM models trained on trial shuffled activity were not significantly different from those 
trained on non-shuffled activity patterns (p = 0.21, paired t-test). Bin shuffled models 
performed at chance level and significantly worse than the non-shuffled models (p < 
0.0001, paired t-test). C: Comparison of SVM performance using non-shuffled and trial 
shuffled network activity as a function of the number of units. There was no significant 
effect of data type (F1,5 = 2.4, p = 0.18), but we observed a significant effect of the 
number of units (F6,30 = 49.6, p < 0.0001, two-way repeated-measures ANOVA). D: Bin 
shuffled models performed worse than non-shuffled models for each population size used 
in the model (F1,5 = 109.5, p = 0.0001, two-way repeated-measures ANOVA). E: 
Comparison of SVM model performance between all striatal and OFC recordings (55 
units per region, n = 9 striatal recordings and 6 OFC recordings) showed that the 
classification performance of models trained on striatal network data was significant 
better (p = 0.0092, unpaired t-test). F: Mean performance of SVM classification as a 
function of number of units used in training and testing for each brain region. A mixed-
model ANOVA revealed a significant effect of number of units (F5,65 = 191.9, p < 0.0001) 
and a significant effect of brain region (F1,13 = 9.0, p = 0.01). The ANOVA excluded the 
‘all units’ column as it contained inconsistent numbers of cells between regions. All error 
bars are SEM. 
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correlation coefficients: mean anterior striatum = 0.83, SD = 0.083, n = 9; mean OFC = 0.69, SD 

= 0.083, n = 6, p = 0.0083, unpaired t-test, Fig. 2.5B). Next we focused on differences between 

dorsal and ventral areas of the anterior striatum. Few studies have investigated whether the 

ventral striatum encodes time; however, the role of this area in reward prediction suggests that it 

may have a code for time. We took advantage of our widely distributed recording positions to 

compare the decoding performance of dorsal and ventral striatum MSNs (we used datasets with 

at least 35 simultaneously recorded MSNs). We found that SVM models trained on dorsal or 

ventral units performed as well as models trained with units taken randomly from either dorsal or 

ventral areas (F2, 16 = 0.02, p = 0.98, one-way ANOVA, Fig. 2.5C). Together, these results 

suggest that the quality of temporal coding appears to be evenly distributed across the striatum, 

and that this area consistently outperforms the OFC. 

 

Medial and lateral OFC equally encode elapsed time 

Our cortical recordings were mostly positioned within the OFC (Fig 2.5A, right). However, this 

area is comprised of several different anatomical subdivisions, raising the possibility that certain 

subregions encode time better than others. We therefore examined whether medial or lateral 

fields within our OFC recordings had a differential neural representation of time (we used 

datasets with at least 29 simultaneously recorded pyramidal cells). We found that models 

trained on medially or laterally positioned OFC units were just as effective at representing time 

as models using units taken randomly from either medial or lateral areas (F2,10 = 0.48, p = 0.64, 

one-way, repeated-measures ANOVA, Fig. 2.5D). These findings suggest that the encoding of 

time via population dynamics is not localized to specific regions of the OFC.    

 

Lick-related movement does not explain the striatum’s improved encoding of time  

Timing and movement are intimately related. Indeed in the current task licking should be driven 

in part by an internal representation of time, but on the other hand it is possible that some of the  
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Figure 2.5. Population encoding of elapsed time is distributed throughout striatum and 
OFC. A: Illustrations of recording positions of all principal units included in analysis from 
posterior striatum (left), anterior striatum (center), and OFC (right). Dotted red lines indicate 
boundaries used to separate units recorded in dorsal and ventral striatum (center) or those 
recorded in lateral and medial OFC (right). Scale bar represents 1 mm. AP positions are 
distance from bregma. Section diagrams were adapted from Franklin and Paxinos (2008).  
B: Comparison of elapsed time decoding performance between models trained on 
recordings from OFC and anterior striatal neurons showed that anterior striatum performs 
better than OFC (p = 0.0083, unpaired t-test). C: Recordings in the anterior striatum were 
grouped based on whether they included predominantly dorsal or ventrally recorded 
neurons (N ≥ 35 cells), with one recording being distributed into both subregions. Dorsal 
and ventral populations performed as well as populations containing 35 cells drawn 
uniformly at random from both areas (F2,16 = 0.02, p = 0.98, one-way ANOVA). D: All 
recordings in the OFC were bisected into lateral and medial populations. Lateral and 
medial populations performed as well as populations containing 29 cells drawn uniformly at 
random from both areas (F2,10 = 0.48, p = 0.64, one-way repeated-measures ANOVA). All 
error bars are SEM. 
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code for time we observed might directly reflect neurons encoding motor behaviors. If the 

encoding or planning of motor activity were the primary basis for the observed code for time 

during reward-anticipatory licking after CS+ cues, then we would predict any licking episode 

would also encode time. We therefore examined whether population coding for time transferred 

to false alarm CS- trials, in which animals errantly licked following CS- odor presentations. 

Licking onset time was conserved between CS+ trials and false alarm CS- trials (mean CS+ lick 

onset time = 1.8 s, SD = 0.25 s; mean CS- lick onset time = 1.8 s, SD = 0.30 s; p = 0.80, paired 

t-test, Fig. 2.6A). To quantify the extent to which time-related coding could be detected during 

false alarm trials, we trained the SVM decoder on correct CS+ trials, and tested the model on 

the 0 to 2.5 s interval during false alarm trials. The performance of these models tested on false 

alarm trials was severely attenuated as compared to their performance when tested on correct 

CS+ trials (Fig. 2.6B). A two-way, mixed-model ANOVA revealed a significant effect of trial type 

used for testing (F1,13 = 33.0, p < 0.0001). The ANOVA did not show a significant interaction 

between brain region and trial type, demonstrating that both striatum and OFC saw an equal 

decrement in model performance when tested on CS- trials (F1,13 = 0.5, p = 0.48). These results 

suggest that temporal encoding is not only sensitive to licking, but also to other task variables 

such as the cue context.  

To further examine the contribution of lick-related movement to our data, we identified 

principal cells that were positively correlated with lick rate. While we identified lick-rate-

modulated cells in both areas, the striatum contained a significantly greater proportion of these 

cells than the OFC (mean striatal lick-modulated fraction = 0.35, SD = 0.127; mean OFC lick-

modulated fraction = 0.226, SD = 0.049, p = 0.044, unpaired t-test, Fig. 2.6C). Figure 2.6D 

depicts two examples of lick-rate-modulated neurons from the striatum (left) and the OFC 

(right). We re-trained and tested the decoder after excluding these cells from the population. We 

found that removing lick-rate-modulated cells reduced decoder performance below what would 

be expected after removing the same number of randomly selected cells (F1,13 = 17.2, p =  
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Figure 2.6. Population coding of elapsed time is specific to CS+ trials and not fully 
explained by licking behavior. A: Mice showed similar licking onset times during CS+ 
trials and CS- false alarm trials (p = 0.80, paired t-test). B: Comparison of performance 
in decoding elapsed time for SVM models trained on correct CS+ trials and tested on 
either correct CS+ trials or on CS- false alarm trials (55 units per region, n = 9 striatal 
recordings and 6 OFC recordings). There was a significant effect of trial type (F1,13 = 
33.0, p < 0.0001, two-way, mixed-model ANOVA), and a significant effect of brain 
region (F1,13 = 18.3, p = 0.00091), with no significant interaction (F1,13 = 0.5, p = 0.48). 
C: Mean fraction of recorded principal cell populations showing significant activity 
modulation by licking in each brain region (p = 0.044, unpaired t-test). D: Example 
licking-modulated principal cells recorded in each region (left, Striatal MSN; right, OFC 
pyramidal). Shaded blue rectangle represents odor presentation time. Black tick marks 
indicate individual spikes, red ticks denote lick onset times, and blue dotted line shows 
reward delivery time. Trials are sorted by descending latency to first lick. E: 
Comparison of elapsed time decoding performance between models generated using 
all cells or all non-lick-modulated cells. Performance showed a significant decrease with 
the exclusion of lick-modulated cells (F1,13 = 17.2, p = 0.0011, two-way, mixed-model 
ANOVA). The striatum maintained an improved code for time over the OFC after 
excluding lick-modulated cells (F1,13 = 7.4, p = 0.017). We did not observe a significant 
interaction between region and population (F1,13 = 0.9, p = 0.35). All error bars are 
SEM. 
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0.0011, two-way, mixed-model ANOVA, Fig. 2.6E). But crucially, the decoder still performed 

significantly above chance levels, demonstrating that a code for time was still present without 

lick-rate-modulated cells. In addition, we found that the striatum still performed better at 

representing time over the OFC despite the exclusion of lick-modulated cells (F1,13 = 7.4, p = 

0.017, two-way, mixed-model ANOVA). The ANOVA did not reveal a significant interaction 

between brain region and the type of population used in analysis (F1,13 = 0.936, p = 0.35). 

Together, the results in Fig. 2.6 show that although movement does indeed contribute to the 

observed code for elapsed time in both the striatum and OFC, it is not sufficient to fully explain 

the neural representation of time in these areas. Furthermore, we demonstrated that our main 

finding that striatal ensembles outperform OFC ensembles in terms of temporal coding is robust 

even after controlling for lick-rate-modulated cells. 

 

The striatal population code for elapsed time co-varies with lick onset time 

Until now our decoding analysis was performed on all correct CS+ trials irrespective of the 

animal’s actual lick onset time. However, since we found that lick-related movement partially 

contributed to the neural code for time, this implies that the neural code may vary on a trial-to-

trial basis depending on the precise timing of lick onset. If the population dynamics are sensitive 

to lick onset time, then a prediction is that the encoding trajectories are respectively traversed 

faster (slower) when an animal licks earlier (later) than the mean. To test this prediction, we took 

advantage of the trial-to-trial variability in the time at which animals initiated licking during CS+ 

trials (Fig. 2.1C). We determined if population dynamics in the striatum and OFC reflected this 

variable lick onset time. For each animal, we divided trials into three evenly sized groups 

representing early (1st tercile), intermediate (2nd tercile), and late (3rd tercile) lick onset time trials 

(Fig. 2.7A). We then trained SVM models on trials in the 1st or 3rd terciles, and tested each 

separately on trials in the remaining terciles. In the striatal population, we found that when 

testing the 1st tercile’s model versus the 3rd tercile’s model on trials from the 2nd tercile, the  
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Figure 2.7. Striatal population coding of elapsed time shows higher sensitivity to lick 
onset variability than OFC. A: Schematic illustrating the division of correct CS+ trials into 
three sets based on terciles of the lick onset distribution. B: Mean prediction biases of 
SVM decoders trained to predict elapsed time from striatal population data recorded in 
first tercile trials (orange), and tested on second and third tercile trials. Bias is defined as 
mean of predicted bin time minus correct bin time. Green bars show decoder biases 
when trained on third tercile trials and tested on data from first and second tercile trials. 
Training on first and third tercile trials and testing on second tercile trials produces 
opposing biases (p = 0.00034, paired t-test), as does training on first tercile trials and 
testing on third tercile trials when compared to training on third tercile trials and testing on 
first tercile trials (p = 0.002, paired t-test). C: Mean prediction biases of SVM decoders 
trained to predict elapsed time from OFC data under similar conditions as B. No 
significant difference in biases were observed when training on first and third tercile trials 
and testing on second tercile trials (p = 0.22, paired t-test), or when training on first tercile 
trials and testing on third tercile trials in comparison to training on third tercile trials and 
testing on first tercile trials (p = 0.06, paired t-test). D: Illustration of temporal alignment 
procedure on one striatal recording (88 cells). Distance matrix represents the Euclidean 
distance between all pairs of population activity patterns in the trial-averaged trajectories 
for the first and third tercile trials. Red line traces the minimum distance path along the 
distance matrix, between the beginning and the end of the mean first tercile trajectory. A 
deviation (red arrows) of this path from the diagonal (dashed yellow line) measures the 
temporal warping of the mean third tercile trajectory relative to the mean first tercile 
trajectory. The upward shift observed here indicates that the mean third tercile trajectory 
is consistently slower. E: Mean temporal warping of striatal (black) and orbitofrontal (blue) 
third tercile trajectories relative to their respective first tercile trajectories. All error bars 
are SEM. 
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evaluations showed opposing classification error biases (p = 0.00034, paired t-test, Fig. 2.7B). 

In other words, the model trained on the 1st tercile consistently classified time bins in the 2nd 

tercile as having occurred earlier than they had. Conversely, the model trained on the 3rd tercile 

consistently classified time bins in the 2nd tercile as having occurred later than they actually had. 

Furthermore, when testing the 1st tercile’s model on the 3rd tercile’s trials or testing the 3rd 

tercile’s model on the 1st tercile’s trials, these evaluations also showed opposing classification 

error biases (p = 0.002, paired t-test). Altogether, these results show that internal representation 

of time in the striatum appears to co-vary with the timing of lick onset, consistent with earlier 

work suggesting that the latency of the motor response was driven by the neural code for time 

(Gouvêa et al., 2015).  

In contrast to the striatum, in the OFC, we did not find any significant effects of training 

classifiers on the 1st or 3rd terciles and testing those models on the 2nd tercile’s trials (p = 0.22, 

paired t-test, Fig. 2.7C). Testing 1st or 3rd tercile classifiers on the 3rd or 1st terciles’ trials, 

respectively, also did not result in biased classification error deviations (p = 0.06, paired t-test), 

although there was a trend. Thus in contrast to the striatum, the temporal code in the OFC may 

not co-vary as effectively with movement onset time.  

It was possible that the decoded biases quantified above did not fully establish the 

extent of the underlying relationship between the internal representation of time and lick time, 

due to potential artifacts imposed by binning and smaller training datasets after grouping by 

terciles. To better determine the extent of temporal co-variation between licking and neural 

dynamics, we compared population trajectories averaged over the trials in the 1st tercile with 

population trajectories averaged over trials in the 3rd tercile. A temporal alignment procedure 

applied to the two trial-averaged trajectories (see Methods) revealed that while the two 

trajectories remained close to each other over the course of the trial interval, they were not 

uniformly aligned in time (Fig. 2.7D). Instead, the 3rd tercile trajectory consistently lagged behind 

the 1st tercile trajectory, illustrated in Figure 2.7D as an upward shift of the minimum distance  
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Figure 2.8. Striatal networks outperform OFC networks at predicting lick onset time. A: 
Illustration of lick onset time prediction analysis. Raster plots show the same MSN 
population’s activity during different correct CS+ trials. Upper schematic shows odor on 
time (blue rectangle), reward delivery (red triangle), and actual lick times (red/black lines) 
that correspond to the recorded raster plots. Each correctly performed CS+ trial has a lick 
onset time indicated by a red line. As in the elapsed time prediction analysis, in each trial, 
spiking activity of each unit was transformed into corresponding firing rate estimates (not 
shown), and the firing rates of simultaneously recorded units were binned (100 ms time 
bins) to construct population firing patterns for the trial. In each trial, the bin during which 
the first lick occurred is labeled as its lick onset bin (violet shading). A binary SVM 
classifier, represented here by a readout unit, was trained to distinguish between lick onset 
bins and non-lick onset bins (green shading). B: The model is tested using a Monte-Carlo 
cross-validation approach. Population activity patterns for all time bins in a trial are 
presented to the classifier, which predicts the lick onset bin for the trial as the time bin with 
the maximal readout value. C: Heatplot showing normalized trial-averaged readout values 
generated by the SVM trained and tested on striatal network activity of one mouse. Trials 
are sorted by decreasing latency to lick onset time, indicated by a red tick mark. D: 2D 
density plot showing the joint distribution of actual lick onset times and those predicted by 
the SVM from striatal network activity, for one mouse. Prediction performance is measured 
as the root mean squared error (RMSE). Lick onset bin classification was repeated 30 
times for each trial (see Methods). Actual and predicted lick onset bins were jittered 
(Gaussian noise with 0 mean, 0.3 SD) to separate overlapping points. E: Comparison of 
mean predicted lick onset bin RMSEs across all striatal and OFC recordings (55 units per 
region, n = 9 striatal recordings and 6 OFC recordings) showed that models trained on 
striatal network data performed significantly better (p = 0.032, unpaired t-test). Bin shuffled 
models based on striatal recordings performed significantly worse than corresponding non-
shuffled models (p < 0.0001, paired t-test). Bin shuffled models based on OFC recordings 
also performed worse than corresponding non-shuffled models (p = 0.0002, paired t-test). 
All error bars are SEM. 
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curve between the two trajectories, away from the diagonal line. The magnitude of this shift is a 

measure of the temporal warping, or speed of progression, of the 3rd tercile trajectory with 

respect to the 1st tercile trajectory. In the striatum, temporal warping emerges very early on in 

the trial relative to lick onset timing (Fig. 2.7E), which suggests that the striatal activity encoding 

an internal representation of time undergoes “subjective” fluctuations that may drive trial-to-trial 

variability in lick onset. In contrast, warping was less prevalent, particularly near the beginning of 

the trial, in the OFC. Together these results suggest that the internal representation of time as 

encoded in the striatal dynamics, are co-modulated by the elapsed time and the lick onset time, 

and that these effects are less evident in the OFC.   

 

Striatal ensembles predict movement onset time 

Since striatal ensemble dynamics possessed a better code for time we hypothesized that the 

lick onset time could also be predicted  with better accuracy from patterns of striatal activity than 

OFC activity. Using the ensemble firing rate pattern in each 100 ms time bin of a trial, a binary 

SVM classifier was trained to discriminate the population activity in the first time bin when an 

animal licked (i.e., the lick onset bin) from the activity in all other time bins (Fig. 2.8A). SVM 

output for the population activity in a given bin is represented by a single readout unit whose 

value captures the propensity of lick onset occurring in that bin. To establish how well network 

activity predicted lick onset times, we used a Monte-Carlo cross-validation method to test 

trained SVM classifiers on population activity patterns in novel trials (Fig. 2.8B). The classifier 

generates one readout value for the activity pattern from each bin in a trial, and the predicted 

lick onset bin for the trial is chosen as the one with the maximal readout value. Figure 2.8C 

illustrates the readout value distributions decoded from the striatal dataset of an animal and its 

observed lick onset bins (red ticks) for all correct CS+ trials. To quantify the classification 

performance, we measured the root mean square error (RMSE) of the predicted lick onset times 

across all correct CS+ trials, as generated by the Monte-Carlo cross-validation approach (Fig.  
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Figure 2.9. Simultaneous multi-region recordings indicate that striatum encodes elapsed 
time better than OFC. A: Left, average cross-temporal classification matrix showing mean 
performance of the elapsed time classifier across all correct CS+ trials for one striatal 
recording that occurred in parallel with a OFC recording in the same mouse. The 
classification matrix for the corresponding OFC recording is shown at right. B: Mean 
correlation coefficient across simultaneous striatal and OFC recordings (55 units per 
region, n = 4) for each brain region. SVM classification of population activity was repeated 
30 times (see Methods). SVM models trained on striatal activity performed better than 
when trained on OFC activity patterns (p = 0.013, paired t-test). C: Performance 
comparison of SVM models trained and tested on striatal and OFC network activity from 
simultaneous recordings, as a function of number of units. There was a significant effect of 
brain region (F1,3 = 58.1, p = 0.0047), and number of units (F5,15 = 73.4, p < 0.0001, two-
way repeated-measures ANOVA). All error bars are SEM. 
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2.8D). SVM models trained on the striatal network datasets (observed mean RMSE = 4.07, SD 

= 1.90; bin shuffled mean RMSE = 15.32, SD = 1.48, n = 9, p < 0.0001, paired t-test, Fig. 2.8E) 

and the OFC network datasets (observed mean RMSE = 6.50, SD = 1.96; bin shuffled mean 

RMSE = 14.71, SD = 1.12, p = 0.0002, n = 6, paired t-test, Fig. 2.8E) performed well above 

chance levels in predicting lick onset time. However, consistent with our hypothesis the SVM 

models trained on striatal activity outperformed those trained on OFC activity in predicting lick 

onset times during the task (p = 0.032, unpaired t-test, Fig. 2.8E). 

 

Simultaneous OFC and striatal recordings exhibit a superior code for elapsed time in the 

striatum 

The above analyses suggest that the network dynamics of the striatum constitute a better 

“clock” than the dynamics of the OFC. However, it is possible that these observations are 

partially influenced by differences in neural coding performance across animals. In a subset of 

our recordings (n = 4) we were able to simultaneously measure at least 55 OFC pyramidal cells 

and 55 striatal MSNs within the same animal and session (Shobe et al., 2015). Thus, we 

examined if the observation that striatal dynamics contain a better code for elapsed time than 

the OFC was supported in these simultaneous dual region recordings. One particular advantage 

of this within-animal comparison is that the SVM models are trained and tested with network 

data in two brain regions that were recorded using identical behavioral conditions and trials. 

Thus, the networks share the same stimulus inputs, interval durations, and lick onset times. A 

cursory comparison of the cross-temporal classification matrices for simultaneously recorded 

brain regions in a single animal indicated that its striatal population encoded elapsed time more 

robustly than its OFC population (Fig. 2.9A). An accuracy comparison of the elapsed time 

decoded from population activity in the two brain regions, across all simultaneously recorded 

network activity datasets, reasserted that the striatal networks’ temporal encoding efficacy was 

consistently better (mean striatal correlation coefficient = 0.90, SD = 0.041; mean OFC  
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Figure 2.10. Simultaneous multi-region recordings show distinct pre-lick dynamics 
across striatal and OFC networks. A: Heatplots showing normalized readout values 
generated by SVM models trained to detect lick onset times. Heatplots reflect trial-
averaged readout values of SVM models trained and tested on striatal (left) and OFC 
(right) network activity from simultaneous recordings from the same mouse (55 units 
per region, n = 4). Trials are sorted by decreasing latency to lick onset time, indicated 
by a red tick mark. B: Mean performance of lick onset bin prediction as a function of 
number of units included in training and testing the SVM models, for each 
simultaneously recorded brain regions (55 units per region, n  = 4). A two-way, 
repeated-measures ANOVA revealed a significant effect of number of units (F5,15 = 
178.4 , p < 0.0001) and a significant effect of brain region (F1,3 =  18.9, p = 0.022). The 
ANOVA excluded the ‘all units’ column as it contained inconsistent numbers of cells 
between simultaneously recorded regions. C: Heatplots showing normalized readout 
values generated by SVM models trained to detect time bins occurring 500 ms prior to 
actual lick onset times. Heatplots reflect trial-averaged readout values of SVM models 
trained and tested on striatal (left) and OFC (right) network activity from simultaneous 
recordings from the same mouse. Trials are sorted by decreasing latency to actual lick 
onset time, indicated by a red tick mark. Magenta tick marks indicate 500 ms prior to 
lick onset (55 units per region, n = 4). D: Mean RMSE values across all simultaneous 
striatal and OFC recordings (55 units per region, n  = 4) quantifying performance of 
SVM models trained and tested to predict time bins that occurred in advance of actual 
lick onset times. A two-way, repeated-measures ANOVA revealed a significant effect of 
time bin (F15,45 = 8.8, p < 0.0001) and brain region (F1,3 = 16.0, p = 0.028). All error bars 
are SEM. 
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correlation coefficient = 0.71, SD = 0.13, n = 4, p = 0.013, paired t-test, Fig. 2.9B). We also 

measured whether this effect was consistent at different sizes of the decoded neural population. 

A two-way, repeated-measures ANOVA between brain region and the decoded population size 

showed a significant effect of brain region (F1,3 = 58.1, p = 0.0047) and population size (F5,15 = 

73.4, p < 0.0001, Fig 2.9C).  

 

Simultaneous OFC and striatal recordings exhibit a superior lick onset time prediction in the 

striatum 

We also explored whether lick onset time prediction was significantly better using striatal 

population activity within the simultaneously recorded striatal and OFC data sets. We again 

observed that SVM models trained to identify population activity encoding lick onset time 

appeared to be more precise when decoding from striatal population activity than from OFC 

population activity (Fig. 2.10A). When comparing lick onset prediction performance between 

SVM models trained on simultaneously recorded networks as a function of the brain region and 

the size of the decoded population, we found that the striatal networks encode lick onset time 

with a significantly higher efficacy than OFC networks (F1,3 = 18.9, p = 0.022, two-way, 

repeated-measures ANOVA). There was also a highly significant effect of population size on lick 

onset prediction performance across the two brain regions (F5,15 = 178.4, p < 0.0001, two-way, 

repeated-measures ANOVA, Fig. 2.10B).  

Lastly, we examined how far in advance could the neural activity predict lick onset time. 

This allowed us to further examine if lick onset prediction was not simply a product of neural 

activity directly driving motor responses. For this analysis we trained separate SVM classifiers 

on increasingly earlier target bins, moving the target bin backwards in time with respect to the 

actual lick onset bin (see Methods). In each brain region, a comparison of the readout value 

distributions when the classifier is trained on the actual lick onset bin (Fig. 2.10A) versus on the 

bin occurring 500 ms ahead of the actual lick onset bin (Fig. 2.10C) indicates that either time bin 
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can be decoded with similar reliability (Fig. 2.10D). A two-way, repeated-measures ANOVA 

revealed a significant effect of brain region (F1,3 = 16.0, p = 0.028). SVM models trained to 

decode pre-lick onset time bins from OFC population activity were consistently worse than those 

based on striatal population activity. There was also a significant effect of time (F15,45 = 8.8, p < 

0.0001), whereby increasing the “look ahead” time resulted in a decay in classification 

performance at about 1 second. This effect was more pronounced in the striatum, which 

maintained a relatively constant RMSE until approximately 1 second prior to actual lick onset. 

The OFC on the other hand, showed higher error at actual lick onset as compared to the 

striatum. Interestingly, the OFC showed a slight improvement of classification further away in 

time from the actual lick onset. These results suggest that striatal and OFC dynamics are 

causally related to behavior, and that the activity patterns preceding the lick by up to 1 second 

encode when the animal will lick. Again the results show that striatal dynamics provide more 

information about lick onset time. 

An important question related to both the nature of the time code and the mechanisms 

underlying the neural dynamics in the striatum and OFC relates to the “complexity” of the 

dynamics. One way to measure the complexity of patterns of neural activity is through its 

effective dimensionality—a PCA-based measure calculated as the number principal 

components required to explain 95% of the variance in the trial-averaged population dynamics 

(Rajan et al., 2016) (see Methods). The calculations show that the OFC dynamics (mean = 

15.75, SD = 2.06) are significantly higher-dimensional than MSN dynamics (mean = 11.25, SD 

= 1.5, p < 0.0001, paired t-test), and suggest that the OFC may encode other variables that are 

not immediately relevant to the task.  

 

Discussion for Chapter 2 

This study took advantage of the high single-unit recording throughput of silicon microprobes 

(Shobe et al., 2015) to examine the neural coding properties of large prefrontal and striatal 
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ensembles during a conditioning paradigm in which mice learned to anticipate the timing of 

reward. We used a machine-learning algorithm to quantify the ability of dynamically changing 

patterns of network activity to encode time at the single trial level within individual animals. 

Using activity patterns in these two brain regions, we decoded time elapsed from the onset of a 

reward-predictive cue. Relatedly we also could predict the time of anticipatory licking onset. Our 

results show that the striatum consistently outperformed the OFC in terms of the ability to 

encode time. This superior time representation of striatal ensembles was confirmed via 

simultaneous recordings in the OFC and striatum. 

The large scale of the recordings (at least 55 simultaneously measured units per animal) 

enabled quantitative comparisons of decoding performance without the need for pooling units 

across sessions or subjects. While a few studies have recorded simultaneously in the cortex 

and striatum (D. Z. Jin et al., 2009; Matell et al., 2003), to our knowledge this is the first study to 

quantitatively compare the quality of the time code between the striatum and one area of the 

cortex, the OFC, while recording simultaneously from large populations of neurons. Therefore, 

we anticipate that the approaches outlined in this work offer new opportunities for understanding 

the coding properties of neural ensembles across multiple brain areas during behavior (E. N. 

Brown et al., 2004; Buzsáki, 2004).  

Computational models (Buonomano and Laje, 2010; Laje and Buonomano, 2013; 

Medina et al., 2000) and recent experimental work (Carnevale et al., 2015; Crowe et al., 2014; 

Stokes et al., 2013) have suggested that motor timing may be encoded in dynamic patterns of 

neural activity: a “population clock”. In vivo, population clocks in the form of either simple 

sequential patterns of activity or complex high-dimensional patterns have now been observed in 

many different brain areas including the striatum (Bakhurin et al., 2016; Chiba et al., 2008; 

Gouvêa et al., 2015; D. Z. Jin et al., 2009; Matell et al., 2003; Mello et al., 2015) and multiple 

areas of the prefrontal cortex (Brody et al., 2003; Carnevale et al., 2015; Dietrich and Allen, 

1998; Fuster, 2001; Genovesio et al., 2009; D. Z. Jin et al., 2009; Kim et al., 2013; Merchant et 
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al., 2011; Oshio et al., 2008; M. Xu et al., 2014). Our data are consistent with these previous 

reports of dynamic time-varying coding properties of neural ensembles, and support population 

clock models for the coding of time. This study provides evidence that different brain regions, 

here the striatum and the OFC, may be part of a distributed but regionally specialized network 

for encoding time.  

The brain’s code for time and the timing of movements are highly interdependent – 

animals use a timing mechanism to determine when to generate actions, but those actions in 

turn cause changes in brain activity, potentially influencing any observable code for time. We 

have addressed such interdependences in our data and show that while licking-related activity 

can contribute to the population clock, there is a robust code in a number of control analyses 

aimed at removing potential motor influences. Because we trained mice to learn to time a single 

interval, we exploited the fact that licking behavior demonstrated variable onset timing, similar to 

the timing variability of lever pressing during fixed-interval tasks (Matell et al., 2003; Mello et al., 

2015). Our study benefited from this natural variability in that we could demonstrate that 

population codes reflected early or late onset times within the single interval. Interestingly, we 

found evidence that licking behavior that occurred particularly late or early strongly co-varies 

with the speed at which temporal codes evolved along the entire duration of the trial. This was 

particularly apparent in the striatum, which supported results in earlier work on population 

coding in the dorsal striatum (Gouvêa et al., 2015). Overall these analyses support the notion of 

high-dimensional multiplexed representations within the striatum and OFC (Fusi et al., 2016; 

Rigotti et al., 2013). 

Our study focused on the OFC region of the prefrontal cortex, an area that has not 

received extensive attention with respect to encoding of time. Parts of the prefrontal cortex, 

including the dorsolateral, medial, and premotor areas have been previously shown to encode 

time (Crowe et al., 2014; Kim et al., 2009; Merchant et al., 2013b; 2015; Onoe et al., 2001). It is 

therefore possible that these other areas exhibit a better code for time than both the regions that 
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we investigated in the OFC and the striatum. Despite not having been extensively studied in the 

context of coding time per se, neurons in the OFC has been previously shown to be sensitive to 

time during reward expectation and other related behaviors such as temporal discounting, in 

which rewards received earlier in time are preferred to those associated with a greater delay 

period  (Moorman and Aston-Jones, 2014; Roesch et al., 2006), but see (Jo et al., 2013). In this 

study, we now show that the OFC is capable of encoding time using population clocks. We also 

add to a growing literature that the OFC contains movement-related coding (Feierstein et al., 

2006; Furuyashiki et al., 2008; Simon et al., 2015). A further implication of our data is that the 

OFC may be better suited for representing higher-dimensional information about the behavioral 

task. This was reflected in the effective dimensionality analysis and is consistent with the role of 

the OFC in complex cognitive processing (Fuster, 2001), which has been hypothesized to 

involve recurrent circuit activity (Mante et al., 2013; Rigotti et al., 2013). 

A major finding of this study is that ensembles in the striatum outperform the OFC in 

terms of time encoding, even after controlling for motor effects. A fundamental question thus 

pertains to how these differences in coding arise. Is time encoding generated within the 

striatum, through a cortico-striatal loop (Merchant et al., 2013a), or is the striatum instantiating a 

readout of the dynamics generated within neocortical areas? These questions cannot yet be 

answered, but we suggest that the most consistent interpretation given the superior 

performance of the striatum observed here is that the striatum is serving as a read-out of the 

dynamics generated in the cortex. The striatum is innervated by a plethora of areas including 

prefrontal regions and motor areas (Hintiryan et al., 2016; McGeorge and Faull, 1989; Voorn et 

al., 2004). As a result of its functionally diverse inputs, the striatum as a whole integrates 

information that spans the cue-reward delay period, including sensory stimuli, reward prediction, 

and action initiation (X. Jin and Costa, 2010; Jog et al., 1999; Nicola et al., 2004; Roitman et al., 

2005; Rueda-Orozco and Robbe, 2015; L. Tremblay et al., 1998). Our results therefore suggest 

an important role for sensorimotor integration in the striatum (Reig and Silberberg, 2014), which 
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may lead to a more refined representation of time in this structure than what was found in an 

upstream frontal cortical area. 

We subdivided our dataset into dorsal and ventral striatal ensembles, and showed that 

each subregion separately performed as well in encoding time as when both subregions were 

pooled together. Most studies of timing in the striatum have focused on the dorsal striatum 

(Bartolo et al., 2014; Chiba et al., 2008; D. Z. Jin et al., 2009; Mello et al., 2015), with the 

exception of a study that investigated how dopaminergic signaling in dorsal and ventral areas 

contributed to timing behavior (Meck, 2006). Our results show that the ventral striatum encodes 

time as effectively as the dorsal striatum. We do not suggest that the ventral and dorsal areas 

are encoding the same kinds of information (Bakhurin et al., 2016), nor would they need to in 

order to represent time in their distinct patterns of dynamic activity. It is also possible that the 

synchronization of a temporal code could be attributed to local striatal microcircuitry (Bakhurin et 

al., 2016; Barbera et al., 2016) or due to basal ganglia feedback loops (Haber et al., 2000). 

Several studies using fMRI approaches in humans have shown that dorsal areas of the 

striatum, including both the caudate and the putamen, are involved in interval timing tasks (Coull 

et al., 2011; Harrington et al., 2004; Wiener et al., 2010). It is important to point out that ventral 

striatal subregions were not often significantly modulated in these studies, which leads to a 

discrepancy between our findings and those performed in humans. This inconsistency could be 

explained by differences between the timing tasks performed by subjects across these studies. 

For example, successful performance in our task relies on animals anticipating the delivery of a 

reward, thus explaining why the ventral striatum—a region commonly implicated in reward 

processing—may be recruited. Tasks developed for humans may rely less on the simple 

Pavlovian associations that we used to train mice. In addition, fundamental differences between 

single-unit spike and BOLD signal measurements could make direct comparison of our data 

with fMRI experiments challenging. 
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The neuronal architecture of striatum differs dramatically from that of the neocortex: 

striatal circuits are characterized by recurrent inhibition (Tepper and Bolam, 2004), while 

neocortical circuits contain recurrent excitation. Theoretical studies have established that in 

contrast to inhibitory circuits, excitatory recurrent circuits are ideally suited to generate self-

sustaining time-varying patterns of activity (H. Jaeger and Haas, 2004; Laje and Buonomano, 

2013; Sussillo and Abbott, 2009)—although it is possible for such patterns to emerge from 

circuits that exhibit recurrent (feedback) inhibition (Mauk and Donegan, 1997; Medina et al., 

2000). Because of the lateral inhibition interactions among MSNs (Taverna et al., 2008)  and 

influence of local interneurons (Tepper et al., 2010), the striatal microcircuit may be well suited 

to refine those signals into an improved time code through a temporal “winners-take-all” 

mechanism by ensuring that the time-varying patterns of activity within cortical areas only 

activate a subpopulation of MSN cells at a time (Carrillo-Reid et al., 2011; Humphries et al., 

2009; Ponzi and Wickens, 2012).  
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Chapter 3: External circuit influences on encoding of movement preparation in the 

striatum 

Introduction 

The basal ganglia are a set of subcortical nuclei that are believed to be involved in selecting and 

generating actions (Graybiel, 2008; Mink, 1996; Redgrave et al., 1999). The striatum is the 

major input nucleus of the basal ganglia (Bolam et al., 2000), which receives excitatory input 

from nearly every area of the neocortex (Finch, 1996; McGeorge and Faull, 1989). The striatal 

microcircuitry receives these glutamatergic inputs and transforms their signals into output 

signals that coordinate the activity of the basal ganglia output nuclei (Kreitzer and Malenka, 

2008). Striatal medium spiny projection neurons (MSNs) are GABAergic and are also the 

predominant recipient of glutamatergic inputs on their dendritic spines. These neurons are 

typically highly hyperpolarized at rest and thus depend on coordinated glutamatergic input to fire 

(Calabresi et al., 1987; Plotkin et al., 2011; C. J. Wilson et al., 1990).  

MSNs receive glutamatergic input from a diverse number of individual axons, and are 

thought to integrate across many cortical signals in order to produce their spiking activity (Carter 

et al., 2007; Kincaid et al., 1998; Kocsis et al., 1977; C. J. Wilson, 2013). In addition to receiving 

diverse glutamatergic signals, MSNs also produce widespread axon collaterals that form 

unidirectional inhibitory synapses onto other MSNs (Taverna et al., 2004; Tunstall et al., 2002; 

C. J. Wilson and Groves, 1980), and receive strong feedforward inhibition from local 

interneurons (Koós and Tepper, 1999; Taverna et al., 2007). While the physiological importance 

of these local inhibitory mechanisms are not well understood (Tepper et al., 2008), striatal 

output is believed to be the result of an interaction between glutamatergic input and local 

microcircuit interactions (Bolam et al., 2000; Kreitzer and Malenka, 2008).  In behaving animals, 

striatal output signals can show highly complex relationships to external stimuli, context, reward 

history, and consequences of behavior (Lansink et al., 2012; Seo et al., 2012; Tai et al., 2012; L. 

Tremblay et al., 1998; A. Y. Wang et al., 2013). Furthermore, large networks of striatal MSNs 
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display dynamic trajectories that course through these populations during behavior (Bakhurin et 

al., 2016; Gage et al., 2010; Rueda-Orozco and Robbe, 2015; Thorn and Graybiel, 2014).  

Several computational models have sought to understand the origin of these dynamic 

patterns and how they arise from known interactions in the striatal microcircuit (Connolly and 

Burns, 1993; Fukai and Tanaka, 1997; Humphries et al., 2006; Murray, 2017; Wickens et al., 

1995). Several of these models demonstrate that complex network activity can be generated in 

the striatal microcircuit in the presence of tonic glutamatergic signals (Humphries et al., 2009; 

Ponzi and Wickens, 2010). These observations have been supported in slice experiments after 

bath application of NMDA (Carrillo-Reid et al., 2008). However, the extent to which striatal 

dynamic activity arises from local microcircuit interaction or is entirely dependent on the 

dynamic patterns of cortical inputs is not well understood. 

Here we causally test the contribution that external glutamatergic signaling makes to the 

generation of striatal dynamic activity. We expressed inhibitory opsins in projection neurons of 

the premotor cortex in mice, a region that has been previously demonstrated to project to the 

sensorimotor striatum (Gremel and Costa, 2013; Li et al., 2016) and to be important for guiding 

licking behavior (Komiyama et al., 2010). We used large-scale electrophysiology in combination 

with optogenetic inhibition of projection terminals to study how eliminating M2 input would 

impact striatal dynamics related to cued licking behavior. Our results reveal that striatal 

populations integrate cortical inputs with other excitation sources in a complex manner to 

generate dynamic activity during behavior. 

 

Materials and Methods 

Animals and surgical procedures 

All procedures were approved by the University of California, Los Angeles Chancellor’s Animal 

Research Committee. Singly housed male C57Bl/6J mice (n= 31, 12-16 weeks old, The 

Jackson Laboratory) were used in the experiments. Animals underwent an initial surgery under 
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isoflurane anesthesia in a stereotaxic apparatus to bilaterally fix stainless steel head restraint 

bars (10 mm x 7.5 mm, 0.6 g) on the skull. We generated 3 different groups for this study, each 

of which required different surgery procedures. For behavioral testing, 9 animals received 

bilateral injections of AAV5-CAMKII-eNpHR3.0 into M2 (2.5 mm AP, ±1.5 mm ML, -1.3 mm and 

-1.1 mm DV, 450 nl total volume) and received bilateral fiber optic implants (200 µm diameter 

fibers) over the injection site. An additional 8 mice received bilateral injections of AAV5-CAMKII-

YFP to the same site along with bilateral fiber optic implants. For simultaneous recording in M2 

and DLS, 5 mice only received headbars. 7 mice undergoing electrophysiological recordings 

with optogenetic manipulations received bilateral injections of AAV5-CAMKII-eNpHR3.0 (n = 3) 

or AAV5-CAMKII-ARCH3.0 (n = 4) into M2 but did not receive chronic optical fiber implants. For 

electrophysiological recordings, animals were anesthetized with isoflurane for a second surgery 

on the recording session day to make a craniotomy for acute microprobe insertion. Prior to the 

simultaneous M2 and DLS recordings, rectangular craniotomies (1.5 mm AP x 2 mm ML) were 

made in order to allow access to the following coordinates relative to bregma: For M2, we 

targeted AP, 2.5 mm, ML, 2.0 mm, and for DLS, we targeted AP, 1.0 mm, ML, 2.25 mm. For 

DLS-only recordings using the optomicroprobe, a smaller craniotomy was made (1.0 mm AP x 

1.5 mm ML) centered over the following coordinates over the DLS: AP, 1.0 mm, ML 2.25 mm. In 

both cohorts, an additional craniotomy was made over the posterior cerebellum for placement of 

an electrical reference wire. 

 

Behavioral task 

After recovery from the first surgery, animals were food restricted and fed daily after each 

training session to maintain ~90% of their baseline weight. They received water ad libitum. 

During daily training sessions, animals were mounted on the head bar bracket on the recording 

rig and stood while headfixed on a platform. Delivery of the reward solution (5 µL, 10% 

sweetened condensed milk) was from a tube positioned between an infrared lick meter (Island 
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Motion), and was controlled by an audible solenoid valve actuation (Neptune Research). 

Animals were initially habituated to head fixation by receiving rewards alone (maximum 100 

rewards per daily session, 13-21 s inter-trial interval, ITI, sampled from a normal distribution), 

and exposed to a constant flow of odorless air (1.5 L/min) through a tube. After animals 

successfully consumed 90% of delivered rewards for two consecutive days, they progressed to 

the Pavlovian conditioning using an odor delivered via an olfactometer. The odor cue was 

introduced by bubbling air (0.15 L/min) through an aromatic liquid (isoamyl acetate) diluted 1:10 

in mineral oil (Sigma-Aldrich), and mixing this product with the 1.5 L/min stream of air. The odor 

cue was presented for 1 second, was followed by a 2 s delay period, and the subsequent 

delivery of the reward 3 s after odor onset. After repeated presentation of the odor-reward 

pairing, animals generate anticipatory licking behavior. Performance on the task was quantified 

by counting the fraction of trials containing at least one lick prior to reward delivery, called a “hit” 

trial. After mice demonstrated greater than 90% successful hit trials, they underwent 

craniotomies for recording or began optogenetic manipulation testing.  

 

In vivo optical stimulation  

All stimulation experiments commenced 4 weeks following viral injection to allow for sufficient 

expression of inhibitory opsins in M2 projections. For bilateral M2 inhibition cohort, mice first 

received 40 trials without laser (“Pre”), then 40 trials with laser presented on each trial (“Laser”), 

followed by another 40 trials without laser to test for behavioral recovery (“Post”). During the 

laser on block, the laser was activated continuously beginning 2 seconds prior to cue onset and 

terminated alongside reward delivery. For recording combined with laser presentation, we 

presented laser for short or long durations within the trial. Individual animals received different 

combinations of short and long trials. 5 mice received long laser trials randomly on 50% of the 

trials. The laser was activated continuously beginning 2 seconds prior to the cue onset and 

terminated 3 seconds after reward delivery for a total period of 8 seconds. 2 mice received short 
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and long laser trials randomly interleaved with trials without laser presentation. These mice 

received laser presentations at cue onset that had a duration of 0.2 s (20% of trials), 

presentations at -0.8 s prior to cue onset that had a duration of 1 s (20% of trials), presentations 

at -2 s prior to cue onset that had a duration of 8 s (20% of trials) and 40% of trials that 

contained no laser. Only trials with 8 s laser were used for analysis here. All mice received 20 

trials of laser presentation at the end of the recording to test for laser effects on spontaneous 

activity. 

 

Electrophysiological recordings 

All recordings were performed using silicon microprobes (Shobe et al., 2015). Each device 

contained 256 recording channels distributed over 4 prongs (64 channels per prong in a 

honeycomb array pattern spanning 1.05 mm). For simultaneous M2-DLS recordings, two 

separate probes were combined to form a 512-channel device. The M2 layer had prongs 

spaced by 400 µm and the DLS layer had prongs spaced by 200 µm. For the cohort that 

underwent electrophysiological recording and M2 terminal suppression, we used a device with 

prongs spaced by 200 µm that was integrated with two optical fibers (200 µm diameter) with 

their centers spaced 400 µm apart. The optomicroprobe device was cleaned after each 

recording session in a trypsin solution and deionized water, and could be reused. Laser power 

coming from the integrated optical fibers was calibrated prior to each experiment and was tested 

after completing the recording to ensure stability. On the recording day, animals were 

anesthetized and underwent a brief surgery to make a craniotomy over the recording sites 

(described above). During the 6-hour recover period, craniotomies were sealed with a silicone 

compound (Kwik-Cast, World Precision Instruments). After recovery, animals were installed 

head-fixed on the platform, the silicone compound was removed, and a reference wire was 

placed on the surface of the cerebellum. The microprobes were inserted into the brain under the 

control of a motorized micromanipulator. For simultaneous M2 and DLS recordings, the position 
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of the most lateral shaft in M2 was AP +2.5 mm, ML +2.5, and DV -2.0 relative to bregma. The 

recording position of the most lateral shaft position in DLS was AP +1.0, ML +2.5, and DV - 4.0. 

For DLS-only recordings, the position of the most lateral shaft position in DLS was AP +1.0, ML 

+2.5, and DV - 4.0. Mineral oil was applied to the craniotomy to prevent drying. Data collection 

began after a 45 minute settling period after reaching the final recording depth, using custom 

built acquisition software at a sampling rate of 25 kHz per electrode (Shobe et al., 2015). 

 

Spike sorting and unit classification 

Spike sorting and all analysis of neural data were performed with custom MATLAB scripts 

(Mathworks, Natick MA), (Shobe et al., 2015). Striatal and cortical units were classified using 

previously described criteria (Bakhurin et al., 2017) to identify putative medium spiny neurons 

(MSNs) and putative cortical pyramidal cells. These principal cell classes were distinguished 

from putative interneuron populations on the basis of their spike waveform peak-to-trough width 

and coefficient of variation of baseline firing rate. Putative MSNs and pyramidal cells had wider 

spike waveforms (minimum width = 0.55 ms, maxiumum width = 1.25 ms) than interneuron 

populations. Putative tonically active neurons (TANs) were segregated from MSNs in striatal 

recordings by the regularity of their baseline firing (maximum coefficient of variation = 1.5). No 

analysis was performed on putative interneuron populations. 

 

Histology 

We confirmed expression levels of eNpHR-YFP or YFP bilaterally in M2 and in DLS projections 

using immunolabelling of GFP. After recording, animals were sacrificed by overdose of 

Isoflurane, were transcardially perfused with 10% formalin, and brains were harvested and 

immersed in 10% formalin solution overnight. Brains were sectioned coronally at 100 µm 

thickness on a vibratome. Sections were incubated overnight with chicken primary antibodies to 

GFP (1:1000, Abcam) at 4°C. The next day, sections were washed in PBS and were incubated 
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in Alexafluor 488-conjugated donkey antibodies to chicken (1:200, Jackson Immunoresearch). 

Sections were imaged under an epifluorescence microscope to confirm viral expression.  

 

Firing rate analysis 

Firing rates were calculated using 50 ms bins and were aligned to either cue onset times, lick 

onset times, or to laser onset times. To compare firing rates for each unit during laser-off (ROFF) 

and laser-on (RON) trials, we aligned the firing rate to the onset of the fist lick, and averaged over 

all hit trials. Firing rate differences (ROFF – RON) were calculated for each unit individually before 

averaging across all recorded units. To identify cells that were significantly modulated by the 

task, we aligned their firing rates to the onset of the odor cue and compared the firing rate 

distribution across all trials for each time bin (from 0 to 5 s after cue onset) with the distribution 

of baseline firing rates estimated for the 5 second period prior to cue onset for each trial. A 

permutation test was used to establish the probability that a difference between mean baseline 

mean and the mean rate for each time bin could be observed by chance. The bin was 

determined to be significant if that probability was less than 1%. At least two consecutive time 

bins had to pass the significance test over in order for the cell to be considered significantly 

modulated by the task. 

 

Spike-LFP coherence 

LFP signals were extracted from the raw data recorded at every channel and downsampling to 

1000 Hz. To calculate spike-LFP coherence between simultaneously recorded M2 and DLS 

activity, we aligned spiking activity from all M2 units and LFP signals sampled from electrodes in 

the DLS to the onset of each anticipatory licking bout for all hit trials, analyzing a window of -3 s 

to + 3 s from lick onset. Spike trains for each M2 unit were convolved using a Gaussian kernel 

(kernel width = 50 ms, SD = 5 ms). To calculate the coherence, we used the Matlab function 

mscohere. Coherence between 0 and 500 Hz was calculated for pairs of M2 units and 4 DLS 
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electrodes for each trial individually, and was then averaged to create the final coherogram. 

Only frequencies between 0.25 Hz and 60 Hz were considered for final analysis. Up to 200 pairs 

of units and electrodes were analyzed per animal.  

 

Time of maximum rate difference 

We identified the specific time of maximum firing rate effect we calculated the absolute value of 

ROFF – RON for each DLS MSN and identified the time bin where this curve reached its 

maximum. To estimate the null uniform distribution, we sampled the same number of random 

times relative to lick onset as there were recorded DLS MSNs. To identify the fraction of MSNs 

either excited or inhibited by the laser, we performed a paired t-test between the distribution of 

firing rates across all ROFF and RON trials for each time bin relative to licking onset. If the t-test 

showed that there was a significant difference between these distributions, the unit was 

classified as being excited if ROFF (i) – RON(i) < 0  and inhibited if ROFF (i) – RON(i) > 0, where i is 

the time bin index. All cells were tested for each time bin. To determine the magnitude of the 

effect of laser as a function of peak firing rate time, we calculated ROFF(m) – RON(m) for each 

unit, where m is the index of that unit’s maximum firing rate during ROFF. The response to laser 

was classified as excited if ROFF(m) – RON(m) < 0 and inhibited if ROFF(m) – RON(m) > 0. The 

mean value for each response class was determined across all units achieving maximum firing 

in a given bin.  

  

Clustering 

K-means clustering of MSN responses was performed on lick-aligned mean firing rates that 

were calculated across all hit trials, base-line subtracted, and normalized to the peak firing rate 

magnitude. The Matlab function kmeans used Euclidean distance to iteratively assign individual 

MSN rates to randomly selected centroids. K was set to 3.  
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Regression analysis 

Univariate linear regression was used to measure linear relationships between RON and ROFF for 

each neuron. The MATLAB function regress was used to identify the R2 value, using the least-

squares approach, between the distribution of firing rates observed in ROFF and the firing rates in 

the corresponding time bins during RON.  

 

Lick onset prediction 

Lick onset time prediction using population codes was based on the approach taken in 

(Bakhurin et al., 2017). Analysis was performed individually on each simultaneously recorded 

population. The decoder was trained on either laser-off trials or laser-on trials, and was 

subsequently tested on the same kind of trial (within-trial), or the other kind of trial (cross-trial). 

For each hit trial, firing rates were estimated for each MSN in the population in 100 ms time bins 

by (1) convolving the spike train during each trial with a decaying exponential function (τ = 100 

ms) and (2) taking the mean of the convolved trace for each time bin. This resulted in a 

multidimensional trajectory of the neural population beginning 1 second prior to the onset of the 

cue and terminating 2 time bins after the maximum anticipatory lick onset time for that animal. 

This resulted in a variable number of time bins analyzed for each animal, varying between 28 

and 42 time bins. 

 We trained a radial basis function support vector machine (SVM) learning algorithm to 

identify the specific population activity that corresponded to the time bin of lick onset. The SVM 

contained a single read-out that was trained to distinguish between time bins that contained the 

initial lick onset time and time bins that did not contain lick onsets. This can be conceptualized 

as the algorithm having a single readout unit that learns to detect population activity that 

corresponds to movement initiation. The predicted lick onset time bin is the one with the highest 

read-out score after the read-out unit is presented with every time bin in the test trial. As there is 

only one lick onset time bin per trial, the dataset contains a disproportionate number of non-lick 
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onset time bins. For this reason, we oversampled the lick onset time bin by including time bins 

immediately preceding and following the true lick onset bin. We additionally undersampled non-

lick onset time bins by randomly selecting 33% of them as training examples for each training 

trial. In order to control for variable numbers of trials and cells recorded for each subject, we 

employed a Monte-Carlo subsampling procedure. Equal numbers of trials and cells were used 

for each subject. For each subject, this procedure performed analysis on 42 randomly selected 

trials out of all available trials and 20 randomly selected MSNs from the available population. 

Analysis was repeated 30 times in order to account for any variability resulting from sampling 

suboptimal trials and cells. Performance of the decoder was quantified as the root mean 

squared error (RMSE) between predicted and actual lick onset times calculated across all 30 

runs of the algorithm. 

For within-trial decoding, the SVM was implemented using a leave-one-out cross 

validation procedure in which the algorithm was trained on all trials except one that was left out 

for testing. This procedure iterated such that each trial was tested exactly one time. For cross-

trial decoding, the SVM was trained using all trials of one trial type. Each trial of the other trial 

type was then tested on the model.  

 The misclassification cost (C) and data complexity (γ) regularization parameters for the 

RBF SVMs were optimized for each laser-off and laser-on dataset using a 5-fold cross 

validation procedure. Across all datasets, the values of C ranged from 0.0625 to 256 and the 

values of γ ranged from 0 to 0.25. The same C and γ parameters were used in cross-trial, 

within-trial, and bin shuffled analyses for each subject. 

 

Bin shuffling 

Bin shuffling was used to generate population responses that were dissociated from their 

correct temporal order. To create bin shuffled activity, each unit’s firing rate estimate in each 

time bin was replaced with the same unit’s firing rate estimate in a randomly selected bin of the 
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same trial. Prediction analyses from trial and bin shuffled data involved training and then testing 

on the respectively transformed datasets. To allow for direct comparisons between observed, 

trial shuffled, and bin shuffled controls, care was taken to make sure that we subsampled the 

same units and trials for analysis. Random performance was estimated by taking the mean of 

classifier performance trained and tested on bin shuffled laser-off and laser-on data across all 

subjects. 

 

Results 

M2 inactivation reduces anticipatory licking probability 

We first sought to establish that the premotor cortex was involved in the expression of 

anticipatory licking behavior in the Pavlovian association task (Bakhurin et al., 2016; Shobe et 

al., 2015). Prior to training, we infected excitatory neurons in M2 with transgenes that promote 

expression of inhibitory halorhodopsin (eNpHR) under the control of the CAMKII promoter (Fig. 

3.1A). Once animals generated anticipatory licking behavior on 90% of trials, we applied laser 

inhibition to the premotor cortex. Mice first received 40 trials without laser to establish their 

baseline performance. We then activated the laser for the duration of the pre-reward phase of 

the trial (-1 s to +3 s relative to odor cue onset) for 40 trials. This was followed by another 40 

trials without laser to measure recovery from the manipulation. We found that mice showed a 

reduced probability to initiate licking behavior during the trial block containing laser 

presentations compared to the control group that received AAV-GFP virus injections (Fig. 3.1B). 

A 2-way, mixed model ANOVA revealed a significant effect of group on hit rate (F = 8.49, p = 

0.01, Fig. 3.1C). Interestingly, there was no significant effect of group in the 2-way, mixed model 

ANOVA performed on mean lick onset time (F = 2.97, p = 0.11, Fig. 3.1D), or the standard 

deviation of lick onset time (F = 0.45, p = 0.51, Fig. 3.1E). Furthermore, these manipulations did 

not affect the animals’ ability to consume reward (data not shown). This suggests that M2 plays 

an important role in generating anticipatory licking behavior in our task, but is not involved in  
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Figure 3.1. M2 inhibition reduces anticipatory licking probability. A: Experiment schemas. 
AAV-mediated expression of eNpHR in excitatory neuron populations in M2 carried out 
bilaterally. 200 µm optical fibers were implanted over injection sites. After reaching well-
trained status, mice underwent optical stimulation. Laser (yellow bar) was delivered 
during the pre-reward phase of the trial beginning 1 s prior to cue onset. Laser delivery 
was performed in a blocked fashion where baseline performance was established, laser 
presented, and then laser was withheld to confirm behavioral recovery. Blue rectangle 
shows cue onset time and yellow rectangle the laser-on block. Red triangle and blue 
vertical line indicate reward delivery. B: Example licking raster plots for control (top) and 
experimental animals (bottom) showing reduction in anticipatory licking in the eNpHR 
group. Laser-off and laser-on blocks are indicated on the right. Coloring conventions are 
the same as in A. Red tick-marks indicate licking onset time. C: Probability of anticipatory 
licking for control and experimental groups as a function of laser-stimulation block. A two-
way mixed-measures ANOVA revealed a significant effect of group (p = 0.01, F1,15 = 
8.494). D: Lick onset time for control and experimental groups as a function of laser-
stimulation block. There was no significant effect of group in a mixed-model two-way 
ANOVA (p= 0.105). E: Lick onset time standard deviation for control and experimental 
groups as a function of laser-stimulation block. There was no significant effect of group in 
a mixed-model two-way ANOVA (p= 0.5). All error bars are SEM. 
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coordinating the specific parameters of these anticipatory movements or in actual reward 

consumption.  

 

Synchrony between M2 and DLS during cued action preparation 

We next determined whether M2 interacts with the DLS to drive anticipatory licking behavior. 

We first injected M2 with CAMKII-YFP virus to trace projection targets of the premotor cortex 

(Fig. 3.2A). We found robust labeling of terminals in the DLS, indicating that M2 sends 

projections to the striatum (Fig. 3.2B). This was consistent with previous reports of the 

existence of such connections (Gremel and Costa, 2013; Li et al., 2016). We wished to 

investigate the physiological activity of cell populations in both areas in order to further 

characterize the potential interaction between these two regions. After reaching high 

performance in the Pavlovian association task, wildtype mice underwent surgery to create 

craniotomies over M2 and DLS. After recovery, mice were implanted with large-scale, silicon 

based microelectrode arrays that targeted both areas simultaneously (Shobe et al., 2015), (Fig. 

3.3A). We found that both M2 and the DLS generated dynamic population activity during the 

task, with 78% (352/451 units) of recorded M2 pyramidal neurons and 59% (191/322 units) of 

recorded DLS MSNs showing significant modulation during the task. In addition, both areas 

contained neurons that activated in the times prior to licking initiation (M2 pyramidal neurons: 

53%, 238/451; DLS MSNs: 53%, 172/322, Fig. 3.3B). When we aligned the population activity 

to lick onset across all animals, we found that M2 and DLS showed sequential activity dynamics 

that began prior to movement generation (Figs. 3.3C, 3.3D).  These results are consistent with 

both regions being involved in preparation of movement. 

 To investigate the possibility that these two brain regions are functionally coupled in the 

times prior to lick initiation, we estimated the spike-LFP coherence between these two brain 

regions. We found that spike-LFP coherence was elevated between these two brain areas in the 

times prior to movement initiation (Fig. 3.4A), specifically with the beta frequency band (15 Hz –  
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Figure 3.2. M2 projects to dorsolateral striatum. A: Experiment schema. AAV-mediated 
expression of YFP in excitatory neuron populations of M2. B: Fluorescent imaging revealed 
robust YFP expression in M2 and in DLS.  
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30 Hz). This suggests that these regions show synchronous activity during movement 

preparation periods, which is thought to reflect inter-area functional interactions. We performed 

the same analyses on the initiation of spontaneous licking bouts that occurred outside of the 

task. These events showed reduced firing rates in the two populations, and did not show 

changes in spike-LFP coherence in the times prior to their generation (Fig. 3.4B). When 

comparing spike-LFP coherence between cued and spontaneous licking, cued licking showed 

increased coherence within the beta-frequency band (Fig. 3.4C). This suggests that M2 and 

DLS interact prior to movement generation and that this interaction may be specific to 

movements that are linked to environmental stimuli through learning.  

 
M2 provides a dynamic drive onto DLS neurons 

We next used a causal approach to test the contribution that M2 makes onto DLS dynamic 

activity during the preparatory phases of movement. We injected viruses bilaterally into M2 to 

express the inhibitory opsins NpHR and Arch in excitatory neurons under the control of the 

CAMKII promoter (Fig. 3.5A, left). To observe the effects of M2 input suppression on DLS 

population activity, we used an integrated large-scale recording microprobe and optical light 

delivery device. This was implanted in the DLS in the region that receives M2 projections. We 

presented laser for the entire duration of the trial (-2 s to +6 s relative to cue onset) to maximize 

the effect of the laser on DLS activity (Fig. 3.5A, middle). We studied the effects of laser on 

MSN activity by calculating average firing rates during laser-off trials and laser-on trials (Fig. 

3.5A, right). We first observed that DLS MSNs generated dynamic activity when aligning the 

population activity during laser-off trials to the start of anticipatory licking (Fig. 3.5B, left). Next, 

on laser-on trials we observed that suppressing M2 input dramatically reduced firing rates of 

many MSNs during the task (Fig. 3.5B, right). This resulted in a reduced mean firing rate 

across the recorded MSN population (Fig. 3.5C). We first calculated the difference between the 

mean firing rates during laser-off trials and laser-on trials for each recorded MSN (Fig. 3.5D). 
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Figure 3.3. M2 and DLS show population activity related to movement preparation. A: 
Experiment schema. Dual-region recordings using large-scale silicon microprobes in M2 
and DLS. B: Example raster plots for two pyramidal neurons recorded in M2 (left) and two 
MSNs recorded in DLS. Rows are trials sorted according to latency to lick onset time. 
Red ticks indicate lick onset time for each trial. Black ticks demarcate individual spikes. 
C: Response of all recorded M2 pyramidal neurons (top) and DLS MSNs (bottom) aligned 
to anticipatory lick onset time (dotted line). Each row in the matrix represents the mean 
normalized firing rate of one recorded neuron in the corresponding brain area. Units are 
sorted by their latency to peak firing rate. D: Population average baseline-subtracted 
firing rate for all M2 pyramidal cells and DLS MSNs relative to lick onset time. All error 
bars are SEM. 
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 We found that on average, MSNs were maximally affected by the laser presentation in the 

times immediately preceding anticipatory lick onset (Fig. 3.5E). While this was consistent with 

the possibility that we reduced glutamatergic input to the striatum, we were interested in the 

effects of input suppression on microcircuit dynamics.  

 We identified the specific time of maximum firing rate differences for each unit (Fig. 

3.6A). We found that most MSNs showed the greatest difference in rate in the times around 

movement initiation, and there was a trend toward the majority of MSNs having a maximum 

difference less than 0 s (p = 0.059, Wilcoxon sign rank test, Fig. 3.6B). The striatal network is 

known to be regulated by feedforward and, to a lesser extent, feedback inhibition mechanisms 

(Tepper et al., 2008). We asked if suppressing a specific cortical input resulted in largely 

inhibited cell activity or whether any neurons were excited as a result of the reduction of 

glutamatergic input. We thus quantified the  

probability of detecting significantly inhibited and excited neurons for each time bin relative to 

lick onset. We found that MSNs were largely inhibited by M2 input suppression and that the rate 

of detecting MSNs with significant rate increases during laser presentation did not change in the 

times relative to lick onset (Fig. 3.6C). Thus, M2 suppression resulted in a general and 

widespread reduction in MSN activity. Most neurons were active in the times immediately 

preceding lick onset in our MSN population. Thus peak firing times closely predicted the times of 

maximum laser effect (Fig. 3.6D). In order to control for the potential confound of most neurons 

being maximally active prior to licking, we calculated the mean magnitude of firing rate reduction 

and increases as a function of the peak firing time for each unit. This analysis revealed that  

when controlling for unit number per time bin, we can still observe a high degree of rate change 

for units that peak in their firing rate prior to movement initiation (Fig. 3.6E).    

Lastly, we have previously shown that striatal dynamics show structured spontaneous 

activity during inter-trial intervals while animals are at rest (Bakhurin et al., 2016). We asked if 

M2 input suppression would affect DLS spontaneous activity. We found that activating laser  
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Figure 3.4. M2 and DLS are synchronized prior to cued licking behavior. A: Example spike-
LFP coherogram showing coherence between M2 spiking activity and DLS LFP activity 
aligned to onset of anticipatory licking during CS-reward intervals. Vertical dotted line is 
aligned to lick onset and horizontal lines indicate beta-frequency range. B: Example spike-
LFP coherogram showing coherence between M2 spiking activity and DLS LFP activity 
aligned to onset of spontaneous licking outside the task. Lines are the same as in A. C: 
Mean spike-LFP coherence in the beta-frequency band (15-30 Hz) averaged across 
individual animals. Only 3 mice had enough spontaneous licking events to perform 
analysis. Error bars are SEM. 
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during times when animals were at rest outside of the task did not change MSN firing rates. This 

suggests that M2 does not continuously interact with the DLS, and that this circuit may be 

preferentially recruited during cued anticipatory movement generation. Together, these results 

suggest that M2 input to DLS MSNs is dynamic and that this cortical input does not simply 

provide a continuous tonic source of excitation to the network. The results also suggest that M2 

input to driving DLS activity is largely restricted to cued licking events. 

 

Input suppression displaces DLS population codes for action initiation 

We have previously demonstrated that striatal dynamics contain stable population codes that 

track movement initiation (Bakhurin et al., 2017). We tested the effects of M2 input suppression 

on these population dynamics by training a decoder on population dynamics recorded during 

laser-off trials, and testing the model on other laser-off trials or on laser-on trials. In support of  

our earlier findings, we found that striatal dynamics in the DLS tracked lick onset time reliably, in 

that the decoder could identify time bins that contained lick onset times regardless of whether 

they occurred early or late within the delay during laser-off trials (Fig. 3.7A). Next, the decoder 

was trained on laser-off trials and then tested on laser-on trials. In these cases, we observed 

that the decoder made more errors in identifying the lick onset time using data during laser-on 

trials (Fig. 3.7A). This suggests that input suppression changes population dynamics related to 

licking behavior.  

 To determine the nature of the change in the population dynamics during laser-on trials, 

we trained the decoder on laser-on trials and applied these models to both laser-on trials. If 

laser presentation results in worse performance of the classifier, it would suggest that M2 input 

suppression caused an increase in variability of striatal activity in addition to reductions in firing 

rates. We found that models trained and tested on laser-on trials performed similarly to those 

trained and tested on laser-off trials, though there was a trend toward worse classifier 

performance on laser-on trials (p = 0.08, paired t-test, Fig. 3.7B). When applying laser-off or  
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Figure 3.5. M2 provides dynamic drive onto DLS population activity. A: Experiment 
schemas. Left: Mice received bilateral virus injections to express eNpHR bilaterally in 
M2. After training, mice were implanted with the optomicroprobe unilaterally, allowing 
for large-scale recording from, and laser delivery to the DLS to inactivate M2 
projections. Right: Laser was delivered for a total of 8 s beginning 2 s prior to cue onset 
and terminating 6 seconds after. Laser was pseudorandomly presented during 50% of 
the trials. B: Normalized mean firing rates for all DLS MSNs recorded in conjunction 
with laser light delivery. Left figure shows ROFF and middle figure shows RON for each 
neuron. Cells in both matrices are sorted by their latency to peak firing relative to lick 
onset time in the ROFF condition and both conditions are normalized to the max in the 
ROFF condition. Right figure shows the ROFF – RON curves for each neuron. C: 
Population averages of MSN firing rates in the ROFF and RON conditions relative to lick 
onset time. D: Analysis is performed on mean firing rates recorded in the absence 
(ROFF) and in the presence (RON) of laser. E: Average ROFF – RON curve for the entire 
MSN population shows a maximum value immediately prior to lick onset time. Error 
bars are SEM. 
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laser-on models to their complimentary trial type (cross-trial analysis), both models performed 

significantly worse. This suggests that M2 input suppression does change the population coding 

of licking onset, but may simply do this via a significant, but consistent, displacement of DLS 

dynamic activity in state-space. Importantly, these results also show that in the absence of M2 

input, DLS activity retains a dynamic organization of its activity patterns, albeit with potentially 

higher variability. 

 

Input suppression reveals a dynamic corticostriatal transformation across MSNs 

The transformation that the striatal microcircuit performs on incoming excitatory input to 

generate the striatal output is not well understood. We took advantage of our ability to record 

firing activity in single neurons both with and without M2 input to attempt to understand how a 

glutamatergic input is incorporated into MSN spiking activity. Thus by eliminating the activity of 

glutamatergic input to the DLS, we assume that we can infer the function of corticostriatal 

synapses when they are intact (Phillips and Hasenstaub, 2016). For each MSN, we calculated 

the mean firing rate relative to lick onset during both laser-on and laser off trials (Fig. 3.8A, left). 

We next calculated the degree to which firing rates during laser-on trials were a linear function 

of the firing rates during laser-off trials by determining the R2 value of this relationship (Fig. 

3.8A, right). We found that across the population of MSNs that we recorded, we observed 

many clearly linear relationships between laser-on and laser-off trials. However, we also 

observed a high number of cells in which simple linear approximations were not sufficient for 

explaining the relationships between these two trial types (Fig. 3.8B). This distribution was not 

strongly explained by the floor effects in cells that were not modulated by the task, as including 

only task-modulated cells in this distribution did not eliminate cells with very low R2 values (Fig. 

3.8C). This suggests that the transformations that individual MSNs perform on cortical inputs 

are highly varied, with some cells simply increasing their firing rates in proportion to the amount  
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Figure 3.6. MSNs are maximally dependent on M2 input prior to lick initiation. A: 
Example MSN showing its ROFF and RON curves relative to lick onset. Dashed line 
indicates lick onset time and blue vertical line the time of maximum difference between 
ROFF and RON. B: Distribution of times of maximum difference between ROFF and RON. 
Red dashed line shows lick onset time and blue dashed line the null uniform 
distribution. C: Fraction of all MSNs that show significant inhibition or excitation per time 
bin between laser-off and laser-on trials relative to lick onset. D: Time of maximum 
difference between ROFF and RON as a function of peak firing rate time for each MSN.  
E: Magnitude of difference between ROFF and RON during the time of peak firing rate 
across all recorded neurons.  of observing a significantly laser-modulated cell as a 
function of peak firing rate time. F: Mean firing rate of all MSNs during laser epochs 
presented outside of the task. No significantly modulated cells were detected for any 
time bin, including peri-laser-onset and -offset bins. Error bars are SEM. 
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of cortical input, and other cells performing highly nonlinear operations on M2 glutamatergic 

inputs.  

 The MSNs in our DLS population are highly diverse in their mean responses relative to 

licking onset. We thus investigated whether the type of MSN response within the trial had any 

relationship to the kind of computational operation that MSN performs on M2 corticostriatal 

input. We first calculated the mean R2 response as a function of peak firing rate time relative to 

movement initiation. We found that MSNs with peak firing times closer to movement initiation 

showed higher R2 values, suggesting that MSNs have more linear relationships between laser-

on and laser-off firing activity as the population activity transitions into movement initiation and 

movement maintenance periods (Fig. 3.8D). In addition, the distribution of R2 values became 

more diverse once animals initiated movements (Fig. 3.8E). This suggested that perhaps 

neurons that were differentially modulated by movement revealed different kinds of utilization of 

M2 corticostriatal inputs.  

 To investigate this possibility, we clustered the neurons based on their mean firing 

pattern, obtaining 3 classes of cell responses in the population. The clusters largely reflected 

neurons whose activity decreased during licking behavior (Fig. 3.9A), those cells whose activity  

was transiently active prior to licking onset (Fig. 3.9B), and those whose activity increased 

during licking (Fig. 3.9C). Interestingly, we did not observe strong trends in the distributions of 

R2 values across neurons in each of these clusters. This suggests that MSNs receiving M2 input 

utilize those inputs in a complex and diverse manner, and that similar firing patterns in individual 

MSNs may not arise from overlapping input activity. 

 

Discussion for Chapter 3 

This study used optogenetic manipulations to study the effects of suppressing glutamatergic 

inputs on the generation of striatal dynamic activity. The striatum has recently been 

demonstrated to produce complex dynamic trajectories in behaving animals (Bakhurin et al.,  
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Figure 3.7. Dynamic codes for movement initiation remain after input suppression. A: 
Results of lick onset-time decoding in a representative animal. Scatter plots are the predicted 
lick onset times vs. actual observed lick onset times for each individual trial. Models were 
trained using non-laser trials and tested either on other non-laser trials (black, within-trial), or 
on laser-trials (red, cross-trial). B: Summary of within-trial and cross-trial decoding 
performance. Cross-trial testing of the decoder severely impaired lick-onset time prediction 
performance (a two way, repeated measures ANOVA revealed a significant interaction 
between training data groups).  There was no significant difference between within-trial 
performance of the decoder on no-laser and laser trials (p = 0.133, paired t-test). There was 
no significant difference between cross-trial performance of the decoder on no-laser and 
laser trials (p = 0.234, paired t-test). Dotted line reflects random chance performance level. 
Error bars are SEM. 
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2017; Gage et al., 2010; Rueda-Orozco and Robbe, 2015; Thorn and Graybiel, 2014). 

Glutamatergic input is necessary for driving striatal activity. However, the extent to which 

dynamic population activity of striatal networks is mediated through internal synaptic 

mechanisms vs. being dependent on complex external signals is not clear. We showed that 

suppressing cortical inputs to a local striatal network revealed a complex dependency on 

external glutamatergic input for generating movement-related striatal dynamic activity. Our 

findings support a model in which cortical inputs to the striatum are not a simply tonic source of 

excitatory drive onto striatal microcircuitry. However, we also revealed that MSNs differentially 

depend on premotor input to shape their individual firing responses during movement initiation. 

This suggests that local microcircuit architecture may be fundamental for determining how a 

given MSN utilizes a specific glutamatergic signal in generating its spiking activity during 

behavior. 

An important assumption underlies our study in that the MSNs that we recorded receive 

a myriad of distinct corticostriatal inputs, and not just those from M2. Striatal MSNs contain 

continuously active potassium channels that keep MSN membrane potentials at a 

hyperpolarized level (Calabresi et al., 1987; C. J. Wilson et al., 1990). In order to activate, 

MSNS require synchronized presynaptic excitatory activity in order to achieve depolarization 

that can lead to spiking activity (Plenz and Kitai, 1998; Plotkin et al., 2011; Stern et al., 1998). In 

addition to convergent activity, previous studies have also demonstrated that spatiotemporal 

activation patterns of presynaptic input may lead to distinct MSN responses (Carter et al., 2007). 

In our study, we found that continuous input suppression of M2-DLS synaptic activity during our 

task did not result in a uniform manipulation of MSN firing across time. Instead, we found that 

MSN populations showed dynamic dependence on M2 inputs, with a maximum interaction with 

those inputs prior to movement initiation. Thus it is possible that corticostriatal inputs may 

differentially contribute to local MSN activity in the DLS as a function of time relative to behavior. 
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Figure 3.8. Input suppression reveals a diverse impact of M2 projections on MSN firing. 
A: Example regression analysis between RON and ROFF firing rates. Left: Mean firing 
rates across all laser-off and laser-on trials showing firing rate reduction with M2 
suppression. Right: firing rate during laser-on trials as a function of firing rates during 
laser-off condition per time bin. Points reflect the mean rate in each condition across all 
time bins. Dotted blue line is the unity line, and the red line reflects the line of best fit 
from least-squares regression. B: A second example MSN. Labeling convention the 
same as in A. C: Distribution of R2 values calculated between ROFF and RON across all 
MSNs included in the study. D: Mean R2 values as a function of peak firing rate latency 
relative to lick onset across all MSNs. Error bars are SEM. 
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We also observed that laser presentation outside of the task resulted in little to no effect 

on MSN firing activity. This finding supports the possibility that M2-DLS interactions vary in their 

strength as a function of time, and furthermore suggests transient coupling between the two 

regions depending on task demands. These results also potentially exclude M2 from being the 

source of network organization in spontaneous striatal activity in the DLS recorded during 

resting state (see Chapter 1 and (Bakhurin et al., 2016)). However, this statement requires 

direct testing to determine that correlations among neurons are indeed intact during M2 input 

suppression. Alternative sources of spontaneous network activity in the striatum could be 

somatosensory regions or thalamic inputs (Reig and Silberberg, 2014; Smith et al., 2014).  

In addition to dynamic influences of M2 on DLS firing rates, we also observed evidence 

that M2 and DLS showed increased spike-LFP coherence during preparatory phases of 

movement. Interestingly, these interactions were not present during spontaneous licking events 

that occurred outside of cue-reward intervals. However, because firing rates were also lower 

during such events, it is possible that M2-DLS coherence is an artifact of increased firing rates 

(Aoi et al., 2015; Vinck et al., 2010). In addition, though other groups have shown evidence for 

spike-field coherence between primary motor cortex and sensorimotor striatum, they showed 

increases between 6-14 Hz (Koralek et al., 2013), whereas we observed coherence in the β-

frequency band, between 15-35 Hz. Though oscillations in the striatum at these frequencies 

have been linked to pathological conditions in humans (Boroud et al., 2006), they have also 

been linked to normal movement preparation (Courtemanche et al., 2003). Still, the discrepancy 

between our findings and those showing corticostriatal coherence at lower frequencies may be 

related to the different cortical areas being used.  

Our results using bilateral M2 inhibition showed that these manipulations resulted in 

reduced likelihood of anticipatory licking behavior without changes in lick onset time or onset 

time variability. Though similar, these findings are inconsistent with previous work. First, it was 

shown in monkeys that brief premotor cortex stimulation would delay reaching behavior without 
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Figure 3.9. R2 values do not group according to MSN response classification. A: Left: Heat 
plot depicting mean responses of MSNs classified as inhibited. Each row in the matrix 
represents the mean firing rate of one recorded MSN normalized to its maximum rate 
aligned to the onset of cued anticipatory licking. Middle: Mean firing rates of all MSNs 
classified as inhibited. Right: Distribution of R2 values for all inhibited MSNs. B: Same as in 
A for MSNs classified as transiently responding. C: Same as in A for MSNs classified as 
sustained responding. Error bars are SEM. 
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affecting movement kinematics (Churchland and Shenoy, 2007). While we are unable to 

measure licking movement kinematics with much detail, we did not see a change in lick onset 

timing for licks that occurred prior to reward, suggesting that our manipulation did not change 

onset timing. One possibility for the difference between previous work and our work (besides 

species differences) is that our study did not require mice to undergo a variable waiting period. 

Perhaps if we were to introduce a waiting period that was terminated by a go signal, we could 

manipulate the preparatory function that premotor cortex may play in movement (Churchland et 

al., 2010). In another study with manipulations in M2 in mice, it was found that M2 suppression 

through PV interneuron stimulation using ChR2 would disrupt animals’ ability to make correct 

discriminatory behaviors in a left/right lick decision-making task (Li et al., 2016). However, these 

results suggest that M2 inhibition resulted in increased directionality errors, but not reduced 

licking probability. This stands in contrast to our study, and may be attributed to the different 

inhibition approaches. 

Our regression analysis was based upon the assumption that removing cortical input to 

MSNs allows us to infer the contribution that the input makes to normal MSN function (S.-H. Lee 

et al., 2012; Phillips and Hasenstaub, 2016). The general result of M2 projection inhibition is that 

MSNs show reduced firing rates after turning off these inputs. However, we also showed that 

individual neurons showed highly varied responses to these perturbations. In the simplest 

cases, M2 input provided a constant gain on spiking rate of MSNs. This suggests that for these 

MSNs with high R2 values, their temporal dynamics remained intact but with a reduced 

magnitude. For most other MSNs, however, M2 input suppression led to a dramatic 

reorganization of their firing activity. Interestingly, after we grouped MSNs based on their activity 

pattern with respect to licking, we found that neurons with similar activation profiles did not show 

uniform responses to M2 suppression. This therefore suggests that common firing activity in the 

striatum may not necessarily be the result of overlapping input. On the other hand, it is possible 



	 118	

that the effects of M2 suppression on individual MSN activity are largely determined by the 

MSN’s local microcircuit architecture.  

 Our results suggest that cortical input to the striatum is not simply providing tonic drive to 

facilitate local dynamics. However, our results also show that in the absence of the premotor 

input, striatal networks continue to generate dynamic, albeit slightly more variable, activity, as 

evidenced by our decoding results. Whether this activity originates from within the striatal 

network or is dependent on other sources of excitation that we did not manipulate remains to be 

further determined. However, we propose that striatal dynamic activity with respect to 

movement planning and initiation results from a complex interaction of local microcircuit activity 

and cortical input.  
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General Discussion 

Here, I have described several studies on striatal network level activity in behaving mice. In 

chapter 1, I showed that plasticity mechanisms and topographic organization of striatal inputs 

result in long-lasting organization of networks of MSNs and FSIs. In chapter 2, I directly studied 

how striatal population dynamics may track time during predictive behavior, showing that striatal 

activity conforms to theorized mechanisms of time keeping in the brain. Finally, in chapter 3, I 

presented experiments that use optogenetic approaches to test the causal role of excitatory 

corticostriatal inputs in shaping striatal dynamic activity. This work represents a range of 

approaches that I have learned and applied to studying large-scale neural activity in behaving 

animals. In this last section, I would like to spend time providing future experiments for each 

study. Some proposed experiments are efforts to address some caveats or test alternative 

avenues of interpretation for the data I report above.  

 

Memory formation and distribution in the striatum 

In chapter 1, I developed a Pavlovian odor discrimination task and used large-scale recording 

approaches to simultaneously capture spiking activity from dozens of striatal neurons as mice 

learned the association for the first time (Bakhurin et al., 2016). The study’s primary finding 

involved neurons that discriminated between reward-predicting and non-predicting odor trials. 

Their activity patterns reflected the goal of the task that animals needed to learn, suggesting 

that they were involved in learning the behavioral discrimination between odors. One significant 

question regarding striatal-based learning is how subsets of cells like these are selected for 

during learning, as opposed to others. Striatal neurons receive a dense convergence of 

excitatory input from thousands of axons potentially all carrying distinct information (Kincaid et 

al., 1998). Thus it is conceivable that any MSN could become recruited into an ensemble that is 

involved in generating discriminatory behavior. A number of experiments could be proposed that 

would further characterize the linking of MSNs to specific cues, outcomes, and actions.  
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First, how would the discriminatory neurons in our study be recruited if animals must 

learn a new association, such as a reversal of odor reward relationships, such that the original 

CS- becomes the new CS+? At least one study has performed this kind of experiment while 

recording in rats running a T-maze, in which the rewarded arm is switched after rats reach high 

performance (Kubota et al., 2009). This study found very little alteration in the activity of striatal 

neuron populations after the reversal. My interpretation of these negative results is that as long 

as behavior remains similar, regardless of cues, striatal activity will remain fairly constant across 

the reversal. Thus, in our task, I would expect the same population of neurons to be recruited 

after a reversal. Our discriminating neurons were located in the lateral areas subregion of the 

striatum. Neurons in this subdomain has previously been associated with orofacial sensation 

and movement (Carelli and West, 1991; Cho and West, 1997), which links the neurons with our 

study with physical aspects of the behavior.  

Second, an extension of the logic that behavior is the ultimate determinant of striatal 

activity would suggest that interesting interactions between cell populations could be elicited by 

having animals learn distinct actions. There are many questions that could be asked if it could 

be reliably demonstrated that divergent behaviors resulted in non-overlap in striatal activation. 

While licking may not provide enough diversity in repertoire, many studies have investigated 

limb-based skills in rodents that demonstrate the diversity of movements that could be studied 

(Kawai et al., 2015; Mathis et al., 2017; Yttri and Dudman, 2016). Restricting movements to a 

single limb would theoretically constrain activity to a subdomain of the dorsal striatum and thus 

allow testing of ensemble overlap in various skills. One simple prediction for ensemble 

interaction comes from extensive work in the field of memory allocation, where it is believed that 

memories are more likely to overlap in neurons that are more excitable (Ramirez et al., 2013; 

Silva et al., 2009). Testing of these frameworks within non-declarative motor-learning systems 

has not yet been undertaken. 
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This study involved recording from the striatum during the first day of learning. We were 

surprised to find that medial striatum was not activated in this task, and that all interesting 

activity was distributed on the lateral side of the structure. This contrasted with previous work 

that has shown that learning transitions from medial to lateral areas of the sensorimotor striatum 

(Thorn et al., 2010; Yin et al., 2005; 2004). These studies were performed using navigation-

tasks or instrumental lever pressing, and thus, comparisons may be difficult to make. In 

addition, the finding that activity was restricted to lateral areas is more consistent with the known 

topographic inputs of the striatum. However, our study does not test for the necessity of the 

striatum for learning this association. Therefore, it is difficult to know whether activity that we did 

record was truly involved in learning, or whether striatal activity in our task is simply registering 

changes in motor behavior (Yin, 2016; 2014).  

This study also used statistical characterization of simultaneously recorded networks to 

show that the discriminating neuron show higher rates of correlated activity with one another 

than with neurons that were not discriminating. Importantly, these correlations were measured 

outside of the task while animals were not moving in order to control for extraneous factors 

contributing to their statistical relationships. Our findings have parallels in other fields that show 

population activity outside of task performance that retain task-related organization (Jadhav et 

al., 2012; S. Xu et al., 2012). Another study has shown that correlated cortical neurons in vivo 

are more likely to be physically connected (Ko et al., 2011). Owing to the lack of consensus 

about the importance of lateral interactions in the striatum, we speculated that correlations in 

our recordings arose from common sources of input.  

What could be the origins of these inputs? Presumably these would be extrastriatal 

glutamatergic axons, but whether they arise from one region or many would require some 

additional experiments. If these inputs come from one source, do correlations disappear after 

removing that input? If they come from multiple sources, are these input areas also correlated to 

each other and thus send synchronous inputs to the striatum?  
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We also performed analysis to ask if the probability of detecting of these correlations 

increased with learning. We did not see changes in correlations throughout the recording, which 

suggested that they were established prior to the experiment. One experiment that could be 

done to test this hypothesis is to record resting state activity prior to beginning the odor training. 

Spontaneous correlations among neurons should be present prior to any learning. This would 

reinforce the need to perform these experiments using more arbitrary movements that animals 

have not been exposed to prior to training, which is not the case with licking behavior as they 

have been performing this action their whole lives. One recent study has demonstrated 

interesting results with this kind of approach, showing that striatal neurons will increase their 

firing rates in response to task-specific excitatory inputs that were not previously encountered 

(Xiong et al., 2015). However, the correlations among these neurons were not explored. 

 Altogether, our work was some of the first to do these kinds of analyses in the striatum in 

behaving animals, and to bring network analysis measures to subcortical structures. While we 

could have made more of a direct link to behavior, our observations can be expanded into a 

number of follow-up experiments, a number of which I described here. 

 

Expansion on time representation in striatal networks 

In chapter 2, I focused on characterizing striatal dynamic activity within the framework of time 

representation in neural networks (Bakhurin et al., 2017). In this study, we took advantage of 

our abilities to record large-scale network activity in multiple brain regions of the same animal. 

This work operated under the theory that the brain tells time by learning the patterns of activity 

that its neural networks generate as it performs its computational functions. Our laboratory 

routinely records dynamics that are very similar to those that can be generated in neural 

networks, and that can be detected in many other brain areas. We found that directly comparing 

neural network activity of two brain areas results in a difference in their ability to keep track of 

time, suggesting that while time encoding may be widely distributed in the brain, it is not 
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uniformly tracked. Many follow-up questions can be asked of these dynamics and their 

relationship to time.  

The population clock framework makes two general assumptions that must hold in order 

for it to be truly implemented in the brain. First, population clocks must be reliable in that too 

much noise in network activity will render them poor clocks. This reliability is ensured by the 

brain through plasticity mechanisms and learning. Our study used machine learning approaches 

to demonstrate that both striatal and OFC activity was indeed reoccurring within individual trials. 

The second assumption is more difficult to demonstrate but is equally important: Is anything 

listening to these reliable population clocks? In neural network models of these clocks, a read-

out population is trained to detect specific population configurations that emerge as a function of 

time.  

How can these read-out populations be detected or identified in vivo? In one sense, 

disrupting the population activity should alter timing. Timing has been altered by inactivating 

striatal activity in another study (Mello et al., 2015), but not in a Pavlovian task like the one we 

have implemented. Furthermore, we do not gain understanding of how these timing sources are 

actually used by downstream areas, and do not exclude the possibility that read-out populations 

may be located within the same network that is generating the action. In addition, while many 

studies have explored the ways that distinct, spatially separated brain regions interact (Engel et 

al., 1991; Koralek et al., 2013; Popescu et al., 2009; Zandvakili and Kohn, 2015), these kinds of 

analyses have not been explicitly applied to tasks involving timing. Our multi-region, large-scale 

approaches are ideal for these kinds of experiments. For example, do specific activity patterns 

in upstream regions such as the striatum predict population activity in basal ganglia output 

nuclei, such as the substantia nigra? 

Our study analyzed dynamics that were recorded within a small temporal interval. We 

argue that animals are using time in the task because, 1) their licking onset times during the 

interval are not random and uniformly distributed, but appear to center around a specific 
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setpoint, and 2) unpublished data from our group shows that mice can learn to time two different 

intervals that are presented in a randomized fashion. However, within this short interval, neural 

activity in response to the odor cue may overlap with neural activity that is driven by anticipatory 

licking occurring prior to the reward. The effect of a short interval could be that two distinct 

populations in the striatum have overlap in their activation patterns, and may therefore be 

interpreted as a continuously active dynamic trajectory. One way to determine if this is the case 

is to present the reward a much later time relative to the odor cue. Although we have previously 

shown that mice can time two different intervals, one being twice as long as the other, we have 

not performed striatal recordings using this data, and thus do not know how the same network 

handles short vs. long intervals. If our analysis was performed on overlapping cue and motor 

related activity, then these patterns may separate during the interval and would reveal a gap in 

striatal activity. Other studies using striatal dynamics have tested this by using very long 

intervals, and argue that striatal dynamics are continuously active and scale their transition 

speed in response to varying timing demands (Gouvêa et al., 2015; Mello et al., 2015). Do our 

recorded activity patterns expand to accommodate longer intervals as well? If they were not 

continuous during the longer interval, it would imply that the timing originated in an area outside 

of the striatum. 

Finally, it would be useful to determine how other cortical areas are involved in 

representing the temporal interval. We chose the OFC as our cortical area to compare with the 

striatum, but often received criticism for this choice, as the OFC may not necessarily be involved 

in the behavior we were using. Several studies have shown that prefrontal cortex and premotor 

cortex are capable of, and sometimes required for, encoding time (Crowe et al., 2014; Kim et 

al., 2009; Merchant et al., 2013b). Our model is that the striatum integrates across many brain 

areas to generate its population code. Thus we proposed that cortical regions are perhaps less 

well tuned to time and the striatum is recruited to refine this signal. This statement requires 

further testing. Once it is determined that striatal output is indeed necessary for timing in our 
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task, it would be important to find the input areas that drive this activity. The work that I describe 

in chapter 3 shows how our lab is beginning to investigate these kinds of questions. 

 

The importance of local microcircuitry for generating striatal output 

In chapter 3, I investigated the effects of optogenetically inhibiting inputs to the lateral striatum 

from a premotor cortical area known to be important for guiding licking behavior. I showed 

evidence that these two brain regions interact specifically during cued licking behavior, and that 

M2 inputs appear to shape striatal activity predominantly during movement preparatory periods. 

Finally, I used the ability to transiently silence inputs onto MSNs to characterize how these 

inputs normally contribute to MSN firing activity. While it is clear that the MSN populations 

showed reduced overall activity after laser activation, these effects were not uniform across the 

population, leaving room for other excitatory inputs or local microcircuit interactions continue 

supporting striatal output.  

 Several challenges exist in the interpretation of these results. Although we eliminated the 

contribution of one source of excitatory input to the striatum, it is very likely that the neurons that 

we recorded from still received excitation from other sources that we did not manipulate. One 

candidate is the region of somatosensory cortex relating to orofacial sensation, which should 

project to a similar place as motor inputs do (Carmichael and PRICE, 1995; Hoffer and Alloway, 

2001). In considering future experiments with this circuit, I would be interested in using 

retrograde tracing to determine what cortical regions could theoretically contribute most to the 

activity of the region in the DLS that we targeted. Then inhibitory opsins could be injected into 

these areas and the same kinds of recordings could be made in the striatum with optical 

inhibition of inputs from two regions. First, what would R2 distributions look like with this 

manipulation? It is difficult to speculate on the shape of this distribution, but if firing rates are 

reduced even more than with a single suppressing a single input, as we did in this study, 

perhaps the result would be a floor effect of the RON curve. The resulting distribution might be 
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pushed further towards lower R2 values. A second question involves the state of temporal 

dynamics in the absence of multiple glutamatergic inputs. In the study, I showed that population 

coding in the times prior to licking maintains a dynamic activity pattern in the absence of M2 

input, possibly due to other inputs. The increased decline of dynamic population responses after 

removing more sources of glutamate would support my prediction that remaining glutamatergic 

input supports striatal activity patterns in the absence of M2 input.  

 An alternative source of striatal dynamics could arise from local microcircuit activity. 

Although the striatal recurrent network is largely inhibitory, it has been demonstrated that these 

networks are able to generate complex activity patterns with only tonic excitatory input (Carrillo-

Reid et al., 2008). In order to determine how much local interactions contribute to population 

codes related to anticipatory activity, one could infuse GABAergic antagonists, such as 

bicuculline or gabazine, into the striatum, thus suppressing these local signals. Importantly, 

glutamatergic signals would remain intact, and could still theoretically drive striatal output. 

Comparing spiking activity in MSNs in the absence of GABA blockade with activity in the 

presence of blockade could give some valuable insight into the role that local GABAergic 

interactions play in generating spiking output. Such approaches, in addition to using optogenetic 

manipulations, have proven to be highly valuable in mapping circuit organization in cortical 

areas (Isaacson and Scanziani, 2011). These results would also test a number of predictions 

made using neuronal network models, namely that striatal networks are capable of generating 

intrinsic activity patterns with only a tonic source of glutamate (Ponzi and Wickens, 2010).  

 I observed a diversity of effects of M2 input suppression on MSN activity. In some cases, 

M2 input only seemed to provide a simple linear contribution to individual MSN firing rates, 

suggesting that the glutamatergic input only served to amplify MSN output signals. However, 

these effects were largely an exception rather than a rule in terms of how M2 inputs contributed 

to MSN activity. Interestingly, these effects were not largely explained by grouping cells 

according to their response profile in the laser-off control condition. This result presents an 
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interesting challenge, as it suggests that MSNs with similar activity patterns do not necessarily 

generate these responses because of overlapping sources of glutamatergic drive.  I describe in 

chapter 3 how perhaps MSN position within local microcircuit architecture may account for these 

discrepancies. Another potential contribution could be that the M2 inputs are highly diverse 

themselves, and that we were indiscriminant as to which kinds of input patterns we suppressed 

with our manipulation. An additional possibility is that different MSNs, in addition to their receipt 

of M2 signals, may also have many different glutamatergic synapses from diverse input areas. 

Because the M2 input happened to undergo the greatest level of plasticity, this is what is most 

represented in MSN output. The suppression of this input thus may reveal the diversity of 

synaptic connections that individual MSNs have with other areas that may not have been as 

involved in learning. One experiment that could address this possibility is one where inputs are 

suppressed during early stages of learning. Perhaps then, it would be possible to show that M2 

contributions to individual MSN firing activity develops over time. 
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