
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Feasibility of Virtual and Augmented Reality Devices as Psychology Research Tools: A Pilot 
Study

Permalink
https://escholarship.org/uc/item/2v93g1xk

Author
Garduno Luna, Cristopher Daniel

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2v93g1xk
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Santa Barbara

Feasibility of Virtual and Augmented Reality Devices as

Psychology Research Tools: A Pilot Study

A Thesis submitted in partial satisfaction of the
requirements for the degree Master of Arts

in Dynamical Neuroscience

by

Cristopher Daniel Garduno Luna

Committee in charge:

Professor Barry Giesbrecht, Chair

Professor Tobias Höllerer

Professor Scott Grafton

December 2020



The thesis of Cristopher Daniel Garduno Luna is approved.

Scott Grafton

Tobias Höllerer

Barry Giesbrecht, Committee Chair

December 2020



Abstract

Feasibility of Virtual and Augmented Reality Devices as Psychology Research
Tools: A Pilot Study

by

Cristopher Daniel Garduno Luna

The recent proliferation of VR and AR devices has led to an increase in the

use of these devices as research tools. As these technical developments continue,

researchers can leverage these hardware improvements to create realistic and con-

trolled environments for experimentation in life-like scenarios. In cognitive re-

search, these devices will often be coupled with neurophysiological recordings,

which poses the challenge of dealing with movement artifacts. In this study, three

experiments were conducted using oddball tasks and semantic processing tasks

to assess EEG data quality using VR/AR to display stimuli. The first experi-

ment showed that the VR oddball task elicited comparable neural activity as a

traditional desktop oddball task. The subsequent experiments systematically in-

troduced movement artifacts in VR and AR, and showed that these neural data

were usable with minor movement artifacts, while neural signals recorded under

walking/free motion conditions were heavily contaminated with movement arti-

facts. Although there have been a variety of approaches for removing movement

artifacts from neural data, many of them are specific to the experimental design,

or have other constraints limiting their generalizability.
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Introduction

The proliferation of virtual and augmented reality (VR/AR) technologies has

made VR and AR tools with applications in varied fields, including behavioral

and cognitive research applications. Traditional experimentation in these fields of

research have often used simplified and highly controlled environments that have

struggled to reflect the environments in which humans experience the behavioral or

cognitive phenomena in question. With the goal of understanding these phenom-

ena as they occur in realistic environments, various labs have turned to VR and

AR environments. The Virtual Environment Navigation Laboratory (VENLab)

at Brown University and the CAVE™from the University of Illinois at Chicago are

two examples of VR and AR environments aimed to be as life-like as possible (Tarr

and Warren, 2002). Although these two examples employed different systems to

achieve their goal, the VENLab used a tethered head-mounted display (HMD)

in a 40’ by 40’ room while the CAVE™used a projection-based system with 3D

glasses in a 9’ by 9’, both of these systems were still relatively inaccessible and

suffered from graphical and spatial limitations.

As these technologies continued to develop and increase their technological ca-

pacities we’ve seen more research groups investigate these tools as a viable option

for life-like research environments (Wilson and Soranzo, 2015). Applications have

ranged from using VR as an educational aid to using AR-based brain-computer

interfacing (BCI) systems to control a mobile robot (Makransky et al., 2019; Si-

Mohammed et al., 2020). Foerster et al. (2016) addressed a technical concern on

the usability of a consumer-grade VR device as a research tool, and showed that

the Oculus Rift DK2 (Oculus VR, Irvine, CA) is as reliable as a traditional CRT
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display for experiments assessing visual processing speed, threshold of conscious

perception and capacity for visual working memory. Others have shown that

virtual environments are capable of producing realistic physiological responses.

Meehan et al. (2002) used a ’virtual pit’ where users walked to a ledge and looked

down into a large pit, and this reliably induced a stress response from users. Sim-

ilarly, people completing a beam-walking task using the Oculus Rift DK2 were

also shown to experience a stress response Peterson et al. (2018).

Another way to use these tools is to combine them with other research tools.

Various groups have combined VR and AR technologies with electroencephalog-

raphy (EEG) and other data acquisition tools to create BCI systems, and to

examine behavioral and perceptual effects of these environments (Meehan et al.,

2002; Kober and Neuper, 2012). With the addition of EEG to any VR/AR sys-

tem, the need for users to walk quickly becomes a concern. EEG is very sensitive

to noise and artifacts from the environment as well as from the users muscle

movements, so this poses a challenge in building a system that allows for life-like

environments and behaviors. Islam et al. (2016); Rahman et al. (2019) review

the various types of artifacts that typically emerge in EEG studies, and examine

different methods and their efficacy in removing the various types of artifacts.

While some approaches involve novel hardware designs to minimize movement

artifacts, others have implemented multi-modal data acquisition systems to char-

acterize and remove movement artifacts (Mihajlovic et al., 2014; Arad et al., 2018).

EEG has been an important tool for understanding cognitive states during VR/AR

scenarios, however, given the various sources of noise (due to movements of var-

ious magnitudes and electrical noise), the present study aimed to determine the
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feasibility of acquiring reasonable EEG data in VR/AR. Three experiments (with

small sample sizes) were conducted using variants of a classic EEG task (odd ball)

in VR using an HTC Vive HMD, and an AR analogue of a EEG semantic pro-

cessing task using a Magic Leap 1 HMD. The task variants aimed to introduce

noise systematically to move towards application scenarios.

Experiment I

Aim

In this experiment, participants completed a 3-stimulus oddball task in which

subjects were instructed to identify target stimuli in the presence of standard

non-target stimuli and distractor stimuli. The aim in this experiment was to elicit

and compare the P300 signal generated by rare visual stimuli using a desktop

monitor and a VR HMD.

Methods

Participants

Three adult participants at University of California, Santa Barbara participated

in this study: two males ages 26 and 21, one female age 23. All participants

reported normal or corrected to normal vision.

Visual Stimuli

Visual stimuli consisted of 8-bit grey scale images of faces and cars originally

obtained from the Max Planck Institute for Biological Cybernetics face database

(Troje and Bülthoff, 1996). The image set consisted of twelve car and twelve
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face images, where half of the faces were left-facing (45°) and the other half were

right-facing (45°). Additional filters were applied as described in Bullock et al.

(2015).

Procedure and Design

Each participant completed two testing conditions (Desktop and VR) of an oddball

task during a single session. In the Desktop condition, participants were seated

70 cm from the display (Dell UltraSharp 2408WFP 24-inch widescreen LCD mon-

itor, 1920x1200 resolution, 60 Hz refresh rate). In the VR condition stimuli were

presented on a grey frame background using an HTC Vive HMD that uses an

OLED panel for each eye (1080x1200 resolution each), 110° field of view, and 90

Hz refresh rate. Participants remained seated while using the HMD. Responses

were recorded using the HTC Vive controllers for both conditions - left trigger:

initiate block; right trigger: respond to target. In both display conditions were

presented on a grey frame background and subtended ∼8.2°x8.2° of visual angle.

Prior to data collection, participants were given verbal instructions and a brief

practice session (see Figure 1). The task consisted of 5 blocks of 200 trials for each

condition (1000 trials total), and the order of stimulus presentation was random-

ized for each subject. The proportions of stimuli were 80% standard non-targets

(cars), 10% distractor non-targets (left-facing faces), and 10% targets (right-facing

faces). Upon initiating a block, stimuli were presented at fixation for 200 ms, fol-

lowed by an inter-stimulus interval (ISI) of 800 ms ±200 ms. Participants were

encouraged to take brief breaks between blocks. Figure 2 illustrates an example

of the sequence of trials presented.
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Figure 1: An example of a participant familiarizing themselves with the testing
equipment and protocol during the practice task. Note: room lights were turned
off during data collection.

EEG Data Acquisition

EEG data were recorded using a Brain Products ActiCHamp system (Brain Vision

LLC, Morrisville, NC) with 64 electrodes in a actiCAP cap and arranged according

to the 10-20 system. The TP9 and TP10 electrodes were placed on the right and

left mastoids (average mastoid signal used as reference during data collection).

Prior to starting each session, impedance was kept below 15 kΩ for all electrodes.

The data were sampled at 1000 Hz.

Data Processing & Analysis

MATLAB (version 2018b, Massachusetts, The MathWorks, Inc., Natick, MA)

and the EEGLAB toolbox (Delorme and Makeig, 2004) were used for offline EEG

data processing. The continuous data were re-referenced to the average reference.

Then the data were band pass filtered from 0.1 Hz to 30 Hz. The data were then

epoched from -200 ms pre-stimulus to 1000ms post-stimulus. Electrodes Fp1 and

Fp2 had poor quality data and were identified via visual inspection and were in-

terpolated using data from surrounding electrodes. Eye blink correction was done
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Figure 2: Experiment I oddball task trial sequence example. S: standard non-
target (vehicles); D: distractor non-target (left-oriented faces); T: target (right-
oriented faces). This figure shows an example of the stimuli presented in sequential
trials; stimulus duration: 200 ms, ISI: 800 ± 250 ms.

using a conventional recursive least squares regression method from EEGLAB

(crls regression.m). Trials exceeding ±150µV were excluded.

Event-related potentials (ERPs) were computed by averaging over the P3, Pz,

and P4 electrodes for each subject then averaging across subjects. Figure 3 shows

the ERPs along with the corresponding scalp topography averaged over 400-700

ms (set as the P300 time window). ERP differences were computed by subtracting

the data standard (Std) stimuli ERPs from the distractor (Dis) or target (Tar)

stimuli ERPs. Figure 4 shows the ERP differences along with the corresponding

scalp topography differences.

Statistical Analysis. Given the limited sample size in this experiment (n = 3),

t-tests were conducted across blocks for all subjects such that n = 15 (3 subjects,

5 blocks each). This approach allowed us to conduct significance testing, with an

added assumption of equal variance across subjects. ERP difference waveforms
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were averaged over 400 − 700ms to compute the t statistics.

Results

ERPs and scalp topographies are shown in Figure 3 and Figure 4. The t-test

results are presented in Figure 5. The P300 signal elicited from target and dis-

tractor stimuli was distinguishable from the signal elicited by standard stimuli in

both display conditions. The signal elicited from target stimuli was statistically

different from distractor stimuli in the desktop display condition, but not in the

VR display condition. See Figure 5 for full results.

Figure 3: 3-Stimulus Oddball task ERPs with standard error (P3, Pz, P4) and
scalp topography (400-700 ms). The grey shaded regions in the ERP plots indicate
the region over which the data were averaged to compute the scalp topographies
and for significance testing.
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Figure 4: 3-Stimulus Oddball task ERP difference waveforms with standard error
(P3, Pz, P4) and scalp topography (400-700ms).

Figure 5: Significance testing across blocks for all subjects. M was computed by
averaging the ERP difference waveforms over 400 − 700 ms. Distractor-standard
(A) stimuli, target-standard (B) stimuli, and target-distractor (C) stimuli.

Summary

The aim of experiment I was to elicit and compare the P300 signal using a desk-

top and VR display. ERP results showed a robust P300 signal and were generally

consistent across display devices, with the exception being that target and distrac-

tor stimuli did not elicit statistically different P300 signal using the VR display.

Scalp topographies were consistent across display devices and generally matched
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the expected topography of a P300 signal.

Experiment II

Aim

In this experiment participants completed a 3-stimulus and 2-stimulus oddball

task. The 2-stimulus oddball task was aimed at reducing task difficulty and

making the P300 signal more pronounced. All of the stimuli were presented using

a VR headset. The aim of this experiment was to systematically introduce small

predictable movements of the eyes and head, and observe how these movements

affect the data quality.

Methods

Participants

Three adult participants at the University of California, Santa Barbara partici-

pated in this study: two males ages 26 and 21, one female age 23. Participants

reported normal or corrected to normal vision. All three participants completed

the Fixation testing condition, but only one participant (male, age: 26) completed

the Eye Motion and Head Motion conditions.

Visual Stimuli

Visual stimuli in the 3-stimulus task were the same as described in experiment

1, and were all presented inside a blank virtual environment with a grey frame

background. In the 2-stimulus task the distractor non-targets were replaced with

targets such that 80% of the stimuli were standard non-targets, and 20% of the
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stimuli were targets (oddballs). The Gaussian white noise added by Bullock et al.

(2015) was removed in the 2-stimulus task. The aim in removing the noise and

distractor non-targets was to accentuate the P300 signal.

Procedure and Design

For both the 3- and 2-stimulus tasks, there were 3 conditions: Fixation, Eye

Motion/Movement, Head Motion/Movement. In the Fixation condition all stim-

uli were presented at fixation. In the Eye Movement condition the stimuli were

presented along an invisible circle 12° viewing angle away from fixation such

that the images were completely within the field of view, but viewing the images

required that the participant move their eyes toward the stimuli. In the Head

Movement condition the stimuli were presented along the border of the field of

view such that the participant required a head movement to view the entire image.

The 3- and 2-stimulus tasks were completed on separate days. The three test-

ing conditions for each task were completed on the same day. Each condition

consisted of 5 blocks of 200 trials each, for a total of 1000 trials per condition per

task (6000 trials total over two days). The duration of each stimulus (and ISI)

and the controller settings were the same as in experiment 1. Figure 6 shows an

example of the stimulus presentation for the 3-stimulus oddball task.

EEG Data Acquisition

EEG data were recorded for each participant using a g.Nautilus Pro wireless sys-

tem (gTec, Austria) consisting of 32 active gel-based electrodes arranged according

to the 10-20 system. The ground electrode was located at AFz, and the reference

electrode was clipped to the right earlobe. Prior to data collection, impedance for
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Figure 6: Example of 3-Stimulus Oddball Task from experiment 2. Stimulus
duration = 200 ms. ISI = 800 ± 250 ms. S: standard non-target; D: distractor
non-target; T: target. Fixed: stimuli at fixation; Eye: stimuli just inside border
of field of view; Head: stimuli just outside border of field of view.

all electrodes was < 30 kΩ, with the exception of FT10 and TP10, which were

non-functional. The data were sampled at 500 Hz, and downsampled offline to

250 Hz.

Data Processing & Analysis

MATLAB and the EEGLAB toolbox (Delorme and Makeig, 2004) were used for

offline data processing. The EEG data processing steps were as described in

experiment I.
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Statistical Analysis

As with experiment I, t-tests were conducted across blocks for all subjects. In this

experiment, there were three subjects in the Fixation condition and one subject in

the Eye Movement and Head Movement conditions (nfix = 15, neye = nhead = 5).

Results

The ERP and scalp topographies are shown in Figure 7 and Figure 8 for the 3-

stimulus oddball task, and Figure 9 and Figure 10 for the 2-stimulus oddball task.

The t-test results are shown in Figure 11 for the 3-stimulus oddball task. These

results showed that the P300 signals elicited by target and distractor stimuli were

statistically different from the signal elicited by standard stimuli, but the P300

signals elicited by the target and distractor stimuli were not statistically different

from each other. See Figure 11 for full results.

Figure 7: 3-Stimulus Oddball task ERPs with standard error (P3, Pz, P4) and
scalp topography (400-700 ms). The grey shaded regions in the ERP plots indicate
the region over which the data were averaged to compute the scalp topographies
and for significance testing.

The t-test results for the 2-stimulus oddball task are shown in Figure 12. These
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Figure 8: 3-Stimulus oddball task ERP difference waveforms with standard error
(P3, Pz, P4) and scalp topography (400-700 ms).

results showed that the P300 signal elicited by target stimuli were statistically

different from the signal elicited by standard stimuli only in the Eye Movement

condition.
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Figure 9: 2-Stimulus oddball task ERPs with standard error (P3, Pz, P4) and
scalp topography (400-700 ms). Note: the scalp topography scale in the Head
Motion condition was adjusted due to high amplitude deflections.

Figure 10: 2-Stimulus oddball task ERP difference waveforms with standard error
(P3, Pz, P4) and scalp topography (400-700 ms). Note: The scalp topography
scale in the Head Motion condition was adjusted due to high amplitude deflections.
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Figure 11: 3-Stimulus oddball task significance testing across blocks for all
subjects. M was computed by averaging the ERP difference waveforms over
400 − 700ms. Note: there were three subjects in the Fixation condition, and two
in each of the other conditions.

Figure 12: 2-stimulus oddball task significance testing across blocks for all
subjects. M was computed by averaging the ERP difference waveforms over
400 − 700ms.
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Summary

The aim of this experiment was to systematically introduce small predictable

movements while users completed tasks in VR, and to observe the effect of these

motion artifacts on data quality. The P300 ERP component was robust for tar-

get and distractor stimuli (3-stimulus oddball task) in all movement conditions,

although these movements distorted the waveforms, particularly with head move-

ments. The scalp topographies were also distorted with these movements, and

head movements added the most distortion. The P300 ERP component and scalp

topography for the Eye Movement condition was as expected and comparable

to the signal and topography at Fixation, but this was not the case for the Head

Movement condition, which was likely due to the high amplitude motion artifacts.

Experiment III

Aim

In this experiment we compared a semantic processing ERP component (N400)

using an LCD display and an Magic Leap 1 augmented reality (AR) headset. Sim-

ilar to experiment 2, this experiment systematically introduced muscle movement

artifacts with the aim of recovering the N400 signal with the presence of heavily

artifact-contaminated data.

Methods

Participants

Twenty-four adult participants from the University of California, Santa Barbara

(UCSB) community took part in this study primarily via SONA, but only six
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of those participants (three male, three female) were used in the analysis due to

technical errors resulting in corrupted data. All participants provided informed

consent and were compensated financially ($15/h). The mean age for participants

used in the analysis was 20.7 years with a standard deviation of 4.2 years. All

participants reported having normal or corrected to normal vision.

Visual Stimuli

The stimuli used in each condition were from the same stimulus list of 120 related

word-object pairs. The words were obtained from a list of word-word pairs used

in an prior study of semantic processing (Swaab et al., 2002). Each pair was

presented two times: once with a congruent pairing and another time with an

incongruent pairing, where the order in which these congruent/incongruent pairs

appear is randomized. Words were presented in white upper-case sans serif font

on a grey frame background.

Procedure and Design

Each participant completed all four testing conditions (Desktop, AR-Fixed, AR-

Head Movement, AR-Walking) during a single session. Each participant was

required to complete 2 blocks of 120 trials for each test condition (960 trials total)

in which a word is shown, followed by the corresponding congruent/incongruent

object pairing. Subjects were given up to five minutes of rest in between blocks

and testing conditions. The order in which testing conditions were completed was

randomized.

In the Desktop condition all stimuli were displayed using a 24 inch LCD mon-

itor placed 60 cm away from the participant. In the three AR- conditions the
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Figure 13: Example of a typical participant familiarizing themselves with the
Magic Leap HMD.

stimuli were displayed using a Magic Leap 1 AR HMD.

Prior to starting data collection participants were taken to the testing room where

the AR display was calibrated using Magic Leap’s built-in eye calibration appli-

cation, then they were given a brief practice version of the testing conditions

with ten word-object pairs. Figure 13 shows an example of a participant fa-

miliarizing themselves with the AR HMD. In the Desktop condition participants

were instructed to record their responses with keyboard response keys where ”J”

indicates a congruent pair and ”F” indicates a incongruent pair. In the AR- condi-

tions participants were instructed to record their responses using the Magic Leap

1 handheld controller touchpad where the right half of the touchpad indicates a

congruent trial and the left half of the touchpad indicates an incongruent trial.
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In the Desktop condition the participants were ∼ 70cm from the display. In

the AR-Fixed condition the plane was set such that the stimuli were presented on

a stand ∼ 140cm from the participant. In the AR-Head Movement condition the

plane was set such that the word stimuli were presented on a stand ∼ 140cm from

the participant, and object stimuli were presented randomly on a stand either

110cm to the left or 110cm to the right of the center stand. In the AR-Walking

condition the plane was set on the center stand and participants were instructed

to walk in a circular motion at their own pace around the stand while they com-

pleted the task. Participants were encouraged to switch the direction they walked

in during this task to avoid neck discomfort from constantly facing in a single

direction.

Task. The task was self-paced, and in order to initiate a block or trial partic-

ipants simply press the space key in the Desktop condition or the trigger for the

AR- conditions. One additional step in the AR- conditions was to select the sur-

face plane for words and objects to appear - this was done by the researcher to

ensure a standardized placement of words/objects. For the Desktop, AR-Fixed,

and AR-Walking conditions the order of events are similar. The participant initi-

ates a trial and a fixation cross appears either at the center of the screen (Desktop)

or on the fixation surface at the center of the field of view (AR-Fixed/Walking)

until the participant fixates on the cross for 1000 ±200 ms. The fixation cross is

then removed and immediately followed by a word that is displayed at fixation

for 1 second. The word is then removed, and after a 1 second delay (±200 ms,

0.8-1.2 second inter-stimulus interval) an object is presented at fixation and the

participant indicates whether they think the word and object make a congruent

or incongruent pair. Once the participant responds then the object is removed
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from the display and the participant starts the next trial at their own pace. The

AR-Head Movement condition is designed to induce a head movement by simulta-

neously displaying an arrow when the object appears, but in this case the object

is outside the field of view and the arrow indicates the direction that the par-

ticipant’s head must move in order to view the object. A key difference in the

AR-Walking condition is that the participant is instructed to walk at their own

pace around a stand where the stimuli are displayed. A built-in break in between

blocks began after 120 trials and lasted up to five minutes. Participants were also

encouraged to take the allotted 5 minute break in between conditions.

Hardware Setup. The hardware implementation consisted of three main com-

ponents (shown in Figure 14): the main computer used to display in the Desktop

condition and record the EEG data, the Magic Leap 1 HMD used for stimulus

presentation and logging user data in the AR- conditions, and the EEG headset

for recording neural data. Network latency between components was accounted

for empirically by measuring the average round trip (10 trips) time of a very small

package containing the timestamps of when the package was sent and received.

The EEG system utilized Bluetooth communication to send the EEG data packets

to the g.Nautilus Base Station, wired directly to the main computer. The stimulus

display data was logged directly onto the Magic Leap 1 device and was merged

& aligned with the EEG data offline using the main computer’s Unix timestamp.

See Figure 14 for a simplified visualization of the components.

EEG Data Acquisition

EEG data were recorded for each participant using a g.Nautilus RESEARCH

wireless system (gTec, Austria) consisting of 64 active gel-based electrodes with
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Figure 14: Hardware setup for experiment 3. The dotted lines indicate wireless
communication. A) Main computer used to record the EEG data and display
stimuli in the Desktop condition. B) Magic Leap 1 device used to display stimuli in
the AR- conditions and log user responses. C) g.Nautilus Research EEG headset
used for recording EEG data.

ground and reference electrodes (wireless transmission) arranged according to the

10-20 system. The ground electrode was located at AFz, and the reference elec-

trode was located on the right earlobe using a built-in ear clip. Signa gel (Parker

Laboratories, New Jersey) was used for all electrodes to keep the impedance be-

low 30 kΩ using the internal impedance check. Although the analog to digital

converter operates at 1024 Hz, the data were down sampled offline to 250 Hz.

Electrodes. Data were recorded from all 64 channels, but two channels were non-

functional (TP10, FT10) and the data was discarded offline. Additional channels

were removed due to poor quality data and are listed in the table below. In

order to prevent unbalanced electrode removal from biasing the data towards ei-

ther hemisphere the corresponding electrode on the opposite hemisphere was also

removed. After removing the channels the missing data was interpolated using
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surrounding channels.

Channels Removed Per Subject
Subject Channels Removed

4 FT10, TP10
5 FT10, TP10, O1, O2
6 FT10, TP10, AF8, AF7, F7, F8, F3, F4, F6, F5, FC6, FC5, FT8, FT7
10 FT10, TP10, Cz, AF3, AF4, FPz, AF7, AF8
15 FT10, TP10, F1, F2, AF7, AF8
16 FT10, TP10, F1, F2, P9, P10

Table 1: These electrodes were removed from analysis in all conditions due to
issues with poor data quality.

Data Processing

EEG Data Processing. MATLAB (version 2018b, Massachusetts, The Math-

Works, Inc., Natick, MA) was used for offline EEG data processing, as well as

the EEGLAB toolbox (Delorme & Makeig, 2004). The continuous data were

bandpass filtered between 0.1 to 30 Hz to remove noise and irrelevant physio-

logical signals. The data were epoched between -0.2 to 1.0 sec for the Desktop,

AR-Fixed, and AR-Walking conditions, and between -0.2 and 1.5 sec for the AR-

Head Movement condition. The data were then re-referenced using an average

reference. Trials exceeding ±100µV were removed from data in the Desktop,

AR-Fixed, and AR-Walking conditions, and trials exceeding ±150µV were re-

moved from data in the AR-Walking condition. Contamination from eyeblinks

was removed using a conventional recursive least squares regression method from

EEGLAB (crls regression.m).
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The average ERP waveforms in all conditions were computed time-locked to the

onset of the object stimulus. The Desktop, AR-Fixed, and AR-Walking conditions

included a 200 ms pre-stimulus baseline and 1000 ms post-stimulus interval. The

AR-Walking condition included a a 200 ms pre-stimulus baseline and 1500 ms

post-stimulus interval. To present the N400 component more clearly the congru-

ent ERP waveform was subtracted from the incongruent ERP waveform.

Statistical Analysis

The magnitude of the N400 was computed as the average amplitude of the dif-

ference waves in the N400 region. The N400 region in the Desktop, AR-Fixed,

and AR-Walking conditions were defined as the region between 300-500 ms, and

800-1000 ms in the AR-Head Movement condition. The reason for the N400 re-

gion shift in the AR-Head Movement condition was that from prior pilot work it

was observed that head movements in this scene had a duration of about 500 ms.

The electrodes used to compute the N400 were FC1, FC2, FCz, C1, C2, Cz, CP1,

CP2, and CPz. One-tailed t-tests were used for significance testing of the N400

component.

LDA Classifier. A leave-one-out linear discriminant analysis (LDA) classifier was

used to classify the data. 1000 random permutations were generated for per-

mutation testing, then the average value as well as 95th percentile values were

computed for each time window to construct a mean accuracy waveform and 95th

percentile waveform for the permuted data. Classifier performance values on real

data exceeding the 95th percentile waveform are analogous to p < 0.05.
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Results

The ERP grand averages and the ERP difference waveforms are shown in Fig-

ure 15 and Figure 16. In the AR-Fixed condition, the N400 signal elicited by

incongruent trials had a larger amplitude (M = −0.97, SD = 0.96) than the

signal elicited by congruent trials, t(5) = −2.23, p = 0.038. In each of the

other conditions the observed differences were not statistically significant: Desk-

top: (M = −0.61, SD = 0.72) t(5) = −1.90, p = 0.058; AR-Head Movement :

(M = 1.34, SD = 1.62) t(5) = 1.84, p = 0.06; AR-Walking : (M = −1.48,

SD = 4.50), t(5) = −0.74, p = 0.248.

Figure 17 shows the scalp topography averages as well as their difference (in-

congruent - congruent). The Desktop and AR-Fixed conditions show comparable

topographies that reflect the N400 ERP component. The AR-Head Movement

and AR-Walking conditions had heavily distorted scalp topographies due to the

movement artifacts, and had limited interpretability without further data clean-

ing.
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Figure 15: ERP grand averages with shaded standard error. See Statistical Anal-
ysis for electrodes. n = 6. Grey shaded region indicates the N400 region used for
statistical analysis.
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Figure 16: ERP grand average differences waveforms (incongruent - congruent)
with shaded standard error. See Statistical Analysis for electrodes. n = 6.
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Figure 17: Scalp topography for congruent and incongruent word-object pairs (A-
D), and incongruent - congruent differences (E-H). Electrodes used in analysis:
FC1, FC2, FCz, C1, C2, Cz, CP1, CP2, CPz. n = 6. A,E) Desktop, 300-500ms
B,F) AR-Fixed, 300-500ms C,G) AR-Head Movement, 800-1000ms D,H) AR-
Walking, 300-500ms.

The LDA classifier performance for each condition is shown in Figure 18. The

performance of the classifier regularly exceeded chance performance, but only the

Desktop and AR-Fixed regularly exceeded the 95th percentile of the classifier per-

formance on permuted data. This is analogous to statistical significance with

α = 0.05. The performance on data with movement artifacts was not stable and

did not regularly exceed the 95th percentile of classifier performance on permuted

data.
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Figure 19 shows the LDA classifier peak performance for individual subjects as

well as the average proportion correct for each condition. These results show that

the classifier has variable performance across subjects. Table 2 shows the times

at which these peak performances occurred during the N400 window.

Figure 18: LDA classifier performance, LOOCV. n = 6. Real indicates the clas-
sifier performance on ERP data. Permuted: 95th Percentile indicates the 95th
percentile classifier performance on the ERP data with shuffled labels. Permuted:
Average indicates the average classifier performance on ERP data with shuffled
labels.
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Figure 19: Peak LDA classifier performance for individual subjects during N400
region (see Statistical Analysis for details), LOOCV. N = 6. Error bars indicate
SEM.

LDA Peak Accuracy Time (ms)
Subject Desktop AR-Fixed AR-Head Movement AR-Walking

4 304 448 856 376
5 472 352 808 304
6 424 376 952 424
10 376 448 1000 304
15 304 400 1000 304
16 424 328 808 328

Average 384 392 908 340

Table 2: LDA classifier peak accuracy time during N400 region (see Statistical
Analysis for details).

Summary

The goal of this experiment was to systematically introduce like-like movements

into the task and observe the effect on the N400 ERP component. The Desk-
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top and AR-Fixed had comparable ERPs and scalp topographies, but only the

AR-Fixed had a statistically significant difference between the N400 component

elicited by congruent and incongruent trials. The AR-Head Movement and AR-

Walking conditions had much larger variability and distorted scalp topographies

due to movement artifacts. Consistent with the ERP results, the LDA classifier

exceeded the 95th percentile of performance on permuted data in the Desktop and

AR-Fixed conditions, but not in the others.

Discussion

The proliferation of VR/AR devices for research applications has been observed

in cognitive and behavioral studies (Foerster et al., 2016; Meehan et al., 2002;

Peterson et al., 2018; Kober and Neuper, 2012). The use of these devices offers a

way to create life-like settings to conduct studies, but often introduce movement

artifacts as subjects interact with these environments. To assess the feasibility

of using VR/AR tools in cognitive and behavioral research we conducted a series

of experiments and systematically introduced movement noise. The key findings

were: (1) using a traditional desktop display produced similar results as a VR

display, (2) minor head and eye movements contaminated the ERP waveform in

both VR and AR environments, and (3) walking introduces heavy contamination

to the ERP waveform.

Although these results are promising and are consistent with the growing lit-

erature of VR/AR applications in research, there are notable limitations with

these results. Because of the limited sample sizes in experiments 1 and 2, t-tests

were conducted across blocks for all subjects, which limited the generalizability of
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these results. Additionally, movement artifacts from minor head and eye move-

ments contaminate the scalp topographies in experiments 1 and 2, making they

difficult to interpret. Movement artifacts from walking added heavy contamina-

tion and distortion to the ERP waveform and scalp topographies in experiment

3. One of the challenges with requiring head movement to move the object into

the field of view is that a delay occurs while the subject is moving their head.

From our pilot tests of experiment 3, we estimated that participants required 500

ms to move their head into position. Because of this, our statistical analyses for

experiment 3 - head movement condition used an adjust N400 time window of 800

to 1000 ms. This adjustment was based on an estimated average time for previous

participants, so this approach could potentially smear the signal when averaged

across participants. Another potential source of noise was the network latency.

Although we accounted for this delay using an empirical approach, our solution

assumed a relatively constant network speed throughout a block of trials, which

could not be guaranteed in our design.

Our results suggest that using VR/AR tools for cognitive and behavioral research

is feasible and could help researchers create novel and life-like testing environ-

ments. One of the benefits of these devices is that they often come with additional

useful data that can be leveraged by the researcher to improve the data quality.

Head position and accelerometer data are often available and could be used in our

design to estimate head and body movements for artifact filtering (Arad et al.,

2018). Various types of movement artifacts and potential solutions are discussed

in Islam et al. (2016); Stone et al. (2018) and Rahman et al. (2019). Eye track-

ing methods have also been explored (Wilson and Soranzo, 2015) and could be

incorporated in our design.
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