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ABSTRACT OF THE THESIS 

 

Utilization of Adaptive Filters for Artifact Cancellation 

in Electroencephalography Signals 

 

by 

 

Kayvon Sadeghi 

 

Master of Science in Electrical Engineering 

University of California, Los Angeles, 2015 

Professor Kung Yao, Chair 

 

Electroencephalography (EEG) is a technique that is used to non-

invasively monitor the electrical activity of the brain. Although the EEG 

device is supposed to record only cerebral activity, it also records artifacts, 

which are recorded activities that are not of cerebral origin. These artifacts 

include motion artifacts and stimulation artifacts. Artifacts corrupt the EEG 

signals and prevent the device from being used successfully. In order to 

remove the artifacts in real-time, an artifact cancellation system that 

utilizes adaptive filters is proposed. Adaptive filters can self-adjust the 

transfer function, giving them the ability to self learn and change filter 
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parameters to adapt to different signal characteristics. Multiple adaptive 

filter algorithms were tested in the artifact cancellation system in Matlab 

and Simulink, including Least Mean Squares (LMS) algorithms and 

Recursive Least Squares (RLS) algorithms. The RLS algorithm has a 

faster convergence time but is more computationally demanding than the 

LMS algorithm. 
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CHAPTER 1 

INTRODUCTION/BACKGROUND 

 

1.1 Neural Recording Systems 

 Neural recording systems are used to monitor brain activity, and 

different neural recording systems have varying levels of invasiveness. 

The level of invasiveness depends on the placement of the electrodes 

used to detect and measure neurons firing in the brain1. 

1.2 Invasive Systems 

In invasive systems, electrodes are inserted directly into the grey 

matter of the brain during neurosurgery. Invasive systems have several 

advantages, including excellent signal quality, very good spatial resolution, 

and a high frequency range. But one of the main disadvantages of the 

invasive system is that it requires surgery and puts the patient at risk of 

further complications due to surgery. In addition, since the device is 

implanted in the brain, it may not provide a safe and stable recording over 

time due to foreign body reaction.  

Foreign body reaction occurs because the electrodes are implanted 

into the tissue, causing damage to tissues and vessels along the insertion 

path2. This activates immune cells, such as microglia3. In addition, 

astrocytes, which cause scar formation, are recruited and drawn to the 
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damaged site (Figure 1) 4. Scar formation occurs in order to minimize 

damage and neural degeneration. Unfortunately, the scar increases the 

distance between the signal and the interface, which contributes to 

deteriorating signal quality5. This is shown in Figure 2. There are four 

stages in this scar formation, including inflammation, astrocytes, neuronal 

bodies, and neurofilaments. Each of these stages of scar formation 

increases the distance between the signal and the interface. Because of 

this, signal quality deteriorates over time. 

  
 
Figure 1: Foreign body reaction
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Figure 2: Scar increasing the distance between signal and interface 
 

1.3 Non-Invasive Systems: Electroencephalography 

Electroencephalography (EEG) is a technique that is used to non-

invasively monitor the electrical activity of the brain by measuring the local 

potential at the scalp6. It used for various applications, including detection 

of epileptic seizures, which cause abnormally excessive or simultaneous 

neuronal activity in the brain7. A major advantage for non-invasive systems 

over invasive systems is that there is no need to perform surgery. Non-

invasive systems are also inexpensive and lightweight compared to other 

methods8. However, the signal is susceptible to unwanted electrical activity 

from sources other than cerebral activity, known as artifacts9. 
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1.4 Artifacts 
 

It is extremely important that the output signal of the electrical 

activity is an accurate representation of the actual signal, allowing for a 

correct reading. But unfortunately, there are sources of noise that limit this 

technology. Although the EEG is supposed to record only cerebral activity, 

it can also record artifacts, which are unwanted electrical activities that are 

not of cerebral origin. This can disturb the recordings, causing the output 

signal to not be accurate9. Due to this corruption of the signal, it stops the 

EEG from giving an accurate and precise signal that is necessary for its 

desired applications. There are different types of artifacts, such as motion 

artifacts, stimulation artifacts, and powerline interference. Motion artifacts 

and stimulation artifacts are the focus of this project. 

1.5 Motion Artifacts 
 

Motion artifacts are one of the largest sources of noise for EEG 

recordings. They can disturb the recordings, thus lowering the signal 

quality. This makes interpretation of the signals difficult and may lead to 

detection of the wrong event or false alarms. Thus, removal of motion 

artifacts is a significant problem. There has been a lot of research done on 

motion artifact detection, with different groups investigating various 

methods10,11,12,13. It has been shown in literature that electrode-tissue 

impedance has a correlation with motion artifacts (Figure 3).14 Changing 

the distance between the skin and the electrode or stretching/twisting the 
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skin can change the electrical properties and alter the electrode-tissue 

impedance, thus causing motion artifacts.15 Figure 3 shows the potential 

and impedance change during pressing and stretching, which leads to 

motion artifacts. 

 

Figure 3: Potential and impedance change due to pressing/stretching 

� Skin model and motion artifact caused by 
skin stretch 

Rp and C represent epidermis; Rs represents deep tissue  
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In order to remove the motion artifacts, the electrode-tissue 

impedance needs to be determined and then used to estimate the motion 

artifact signal that should be cancelled. Once the motion artifact is 

estimated, it can be removed from the corrupted signal to get the clean 

signal. 

1.6 Stimulation Artifacts 

Stimulation artifacts occur due to stimulation of neural tissues. The 

stimulation artifacts are due to charge accumulation at the electrode-

electrolyte interface that occurs during stimulation16. There is a large RC 

time constant, causing stimulation artifacts to last for extended periods of 

time and saturate the recording amplifier. These artifacts prevent recording 

of neural activity since the amplifier is saturated during the stimulation. It is 

important to be able to record the response of neurons to stimulation, and 

these stimulation artifacts prevent this from happening. The stimulation 

artifacts are difficult to filter out since the stimulus shares some qualities 

with the spikes of the EEG signal. Once the stimulation artifacts are 

estimated, they can be subtracted from the corrupted signal to get the 

artifact-free signal.  

1.7 Removal of Artifacts 

There have been many attempts to remove artifacts using post-

processing methods, but artifact cancellation while the signal is occurring 

is important for many real-time applications. In addition, the original signal 
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may not be recoverable with post-processing methods. In order to remove 

the artifacts, the artifacts need to be modeled and then removed using 

filtering techniques, such as adaptive filters. Chapter 2 will cover artifact 

modeling and Chapter 3 will cover adaptive filters. 
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CHAPTER 2 

MODELING ARTIFACTS 

 

2.1 Motion Artifacts 

In order to model motion artifacts, there are a few steps that need to 

be completed. First, there needs to be an analog front end that can retrieve 

the EEG signal and the impedance signal from the skin through an 

electrode, which will allow the motion artifacts to be identified. The device 

will measure the impedance signal as well as the local field potentials 

through the electrode. Previously, IMEC has developed an Analog Front 

End for a similar application with electrocardiograms (ECG).17 One issue 

with this device is that its current sources generate a sinusoidal wave, 

which requires a complex system to obtain the real and imaginary 

components of the electrode-tissue impedance15. An alternative to the 

method IMEC used is to use a simplified electrode model (Figure 4) and 

current source that generates a square pulse (Figure 5) 18. Using this 

method, use of a more complex system can be avoided. 

In Figure 4, Rs is the tissue impedance, Cdl is the double layer 

capacitance, and Zfaradaic is the Faradaic impedance. In this case, we can 

determine the tissue impedance and the capacitance by knowing the pulse 
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width, current amplitude, and voltage, which will then allow calculation of 

the impedance Z (𝑍 = !
!"#

) as a model for the motion artifact. 

Figure 6 shows the corresponding voltage from the current source 

that generates a square pulse18. At (a), there is an IR drop at the 

electrolyte. At (b), there is a drop due to double layer capacitance, and at 

(c), there is a drop to due to the Faradaic impedance. Electrolysis occurs 

at (d). 

 
 
Figure 4: Circuit element model of an electrode (Randles cell) 
 

  
 
Figure 5: Current pulse used to measure impedance           
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Figure 6: Resulting voltage from current pulse 
 
 
2.2 Stimulation Artifacts 

When the neural tissue is stimulated with the stimulator, stimulation 

artifacts can occur. To model the stimulation artifacts, the artifacts need to 

be sampled18. To sample the artifact, an amplifier can be used to record 

the resulting signal when a stimulus is applied.  

The signal can be filtered to only include signals above the 

maximum physiological response. An ADC can be used as this amplitude 

filter. This is done so only the stimulation artifacts are remaining. This 

resulting signal is stored, sent through a DAC, and used as a reference 

signal for the stimulation artifact. 
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CHAPTER 3 

ADAPTIVE FILTERS 

 

3.1 Adaptive Filters 

An adaptive filter can self-adjust its transfer function, giving it the 

ability to self learn and change filter parameters to adapt to different signal 

characteristics. Although there are both infinite impulse response (IIR) 

adaptive filters and finite impulse response filters (FIR), FIR adaptive filters 

are more commonly used19. This is because they have better stability and 

do not require any special modifications in order to be used. 

Adaptive filters are used to obtain the desired signal without any 

undesired noise by reducing the noise that is corrupting the signal. The 

process is shown in Figure 7 below.20 There are two inputs for the adaptive 

filter: x(n) and d(n). The input x(n) is the reference signal, which 

corresponds to the undesired noise that needs to be filtered out. This 

reference signal is not exactly the same as the noise corrupting the signal, 

so it cannot just be removed from the corrupted signal to get the desired 

signal. The reference signal can have a different phase, amplitude, or time 

delay than the actual noise signal. The input d(n) is the primary input, 

which corresponds to the desired signal plus the undesired noise. 
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Figure 7: Adaptive filter system 
 

Instead of just subtracting the reference signal from the corrupted 

signal, the adaptive filter predicts the noise that is present in the corrupted 

signal and then subtracts it. The reference signal x(n) is used to help make 

the prediction because it is chosen to be similar to the noise that is 

corrupting the signal. Also, the reference signal x(n) is filtered in order to 

account for the phase, amplitude, and time delay. Filtering the reference 

signal results in y(n), which is the prediction of the noise that is corrupting 

the signal. Once the reference signal is filtered, it is subtracted from the 

corrupted signal in order to obtain e(n), which is the error signal. The error 

signal e(n), which is the difference between d(n) and y(n), is the output of 

the system. If done correctly, this can be used to recover the desired part 

of the signal, with the undesired noise filtered out. 
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3.2 Adaptive Filter Algorithms 

When an adaptive filter is used, the relationship between the input 

and output signals of a filter is iteratively modeled. In this process, the filter 

coefficients of the adaptive filter are self-adjusted using an adaptive 

algorithm. The coefficients are adjusted in order to minimize the power of 

e(n). Multiple adaptive algorithms were researched and tested, and the two 

most promising adaptive algorithms were the Least Mean Squares (LMS) 

algorithm and the Recursive Least Squares (RLS) algorithm. The LMS 

algorithm involves less computationally demanding calculations and is less 

complex than the RLS algorithm, thus causing the LMS algorithm to need 

less memory and computational resources than the RLS algorithm20. 

However, the correlation matrix of the input signal for the LMS has a large 

eigenvalue spread, which can degrade the convergence of the adaptive 

filter. The RLS algorithm does not have the large eigenvalue spread 

problem, potentially allowing for a faster convergence speed.  The RLS 

algorithm is more complex than the LMS algorithm but has the potential to 

perform better in time varying environments.21 

3.3 Least Mean Squares Algorithm  

The LMS algorithm converges on the optimal solution by updating 

coefficients, also known as filter weights. This optimal solution occurs 

when the error signal between the desired signal and the output signal is 

minimized. These coefficients are updated in each iteration in order to get 
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to the optimal solution. To update the coefficients, the LMS algorithm 

performs three main steps, which include calculating y(n) from the adaptive 

filter, calculating e(n), and then finally updating the filter coefficients19,23,24. 

In order to calculate y(n), which is the prediction of the noise that is 

corrupting the signal, the following equation can be used: 

𝑦 𝑛 = 𝑢!(𝑛)𝑤(𝑛) 

where 𝑢 𝑛  is the filter input vector of time delayed input values  

𝑢 𝑛 = [𝑥 𝑛 𝑥 𝑛 − 1 𝑥(𝑛 − 2)… 𝑥 𝑛 − 𝑁 + 1 ]! 

and 𝑤 𝑛  is the filter coefficients vector at time n                            

        𝑤 𝑛 = [𝑤! 𝑛 𝑤! 𝑛 𝑤! 𝑛 …𝑤!!! 𝑛 ]! 

Then e(n), the error signal, is calculated using the following equation: 

𝑒 𝑛 = 𝑑 𝑛 − 𝑦(𝑛) 

Finally, the filter coefficients (filter tap weights) are updated with the 

following equation: 

𝑤 𝑛 + 1 = 𝑤 𝑛 + 2𝜇𝑒 𝑛 𝑢(𝑛) 

where 𝑤(𝑛) is the filter coefficients vector, 𝑢(𝑛) is the filter input vector, 

and 𝜇 is the step size of the adaptive filter (normally a small positive 

constant). If  𝜇 is too large, the adaptive can become unstable and diverge, 

while if 𝜇 is too small, the convergence time to the optimal solution can 

significantly increase. 
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3.4. Normalized Least Mean Squares Algorithm 

In the LMS algorithm, some values of 𝜇 can cause a noise 

amplification problem. The Normalized Least Mean Square algorithm can 

solve this problem. In the Standard LMS algorithm, the equation for 

updating the filter coefficients 𝑤(𝑛 + 1) uses 𝜇, while in the Normalized 

Least Mean Square algorithm, the equation uses an alternate version of 

𝜇:25 

𝜇 𝑛 =
𝛼

𝑐 +∥ 𝑥(𝑛) ∥! 

where 𝛼 is the Normalized Least Mean Square adaption constant and 𝑐 is 

the constant term for normalization. 𝛼 helps optimize the convergence rate 

for the algorithm and its value is between zero and two. The constant term 

for normalization 𝑐 should always be less than one. Due to this alternate 

version of 𝜇 in the Normalized Least Mean Square algorithm, the filter 

coefficients are updated using the following equation: 

𝑤 𝑛 + 1 = 𝑤 𝑛 +
𝛼

𝑐 +∥ 𝑥 𝑛 ∥! 𝑒 𝑛 𝑥 𝑛  

3.5 Recursive Least Squares Algorithm 

Like the LMS algorithm, the RLS algorithm uses some of the 

fundamental adaptive filter concepts. The RLS algorithm converges on the 

optimal solution by updating coefficients for each iteration of the algorithm 
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until the optimal solution is reached. Similarly, in order to update the 

coefficients, the RLS algorithm performs three main steps, which include 

calculating y(n) from the adaptive filter, calculating e(n), and then finally 

updating the filter coefficients. Although the main overall process is similar 

for the LMS and RLS algorithms, the method used to update the 

coefficients are significantly different.21,26 

First, the RLS algorithm can find the output of the filter using the 

following equation: 

𝑦!!! 𝑛 = 𝑤!(𝑛 − 1)𝑢(𝑛) 

where 𝑢 𝑛  is the filter input vector of time delayed input values  

𝑢 𝑛 = [𝑥 𝑛 𝑥 𝑛 − 1 𝑥(𝑛 − 2)… 𝑥 𝑛 − 𝑁 + 1 ]! 

and 𝑤 𝑛  is the filter coefficients vector at time n                            

        𝑤 𝑛 = [𝑤! 𝑛 𝑤! 𝑛 𝑤! 𝑛 …𝑤!!! 𝑛 ]! 

Then, the following equation is used to calculate the error signal e(n): 

𝑒!!! 𝑛 = 𝑑 𝑛 − 𝑦!!!(𝑛) 

And finally, the filter coefficients are updated using the following equation: 

𝑤(𝑛) = 𝑤! 𝑛 − 1 + 𝑘(𝑛)𝑒!!! 𝑛  

where 𝑘 𝑛 = !(!)
!!!! ! !(!)

, 

v 𝑛 = 𝑤!!! 𝑛 − 1 𝑥(𝑛), 

and 𝜆 is a small positive constant that is less than one (but usually 

close to one). 
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Due to needing previous values of the samples in addition to current 

values, more memory is required when using the RLS algorithm. However, 

the RLS algorithm has a much better convergence time compared to the 

convergence time of the LMS algorithm. 
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CHAPTER 4 

ARTIFACT CANCELLATION SYSTEM MODELING 

 

Below is an overview of the artifact cancellation system in Simulink. 

There are two inputs to the adaptive filter. The first input, named “Input”, is 

the primary input, which is the EEG signal. The secondary input, named 

“Desired”, is a reference input for the noise. The EEG signal (primary 

input) is corrupted with noise, which has a correlation with the reference 

noise (secondary input). 

The adaptive filter has three outputs. The first output, named 

“Output”, gives the estimate of the noise, which becomes more accurate as 

the system converges. The second output, named “Error”, decreases and 

goes to zero as the system converges. The third output, named “Wts”, 

shows how the filter coefficients are updated over time to help reach the 

optimal solution. The first output, named “Output” is subtracted from the 

original EEG signal, in order to get a signal with the artifacts removed. The 

mathematical calculations using these inputs and outputs in the adaptive 

filter algorithms was explained in Chapter 3. 

 Three different artifact cancellation system models are shown in 

Simulink. Each different artifact cancellation system model utilizes a 

different adaptive filter algorithm. Figure 8 shows the system implementing 
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the Standard LMS algorithm, Figure 9 shows the system implementing the 

Normalized LMS algorithm, and Figure 10 shows the system implementing 

the RLS algorithm. 

The reference noise will change depending on the model for the 

stimulation or motion artifacts, which was explained in Chapter 2. Based 

on the type of artifacts that are present, a reference noise will be selected 

and used in the system. The noisy signal and reference noise will be the 

inputs into the system, and the clean signal will be one of the outputs. The 

results from utilization of these models are discussed in Chapter 5. 

 
Figure 8: Standard LMS System In Simulink 
 
 

 
Figure 9: Normalized LMS System In Simulink 
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Figure 10: RLS System In Simulink 
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CHAPTER 5 

RESULTS 

 

 
Figure 11 shows the results of using the Standard LMS algorithm 

(Simulink model shown in Figure 8). The figure is divided into four graphs. 

The top graph is the original signal without any noise added. The second 

graph is the signal with noise added, causing a corrupted signal. The 

adaptive filter is supposed to remove that noise in order to get the original 

signal with no noise back. This signal with the noise removed is shown in 

the third graph, and the error is shown in the fourth graph. As mentioned in 

Chapter 3, the Standard LMS algorithm sometimes suffers from 

divergence issues, which occurred in this case and is shown in the third 

and fourth graphs of Figure 11. Due to the divergence issues, the original 

signal cannot be recovered and causes an error in the graph. 
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Figure 11: Results For Standard LMS System 

The Normalized LMS algorithm is used to solve this problem, as 

shown in Figure 12. Again, the figure is divided into four graphs, with the 

first graph being the original signal and the second graph being the 

corrupted signal. The third graph should display the signal with the noise 

removed. It is shown that the normalized version successfully solves the 
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problem since the original signal can be recovered. The Normalized LMS 

algorithm takes some time to converge, so initially there is still some noise 

present, which is shown in the third and fourth graph. The error decreases 

as the algorithm converges, and as the error goes to zero, the signal is 

filtered to become closer to the original signal. 

 

Figure 12: Results For Normalized LMS System 
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Figure 13 shows the results when using the RLS algorithm (Simulink 

model shown in Figure 10). Similarly, the top graph is the signal, the 

second graph is the corrupted signal, the third graph is the signal with the 

noise removed, and the fourth graph is the error. As explained above, the 

RLS algorithm converges much faster than the Normalized LMS algorithm. 

This is shown in the fourth graph, where the error goes to zero very 

quickly. In addition, in the third graph, the noise is present for only a very 

short period of time before the original signal is recovered. When using the 

Normalized LMS algorithm, the noise is present in the signal for a longer 

period of time. This improvement when using the RLS algorithm is possible 

because the RLS algorithm converges quicker than the Normalized LMS 

algorithm converges, although at the cost of higher complexity and 

required memory. 
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Figure 13: Results For RLS System 
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CHAPTER 6 

CONCLUSION 

 

Motion and stimulation artifacts can reduce the quality of EEG 

signals, which is a significant problem. The proposed method to solve this 

problem is using Matlab and Simulink in combination with external circuit 

components to remove the artifacts. For motion artifacts, an analog front 

end will retrieve the EEG signal and the impedance signal from the skin 

through an electrode. Then, using digital processing, the motion artifacts 

will be estimated from the measured impedance signal and the EEG signal 

that contains the motion artifacts. Once the motion artifacts are estimated, 

they can be removed by utilizing the adaptive filter models in Matlab and 

Simulink. Similarly, for stimulation artifacts, the signal is sampled in order 

to find a reference for the stimulation artifacts, and then the same adaptive 

filter concepts are utilized in order to remove the stimulation artifacts. 

There are multiple adaptive filter algorithms that can be used to remove 

the artifacts, including the LMS algorithm and the RLS algorithm. The 

Standard LMS algorithm can suffer from divergence issues, but the 

Normalized LMS algorithm fixes this problem. In addition, the RLS 

algorithm converges faster than the LMS algorithm but at the cost of higher 

complexity.  
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These different artifact cancellation systems can be modeled in 

Matlab Simulink. Using these methods, the motion and stimulation artifacts 

can be removed from the EEG signal in a quick and successful way, 

allowing for a more accurate reading of electrical activity of the brain. 
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