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Abstract

A common approximation in the analysis of non-classically damped systems is to ignore the off-diagonal elements of the

modal damping matrix. This procedure is termed the decoupling approximation. It is generally believed that errors due to

the decoupling approximation should be negligible if the modal damping matrix is diagonally dominant. In addition, the

errors are expected to decrease as the modal damping matrix becomes more diagonally dominant. It is shown numerically

in this paper that, over a finite range, errors due to the decoupling approximation can increase monotonically at any

specified rate while the modal damping matrix becomes more diagonally dominant with its off-diagonal elements

decreasing continuously in magnitude. An explanation for these unexpected drifts of decoupling errors is provided with the

use of complex coupling coefficients. Small off-diagonal elements in the modal damping matrix are not sufficient to ensure

small errors due to the decoupling approximation. Any error-criterion based solely upon the diagonal dominance of the

modal damping matrix would not be accurate.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that an undamped linear system possesses classical normal modes, and that in each mode
different parts of the system vibrate with the same frequency, passing through their equilibrium positions at
the same time. The normal modes constitute a modal matrix, which defines a linear coordinate transformation
that decouples the undamped system. This process of decoupling the equation of motion of an undamped
vibratory system is a time-honored procedure termed modal analysis. Upon decoupling, an undamped linear
system can be treated as a series of independent single-degree-of-freedom systems.

In the presence of damping, a linear system cannot be decoupled by modal analysis unless it possesses a full
set of classical normal modes, in which case the system is said to be classically damped [1]. Practically
speaking, classical damping means that energy dissipation is almost uniformly distributed throughout the
system. This assumption is violated for systems consisting of two or more parts with significantly different
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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levels of damping. Examples of such systems include soil-structure systems [2], base-isolated structures [3,4],
and systems in which coupled vibrations of structures and fluids occur. Increasing use of special
energy-dissipating devices in control constitutes another important example. In fact, experimental modal
testing suggests that no real physical system is strictly classically damped [5]. Thus damped linear systems
cannot in general be decoupled by the classical modal transformation. In addition, it has been showed [6] that
no time-invariant linear transformations in the configuration space can decouple all damped systems. Even
partial decoupling, i.e. simultaneous transformation of the coefficient matrices of the equation of motion to
upper triangular forms, cannot be ensured with time-invariant linear transformations in the configuration
space [7].

Classical normal modes are all real. Thus modal analysis in the classical sense involves a real
transformation. Foss and others [8–10] extended classical modal analysis to a process of complex modal
analysis in the state space to treat non-classically damped systems. However, the state-space approach has not
appealed to practicing engineers. There are several reasons for this situation. First, a common excuse is that
the state-space approach is computationally more involved because the dimension of the state space is twice
the number of degrees of freedom. Second, complex modal analysis still cannot decouple all non-classically
damped systems. A condition of non-defective eigenvectors in the state space must be satisfied in order for
complex modal analysis to achieve complete decoupling in the state space. Third, and perhaps more
importantly, there is little physical insight associated with different elements of complex modal analysis.
Classical modal analysis is amenable to physical interpretation. For example, each classical normal mode
represents a physical profile of vibration. Even the eigenvalue problem associated with classical modal analysis
can be interpreted geometrically as a problem of finding the principal axes of an ellipsoid.

The continuing popularity of modal analysis leads to a predictable observation: engineers have devised a
whole array of ingenious but rather bold approximations [11–18] to base the analysis of linear systems upon
the classical modal transformation. Among the various approximations, the simplest one may be attributed to
Lord Rayleigh. In Section 102 of ‘‘The Theory of Sound’’ in 1894, Rayleigh [19] suggested that the off-
diagonal elements of the modal damping matrix may be neglected if they are small in magnitude. This simple
procedure, termed the decoupling approximation [18,20,21], is a member of the class of approximate
techniques seeking to decouple a damped system by modifying its coefficient matrices. Knowles [22] showed
that the decoupling approximation is optimal in the sense that the difference (matrix norm) between the
original equation and the equation obtained by the decoupling approximation is minimized. It does not mean,
however, that errors due to the decoupling approximation are minimized. Contrary to intuition and to widely
accepted beliefs, it will be shown in this paper that errors due to the decoupling approximation can increase
monotonically at any specified rate while the modal damping matrix becomes more diagonal dominant. The
organization of the paper is as follows. In Section 2, a concise review of the decoupling approximation is
provided. Diagonal dominance of modal damping matrices is discussed in Section 3, in which two indices are
introduced to quantify the degree of being diagonal. Examples are constructed in Section 4 to demonstrate
that errors due to the decoupling approximation can drift around in an unexpected fashion. An explanation
for the drifts in errors is offered in Section 5. In Section 6, a summary of major findings is given.

2. Coordinate coupling and the decoupling approximation

The equation of motion of an n-degree-of-freedom linear system can be written in the form

M €xþ C _xþ Kx ¼ fðtÞ (1)

with initial conditions x(0) ¼ x0, _xð0Þ ¼ _x0. The generalized coordinate x and excitation f(t) are real
n-dimensional column vectors. The mass matrix M, the damping matrix C, and the stiffness matrix K are real
matrices of order n� n. For passive systems, M, C and K are symmetric and positive definite. Associated with
the undamped system is a generalized eigenvalue problem [18]

Ku ¼ lMu. (2)

Owing to the definiteness of the coefficient matrices, all eigenvalues li are real and positive, and the
corresponding eigenvectors uj are real and orthogonal with respect to either M or K. The n eigenvectors uj
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constitute the modal matrix

U ¼ ½u1ju2j � � � jun�. (3)

The spectral matrix of system (1) is defined as a diagonal matrix

X ¼ diag½o2
1;o

2
2; . . . ;o

2
n� (4)

consisting of the eigenfrequencies squared such that oi
2
¼ li. Upon normalization, the orthogonality of the

modes can be expressed in a compact form:

UTMU ¼ I, (5)

UTKU ¼ X. (6)

The modal matrix U defines a real invertible coordinate transformation

x ¼ Uq. (7)

In terms of the principal coordinate q, the equation of motion of a damped system takes the canonical form

€qþD_qþXq ¼ gðtÞ (8)

with initial conditions qð0Þ ¼ UTMx0, _qð0Þ ¼ UTM _x0 and excitation gðtÞ ¼ UTfðtÞ. The symmetric matrix

D ¼ UTCU (9)

is referred to as the modal damping matrix. While an undamped system can be decoupled entirely by modal
analysis, a damped system is completely decoupled if and only if D is diagonal. Any coupling in a linear system
occurs ultimately through damping.

A system is classically damped if it can be decoupled by classical modal analysis. Rayleigh [19] asserted that
a system is classically damped if C ¼ aM+bK for some scalar constants a and b. This requirement, referred to
as proportional damping, is sufficient but not necessary for classical damping. In 1965, Caughey and O’Kelly
[1] established that a necessary and sufficient condition under which a system is classically damped is

CM�1K ¼ KM�1C. (10)

There is, however, no reason why the above condition should be satisfied. In general, a linear vibratory
system is non-classically damped and the modal damping matrix D cannot be diagonalized by classical modal
analysis.

Express the modal damping matrix in the form

D ¼ Dd þDo, (11)

where Dd ¼ diag[d11, d22, y, dnn,] is a diagonal matrix composed of the diagonal elements of D, and Do is a
matrix with zero diagonal elements and whose off-diagonal elements coincide with those in D. The decoupling
approximation, as expounded by Rayleigh [19], amounts to simply neglecting Do and thus replacing D by Dd.
The system response by the decoupling approximation satisfies the decoupled equation

€qaðtÞ þDd _qaðtÞ þXqaðtÞ ¼ gðtÞ (12)

with initial conditions qa(0) ¼ q(0), _qað0Þ ¼ _qð0Þ. The error due to the decoupling approximation is defined as
the difference of the exact and approximate solutions:

eðtÞ ¼ qðtÞ � qaðtÞ. (13)

Subtract Eq. (12) from Eq. (8) to obtain

€eðtÞ þDd _eðtÞ þXeðtÞ ¼ �Do _qðtÞ (14)

with initial conditions e(0) ¼ 0, _eð0Þ ¼ 0. The decoupling approximation is just a member of the class of
approximate techniques seeking to decouple a damped system by modifying its coefficient matrices [23–27]. It
is optimal in the sense that the difference (matrix norm) between Eqs. (8) and (12) is minimized [22]. This does
not imply, however, that errors due to the decoupling approximation are minimized. Owing to its simplicity,
the decoupling approximation enjoys popular use in structural dynamics.
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Because of its practical importance, many authors studied the implications of the decoupling approximation
and several indices were developed to quantify the extent of modal coupling in non-classically damped
systems. These coupling indices are sometimes referred to as non-proportionality indices or coupling indices.
For example, various indices were proposed by Prater and Singh [28], Nair and Singh [29], Tong et al. [30],
Bellos and Inman [31] and Bhaskar [32]. Using the frequency-domain approach, Hasselman [33] established a
criterion for determining whether a non-classically damped system may be regarded as practically decoupled.
A similar criterion was suggested by Warburton and Soni [34]. It was also shown [35,36] that for greatly
separated frequencies and small damping, the Euclidean norm of the errors due to the decoupling
approximation in each mode is small. The influence of excitation frequencies on errors due to the decoupling
approximation was examined by Park et al. [37]. It is suggested that frequency avoidance, rather than
frequency separation, is an efficient method to control the decoupling errors. Coupling Indices based solely
upon the complex modes of non-classically damped systems were derived by Liu et al. [38,39], Prells and
Friswell [40], Adhikari [41], and Bhaskar [42]. Coupling indices may sometimes be used to predict the errors
due to the decoupling approximation.

In order to evaluate the errors due to the decoupling approximation, apply Fourier transform to Eq. (14)
to get

EðioÞ ¼ �ioHaðioÞDoQðioÞ, (15)

where

HaðioÞ ¼ ðX� o2Iþ ioDdÞ
�1 (16)

is the frequency response matrix of the decoupled system (12), andQ(io) is the Fourier transform of the modal
coordinate q(t). As a standard notation, Fourier transforms are denoted by capital letters, I represents the
n� n identity matrix and i ¼

ffiffiffiffiffiffiffi
�1
p

. Using any vector norm, EðioÞ
�� �� quantifies the effects of modal coupling in

the system. On the other hand, the magnitude of the kth element in the complex vector EðioÞ ¼
½E1ðioÞ; . . . ;EnðioÞ�T is a measure of the effects of modal coupling in that mode. Upon normalization with
respect to QðioÞ

�� ��, the quantity

sðioÞ ¼
EðioÞ
�� ��
QðioÞ
�� �� ¼

oHaðioÞDoQðioÞ
�� ��

QðioÞ
�� �� (17)

may be interpreted as the relative steady-state error due to the decoupling approximation. In subsequent
analysis, the Euclidean norm is chosen for convenience. However, any other norm will yield the same
qualitative results.
3. Quantification of diagonal dominance

It is generally accepted that errors due to the decoupling approximation must be small if the off-diagonal
elements of the modal damping matrix D are small [18–21]. In addition, the errors are expected to decrease as
D becomes more diagonally dominant. But the meanings of these terms are not clear. When does a matrix
become more diagonally dominant than another? How can one quantify the property of being diagonal? These
issues will first be clarified.

The modal damping matrix D is said to be diagonally dominant [43] if

diij jX
Xn

j¼1
jai

dij

�� �� (18)

for 1pipn. It is said to be strictly diagonally dominant if strict inequality holds. These definitions of
diagonal dominance have solid footing in linear algebra and many important properties of diagonally
dominant matrices have been established. For example, if D is diagonal dominant, then the real parts of its
eigenvalues have the same sign as the diagonal entries. The concept of diagonal dominance was generalized
[44] in recent years. The matrix D is diagonally dominant in a generalized sense if there exist non-zero scalars ai
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such that

diij jX
Xn

j¼1
jai

ai

aj

dij

�� ��; diij jX
Xn

j¼1
jai

aj

ai

dij

�� ��, (19)

for 1pipn. Clearly, a diagonally dominant matrix is diagonally dominant in the generalized sense. Recall the
definitions of Dd and Do in Eq. (11). Let |Dd| and |Do| be matrices whose elements are the absolute values of
those in Dd and Do, respectively. It can be shown [45] that if

s D�1d

�� �� Doj j
� �

o1, (20)

where s D�1d

�� �� Doj j
� �

is the spectral radius (largest absolute value of any eigenvalue) of D�1d

�� �� Doj j, then D is
diagonally dominant in the generalized sense. The concept of generalized diagonal dominance has broad
applications in multivariable control theory.

Although the concepts of diagonal dominance are widely used, numerical indices for quantifying the degree
of being diagonal have not been reported in the open literature. Based upon Eq. (18), an index of diagonality
may be readily defined as

rðDÞ ¼
Pn

i¼1 diij jPn
i;j¼1
iaj

dij

�� �� . (21)

Clearly, 0pr(D)pN. If a modal damping matrix D is diagonally dominant then r(D)X1 and, for a
diagonal D, r(D) ¼N. A second index of diagonality, based upon Eq. (20), is defined as

r1ðDÞ ¼ s D�1d

�� �� Doj j
� �

. (22)

Note that the two indices r(D) and r1(D) have opposite trends: D is diagonally dominant in the
generalized sense if and only if 0pr1(D)p1 and, for a diagonal D, r1(D) ¼ 0. If |D| is irreducible, i.e. dij 6¼0 for
i 6¼j, then r1(D) is monotonic increasing as the off-diagonal elements of D increase in magnitude [45]. In
addition,

min
i

Xn

j¼1
jai

dij

dii

����
����pr1ðDÞpmax

i

Xn

j¼1
jai

dij

dii

����
����. (23)

An important advantage of r1(D) is that it lies within a finite range for diagonally dominant matrices. On
the other hand, r(D) can be computed more easily.

It is possible to define other indices of diagonality. However, it will become evident that the choice of an
index of diagonality for D is immaterial in characterizing the drifts of errors due to the decoupling
approximation. It must be kept in mind that neither r(D) nor r1(D) are intended for measuring decoupling
errors, only how diagonal the modal damping matrix D is.
4. Drifts in errors due to the decoupling approximation

It will now be demonstrated numerically that, contrary to intuition, errors due to the decoupling
approximation can increase monotonically at any specified rate while the modal damping matrix D becomes
more diagonally dominant with its off-diagonal elements decreasing continuously in magnitude.

Example 1. Consider two four-degree-of-freedom systems of the form (8). System 1 is governed by [46]

€qþD1 _qþX1q ¼ gðtÞ, (24)
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where the spectral matrix, the modal damping matrix, and the excitation are given by

X1 ¼ diag½3:952; 3:982; 4:002; 4:102�, (25)

D1 ¼

1:61 �0:1865 �0:1742 0:3838

�0:1865 1:7 0:3792 �0:1773

�0:1742 0:3792 1:8 �0:1742

0:3838 �0:1773 �0:1742 1:75

2
6664

3
7775, (26)

gðtÞ ¼ ĝ cosðotÞ ¼ ½ 1 1 1 1 �T cosð4:16tÞ. (27)

System 2 is governed by

€qþD2 _qþX1q ¼ gðtÞ (28)

which differs from Eq. (24) only in the modal damping matrix

D2 ¼

1:61 0:0009 0:04 0:041

0:0009 1:7 0:0227 0:0376

0:04 0:0227 1:8 0:04

0:041 0:0376 0:04 1:75

2
6664

3
7775. (29)

While both D1 and D2 satisfy Eq. (18) and are diagonally dominant, D2 is a lot more diagonal. This is perhaps
obvious since D1, D2 have the same diagonal elements but each off-diagonal element in D2 is at least an-order-of-
magnitude smaller than the corresponding element in D1. Utilizing the indices of diagonality, it is found that

rðD1Þ ¼ 2:32518:83 ¼ rðD2Þ, (30)

r1ðD1Þ ¼ 0:43b0:055 ¼ r1ðD2Þ. (31)

Remember that r(D) and r1(D) have opposite trends; both indicate that D2 is significantly more diagonally
dominant than D1. Intuitively, one would expect System 2 to yield a smaller error due to the decoupling
approximation than System 1. However, calculation of the steady-state errors due to the decoupling
approximation yields an opposite result:

s1ðioÞ ¼ 2:76%o5:31% ¼ s2ðioÞ. (32)

Hence, errors due to the decoupling approximation can be larger for systems whose modal damping matrix is
more diagonal.
4.1. Linear interpolation between damping matrices

This example can be extended. Define a series of systems

€qþDa _qþX1q ¼ gðtÞ (33)

indexed by a parameter a in such a way that

Da ¼ ð1� aÞD1 þ aD2; 0pap1. (34)

As a increases from 0 to 1, Da is linearly interpolated between D1 and D2 with the diagonal entries of Da

remaining fixed. For 0pap1, the steady-state error sa(io) due to the decoupling approximation is computed.
In Fig. 1, the decoupling error sa(io) is plotted against the index of diagonality r(Da). It is observed that as the
modal damping matrix becomes more diagonally dominant, the error due to the decoupling approximation
increases monotonically. To be specific, the error sa(io) due to the decoupling approximation increases
continuously from 2.76% to 5.31% as the index of diagonality r(Da) increases continuously from 2.32 to 18.83.

If the choice of an index of diagonality is immaterial, one should be able to obtain qualitatively identical
results using the second index of diagonality r1(Da). Since r1(Da) and r(Da) have opposite trends, the
decoupling error sa(io) is plotted against 1/r1(Da) in Fig. 2. It is observed that the error sa(io) increases
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Fig. 1. Error due to the decoupling approximation sa(io) vs. index of diagonality r(Da) of the damping matrix.
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Fig. 2. Error due to the decoupling approximation sa(io) vs. 1/r1(Da) of the damping matrix.

M. Morzfeld et al. / Journal of Sound and Vibration 320 (2009) 406–420412
monotonically from 2.76% to 5.31% as r1(Da) decreases continuously from 0.43 to 0.055, or as 1/r1(Da)
increases from 2.33 to 18.18. The error-paths in Figs. 1 and 2 are very similar. Both indicate that as the modal
damping matrix becomes more diagonally dominant, errors due to the decoupling approximation increase
monotonically. Thus diagonal dominance of the damping matrix is not sufficient to ensure small errors due to
the decoupling approximation. There are two issues worth closer examination.
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4.2. Nonlinear interpolation between damping matrices

It is certainly possible to define a nonlinear interpolation between the end states D1 and D2. Instead of the
linear path given by Eq. (34), one could for example use a power law of the type

Da ¼ ð1� anÞD1 þ anD2; 0pap1. (35)

Nevertheless, Eq. (35) also generates Figs. 1 and 2 because the same intermediate states Da are produced
as a increases from 0 to 1. No new features will be observed using a nonlinear path between D1 and D2.
4.3. Variation of driving frequency

The steady-state error sa(io) is a function of the excitation frequency. Although Figs. 1 and 2 are generated
with a single driving frequency, qualitatively consistent observations can be made at any driving frequency.
Suppose the driving frequency o in Eq. (27) varies from 0 to 8 rad/s. In Fig. 3, the decoupling error sa(io) is
plotted as a function of both r(Da) and o as a three-dimensional error surface. With any fixed o, the error
sa(io) increases monotonically as the index of diagonality r(Da) increases continuously. Again, a graph similar
to Fig. 3 is obtained if 1/r1(Da) replaces r(Da).

Example 2. In many ways, the previous example is rather conservative. It will now be demonstrated that
error-paths can be constructed to increase at any specified rate while the modal damping matrix becomes more
diagonally dominant. Consider a collection of four-degree-of-freedom linear systems. System 1 is the same as
in Example 1, specified by Eqs. (24)–(27). Systems 3–5 are governed by

€qþDj _qþX1q ¼ gðtÞ; j ¼ 3; 4; 5, (36)

which differ from Eq. (24) only in the off-diagonal elements of the modal damping matrices:

D3 ¼

1:61 0:0947 �0:0140 0:3911

0:0947 1:7 0:3367 �0:0125

�0:0140 0:3367 1:8 �0:0140

0:3911 �0:0125 �0:0140 1:75

2
6664

3
7775, (37)
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Fig. 3. Error due to the decoupling approximation sa(io) vs. index of diagonality r(Da) and driving frequency o.
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D4 ¼

1:61 0:0762 0:0008 0:1142

0:0762 1:7 0:2090 0:0006

0:0008 0:2090 1:8 0:0388

0:1142 0:0006 0:0388 1:75

2
6664

3
7775, (38)

D5 ¼

1:61 �0:0008 0:0863 0:1047

�0:0008 1:7 0:0380 0:0006

0:0863 0:0380 1:8 0:0863

0:1047 0:0006 0:0863 1:75

2
6664

3
7775. (39)

All damping matrices Dj are diagonally dominant, with

rðD1Þ ¼ 2:32orðD3Þ ¼ 3:97orðD4Þ ¼ 7:80orðD5Þ ¼ 10:83, (40)

r1ðD1Þ ¼ 0:434r1ðD3Þ ¼ 0:264r1ðD4Þ ¼ 0:144r1ðD5Þ ¼ 0:11. (41)

Thus D5 is more diagonal than D4, D4 is more diagonal than D3, and D3 is more diagonal than D1.
Intuitively, one would expect that System 1 has the largest decoupling error among the four systems. However,
calculation of the steady-state errors due to the decoupling approximation yields an opposite result:

s1ðioÞ ¼ 2:76%os5ðioÞ ¼ 9:67%os4ðioÞ ¼ 12:76%os3ðioÞ ¼ 23:04%. (42)

In analogy to Example 1, define linear paths between D1 and Dj by

Dja ¼ ð1� aÞD1 þ aDj ; j ¼ 3; 4; 5; 0pap1. (43)

As a increases from 0 to 1, Dja is linearly interpolated between D1 and Dj with the diagonal entries of Dja

remaining fixed. In Fig. 4, the decoupling error sja(io) is plotted against the index of diagonality r(Dja) for
j ¼ 3, 4, 5. Three error-curves of vastly different gradients are obtained, each demonstrating that the
decoupling error increases monotonically as the modal damping matrix becomes more diagonally dominant.
For instance, the error-path between (I, D1, X1) and (I, D3, X1) indicates that the decoupling error increases
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Fig. 4. Error due to the decoupling approximation sja(io) vs. r(Dja). Error paths between D1 and D3 ( ), D1 and D4 ( ), D1 and D5

( ) are shown.
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monotonically from 2.76% to 23.04% when the index of diagonality r(D3a) increases continuously from
2.32 to 3.97.

It is obvious from Fig. 4 that an error-path with any gradient can be constructed to originate from (I, D1, X1).
Again, the choice of an index of diagonality is immaterial and, as shown in Fig. 5, qualitatively identical results
are obtained if 1/r1(Dja) replaces r(Dja). As previously explained, the same error-curves in Figs. 4 and 5 are
generated if D1 and Dj are nonlinearly interpolated. Although Figs. 4 and 5 are generated with a single driving
frequency, qualitatively consistent observations can be made at any driving frequency. In Fig. 6, the decoupling
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Fig. 5. Error due to the decoupling approximation sja(io) vs. 1/r1(Dja). Error paths between D1 and D3 ( ), D1 and D4 ( ), D1 and

D5 ( ) are shown.
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error sja(io) is plotted as a function of both r(Dja) and o as three-dimensional error surfaces for j ¼ 3, 4, 5. To
facilitate visualization, the driving frequency is limited to 0pop4 rad/s. The three error surfaces in Fig. 6 only
intersect along o ¼ 0 and each error surface is similar in shape to the one depicted in Fig. 3. The decoupling
error depends on the natural and driving frequencies. For any fixed o, the error sja(io) increases
monotonically as the index of diagonality r(Dja) increases continuously. Again, a graph similar to Fig. 6 is
obtained if 1/r1(Da) replaces r(Da).

It is clear by now that many other examples can be constructed to demonstrate that decoupling errors can
increase monotonically at any specified rate as the modal damping matrix becomes more diagonally dominant
with its off-diagonal elements decreasing continuously in magnitude. In fact, it is possible to construct a
monotonic error-path between any two end-state systems, say (I, D1, X1) and (I, D2, X1), to which the
decoupling approximation is applied. In the limiting case when D2 is diagonal, the decoupling error associated
with (I, D2, X1) is zero and only a monotonic decreasing error-path into (I, D2, X1) can be constructed.

5. Decomposition of decoupling errors

In order to explain the rather surprising observations of the previous section, new theoretical developments
will be pursued. In the frequency domain, error due to the decoupling approximation is quantified by EðioÞ

�� ��,
where E(io) is given by Eq. (15). The magnitude of the kth element of E(io) represents the contribution of the
kth mode to the overall decoupling error. From Eq. (15),

EkðioÞ ¼
�io

o2
k � o2 þ iodkk

Xn

l¼1
lak

dklQlðioÞ. (44)

5.1. Coupling coefficients

In Eq. (44), the term

�klðioÞ ¼
�io

o2
k � o2 þ iodkk

dklQlðioÞ (45)

arises because of coupling exerted by the lth mode on the kth mode. For this reason, ekl(io) may be referred to
as a coupling coefficient [47,48]. By definition, ekk(io) ¼ 0. Since

�klðioÞ
�� �� ¼ offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðo2
k � o2Þ

2
þ o2d2

kk

q dklQlðioÞ
�� ��, (46)

the amplitude of ekl(io) is generally large if the off-diagonal elements dkl of D is large. In terms of the complex
coupling coefficients,

EkðioÞ ¼
Xn

l¼1
lak

�klðioÞ. (47)

Thus the magnitude of Ek(io) depends on both the amplitudes and angular orientations of the coupling
coefficients ekl(io) in the complex plane. Coupling coefficients with large amplitudes may not sum to a large
constituent error Ek(io). Depending on the angular orientations of ekl(io), the coupling coefficients may cancel
out to produce a small constituent error Ek(io). On the other hand, coupling coefficients with relatively small
amplitudes can align in the complex plane to produce an unexpectedly large error.

Any assessment of errors due to the decoupling approximation based solely upon the diagonal dominance
of D would not be accurate since such assessment does not take into account the alignment of coupling
coefficients in the complex plane. This is the reason why small off-diagonal elements in D are not sufficient to
ensure small decoupling errors.
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5.2. Explanation of observations in previous examples

The systems specified as end-states in Examples 1 and 2 are summarized in Table 1. These systems differ
only in the off-diagonal elements of their modal damping matrices. In Fig. 7, all coupling coefficients ekl(io)
for System 1 are plotted in the complex plane. It is also shown how these complex coupling coefficients add up
to form the constituent error Ek(io) for each of the four modes. Similar graphs are generated in Fig. 8 for
System 2. Since the modal damping matrix D2 is significantly more diagonally dominant than D1, the
amplitudes |ekl(io)| of the coupling coefficients for System 2 are much smaller than the corresponding ones for
System 1. However, the angular orientations of the coupling coefficients are such that they align to produce a
constituent error Ek(io) with larger magnitude in each of the four modes for System 2. This is the reason why
the decoupling error associated with System 2 is larger than with System 1 even though D2 is significantly more
diagonally dominant than D1.

When intermediate damping matrices Da are generated by Eq. (34) or (35), each Da is more diagonal than
D1. However, the coupling coefficients of (I, Da, X1) align in the complex plane to produce larger constituent
errors than those of (I, D1, X1). This fully explains the counter-intuitive error-paths in Figs. 1–3 for
Table 1

Systems used as end-states in Examples 1 and 2

System 1 System 2 System 3 System 4 System 5

System parameters (I, D1, X1) (I, D2, X1) (I, D3, X1) (I, D4, X1) (I, D5, X1)

r (Dj) 2.32 18.83 3.97 7.80 10.83

r1 (Dj) 0.43 0.055 0.26 0.14 0.11

Decoupling error, sj (io) (%) 2.76 5.31 23.04 12.76 9.67
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Relatively large coupling coefficients add up in the complex plane to produce a diminished Ek(io) in each mode.
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Example 1. A similar situation exists for the systems defined in Example 2. Detailed plots of coupling
coefficients for (I, D3, X1), (I, D4, X1), and (I, D5, X1) in Example 2 are therefore omitted. Through an
examination of the coupling coefficients in the complex plane, many unexpected behaviors in the drifts of
decoupling errors can be fully explained.

6. Concluding remarks

The modal coordinates of a non-classically damped linear system are coupled by the off-diagonal elements
of the modal damping matrix. A common procedure, termed the decoupling approximation, is to ignore these
off-diagonal elements if they are small. The decoupling approximation, discussed by Rayleigh [19] in 1894, is a
member of the class of approximate techniques seeking to decouple a linear system by modifying its coefficient
matrices. It is optimal in the sense that the difference (matrix norm) between the original equation and the
equation obtained by the decoupling approximation is minimized [22]. This does not mean, however, that
errors due to the decoupling approximation are minimized. In this paper, errors due to the decoupling
approximation have been explored both computationally and theoretically. Some observations much contrary
to intuition and to widely accepted belief have been brought up and explained. Major findings of this paper are
summarized in the following statements:
1.
 Two indices have been introduced to quantify the degree of being diagonal in damping matrices. The choice
of an index of diagonality is immaterial in characterizing the drifts of errors due to the decoupling
approximation.
2.
 Over a finite range, errors due to the decoupling approximation can increase monotonically at any specified
rate while the modal damping matrix becomes more diagonally dominant with its off-diagonal elements
decreasing continuously in magnitude. For instance, the error-path between (I, D1, X1) and (I, D3, X1) in
Fig. 4 indicates that the decoupling error increases monotonically from 2.76% to 23.04% when the index of
diagonality r(D3a) increases continuously from 2.32 to 3.97.
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3.
 Small off-diagonal elements in the modal damping matrix are not sufficient to ensure small errors due to the
decoupling approximation. An error-criterion based solely upon the diagonal dominance of the modal
damping matrix would not be accurate.
4.
 Any assessment of errors due to the decoupling approximation should utilize both the amplitudes and
angular orientations of the complex coupling coefficients. A monotonic error-path can be constructed
between any two end-state systems, say (I, D1, X1) and (I, D2, X1), to which the decoupling approximation
is applied.

Although a limited set of data is presented herein, extensive calculations have been performed by the
authors, and all numerical simulations have yielded qualitatively identical results. Drifts in errors due to the
decoupling approximation are not as intuitive and simplistic as are usually thought. Through research into
characterization of decoupling errors, it is hoped that the decoupling approximation can be used by practicing
engineers with increased confidence and discretion in the years to come.
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