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Abstract

Identifying host factors that influence infectious disease transmission is an important step

toward developing interventions to reduce disease incidence. Recent advances in methods

for reconstructing infectious disease transmission events using pathogen genomic and epi-

demiological data open the door for investigation of host factors that affect onward transmis-

sion. While most transmission reconstruction methods are designed to work with densely

sampled outbreaks, these methods are making their way into surveillance studies, where

the fraction of sampled cases with sequenced pathogens could be relatively low. Surveil-

lance studies that use transmission event reconstruction then use the reconstructed events

as response variables (i.e., infection source status of each sampled case) and use host

characteristics as predictors (e.g., presence of HIV infection) in regression models. We use

simulations to study estimation of the effect of a host factor on probability of being an infec-

tion source via this multi-step inferential procedure. Using TransPhylo—a widely-used

method for Bayesian estimation of infectious disease transmission events—and logistic

regression, we find that low sensitivity of identifying infection sources leads to dilution of the

signal, biasing logistic regression coefficients toward zero. We show that increasing the pro-

portion of sampled cases improves sensitivity and some, but not all properties of the logistic

regression inference. Application of these approaches to real world data from a population-

based TB study in Botswana fails to detect an association between HIV infection and proba-

bility of being a TB infection source. We conclude that application of a pipeline, where one

first uses TransPhylo and sparsely sampled surveillance data to infer transmission events

and then estimates effects of host characteristics on probabilities of these events, should be

accompanied by a realistic simulation study to better understand biases stemming from

imprecise transmission event inference.
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Author summary

Factors that affect infectious disease transmission are poorly understood, which impede

efforts to prevent the spread of infectious diseases. Recently, software packages have been

developed to infer transmission histories of infectious disease outbreaks using data from

infectious disease genetics and epidemiology. These software packages have been used as

part of methods to identify individual characteristics that affect infectious disease trans-

mission. We used computer simulation to explore whether a statistical pipeline using the

software package TransPhylo can successfully identify individual risk factors for being

an infection source in a realistic public health setting where only a small proportion of

pathogens are sequenced. We simulated tuberculosis (TB) outbreaks with different odds

of being an infection source for TB transmission between people living with and without

HIV. We found that the TransPhylo-based pipeline consistently underestimated the

odds ratio for the association between HIV and being an infection source for TB transmis-

sion. We then applied this method to data from a TB study from Botswana and found no

evidence of an association between HIV and being an infection source for TB transmis-

sion. Identification of transmission risk factors may be difficult in settings with low sam-

pling proportion for genetic data.

Introduction

Better understanding of risk factors for transmitting infectious disease can help improve public

health interventions. For example, HIV infection is associated with reduced bacterial load and

lower probability of cavitary disease among people with tuberculosis (TB) [1]. This has led to

the hypothesis that HIV infection may reduce the probability of onward transmission of M.
tuberculosis among people with TB. [1, 2] Improved understanding of the effect of HIV on M.
tuberculosis transmission could inform prioritization of scarce public health resources for

contact tracing. Moreover, identifying host factors for transmission could provide valuable

insights into the pathophysiology of the infectious disease.

In practice, it is rare to have perfect knowledge of who infected whom in an infectious dis-

ease outbreak, making study of risk factors for transmission difficult. Advances in methods for

pathogen genomics have led to enhanced understanding of infectious disease transmission. [3,

4] Sequencing data can be compared among infected hosts to rule out direct transmission

when substantial genomic differences exist. More recently, several methods have been devel-

oped for using genomic and epidemiological data to reconstruct transmission events and iden-

tify a putative infection source for each transmission event [5–12]. In general, these tools were

originally designed for outbreak investigations, where capturing most, if not all, cases was fea-

sible. Recently, researchers have used such methods on data collected in the context of passive

disease surveillance as part of a statistical pipeline to determine the association between poten-

tial risk factors and being an infection source (transmitting an infection to at least one other

host) [13–15]. Fig 1 illustrates this pipeline. Researchers first infer a timed phylogenetic tree

from genetic data, use the phylogenetic tree to infer infection source status labels for study par-

ticipants, and finally infer the odds ratio of interest using the inferred infection source labels as

observed response variables.

While passive disease surveillance could capture a significant portion of infectious disease

incidence, we expect a meaningfully smaller proportion of cases will be sampled as compared

to an outbreak investigation study. It is worth pointing out that we expect the proportion of

cases sampled to heavily depend on the resources of a public health system, as well as the

PLOS COMPUTATIONAL BIOLOGY Using genetic data to identify transmission risk factors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010696 December 5, 2022 2 / 18

Funding: This work was supported by the National

Institutes of Health (R01AI147336 to IG, BK, OM,

CM, SN, VMN, SSS; R01AI097045 to NMZ). The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: SSS declares

receiving consulting fees from Beckman Coulter

and Hycor Biomedical on unrelated studies. All

other authors have declared that no competing

interests exist.

https://doi.org/10.1371/journal.pcbi.1010696


prevalence of the disease being studied. In well resourced public health systems, the differ-

ence between passive surveillance and outbreak investigation may be small. Still, the perfor-

mance of many of the transmission reconstruction methods in the context of passive

surveillance is not at all clear. And while statistical pipelines relying on these transmission

reconstruction methods have been used in practice, their ability to provide useful estimates

of the associations between being an infection source and risk factors of interest remains

largely untested. The goal of this study is to better understand the use of these pipelines in

disease surveillance contexts by evaluating the performance of a set of statistical pipelines

which use the commonly used TransPhylo software to reconstruct transmission events

[5]. We evaluate bias and precision of the estimators of the odds ratios for probability of

being an infection source. We also evaluate the power of statistical tests based on these esti-

mators to reject a null hypothesis that the odds ratio is one, and coverage of corresponding

95% confidence and credible intervals. In particular, we evaluate the properties of using

TransPhylo generated infection source labels and logistic regression, and TransPhylo
infection source labels with two different statistical models that take into account measure-

ment error. We accomplish this goal by simulating TB outbreaks with two classes of hosts

(representing those living with and without HIV) with different probabilities of being an

infection source where the underlying true odds ratios are known, and evaluating pipeline

performance under a variety of true odds ratios and sampling designs. Finally, we apply our

pipelines to real data to investigate the association between HIV infection and being an

infection source for M. tuberculosis transmission.

Materials and methods

Ethics statement

The real data were collected for the Kopanyo Study, which received approval from the

Health Research and Development Committee of the Botswana Ministry of Health and

Fig 1. Visualization of statistical pipeline evaluated in this paper. Genomic data are used to construct timed

phylogenetic trees, which are then used as inputs to infer transmission trees. Based on transmission trees, probability

of being an infection source is derived, and then used as a response variable in an analysis of host factor associations.

https://doi.org/10.1371/journal.pcbi.1010696.g001

PLOS COMPUTATIONAL BIOLOGY Using genetic data to identify transmission risk factors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010696 December 5, 2022 3 / 18

https://doi.org/10.1371/journal.pcbi.1010696.g001
https://doi.org/10.1371/journal.pcbi.1010696


Wellness, the U.S. Center for Disease Control and Prevention Institutional Review Board

(IRB) (6291), and the University of Pennsylvania IRB. Informed consent was obtained from

all participants.

TransPhylo overview

TransPhylo is an R package which uses a statistical model and Markov chain Monte Carlo

to produce a posterior distribution of transmission trees, graphs which describe who infected

whom in an infectious disease outbreak [5]. TransPhylo uses timed phylogenetic trees of

sampled cases in order to produce this posterior. One advantage of using TransPhylo for

this task is that it is designed to allow for within-host evolution. It does this by “coloring”

branches of the phylogenetic tree, where colors represent hosts, and allowing for color changes

to occur anywhere on a branch, as opposed to just at bifurcations of the tree. Another advan-

tage of TransPhylo is that it explicitly allows for outbreaks where not all individuals have

been sampled. Using the posterior distribution of transmission trees, we can create a probabil-

ity of being an infectious source for each sampled individual by calculating the proportion of

posterior trees in which the individual transmitted the disease to another individual (regardless

of whether the individual was sampled).

Simulation set up

All simulated data sets were generated in R version 4.0.2 or 4.0.4 using the nosoi package

version 1.0.3 [16, 17]. nosoi simulates an infectious disease outbreak by simulating indi-

vidual cases which generate new cases in discrete units of time until either a specified time

limit is reached or a specified total number of cases is reached. The behavior of cases is con-

trolled through three parameters: the probability of the recipient ceasing to be infectious at

the beginning of a time step, the number of susceptible persons an individual case encoun-

ters in a time step, and finally, the probability that, given a contact with a susceptible indi-

vidual, an individual case will transmit the pathogen. For all simulations in this study, we

assumed discrete time steps represented one month of real time, and chose model parame-

ters to mimic a plausible M. tuberculosis outbreak (see A.1.1 in S1 Appendix for simulation

parameters). In brief, R0 was set to be 1.18, the mean latent period was 9 months among

hosts that became infectious, and the mean infectious period was 3 months. All outbreaks

used in this study lasted 8 years. In order to control the number of sampled recipients, we

generated simulations at random, but only used outbreaks with a total number of between

fifty and two thousand cases. This meant that many potential outbreaks were rejected as

part of our sampling simulation process. While this rejection sampling has the potential to

change the true odds ratio being estimated, we have found empirically this is not an issue

for outbreaks lasting 8 years. In our simulation set-up, each outbreak represents a cluster of

M. tuberculosis infected individuals to be analyzed jointly using TransPhylo, mimicking

the common real world practice of clustering using SNPs by some threshold and generating

separate timed phylogenies for each cluster. Henceforth we will refer to these outbreaks as

clusters.

We simulated clusters with two types of individuals representing people living with and

without HIV co-infected with M. tuberculosis. Based on data collected for a population-based

epidemiology study of M. tuberculosis in Botswana (discussed below), we specified that on

average 53 percent of cases would be people living with HIV. We had five primary simulation

settings where the only changing parameter was the ratio of the probabilities of transmission

given contact for two classes of cases. The settings were: probability of transmission given con-

tact was 3.02 times higher among people living without HIV compared to that among people
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with HIV, 1.75 times higher, equal, 1.75 times lower, or 3.33 times lower. All other parameters

were identical for the two classes of cases. For the 3.02 setting, we will round down and refer to

this as the 3 setting for the duration of the paper.

A single simulation consisted of fifty simulated clusters, where each cluster lasted eight

years. From a single cluster, individuals were sampled from the last three years of the out-

break. Recipients were only sampled during their infectious periods, with the sampling time

equally likely at any point in this time frame. For each cluster, we sampled 16% of eligible

recipients for each of the last three years of the outbreak. Only simulations where all fifty

clusters had at least two sampled individuals were accepted. In addition, because individuals

could be active in multiple years, there were cases where there were not enough individuals

in a particular year left to reach the percentage of 16%, simulations were likewise rejected in

this scenario.

We chose this sampling scheme to reflect real world sampling conditions in our study set-

ting, where data were collected as part of ongoing surveillance of an endemic disease over the

course of multiple years, and where there was little chance of sampling recipients during their

latent period. For example, due to under-diagnosis, the World Health Organization estimated

that only 54% of people with new TB episodes in Botswana were reported in 2019 [18]. Using

this proportion, we divided the number of M. tuberculosis sequences available by the number

of estimated TB episodes (reported + unreported) to calculate the sampling proportion for

our study. In more detail: we divided the number of diagnosed incidents of TB during the

Kopanyo study (N = 4,331) by 0.538 to determine the total number of reported and unre-

ported TB episodes (N = 8049). We then divided the number of sequences initially available

for analysis (N = 1306) by 8049 to determine the sampling proportion of 16%. We continued

to use this conservative sampling proportion estimate after increasing our sequenced samples

to 1426. Thus, 16% reflects a reasonable sampling proportion one would expect when data

come from passive surveillance of TB.

Once sampled, we generated timed phylogenetic trees for each cluster using nosoi. The

trees from separate clusters represent the trees from separate transmission clusters which

would be generated as part of a real data analysis. These timed phylogenetic trees served as the

input for TransPhylo (version 1.4.4). For each simulation setting, we generated one hun-

dred simulations.

In addition to our primary simulations, we conducted a number of secondary simulations

to further investigate the operating characteristics of our statistical pipeline. For all secondary

simulations, people living without HIV had a probability of transmission given contact that

was set to be 1.75 times higher than people with HIV. We then varied the sampling proportion,

increased total sample size, and decreased time from start of epidemic to start of sampling. To

investigate the impact of increasing the sampling density, we increased the sampling propor-

tion from 16% to 32% while keeping the sample size approximately the same by halving the

number of clusters in a simulation (from fifty to twenty-five). To further investigate the conse-

quences of increasing sampling density, we then increased the sampling proportion from 16%

to 64%, again keeping the sample size approximately similar using only 13 clusters. To investi-

gate the impact of an increase in sample size, we kept the sampling proportion at 16%, but

doubled the number of clusters from fifty to one hundred. To investigate the impact of short-

ening the time from beginning of epidemic to beginning of sampling, we kept the sampling

proportion at 16%, but increased the sampling window from the last three years to the last

seven years of the simulation, while decreasing the number of clusters from fifty to thirty-five

to approximately maintain the original sample size. All simulation settings are summarised in

Table A1 in S1 Appendix.
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Using TransPhylo on simulated data sets

We used the multiple cluster functionality of TransPhylo to analyze all simulated trees

from a single simulation simultaneously. The sampling proportion π was allowed to vary

among clusters, while all other parameters were shared across all trees. Based on empirical

results from early simulations, for the primary simulations, the prior for the sampling propor-

tion was set as a beta distribution with alpha equal to 1 and beta equal to 19. The other priors

in TransPhylo cannot be changed by the user. TransPhylo assumes the number of indi-

viduals an infectious person will infect has a negative binomial distribution governed by two

parameters r and p. These parameters also describe the reproduction number, and so their pri-

ors control the prior for the reproduction number. r has an exponential prior with rate param-

eter one, p has a uniform prior over the interval zero to one. We found in practice that p was

not identifiable and fixed it at 0.5 for our analyses. Finally, the within-host effective population

size also has an exponential prior with rate parameter one. The generation time and sampling

time distribution were identical, with shape parameter 10, scale parameter 0.1. Parameters and

their priors are summarised in Table A2 in S1 Appendix. We sampled 100,000 draws from the

posterior distribution of transmission trees, discarding the first 50,000 as burn-in, and saving

only every tenth sample. Probability of being an infection source was calculated as the propor-

tion of posterior draws in which a particular case transmitted the disease. We considered a

case to be an infection source if their inferred posterior probability of being an infection source

was greater than 0.6. This same cutoff probability of 0.6 was used for the real data analysis as

well. We have found the exact value of this cutoff makes little difference, as the distribution of

probabilities tends to be extremely bi-modal, clustered around one and zero (see A.3 in S1

Appendix).

Inferring odds ratios using infection source labels

All statistical inference was conducted in R (either version 4.0.2 or 4.0.4). We estimated odds

ratios through logistic regression via the glm function in R. The mean of the response variable

was the probability of being an infection source and the covariate was HIV status, where one

indicates a person living without HIV, and zero indicates a person with HIV. That is:

log
PðY ¼ 1Þ

1 � PðY ¼ 1Þ

� �

¼ b0 þHIV � b1;

where Y = 1 when a case is labeled as an infection source and Y = 0 when they are not. For sim-

ulations, we used logistic regression using both the true infection source labels and the labels

inferred by TransPhylo. True odds ratios for each simulation setting were calculated using

Monte Carlo simulations (see A.2.1 in S1 Appendix). Our results suggested logistic regression

using the TransPhylo inferred labels yielded sub-optimal inference due to mislabeled cases

(i.e. TransPhylo inferred a case was not an infection source when in fact they were). This is

a well-known phenomenon in statistics called measurement error, see Neuhaus (1999) for a

clear introduction to the problem [19]. Many methods have been developed to adjust for this

misclassification, we chose to include two as potential remedies to our statistical pipeline.

The first method is available in the SAMBA package by Beesley and Mukherjee (2020) (we

used version 0.9.0) [20]. The SAMBA misclassification model assumes no misclassification of

negative results (specificity is 1) and first infers the sensitivity of the response variable, then

incorporates this sensitivity in the final logistic regression. To infer sensitivity, the user is

required to input a fixed unconditional probability of the response variable being one, in our

setting, this is the unconditioned probability that a case is an infection source. For simulations,

the true unconditional probability from the sampled data was used. For the real data analysis,
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the mean probability of being an infection source in the last three years of the cluster from one

of the primary simulation settings was used.

The second method is a Bayesian approach we created to account for the case when speci-

ficity is not 1. For this model we assume the sensitivity and specificity for the response labels

are known. In the model below Y represents the observed response label whereas Z represents

the unobserved true response label.

b0 � Nð0; 1Þ;

b1 � Nð0; 1Þ;

log
PðZi ¼ 1Þ

1 � PðZi ¼ 1Þ
¼ b0 þHIV �i b1;

Yi j Zi ¼ 0 � Bernoulliðp ¼ 1 � SpecificityÞ;

Yi j Zi ¼ 1 � Bernoulliðp ¼ SensitivityÞ:

For the simulations, Monte Carlo estimated sensitivity and specificity were used, rounded

to two significant digits. For the real data analysis, the Monte Carlo estimated sensitivity

and specificity from one of the primary simulations was used. There was little difference in

estimated sensitivity and specificity between the different settings (Figs A1 and A2 in S1

Appendix). We used Hamiltonian Monte Carlo (HMC) to conduct Bayesian inference with

this model using Stan through the rstan package (version 2.21.2). We generated 2000 poste-

rior draws and discarded the first 1000 as burn-in. We used the median of the posterior distri-

bution for point estimates and 95% Bayesian credible intervals as measures of uncertainty.

Data collection

The real data used in this study was originally collected as part of a molecular epidemiology

study of M. tuberculosis transmission in two regions of Botswana. Botswana has a high preva-

lence of HIV as well as M. tuberculosis. In 2017, 19.9% of people aged 15–49 were living with

HIV, 300 of 100,000 people had TB, 48% of people with TB also had HIV [21]. All patients

who were diagnosed with M. tuberculosis between 2013 and 2016 in the two regions were eligi-

ble for enrollment in the study. Of the 4331 enrolled participants, 2159 had culture-confirmed

TB. Any participants who had unknown HIV status or who had had a negative result more

than a year prior to sampling were offered HIV testing as part of the study protocol [22, 23].

Sequencing

Of the M. tuberculosis DNA extracted from cultured isolates, 1671 (77%) were of sufficient

quality to undergo sequencing using Nextera XT libraries. We performed WGS using Illumina

Technology (MiSeq, NextSeq 500) generating 2x151bp paired end reads. All genomes were

analysed with the MTBseq pipeline using the standard input values [24]. In short, reads were

mapped to the M. tuberculosis H37Rv genome (GenBank ID: NC_000962.3) using BWA-

mem and Samtools. Base call recalibration and realignment of reads around insertions and

deletions was performed using GATKv3. Finally, variant calling was performed with Samtools

mpileup and in-house scripts that employed thresholds for coverage and base quality. After

sequencing, 1426 libraries were of high enough quality, defined by at least 50x coverage and

95% of the reference genome covered, to be used for further analysis. Average coverage of the

good quality samples was 120x.

Concatenated sequence alignment of variants was produced by including those genome

positions that fulfilled the aforementioned criteria for coverage and variant frequency in 95%

of all samples. Repetitive regions (PPE/PE-PGRS genes), InDels, consecutive SNPs in 12bp
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windows and genes implicated in antibiotic resistance were excluded. Phylogenetically infor-

mative SNPs were taken from existing literature. We excluded sequences with heterogeneous

reads along a base position for 45—50 SNPs or greater, which is indicative of mixed infections,

leaving 1347 sequences for analysis.

Analysis of real data

Within each lineage, we calculated raw single nucleotide polymorphism (SNP) distances

between all sequences and clustered sequences based on two cutoffs, either sequences with a

SNP distance of five or fewer, or ten or fewer were clustered together. For our analysis, we

excluded clusters with less than four sequences. We also excluded clusters with little genetic

variation by excluding clusters where there were less than two times the number of sequences

in the cluster minus two varying sites. For the five SNP analysis, we had 147 sequences from 21

clusters. For the ten SNP analysis, we had 388 sequences from 46 clusters to analyze.

We used BEAST 2 version 2.6.3 to create posterior distributions of timed phylogenetic trees

with 10 million posterior draws for each of our clusters [25]. We then calculated maximum

clade credibility trees to use as the inputs into TransPhylo, discarding the first ten percent

of Markov chain Monte Carlo iterations. We used an HKY model with strict molecular clock

and a constant effective population size model, and used an ascertainment bias correction for

sequences of unknown length to account for the fact that analyzed sequences included only

varying sites [26]. We used a uniform prior for the molecular clock with a lower bound

1 × 10−8 and upper bound 5 × 10−7 scaled by 4.2 million divided by the number of sites in the

data for each cluster. The scaling was done to account for the fact that we used BEAST2 on

SNPs, not the full genome. The upper and lower bounds were chosen based on work by

Menardo et. al, and were chosen to be suitable for all TB lineages [27]. Priors on the frequency

parameter, kappa and population size were all log normal distributions with parameter M set

to 1.0 and parameters S set to 1.25.

For TransPhylo, shape and scale parameters for the generation time and sampling time

distributions were fixed at 10 and 0.1 respectively. The multitree function was used to conduct

inference simultaneously on all clusters generated by the same SNP threshold, with all parame-

ters but the sampling proportion shared among all clusters. We used a beta distribution with

alpha set to 1 and beta set to 19 as a prior for the sampling distribution. We drew 100,000 pos-

terior samples, discarding the first 50,000 samples as burn-in and saving every tenth sample.

We calculated the odds ratio for people living without HIV vs with HIV using the inferred

TransPhylo labels using logistic regression, using the SAMBA package, and using the

Bayesian model as described in a previous subsection.

Reproducibility

All code and data needed to recreate the results of this study are available at https://github.

com/igoldsteinh/kopanyo_tp_code.

Results

Simulated data

Table 1 shows summary statistics of the simulated clusters used in the primary simulation set-

ting where people living with HIV were 1.75 times less likely to transmit infection given con-

tact compared to people without HIV. Median cluster size was 116, with 95% of clusters

ranging from 53 to 393 hosts. Latent periods for cases had a median of 9 months, while infec-

tious periods lasted a median of 3 months. Median tree height was 5.9 years.
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Operating characteristics of statistical pipeline

For each simulation setting, we calculated the sensitivity and specificity of TransPhylo for

identification of an individual as an infection source. Point estimates for each simulation set-

ting are displayed in Figs A1 and A2 in S1 Appendix. In general, specificity was high, around

0.97, while sensitivity was low, approximately 0.28. Sensitivity increased when either the sam-

pling density or the sampling window was increased.

Then, for each version of our pipeline and each simulation setting, we calculated frequentist

coverage (proportion of simulations for which a 95% confidence/credible interval contained

the true parameter–ideally it should be 0.95), proportion reject: the proportion of times that a

null hypothesis that the odds ratio was one was rejected (with significance level 5%), percent

bias (bias divided by the true odds ratio), and mean confidence interval width of 95% confi-

dence intervals. Fig 2 shows the results from the primary set of simulations. The four pipelines

tested for each simulation were: a reference pipeline where true infection source labels were

known and used as inputs into a generalized linear model (Truth + GLM), a pipeline where

TransPhylo labels were used as input into a generalized linear model (TP + GLM), a pipe-

line where TransPhylo labels were used as input into SAMBA (TP + ME1) for misclassifica-

tion adjustment and a pipeline where TransPhylo labels were used as inputs in our

Bayesian model for misclassification adjustment (TP + ME2). Across simulation settings, the

Truth + GLM pipeline had coverage around 0.95, proportion reject above 0.95 (except in the

case when the odds ratio was 1), percent bias near 0 and confidence interval width ranging

from 0.17 to 2.7. For the TP + GLM pipeline, coverage varied depending on the simulation set-

ting, ranging from 0.62 to 0.93. When the true odds ratio was not one, TP + GLM had propor-

tion reject ranging from 0.54 to 1. Percent bias ranged from -16.76% to 48.34%, mean credible

interval width was 0.33 to 2.28. The TP + ME1 pipeline had coverage and proportion reject

similar to TP + GLM, with percent bias ranging from -55.83% to 195.66% and MCIW between

0.25 and 23.94. Finally, the TP + ME2 pipeline had coverage ranging from 0.79 to 0.98, propor-

tion reject ranging from 0.44 to 1, percent bias from -30.52% to 118.51% and MCIW from 0.36

to 22.

The results of our secondary set of simulations (along with the original results from the 1.75

setting) are displayed in Fig 3. For the TP + GLM pipeline, increasing the percent of hosts sam-

pled from 16% to 32% (Double Sampling Density) led to increased coverage and increased

Table 1. Simulation summary statistics for 8 year simulation. Summary statistics of simulated infectious disease out-

breaks from 100 simulations where probability of transmission given contact for hosts without HIV was 1.75 times

larger than for hosts with HIV. �Infection Source—transmitting an infection to at least one other host.

Metric Median [2.5% Q, 97.5% Q]

Cluster Size 116 [53, 393]

Samples per Cluster 9 [3, 34]

Latent Period (Months) 9 [4, 17]

Infectious Period (Months) 3 [1, 15]

P(IS�) 0.69 [0.64, 0.73]

P(HIV+) 0.53 [0.49,0.56]

P(IS|HIV−) 0.77 [0.71, 0.81]

P(IS|HIV+) 0.61 [0.57, 0.67]

P(HIV+|IS = N) 0.65 [0.58, 0.71]

P(HIV+|IS = Y) 0.48 [0.43, 0.52]

Tree Height (Years) 5.92 [2.59, 7.42]

% TP Labeled IS 19.47 [17.11, 22.35]

https://doi.org/10.1371/journal.pcbi.1010696.t001
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proportion of scenarios where a null hypothesis that the odds ratio was one was rejected.

Quadrupling the percent of hosts sampled to 64% (Quad Sampling Density) led to a decrease

in coverage compared to both the default and the Double Sampling Density simulation,

although the proportion reject remained comparable with Double Sampling Density

Fig 2. Operating characteristics of statistical pipelines in primary simulation settings. Truth + GLM is a reference pipeline where the true infection source labels are

used as response variables in a generalized linear model. TP + GLM is a pipeline where infection source labels generated by TransPhylo are used as response variables

in a generalized linear model. TP + ME1 is a pipeline where infection source labels are generated by TransPhylo and used as an input into a model from the SAMBA
package, which allows for false positives. TP + ME2 again uses labels generated by TransPhylo as response variables into a model which allows for both false positives

and false negatives. The settings denote different simulation settings, each value describes the true ratio of the probability of transmission given contact for cases living

without HIV to cases with HIV. I.E., 0.57 means that the probability of transmission given contact for hosts without HIV was 1.75 times as small as the probability of

transmission given contact for hosts with HIV. Coverage refers to proportion of simulations where 95% confidence intervals captured the true odds ratio. Prop. Reject

refers to the proportion of simulations where a null hypothesis that the true odds ratio was one would be rejected, assuming significance level of 5%. Percent bias is bias

divided by the true odds ratio, MCIW is mean confidence interval width.

https://doi.org/10.1371/journal.pcbi.1010696.g002
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simulation, and the bias decreased. Increasing the sampling window to all but the first year of

the outbreak slightly decreased coverage and increased proportion reject. Doubling the num-

ber of clusters analyzed from fifty to one hundred (Increase Sample Size) led to the lowest

coverage of all settings but the highest proportion reject. For the two measurement error

pipelines, the proportion reject improved in a similar manner as in the TP + GLM pipeline.

However, the coverage changed in a different manner, with both the Increase Sample Sizes

and the Increase Sampling Window having substantially lower coverage than the default

setting.

Real data results

Study participant characteristics from the Botswana study are summarized in Table 2. The vast

majority of sampled TB bacteria belonged to lineage 4. More than half of study participants

were male, and most participants were living with HIV.

Fig 3. Operating characteristics of statistical pipelines in secondary simulation settings. See Fig 2 for x-axis and y-axis labels. The settings denote different simulation

settings. For all simulations the probability of transmission given contact for cases living without HIV was 1.75 times as large as the probability of transmission given

contact for cases living with HIV. Default refers to the simulation settings used in the primary simulation setting. In the Double Sampling Density setting percent of

active cases sampled was doubled from 16% to 32%. In the Quad Sampling Density setting percent active cases sampled was quadrupled to 64%. In the Increase Sample

Size setting the number of clusters sampled from was doubled from 50 to 100. In the Increase Sampling Window the sampling window was changed from the last three

years of the simulation to the last seven years.

https://doi.org/10.1371/journal.pcbi.1010696.g003
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The four largest phylogenetic trees from each of our real data analyses (using five SNPs and

ten SNPs as clustering cutoffs) produced by our statistical pipelines are displayed in Fig 4.

From our genetic samples, we used BEAST2 to create a phylogenetic tree, then used Trans-
Phylo to label tips of the tree as being infection sources or not infection sources and compare

with their recorded HIV status. The bottom row have tips labeled by ID numbers, demonstrat-

ing the way trees change when inclusion criteria change. All participants from the five SNP

tree (right) remain in the same ten SNP tree (left), with additional participants included

because of the relaxed inclusion criteria.

Table 3 shows results from our real data analysis using clusters generated under a five SNP

cutoff rule and a ten SNP cutoff rule. Mean cluster size and mean tree height increased margin-

ally depending on which cutoff was used (increasing from 7 to 8.43 participants and from 6.86

years to 8.27 years), but both are similar to cluster size and tree height in simulated data

(Table 1). Overall sample size was smaller than in simulation settings. In both analyses,

between 11% to 12% of participants were identified as infection sources. Using any version of

our pipeline, we fail to reject (at a 5% significance level) a null hypothesis that the odds ratio is

one. Using either measurement error pipeline, the confidence intervals are larger than those

produced by the TP + GLM pipeline. For the five SNP Analysis TP + GLM had confidence

interval width of 2.39, while TP + ME1 had confidence interval width 17.36, and TP + ME2

had confidence interval width of 2.70. Using data from the 10 SNP analyses, all pipelines had

shorter confidence intervals. The TP + GLM pipeline had a confidence interval width of 1.40,

TP + ME1 had confidence interval width of 6.58, and TP + ME2 had confidence interval width

of 2.15.

In addition, we used a generalized linear model with additional covariates for participant

gender, smoking status, past history of TB infection and excessive alcohol use. The model had

no covariates for which a null hypothesis the odds ratio was one could be rejected, and the

point estimates and confidence intervals for the odds ratio for HIV status were similar to those

reported in Table 3.

Table 2. Study participant characteristics. Summary statistics of participant characteristics from the study of M.
tuberculosis in Botswana.

Count Percent

TB Lineage

Lineage 1 83 6.4

Lineage 2 69 5.3

Lineage 3 12 0.9

Lineage 4 1142 87.4

Sex

Male 719 55.1

Female 587 44.9

Age

Under 18 80 6.1

18 to 35 693 53.1

35 to 55 466 35.7

55 to 75 67 5.1

75 and older 10 0.8

HIV Status

Without HIV 590 45.2

With HIV 716 54.8

https://doi.org/10.1371/journal.pcbi.1010696.t002
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Discussion

In this study, we used simulations under realistic scenarios for passive TB surveillance to show

that the statistical pipeline using TransPhylo-generated labels as response variables in a

generalized linear model (TP + GLM) had poor frequentist properties for estimating the asso-

ciation between host characteristic and being an infection source. When the difference in

probability of infection given contact was high between host categories, as in the 0.3 and 3 set-

tings, TP + GLM results would lead one to correctly reject a null hypothesis the odds ratio was

one more than 95% of the time, but due to bias and overly narrow confidence intervals, often

failed to capture the true odds ratio. In the case of the 0.57 and 1.75 settings, TP + GLM results

would lead to rejecting the null hypothesis less than 65% of the time. This poor performance is

Fig 4. Timed phylogeny with tips labeled by HIV status and inferred infection source status using TransPhylo. Timed

Phylogenies are generated in BEAST 2. Before timed phylogenies are generated, TB genomes are first clustered by SNP distance

based on a cutoff of either five or ten SNPs. The trees generated under each cutoff are different, but related to each other, with larger

trees overall using a cutoff of ten SNPs as opposed to five. The plot was made using R package ggtree [28].

https://doi.org/10.1371/journal.pcbi.1010696.g004
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partially explained by the sensitivity and specificity of TransPhylo for generating infection

source labels. When used in our study setting, TransPhylo did not accurately label infection

sources, leading to substantial under-counts of the true number of infection sources (Figs A1

and A2 in S1 Appendix). This measurement error resulted in poor estimation of the odds

ratio of interest. The two measurement error models tested as part of a pipeline did not lead to

improved coverage or higher rates of correctly rejecting the null hypothesis.

In all scenarios tested, the bias of using TransPhylo labels was such that the estimated

odds ratio was always closer to one than the true odds ratio (Fig 2). When the true odds ratio

was one, the pipeline performed well, with low bias, coverage near 0.95, and the probability of

falsely rejecting null hypothesis near 0.05. This suggests that TP + GLM is a conservative pipe-

line, with bias towards failing to detect a significant effect, unless the effect size is large. We

note that the simulations used in these studies created true timed phylogenies which were used

as inputs into TransPhylo. In practice, these phylogenies must also be estimated from

sequence data. Depending on the genetic diversity of available sequences, there may also be

errors when creating the timed phylogeny. The errors in reconstruction of phylogenies could

propagate further down the statistical pipeline, reducing its overall performance.

Our findings are consistent with a recent benchmarking study of computational methods

for reconstructing TB transmission, which included TransPhylo and five other methods.

[29] That study used simulations to show low sensitivity for correctly identifying transmission

events under realistic low-TB burden scenarios for all methods tested. Another recent study

used simulations to evaluate the use of genomic data and GLM for identifying risk factors for

TB transmission, defined as genetic closeness (<2 SNPs). [30] That study found a consistent

underestimation of the true odds ratio under multiple scenarios in low-TB burden settings.

Our findings complement these prior studies by providing further insights into the limitations

of using pathogen genomic data for understanding infectious disease transmission, with simu-

lations and data based on a high TB burden setting.

The TP + GLM pipeline has now been implemented in multiple published studies using

surveillance data of M. tuberculosis [13–15]. These studies assumed higher sampling propor-

tions than those considered in our study. For example, Xu et. al. study of TB in Spain used a

prior for the sampling proportion with plausible values ranging from 48% to 99% [13].

Depending on the surveillance setting, such high sampling density may indeed be plausible.

In our study of TB in Botswana, based on the World Health Organizations estimates of the

reporting rate for TB, we assumed a much lower sampling proportion [18]. We recommend

carefully considering both the sampling scheme of any future studies using surveillance data

Table 3. Summary of analyses using five and ten SNP cutoffs. Summary of analyses using five and ten SNP cutoffs.

Mean tree height refers to the height of timed phylogenetic trees in years. TP + GLM refers to a statistical pipeline

where infection source labels are first generated using TransPhylo and then used as response variables in a general-

ized linear model to calculate an odds ratio. The odds ratio is the odds ratio for the probability of being an infection

source given the case is living without HIV as compared to cases living with HIV.

5 SNP Analysis 10 SNP Analysis

Participants 145 377

Clusters 21 46

Mean Samples per Cluster 7 8.43

Mean Tree Height (Years) 6.86 8.27

Infection Sources 16 43

OR and 95% CI (TP + GLM) 0.96 [0.33, 2.72] 1.03 [0.55, 1.95]

OR and 95% CI (TP + ME1) 0.88 [0.04, 17.4] 1.10 [0.18, 6.76]

Mean OR and 95% CI (TP + ME2) 0.80 [0.20, 2.90] 0.96 [0.36, 2.51]

https://doi.org/10.1371/journal.pcbi.1010696.t003
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when conducting research using this pipeline, as well as the plausible effect sizes researchers

wish to detect. Simulation studies with pre-specified effect sizes could be used as part of study

design in order to help researchers decide what sampling protocol they should aim for in

future studies. The code used in this study could be used as a starting point for conducting

such simulation studies.

We found that changes to the sampling scheme could improve frequentist properties of the

TP + GLM pipeline. For example, doubling the number of clusters under the 1.75 setting

increased the proportion of null hypotheses rejected to 0.94 (Fig 3). However, just increasing

the overall sample size did not improve coverage of confidence interval. While increased sam-

ple size decreased variance, and thus confidence interval width, it did not affect bias. In con-

trast, doubling the sampling density and increasing the sampling window both decreased bias

and mean confidence interval width by a small amount. This led to improvements in propor-

tion of null hypotheses rejected, and marginal improvements in coverage (increased sampling

density) or only marginal losses in coverage (increased sampling window). The reduction in

bias likely follows from improvements in the sensitivity of TransPhylo under these settings

(Figs A1 and A2 in S1 Appendix). Less intuitively, we found that quadrupling the sampling

density actually decreased the coverage due to narrower confidence intervals, even though the

sensitivity of Transphylo improved. The bias decreased, as we would expect, but the mean

confidence interval width decreased so much that coverage dropped. We speculate this is a

consequence of the proportion of individuals labeled as infection sources. As this proportion

nears 50%, we expect the estimated standard errors to narrow, because it is easier to estimate

probabilities closer to 0.5. Our particular result is almost certainly dependent on the true effect

size, that is, we would not expect that for all uses of this pipeline, a sampling proportion of 0.64

would decrease coverage as compared to a sampling proportion of 0.32. Our results suggest

the behavior of this pipeline is unpredictable, a higher sampling density will not automatically

result in improved coverage. When exact estimation of the effect size is important, we urge

great caution when using this pipeline.

The improved performance under the increased sampling window suggests there may be

room for improvement in the statistical model being used. Currently, TransPhylo assumes

that the sampling proportion is constant throughout the period of the outbreak, while in our

simulation scenarios sampling only took place in a fixed number of years of an outbreak (as

it often would in a real life surveillance study). Future work could focus on changing this

assumption in a TransPhylo-like model which would better match the the model likelihood

to the data generation process. Though, again, we would urge caution, as improving the sensi-

tivity of TransPhylo can lead to non-intuitive pipeline performance.

Applying the TransPhylo-based inference of who-infected-whom to a population-based

TB study in Botswana, we failed to detect an association between HIV status and being an

infection source for M. tuberculosis transmission. TB is the leading cause of death among peo-

ple living with HIV [18]. The pathophysiology of HIV-TB co-infection is complicated as HIV-

associated immunosuppression reduces M. tuberculosis bacterial load in HIV-infected hosts.

This observation has led to the hypothesis that people living with HIV have a lower risk of

onward TB transmission than people without HIV. [2] Epidemiologic studies investigating

this hypothesis have produced conflicting results [15, 31, 32]. In light of our simulation study

results, our failure to reject the null hypothesis may be due to inadequate statistical power for

detecting an association of low to moderate effect sizes when sampling proportion is low.

Additional studies using more densely sampled sequences are needed to provider stronger evi-

dence regarding this putative association.

This study had several limitations which should be acknowledged. First, our simulations

made several simplifying assumptions which make them imperfect representations of M.

PLOS COMPUTATIONAL BIOLOGY Using genetic data to identify transmission risk factors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010696 December 5, 2022 15 / 18

https://doi.org/10.1371/journal.pcbi.1010696


tuberculosis outbreaks. In particular, we assumed latent and infectious periods were the same

for hosts with and without HIV, and further assumed that sampling had no impact on infec-

tiousness, whereas in the real world sampling would presumably be followed by treatment

which would impact infectiousness. In our real data analysis, M. tuberculosis sequencing data

were missing for majority of the enrolled participants. We assumed these data were missing

completely at random. Moreover, the number of infection sources inferred by TransPhylo
was small, which limited the ability to detect associations using GLM. Finally, our study

assessed pipeline performance in the best case scenario: when timed phylogenetic trees are per-

fectly accurate. However, in the real world, phylogenetic trees must first be constructed from

sequence data, a process which may affect pipeline performance. Conducting assessments of

these pipelines using simulation engines which simulate sequence data is a useful area of future

research.

Our findings provide new insights into the use of statistical pipelines that combine patho-

gen genomic and epidemiologic data to investigate host factors associated with onward trans-

mission of infectious diseases. We recommend careful consideration of potential biases due to

imprecise inference of transmission events when using these pipelines. Simulation studies

based on the data collection context may improve the interpretation of the results of studies

using these pipelines.
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