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Identification of macromolecular assemblies and 

determination of their structures!

Peter Cimermancic!

Abstract!

! To understand the workings of a living cell, we need to identify its molecular components 

and determine how they associate with each other. To date, studies that identify new 

macromolecular assemblies have been mainly limited to low-throughput biochemistry assays. 

Structures of macromolecular assemblies also have been difficult to obtain, and are mostly 

available for a small subset of individual components or their assemblies amenable to 

conventional approaches, such as X-ray crystallography and nuclear magnetic resonance 

spectroscopy. In this dissertation, I describe my contributions to the development of four novel 

pipelines that utilize new technologies and datasets to facilitate the identification of 

macromolecular assemblies and the determination of their structures. First, we designed an 

algorithm to identify genes coding for biosynthetic macromolecular assemblies. Second, we 

developed a platform to identify previously unknown HIV-human protein assemblies based on 

affinity purification, mass spectrometry, and computational scoring. Third, to aid the structure 

determination of macromolecular assemblies that are challenging to isolate and purify, we 

proposed a new strategy based on in vivo measurements of genetic interaction and integrative 

modeling. Finally, to facilitate rational discovery of small molecule modulators of 

macromolecular assemblies and their components, we presented a new approach based on 

computational identification of putative ligand-binding sites that are not detectable in ligand-free 

structures, due to insufficient structure resolutions or flatness in the absence of a ligand. 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Introduction!

! Macromolecular assemblies consist of interacting proteins, nucleic acids, and (in some          

cases) small molecules. These complexes vary widely in size and play crucial roles in most 

cellular processes (Alberts et al., 2002). For example, biosynthesis of erythromycin, an antibiotic 

used to treat a number of bacterial infections, is carried out by a 200 kDa assembly of several 

enzymes and small-molecule building blocks resembling an assembly line (Walsh and 

Fischbach, 2010). Another assembly, the nuclear pore complex, regulates macromolecular 

transport across the nuclear envelope and is composed of ~456 proteins (Alber et al., 2007). 

Moreover, pathogens (viruses in particular) have very small genomes and are only able to 

replicate by highjacking and forming macromolecular assemblies with host machinery (Jager et 

al., 2012). A comprehensive characterization of the functions, structures, and dynamics of 

biological assemblies is essential for a mechanistic understanding of the cell (and viruses) 

(Alber et al., 2008). Such characterization helps to elucidate the principles that underlie cellular 

processes. It can provide a starting point for the modulation of macromolecular assemblies by, 

for example, small molecules, which is of particular interest when a macromolecular assembly is 

involved in a disease. Key challenges include: incomplete lists of macromolecular assemblies 

and their components, difficulty in determination of their structures at sufficient resolution by 

conventional approaches, and absence of detectable ligand binding pockets that could provide 

a starting point for structure-based substrate and drug discovery. !

!
TOWARDS THE COMPREHENSIVE LIST OF MACROMOLECULAR ASSEMBLIES!

! Macromolecules seldom function in isolation. Instead, they associate with small          

molecules, other macromolecules, or other copies of the same macromolecule to form a 

functional unit. These interactions are rarely permanent; cell growth, replication, and function 
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are based on dynamic systems of ever-changing macromolecular assemblies. Variations in a 

macromolecular assembly include changes in the content of their components (one or more 

components can be added or removed) due to stochastic association and disassociations or 

changes in the components themselves (eg, post-translational modification of proteins). A 

complete list of macromolecular assemblies is therefore difficult to compile, not only because 

many interactions are too weak or too transient to be observed by current approaches, but also 

because some only exist under a specific set of conditions. !

! A number of assays and techniques have been developed for identification of          

macromolecular assemblies, most of which focus on cataloguing physical protein-protein 

interactions, such as the yeast two-hybrid method and direct purification via affinity tags (Krogan 

et al., 2006). In addition, a variety of computational approaches based on sequence and 

structure homology, gene co-expression, phylogenetic profiles, as well as gene co-localization in 

the case of prokaryotic genomes have been proposed to predict novel protein-protein 

interactions (Zhang et al., 2012). The data from protein-protein studies have been non-

overlapping to a surprising degree, an observation explained partly by experimental inaccuracy 

and partly by incompleteness of the single screens  (von Mering et al., 2002). Therefore, new 

approaches are needed to obtain more thorough and accurate identification of  macromolecular 

assemblies. My research has focused on completing the lists of two different types of 

macromolecular assemblies: those involved in prokaryotic biosynthesis of natural products and 

those between human and pathogen macromolecules.  !

! Long, multistep linear reaction sequences in synthesis of small-molecule natural products          

are inefficient for solution phase reactions, whether enzymes or abiotic catalysts are involved. 

Assemblies of different enzymes and other auxiliary proteins, which are used for biosynthesis by 

many organisms, act as efficient assembly lines by covalently tethering both the growing chain 

of a natural product and the building blocks to be incorporated into the chain at each step 
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(Walsh and Fischbach, 2010). Natural products have played a prominent role in the history of 

organic chemistry, and continue to be important as drugs, biological probes, and targets of study 

for synthetic and analytical chemists. The modularity of the biosynthetic assembly lines has long 

been seen as an opportunity to generate large libraries of new natural products by recombining 

their constituent domains and modules (Sherman, 2005). Although there have been notable 

successes, the majority of combinatorially generated assembly lines appear to be non-

functional, due in part to the limited number of known assembly lines (Menzella et al., 2007; 

Menzella et al., 2005; Nguyen et al., 2006).!

! Several approaches have been proposed to identify new microbial assembly lines,          

including labor-intensive manual annotation, mass spectrometry-guided genome mining 

approaches (Kersten et al., 2011), and pipelines whereby candidate genes are prioritized for 

experimental validation based on in silico predictions (Medema et al., 2011). In microbial 

genomes, genes coding for assembly line proteins usually cluster together (known as 

biosynthetic gene clusters), facilitating their prediction by computational algorithms that search 

for clusters of signature biosynthetic genes. While such genome mining of biosynthetic gene 

clusters has become a key method to accelerate their identification and characterization, the 

approach is limited by design to identifying biosynthetic gene clusters similar to those in the 

incomplete and biased datasets of known gene clusters. Therefore, better computational and 

experimental tools are needed to expand the known space of biosynthetic assembly lines and 

identify those that potentially make novel chemical compounds. In collaboration with the 

Fischbach lab at the University of California, San Francisco, and the Breitling and Takano labs 

at the University of Groningen, The Netherlands, I developed a computational tool based on 

Hidden Markov Models (HMM) that efficiently and accurately predicts any type of biosynthetic 

gene clusters. We applied this algorithm to all sequenced microbial genomes in public sequence 

databases, analyzed the distribution and abundance of the predicted biosynthetic landscape, 
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and subsequently selected two gene clusters with novel architectures for determination and 

characterization of the structures of the corresponding natural products. This study is described 

in Chapter 2. !

! Assemblies of human host and pathogen macromolecules have also been challenging to          

identify, due to the transient and weak nature of the interactions, cell toxicity, and the ability of a 

single pathogen macromolecule to interact with many different host macromolecules. 

Identification of interactions between host and pathogen macromolecules is a key goal to help 

us understand infections and design molecules for therapeutic intervention. However, the 

resources for studying such interactions are limited to cumbersome biochemical studies of 

individual interactions (Jager et al., 2012) or to computational predictions based on protein 

sequence and structure, domain profiles, or techniques that use machine learning to combine a 

number of different functional genomic data types (Dyer et al., 2007). The Krogan lab at 

University of California, San Francisco, carried out the first systematic affinity tagging/

purification mass spectrometry (AP-MS) study on any host-pathogen system. The resulting 

dataset of putative HIV-human protein interactions was noisy and contained many non-

specifically binding proteins and contaminants; over 90% of proteins detected in an AP-MS 

experiment belong to one of these two biologically irrelevant types of protein prey. During my 

rotation in the Krogan lab, I utilized the existing computational tools for the processing of AP-MS 

data, such as NSAF, CompPASS, and SAInt (Choi et al., 2011; Sowa et al., 2009). However, the 

existing tools were inaccurate, so we have built a new one, better suited for identification of AP-

MS-derived host-pathogen protein assemblies. This tool, MiST (mass spectrometry interaction 

statistics), is accurate: we confirmed 97 of 127 AP-MS derived HIV-human protein interactions 

using co-immunoprecipitation/western blot analysis (76% success rate). Moreover, our 

approach uncovered a number of previously unknown host-pathogen assemblies, including an 
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assembly of HIV protease and eukaryotic translation intimation factor 3, and HIV accessory 

factor Vif and a ubiquitin ligase complex. The study is described in Chapter 3.!

!
STRUCTURE DETERMINATION OF MACROMOLECULAR ASSEMBLIES BY AN INTEGRATIVE 

APPROACH!

! A comprehensive characterization of the structures and dynamics of biological assemblies          

is essential for a mechanistic understating of the cell. Even a coarse-grained characterization of 

the configuration of macromolecular components in an assembly can help to elucidate the 

principles that underlie cellular processes, and provides a starting point for more detailed 

structural studies (Alber et al., 2008). However, there is a wide gap between the number of 

identified macromolecular assemblies and more detailed, structural and mechanistic studies. 

For example, whereas the number of large macromolecular assemblies in the widely studied 

yeast cell is estimated to be ~800 on the basis of different high-throughput experiments (Krogan 

et al., 2006), the number of structures of whole or partial assemblies in the Protein Data Bank 

(PDB) is less than 200. This gap is even wider for the human proteome, which may have an 

order of magnitude more assemblies than the yeast cell, with only ~900 partial or whole 

assembly structures available. Therefore, there may be thousands of biologically relevant 

macromolecular assemblies and transient interactions whose structures are yet to be 

characterized. !

! While it is relatively easy to determine structures of rigid individual components, large and          

dynamic assemblies usually elude conventional structural efforts. For example, X-ray 

crystallography is limited by the difficulties of growing suitable crystals and building molecular 

models into large unit cells, and nuclear magnetic resonance (NMR) spectroscopy is limited by 

the size of an assembly. Electron microscopy (EM) has recently shown great potential for 

determining the structures of macromolecular assemblies at near-atomic resolution (Liao et al., 
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2013), but further progress in technology is needed to provide such reconstructions for a wide 

range of specimen. These three approaches are also limited by sample preparation; purification 

and isolation of macromolecular assemblies in sufficient quantities is not always trivial. Some of 

the alternative structure characterization methods (eg, affinity purification, yeast two-hybrid 

system, chemical cross-linking, small-angle X-ray scattering (SAXS), and fluorescence 

resonance energy transfer (FRET) spectroscopy) work with lesser quantities and sample purity, 

but produce lower resolution information. Alternatively, computational macromolecular structure 

modeling and docking based on homology, shape matching, molecular dynamics simulations, 

and evolutionary sequence information from large sequence alignments are limited by low 

accuracy and sparseness of the available data (Alber et al., 2008).!

! The shortcomings of low-resolution methods that produce sparse information can be          

minimized by simultaneous consideration of all available information about a given assembly 

through computation. A number of structures have already been determined by such integrative 

approaches. For example, the structure of the 26S proteasome was solved by  relying on the 

EM density map of the whole assembly, protein-protein interaction data from high-throughput 

proteomics experiments, residue-based chemical cross-linking, and comparative protein 

structure models of the protein components (Lasker et al., 2012). The architecture of NPC, an 

assembly of ~456 proteins, was also determined by integrative modeling, dependent on the 

stoichiometry from protein quantification, protein proximities from subcomplex purification, 

protein positions from immuno-EM, sedimentation analysis that sheds light on protein and 

subcomplex shapes, and the overall NPC shape from EM (Alber et al., 2007).  !

! Despite these successes, structures and thus mechanistic understanding of many          

macromolecular assemblies remain elusive because they are difficult to purify and isolate for 

characterization by conventional high-resolution and coarse-grain approaches. Difficult cases 

include assemblies of weakly interacting macromolecules, those that are short-lived, and those 
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that are scarce in the cell. Therefore, direct in vivo measurements of structural aspects of a wild-

type assembly are needed. In collaboration with the Krogan lab, I explored how integrative 

structure determination can benefit from spatial restraints computed from the correlation 

between the functional impacts of two point mutations, based on in vivo mapping of genetic 

interactions between point mutations in an assembly of interest and an array of genes from a 

library of gene deletion mutant alleles (Braberg et al., 2013). As described in Chapter 4, we 

showed that the data are sufficient to determine the architectures of macromolecular 

assemblies, with the resulting resolution comparable to that of modeling based on sparse cross-

linking datasets.  !

!
UTILITY OF STRUCTURES OF MACROMOLECULAR ASSEMBLIES IN THE PROCESS OF DRUG 

DISCOVERY!

! In addition to a mechanistic understanding of cellular biology, the goal of structure          

determination is to provide a starting point for structure-based ligand discovery. A molecular 

modulator of an assembly can serve as a probe to explore the role of the assembly in a broader 

biological context (Hermann et al., 2007) or, when an assembly or its individual component is 

associated with a disease, to potentially develop a drug. While small-molecule ligands can be 

found without structures by, for example, high-throughput ligand screening of chemical libraries 

against individual targets and phenotypic assays in cells, tissues, or whole organisms, structure-

based approaches provide several advantages. For example, computer-based screening of 

chemical libraries is less expensive and less time-consuming than high throughput screens, 

even though in practice both docking and high-throughput screens of two similarly sized 

compound libraries can yield similar numbers of hits (Doman et al., 2002). Moreover, structure-

based docking has some practical advantages, despite inaccurate scoring functions andcrude 

sampling of conformational states of ligands and targets. For example, docking can reliably 

�8



screen out compounds that do not fit in a pocket or have grossly incorrect electrostatic 

properties, thus minimizing the size of the libraries used in experimental screens. Furthermore, 

docking can be used to screen compounds that are not yet synthesized, and can thus greatly 

facilitate hit and lead optimization phases of drug discovery. !

! The step that usually follows structure determination of an assembly is analyzing the          

structure for binding pockets, that is concave shapes on the surface of a macromolecule into 

which compounds are docked. A number of algorithms have been developed to localize  such 

pockets, but generally they are only able to identify pockets in ~60% of protein structures 

(Sheridan et al., 2010). Many proteins, therefore, cannot be subjected to structure-based ligand 

discovery and are thus considered “undruggable.” In practice, the situation is even worse 

because the presence of a pocket does not necessarily guarantee a drug-like ligand, especially 

when a ligand is not known, when the pocket is shallow, hydrophilic, or inaccessible, or because 

ligand binding to a similar pocket in another protein causes adverse effects. !

! Fortunately, macromolecular structures are not static, and pockets may be sampled 

transiently, even when not visible in the determined structures (ie, cryptic sites). Moreover, 

structures may be determined at low resolutions or are inaccurate, and hence insufficient for 

unambiguous pocket localization, which generally requires accurate atomic structures. In 

Chapter 5, I describe an analysis and computational prediction of such cryptic sites. I also 

propose a strategy for how to expand the size of the druggable human proteome based on our 

algorithm and small molecule chemical tethering. In collaboration with the Fraser and Wells labs 

at University of California, San Francisco, we demonstrate the potential of our approach by 

applying it to a disease-associated protein, tyrosine-protein phosphatase non-receptor type 1.!

!
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Summary!

Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial 

metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to 

systematically identify BGCs in the extensive extant microbial sequencing data. Network 

analysis of the predicted BGCs revealed large gene cluster families, the vast majority 

uncharacterized. We experimentally characterized the most prominent family, consisting of two 

subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are 

aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant 

relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies 

represent the largest known family of biosynthetic gene clusters, with more than 1,000 

members. Although these clusters are widely divergent in sequence, their small molecule 

products are remarkably conserved, indicating for the first time the important roles these 

compounds play in Gram-negative cell biology. 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Introduction 

 Microbial natural products are widely used in human and veterinary medicine, 

agriculture, and manufacturing, and are known to mediate a variety of microbe-host and 

microbe-microbe interactions. Connecting these natural products to the genes that encode them 

is revolutionizing their study, enabling genome sequence data to guide the discovery of new 

molecules (Bergmann et al., 2007; Challis, 2008; Franke et al., 2012; Freeman et al., 2012; 

Kersten et al., 2011; Laureti et al., 2011; Lautru et al., 2005; Letzel et al., 2012; Nguyen et al., 

2008; Oliynyk et al., 2007; Schneiker et al., 2007; Walsh and Fischbach, 2010; Winter et al., 

2011). The thousands of prokaryotic genomes in sequence databases provide an opportunity to 

generalize this approach through the identification of biosynthetic gene clusters (BGCs): sets of 

physically clustered genes that encode the biosynthetic enzymes for a natural product pathway. 

 Besides core biosynthetic enzymes, many BGCs also harbor enzymes to synthesize 

specialized monomers for a pathway. For example, the erythromycin gene cluster encodes a set 

of enzymes for biosynthesis of two deoxysugars, d-desosamine and l-mycarose, that are 

appended to the polyketide aglycone (Oliynyk et al., 2007; Staunton and Weissman, 2001), 

while BGCs for glycopeptide antibiotics contain enzymes to synthesize the nonproteinogenic 

amino acids β-hydroxytyrosine, 4-hydroxyphenylglycine, and 3,5-dihydroxyphenylglycine that 

their core nonribosomal peptide synthetases use in the assembly of their peptidic scaffolds 

(Kahne et al., 2005; Pelzer et al., 1999). In many cases, transporters, regulatory elements, and 

genes that mediate host resistance are also contained within the BGC (Walsh and Fischbach, 

2010). Although some BGCs are so well understood that the biosynthesis of their small 

molecule product has been reconstituted in heterologous hosts (Pfeifer et al., 2001) or in vitro 

using purified enzymes (Lowry et al., 2013; Sattely et al., 2008), little is known about the vast 

majority of BGCs, even those that have been connected to a small molecule product. 
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 Here, we report the results of a systematic effort to identify and categorize BGCs in 

1,154 sequenced genomes spanning the prokaryotic tree of life. We envisioned that the 

resulting ‘global map’ of biosynthesis would enable BGCs to be systematically selected for 

characterization by searching for, e.g., biosynthetic novelty, presence in undermined taxa, or 

patterns of phylogenetic distribution that indicate functional importance. Surprisingly, the map 

revealed large and very widely distributed BGC families of unknown function. We experimentally 

characterized the most prominent of these families, leading to the unexpected finding that gene 

clusters responsible for producing aryl polyene carboxylic acids constitute the largest BGC 

family in the sequence databases. 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Results and discussion!

THE CLUSTERFINDER ALGORITHM DETECTS BGCS OF BOTH KNOWN AND UNKNOWN 

CLASSES!

! Several algorithms have been developed for the automated prediction of BGCs in 

microbial genomes (Khaldi et al., 2010; Li et al., 2009; Medema et al., 2011; Starcevic et al., 

2008; Weber et al., 2009), but each of these tools is limited to the detection of one or more well-

characterized gene cluster classes. As a more general solution to the gene cluster identification 

problem, we developed a hidden Markov model-based probabilistic algorithm, ClusterFinder, 

that aims to identify gene clusters of both known and unknown classes. ClusterFinder is based 

on a training set of 732 BGCs with known small molecule products that we compiled and 

manually curated (SI Table I). To scan a genome for BGCs, it converts a nucleotide sequence 

into a string of contiguous Pfam domains and assigns each domain a probability of being part of 

a gene cluster, based on the frequencies at which these domains occur in the BGC and non-

BGC training sets, and the identities of neighboring domains (Figure 1a, Experimental 

Procedures). Since ClusterFinder is based solely on Pfam domain frequencies, and Nature 

uses distinct assemblages of the same enzyme superfamilies to construct unrelated natural 

product classes, ClusterFinder exhibits relatively little training set bias and is capable of 

identifying new classes of gene clusters effectively (See Experimental Procedures for a 

detailed description of how we validated ClusterFinder).!

!
A GLOBAL PHYLOGENOMIC ANALYSIS OF BGCS PROVIDES A QUANTITATIVE PERSPECTIVE ON 

BACTERIAL SECONDARY METABOLITE BIOSYNTHESIS!

! Our method predicted a total of 33,351 putative BCGs (with an estimated false-positive 

rate of 5%) in 1,154 genomes of organisms throughout the prokaryotic tree of life (Figure 1c-d, 

SI Text 1), which we subjected to an extensive phylogenomic analysis (SI Text 2-3, SI Figures 

�19



1, 2, 3, SI Tables I-II). We divided the predicted BGCs into two categories – high-confidence 

(10,724; used in all subsequent analyses) and low-confidence (22,627) – based on assignment 

to one of ~20 well-validated BGC classes or on manual inspection for clusters that could not be 

assigned to any known class. Within the high-confidence set, 7,377 of the predicted gene 

clusters (69%) were not detected by antiSMASH (Blin et al., 2013; Medema et al., 2011); the 

difference is due primarily to the fact that antiSMASH does not detect certain BGC classes 

(including many oligosaccharides), highlighting the need for a tool that identifies BGCs 

independent of class (Figure 1b).!

! Strikingly, 40% of all predicted BGCs encode saccharides, more than twice the size of 

the next largest class. Notably, only 13% of previously reported BGCs encode the biosynthesis 

of saccharides (SI Text 4). 93% of species harbor saccharide gene clusters, and in 33% of 

species, more than half of the predicted gene clusters encode saccharides. Cell-associated 

saccharides such as lipopolysaccharides (Park et al., 2009), capsular polysaccharides 

(Kadioglu et al., 2008), and polysaccharide A (Mazmanian et al., 2005; Mazmanian et al., 2008) 

are known to play key roles in microbe-host and microbe-microbe interactions, while diffusible 

saccharides have a range of biological activities, most notably antibacterial (Flatt and Mahmud, 

2007; Weitnauer et al., 2001). The functions of many of the putative saccharide BGCs are still a 

mystery: 32%, including BGCs from entirely unexplored genera, are not closely related to any 

known gene cluster (Figure S1e). Saccharide BGC repertoires are also surprisingly diverse: 

only 37% occur in the genomes of two species chosen at random from the same genus 

(compared to 43% for polyketides, 60% for terpenoids and 74% for fatty acids, Figure S1f). The 

abundance of novel oligosaccharide BGC families raises the possibility that more clinically 

relevant saccharides such as the antidiabetic drug acarbose and the antibiotics gentamicin and 

avilamycin will be discovered (Kersten et al., 2013). Another BGC class of unexpectedly large 

size is the ribosomally synthesized and posttranslationally modified peptides (RiPPs (Arnison et 
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al., 2013)). Notably, RiPP BGCs are as prevalent in our data set as those encoding 

nonribosomal peptides (Figure 1b). !

!
A BGC DISTANCE NETWORK REVEALS UNEXPLORED REGIONS OF THE BIOSYNTHETIC 

UNIVERSE!

! We next sought to study the relationships among BGCs systematically, with the ultimate 

goal of creating a global BGC map that could be searched systematically to identify clusters of 

biosynthetic or taxonomic interest. We adapted a measure of the evolutionary distance between 

multi-domain proteins (Lin et al., 2006) to calculate an all-by-all distance matrix for the 10,724 

BGCs in our high confidence set along with the 732 members of our training set. Using MCL 

clustering to identify groups of related nodes, we define 905 BGC families with distinct core 

genetic components. The resulting BGC distance network (Figure 2, SI Text 5, Figure S4) 

revealed an unexpected finding: the presence of large cliques that represent very widely 

distributed BGC families without any experimentally characterized members. !

! While most known families of secondary metabolites are unique to a small set of 

organisms, a few are taxonomically widespread. These include the O-antigens, capsular 

polysaccharides, carotenoids and NRPS-independent siderophores, which can all be clearly 

distinguished as prominent cliques within our distance network. From a fundamental 

microbiological perspective, these are among the most important families of molecules 

produced by microbes and, as such, they have been very intensively studied (Challis, 2005; 

Rehm, 2010; Samuel and Reeves, 2003; Walter and Strack, 2011). Although we had anticipated 

finding small gene cluster families of unknown function, we were surprised to discover families 

harboring hundreds of uncharacterized clusters, distributed widely throughout entire bacterial 

phyla.!
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! We selected the most prominent of these families for experimental characterization: a 

set of 811 BGCs, distributed between two subfamilies (hereafter, subfamily 1 and 2), that were 

not detected by any of the existing BGC identification tools (e.g., antiSMASH), likely because 

the ketosynthase and adenylation domains they harbor are from uncharacterized, evolutionarily 

distant clades. BGCs in this family are ~20 kb in size and harbor a core set of genes that 

include adenylation, ketosynthase, acyl/glycosyltransferase, ketoreductase, dehydratase, 

thiolation, and thioesterase domains, as well as an outer membrane lipoprotein carrier protein 

and an MMPL family transporter (Figure 3a, Figure S5). These clusters are found in a wide 

variety of Gammaproteobacteria (Acinetobacter, Aggregatibacter, Escherichia, Klebsiella, 

Pantoea, Pseudoalteromonas, Pseudomonas, Serratia, Shewanella, Vibrio, and Yersinia), as 

well as a broader set of Beta- (Burkholderia, Neisseria) and Epsilonproteobacteria 

(Campylobacter) (Figure 3a). !

!
THE UNEXPLORED BGC FAMILY ENCODES THE BIOSYNTHESIS OF ARYL POLYENE 

CARBOXYLIC ACIDS!

! We set out to identify the small molecule product of two clusters in the family, one each 

from subfamilies 1 and 2. We used circular polymerase extension cloning (CPEC) (Quan and 

Tian, 2009) to amplify and assemble the 18 gene, 15.5 kb cluster from E. coli CFT073 (c1186-

c1204), and we transferred a plasmid harboring the cluster into E. coli Top10. The transformants 

exhibited a strong yellow pigmentation that was absent in the empty vector control strain and 

not observed in the native host strain (Figure 3c), but the pigment did not appear to diffuse into 

liquid or solid culture medium. We liberated the pigment from an organic extract of the cell mass 

by mild base hydrolysis and purified it by HPLC. Comparative HPLC analysis of extracts from 

the cluster+ and cluster- strains revealed the presence of a compound unique to the cluster+ 

strain with an absorption maximum of 425 nm, consistent with a yellow chromophore (Figure 
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S7e). Purification of milligram quantities of the compound for structural characterization required 

the development of an isolation procedure that rigorously excluded exposure to light. A 

combination of 1D- and 2D-NMR experiments and high-resolution MS on the purified compound 

revealed that it was an aryl polyene (APE) carboxylic acid consisting of a 4-hydroxy-3-

methylphenyl head group conjugated to a hexaenoic acid (Figure 3b, Figure S7c, e-f). !

! To study the 20 gene, 18.9 kb cluster from Vibrio fischeri ES114 (VF0841-VF0860), we 

first deleted the cluster from its native producer. The yellow pigmentation that is observed in wild 

type V. fischeri under normal laboratory growth conditions was absent in the V. fischeri knockout 

strain (Figure 3c). We then proceeded to amplify, assemble, and introduce the V. fischeri cluster 

into E. coli Top10, but the native cluster failed to confer yellow pigmentation on its heterologous 

host. We then constructed a modified variant of the cluster in which the ermE* promoter was 

inserted upstream of the operon starting with VF0844. Introduction of this construct into E. coli 

resulted in a yellow-pigmented strain that produced a new compound with an absorption 

maximum at 425 nm (Figure 3c). Purification of the V. fischeri compound and analysis by a 

combination of 1D- and 2D-NMR experiments and high-resolution MS revealed a structure with 

a similar scaffold to the E. coli APE but a 4-hydroxy-3,5-dimethylphenyl head group (Figure 3b 

and Figure S7d-f). Taken together, these data suggest that the cluster representatives from this 

family encode APE carboxylic acids.!

!
THE ARYL POLYENE BGCS ARE THE LARGEST FAMILY IN THE SEQUENCE DATABASES!

! To our surprise, the E. coli and V. fischeri APEs are similar in structure to flexirubin 

(Fuchs et al., 2013; McBride et al., 2009), a pigment that was previously isolated from the CFB 

group bacterium Flexibacter elegans, and xanthomonadin (Goel et al., 2002), the compound 

that gives Xanthomonas spp. their characteristic yellow color. The biosynthetic genes for 

flexirubin and xanthomonadin are known (Fuchs et al., 2013; Goel et al., 2002; McBride et al., 
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2009); both are part of a smaller, distinct subfamily in the ClusterFinder results set (subfamily 3 

in Figure 3a), but little else is known about the genes in either cluster. Intriguingly, although the 

clusters in subfamily 3 share similar Pfam domain content to those in subfamilies 1 and 2, the 

percent identities of their constituent proteins are very low (<20% for some amino acid 

sequences, see Figure S6a). When we turned to a more sensitive approach in which we used 

MultiGeneBlast (Medema et al., 2013) to look for sequence similarity at the level of the entire 

gene cluster, we observed distant but recognizable homology between multiple gene pairs from 

BGCs from subfamily 3 and subfamilies 1 and 2, indicating that the APE clusters might share a 

common ancestor. Indeed, when we performed a maximum-likelihood phylogenetic analysis of 

the ketosynthase and adenylation enzyme superfamilies based on structure-guided multiple 

sequence alignments (SI Text 6, Figure S6b-d), we found that the APE KS and A enzymes 

cluster together in separate uncharacterized clades that are only distantly related to all other 

known members of these enzyme superfamilies. Based on this evidence, we conclude that the 

three subfamilies together comprise a single BGC family of >1000 gene clusters (Figure 3a). 

Notably, the APE family is, to our knowledge, the largest family of gene clusters in the database, 

even exceeding the size of the well-known carotenoids (870 clusters, as detected using the 

same methods, see SI Table III).!

! The lack of homology even between the xanthomonadin and flexirubin biosynthetic 

genes (both in subfamily 3) is so profound that these pigments have never been connected in 

the literature: indeed, both previously discovered APEs have been proposed as 

chemosystematic markers of a genus (Flexibacter and Xanthomonas) because of their “limited 

distribution among bacteria” (Fautz and Reichenbach, 1979; Jenkins and Starr, 1982; 

Reichenbach et al., 1980; Starr et al., 1977; Wang et al., 2013). Our results, however, show that 

APE family BGCs are widely distributed throughout the Gram-negative bacterial tree of life 

(Figure 4, Figure S3). Notably, their pattern of phylogenetic distribution is markedly 
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discontinuous: clusters are present in some strains but not others of most genera (36.4% of the 

complete genomes in a typical genus harbor the cluster, but note the high standard deviation of 

37.9%). The most parsimonious explanations for this distribution pattern are frequent gene 

cluster loss from the descendants of a cluster-harboring ancestor, or frequent horizontal transfer 

among the descendants of a cluster-negative ancestor. Two lines of evidence support the 

possibility of frequent horizontal transfer: The family 1 cluster from E. coli O157:H7 is located on 

an O-island (Dong and Schellhorn, 2009), and the family 2 cluster from Acinetobacter sp. ADP1 

resides on an element that has been identified as horizontally transferred (Barbe et al., 2004). 

Their broad distribution, and the fact that such widely divergent gene clusters have small 

molecule products that are so similar in structure, suggests the possibility that aryl polyenes 

play an important role in Gram-negative cell biology. 

!
ARYL POLYENES MIGHT FUNCTION AS PROTECTIVE AGENTS AGAINST OXIDATIVE STRESS!

! Xanthomonadin has been proposed to play a role in protection from photodamage by 

visible light (Poplawsky et al., 2000; Rajagopal et al., 1997), an effect that is thought to be due 

to its ability to quench the reactive oxygen species (ROS) that are generated when the 

photosensitizer used in these studies, toluidine blue, is exposed to visible light (Poplawsky et 

al., 2000). Additionally, xanthomonadin has been shown to protect cellular lipids from 

peroxidation in vitro (Rajagopal et al., 1997) and xanthomonadin mutants show reduced 

epiphytic survival under conditions of natural light exposure (Poplawsky et al., 2000).!

Similarly, we hypothesize that other APEs play a role in protecting bacterial cells from 

exogenous oxidative stress. Membrane-bound APEs could reduce the concentration of free 

radicals that would otherwise cause damage to other cellular lipids, proteins, or nucleic acids. 

Notably, many bacteria that harbor APE BGCs are either commensals or pathogens of a 

�25



eukaryotic host; consequently, they are likely to encounter oxidative stress from immune cells 

during colonization or infection. !

! A role for APEs in protecting Gram-negative bacteria against oxidative stress would 

make them analogous to the chemically similar but biosynthetically distinct Gram-positive 

carotenoids, whose antioxidant activity is well established. An important example is 

staphyloxanthin, a membrane-bound carotenoid virulence factor that is responsible for the 

characteristic yellow pigmentation of S. aureus and proposed to protect S. aureus from immune-

mediated oxidative stress. A S. aureus mutant defective in the first committed step of 

staphyloxantin biosynthesis exhibits higher susceptibility to various reactive oxygen species and 

in a neutrophil killing assay (Clauditz et al., 2006; Liu et al., 2005). This mutant was also 

attenuated in murine models for subcutaneous abscess (Liu et al., 2005) and systemic infection 

(Liu et al., 2008). Experiments to test whether APE-deficient mutants of Gram-negative bacteria 

harbor colonization or pathogenesis defects will be an important step in testing this model and 

gaining insight into why APE gene clusters are so widely distributed throughout the Gram-

negative tree of life.!

!
USING SYSTEMATIC SEARCHES TO PRIORIT IZE BGCS FOR EXPERIMENTAL 

CHARACTERIZATION !

! BGCs are commonly selected for characterization on the basis of chemical or enzymatic 

novelty. Following the example of the APE family, we anticipate that our global BGC map will 

enable gene clusters to be selected in a new way that is based on a criterion biologists have 

long used to prioritize genes: what are the most widely distributed gene clusters of unknown 

function? Various other prioritization criteria could be used to select BGCs of interest (Frasch et 

al., 2013). For example, one could select BGCs likely to encode new chemical scaffolds by 

searching for clusters that do not harbor conventional monomer-coupling enzymes.!
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! Many gene cluster families still await characterization: even with conservative 

assumptions, we estimate the total number of bacterial BGC families (such as those encoding 

carotenoids or calcium-dependent lipopeptides) present in the biosphere to be ~6,000 (Figure 

S1g), less than half of which are identified in our current set of genomes (~2,400). Importantly, 

each of these 6,000 families will likely contain a range of molecules with distinct biological 

activities. As developments in single-cell genomics and metagenomics are opening up the 

exploration of a vast microbial dark matter, this number may grow even further: just in the 201 

single-cell genomes of uncultivated organisms recently obtained by the JGI (Rinke et al., 2013), 

our method identified 947 candidate BGCs, of which 655 fall outside all known BGC classes 

(Figure S1h). Even among cultivated organisms, there are still many underexplored taxa (Letzel 

et al., 2012) (SI Text 2). For the foreseeable future, the number of gene clusters encoding 

molecules with distinct scaffolds will continue to rise as new genomes are sequenced, and 

computational approaches to systematically study their relationships will be of great value in 

prioritizing them for experimental characterization.  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Experimental methods!

GENOME SEQUENCES!

! A set of 1154 complete genome sequences was obtained from JGI-IMG (Markowitz et 

al., 2012), version 3.2 (08/17/2010).!

!
CLUSTERFINDER ALGORITHM AND TRAINING DATA 

 The ClusterFinder prediction algorithm for BGC identification is a two-state Hidden 

Markov Model (HMM), with one hidden state corresponding to biosynthetic gene clusters (BGC 

state) and a second hidden state corresponding to the rest of the genome (non-BCG state). The 

training set for the BGC state was gathered using a comprehensive search of the scientific 

literature, which yielded 732 clusters. From these, 55 redundant BGCs were filtered out by 

selecting one random member from each biosynthetic gene cluster family, with a cluster family 

defined as a connected component in the >0.7 similarity network (see below). Thus, the final 

BGC state training set consisted of 677 experimentally characterized gene clusters. For the 

non-BGC state, non-BGC regions were collected from 100 randomly selected genomes, defined 

as those regions without significant sequence similarity to the BGC state training set sequences 

(Pfam domain similarities with E-value > 1e-10). ClusterFinder source code is available from the 

GitHub repository (https://github.com/petercim/ClusterFinder).!

!
CLUSTERFINDER VALIDATION!

! The algorithm was validated in three ways. First, its output was compared to 10 bacterial 

genomes manually annotated for BGCs (leading to an area under the ROC curve of 0.84) 

(Figure S7a). Second, its performance was assessed on 74 experimentally characterized BGCs 

outside the training set (Figure S7b). Out of these, 70 (95%) were detected successfully. When 

tested alongside antiSMASH (Medema et al., 2011) on the genomes of Pseudomonas 
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fluorescens Pf-5, Streptomyces griseus IFO13350 and Salinispora tropica CNB-440 (SI Table 

IV), antiSMASH detected 62 out of 65 (95%) manually annotated secondary metabolite gene 

clusters, while ClusterFinder detected 59 of these (91%). However, ClusterFinder identified 43 

(66%) unannotated gene clusters that appeared likely to synthesize small molecule metabolites 

on manual inspection, whereas antiSMASH detected only five (8%). This highlights the strength 

of ClusterFinder in detecting gene clusters irrespective of whether they belong to known or a 

priori specified classes. Among the additional gene clusters detected by ClusterFinder are 

known gene clusters encoding the biosynthesis of, e.g., alginate and lipopolysaccharides, as 

well as an uncharacterized cluster that was previously predicted to encode a novel type of 

secondary metabolite (Hassan et al., 2010). 

!
TYPE CLASSIFICATION OF BGCS!

! ClusterFinder-detected biosynthetic gene clusters were classified by antiSMASH 

(Medema et al., 2011) to determine their subtypes (e.g., type I polyketide, nonribosomal peptide, 

terpenoid). The native antiSMASH types were supplemented by a list of profile HMMs for 

protein domains characteristic of saccharide gene clusters (SI Table V), as well as by fatty acid 

gene clusters, which could be assigned based on the HMMs that antiSMASH uses in polyketide 

synthase annotation. Gene clusters lacking protein domains characteristic of gene cluster 

classes included in antiSMASH were binned in a separate class.!

!
BGC DISTANCE METRIC AND SIMILARITY NETWORK!

! BGC similarity networks were calculated using a modified version of the distance metric 

from Lin and coworkers (Lin et al., 2006) for multi-domain proteins. The modified version 

consists of two different indices: the Jaccard index (which measures the similarity in Pfam 

domain sets from two BGCs) and the domain duplication index, with weights of 0.36, and 0.64, 
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respectively. The Goodman-Kruskal γ index, which was included in the original similarity metric 

with a low weight of 0.01, was omitted, since the conservation of the order between two sets of 

domains does not appear to have an important effect on the structure of the small molecule 

product, except in the case of NRPS and PKS gene clusters (Fischbach et al., 2008).!BGC 

families were calculated with a Lin similarity threshold of 0.5 and MCL clustering with I = 2.0. 

The similarity network was obtained using the same Lin similarity threshold and visualized using 

Cytoscape (Smoot et al., 2011). 

!
BIOINFORMATIC ANALYSIS OF APE GENE CLUSTERS!

! Expansion of the APE BGC family was performed using manual parsing of 

MultiGeneBlast (Medema et al., 2013) architecture search results (with the E. coli, V. fischeri, X. 

campestris and F. johnsonii APE gene clusters as query) against GenBank version 197 

(08/2013), with a 20% sequence identity cut-off and 2000 blastp hits mapped per query 

sequence. APE Clusters of Orthologous Groups (COGs) were obtained using OrthoMCL (Li et 

al., 2003) (MCL I = 1.5, sequence identity cutoff 20%), and were used to construct a cladogram 

with hierarchical clustering using the Lin modified distance metric. Structure-guided multiple 

sequence alignments of APE A and KS domains were performed using PROMALS3D (Pei et al., 

2008), and phylogenetic trees were inferred with MEGA5 (Tamura et al., 2011) using the 

Maximum Likelihood method. 

!
CONSTRUCTION OF THE V. FISCHERI ES114 APE-CLUSTER DELETION MUTANT!

! Oligonucleotide primers, plasmids and bacterial strains used and generated in this study 

are summarized in SI Tables VI-VIII. A deletion construct was generated by fusing the ~1 kb up- 

and downstream regions of the V. fischeri cluster into a counterselectable suicide plasmid 

backbone using circular polymerase extension cloning (CPEC; (Quan and Tian, 2011)). This 
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construct was introduced into V. fischeri ES114 by tri-parental mating and integrants were 

identified by selection for kanamycin resistance. Second homologous recombination events 

were enriched by non-selective growth, followed by induction of the counterselectable marker to 

identify cells that had lost the integrated plasmid backbone. Successful deletion mutants were 

separated from revertants and verified by colony PCR and sequencing.!

!
HETEROLOGOUS EXPRESSION OF APE GENE CLUSTERS!

! The E. coli CFT073 and V. fischeri ES114 APE clusters were amplified by PCR in three 

parts from genomic DNA and assembled into the SuperCos I vector backbone using either the 

CPEC (Quan and Tian, 2011) or Gibson (Gibson et al., 2009) method. The V. fischeri APE 

cluster was further modified by introducing an apramycin-resistant cassette containing the 

ermE* promoter upstream of the operon starting with VF0844 using PCR targeting (Gust et al., 

2004). Correct insertion of ermE*p was verified by sequencing. The heterologous expression 

constructs for the E. coli CFT073 and V. fischeri APE clusters were introduced into chemically 

competent E. coli Top10 yielding strains JC087 and JC090, respectively.!

!
APE COMPOUND PURIFICATION!

! For large-scale isolation and purification of APEEC and APEVF, all steps were performed 

in a way that avoided exposure to light. Cells were harvested from 32 L of E. coli JC087 and 80 

L of V. fischeri ES114 liquid cultures, respectively. Following lyophilization, the cell material was 

extracted four times with 1:2 methanol/dichloromethane and the extracts were concentrated, 

resuspended in 1:2 methanol/dichloromethane and subjected to mild saponification with 0.5 M 

potassium hydroxide for 1 hour. The mixture was neutralized and the organic layer was 

collected, washed, dried, and resuspended in acetone for further purification by a two-step RP-
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HPLC method. For both extracts, the peaks with absorbance at 441 nm were collected, dried 

under vacuum and stored at -20 °C in an amber vial prior to structural analysis. 

!
APE STRUCTURAL CHARACTERIZATION!

! Purified APE methyl esters were analyzed by a combination of high-resolution uPLC-

ESI-TOF mass spectrometry and 1D and 2D-NMR experiments, enabling the determination of 

their molecular formula: C21H22O3 for APEEC ([M-H]- adduct at 321.1496 m/z (∆ppm = -0.310)) 

and C22H24O3 for APEVF ([M-H]- adduct at 335.1652 m/z (∆ppm = 0.0)). Analysis of the 1H-NMR, 

COSY, HSQC, HMBC, ROESY and TOCSY spectra of APEVF in D6 DMSO and APEEC in D6 

acetone enabled the determination of their solution structure (Figure 3b). This procedure is 

described in detail in the SI Text section and shown in Figure S7c-d. 
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Figures!

Figure 1. ClusterFinder flowchart and distribution of BGC classes and counts. a, 

Flowchart of the four-step BGC prediction pipeline: (i) annotation of a genome sequence and 

compression to a string of Pfam domains, (ii) calculation of posterior probabilities of a BGC 

hidden state, (iii) clustering of genes that contain Pfam domain(s) with posterior probabilities of 

BGC hidden state above the threshold, and (iv) annotation of the predicted BGCs using an 

expanded version of the antiSMASH algorithm. b, Distribution of BGC classes for known (inset) 

and predicted BGCs. “Other” gene clusters include gene clusters from other known classes as 

well as a manually curated set of 1,024 putative gene clusters that fall outside known 

biosynthetic classes. Unexpectedly, 40% of all predicted BGCs encode saccharides, more than 

twice the size of the next largest class. c, Number of predicted BGCs by genome size. Most 

bacterial species follow a linear trend (the equation in the bottom-right corner); outliers (defined 

as having residuals >8) are colored red. d, The proportions of bacterial genomes devoted to 

secondary metabolite biosynthesis (left panel; 6.7% of species that devote >7.5% of their 
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genome to biosynthesis are marked red), transcription (middle panel), and translation (right 

panel).!

!
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!

Figure 2. A systematic analysis of bacterial BGCs. Similarity network of known and putative 

BGCs, with the BGC similarity metric threshold at 0.5. The topology of the network is robust to 

changes in the distance threshold, as described in the Experimental Procedures. One 

connected component harbors most of the gene clusters (72%), and is largely composed of two 

linked subgraphs: one dominated by oligosaccharides and the other a mixture of nonribosomal 

peptides (NRPs) and polyketides/lipids, indicating that BGCs from these classes share a 

significant number of gene families with one another. Smaller BGC families with more unique 
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compositions are represented at the bottom of the figure; only 812 BGCs (7.6%) do not have 

any connections with other BGCs at the chosen cutoff. A selection of node clusters within the 

network has been highlighted to show how gene cluster families form cliques within the network. 

The highlighted groups include widely distributed gene cluster families for O-antigens, capsular 

polysaccharides, carotenoids, and NRPS-independent siderophores, along with one of the 

lantibiotic BGC families and an unknown family of BGCs with type III polyketide synthases. The 

aryl polyene family that we characterized further in this study is shown in the middle of the 

network. 

!
!
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Figure 3. APE gene clusters comprise the largest known BGC family. a, Heat map and 

dendrogram of all 1,021 detected APE family gene clusters, based on Clusters of Orthologous 

Groups generated by OrthoMCL (Li et al., 2003) using our adapted version of the Lin distance 

metric (Lin et al., 2006) that includes sequence similarity. Light grey indicates the presence of 

one gene from a COG, whereas darker grey tones indicate the presence of two or three genes 

from a COG. The two BGC subfamilies that functioned as the starting point of our analysis 

(subfamilies 1 and 2) are shown in green and red, respectively, while the smaller BGC subfamily 

that includes the xanthomonadin and flexirubin gene clusters (subfamily 3) is shown in blue. The 
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positions of the two experimentally targeted gene clusters (Ec for Escherichia coli CFT073 and 

Vf for Vibrio fischeri ES114) as well as the Xanthomonas campestris ATCC 33913 

xanthomonadin (Xc) and Flavobacterium johnsonii ATCC 17061 flexirubin (Fj) gene clusters are 

indicated below the heat map. See Figure S5 for a version with more detailed annotations. b, 

Chemical structures obtained for the APE compounds from E. coli and V. fischeri, and the 

previously determined chemical structures of xanthomonadin and flexirubin. Note the difference 

in polyene acyl chain length as well as the distinct tailoring patterns on the aryl head groups. c, 

Bacterial pellets from strains harboring APE gene clusters showing the pigmentation conferred 

by aryl polyenes. d, Genetic architecture of the four characterized aryl polyene gene clusters. 

The inset in the Flavobacterium johnsonii flexirubin gene cluster is a sub-cluster putatively 

involved in the biosynthesis of dialkylresorcinol (Fuchs et al., 2013), which is acylated to an APE 

to form flexirubin. See SI Data File I for schematics of all 1,021 APE gene clusters from panel 

A. 

!
!
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Figure 4. APE gene clusters are widely but 

discontinuously distributed among Gram-negative 

bacteria. Presence/absence pattern of APE gene 

clusters across all complete genomes from selected 

bacterial genera, mapped onto the PhyloPhLan high-

resolution phylogenetic tree (Segata et al., 2013). For 

each genus, the pie chart represents the percentage of 

sequenced genomes in which APE gene clusters are 

present (green) or absent (red). BGCs from the APE 

fami ly occur throughout a l l subphyla of the 

Proteobacteria, as well as in a range of genera from the 

CFB group. The discontinuous presence/absence pattern suggests that gene cluster gain and/

or loss has frequently occurred during evolution. A presence/absence mapping on all the 

genomes from our initial JGI dataset is provided in Figure S3. 

!
!
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Supplementary figures!
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Figure S1. Global phylogenomic analysis of prokaryotic BGCs, Related to Figure 1. a, The 

prokaryotic tree of life is mostly unexplored for BGCs. The phylogenetic tree of bacterial and 

archaeal classes (as stored in NCBI Taxonomy) shows the distribution of known (left) and 

predicted BGCs (right). A strong historical bias can be observed: some bacterial classes (such 
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as Actinobacteria) have been heavily studied, whereas other classes with (on average) similarly 

large numbers of BGCs have been largely neglected. The two graphs are not scaled equally; 

the left bar plot shows the total number of known BGCs per class, whereas the bar plot on the 

right displays the average number of predicted BGCs per strain within a class. b, Examples of 

notable PKS and NRPS biosynthetic gene clusters detected in the genomes of the obligate 

intracellular pathogens Legionella and Coxiella. Letters above the PKS and NRPS genes signify 

domain structure, with adenylation domain substrates as predicted by NRPSPredictor2 (Röttig 

et al., 2011) in brackets. c, Cross-correlation matrix of COG protein functions in bacterial 

genomes. Although we focused on analyzing the association between the number of BGCs (or 

percentage of the genomes they occupy) and genome lengths (Figure 1c), we also investigated 

whether there are any other COG functions that correlate with genome length. Primary and 

secondary metabolism, as well as transcription regulation, are linked to genome length, 

suggesting that genomes become longer by incorporation of biosynthetic and regulatory genes. 

In contrast, COG functions such as translation, cell cycle regulation, RNA replication and repair, 

nucleotide metabolism and transport, post-translational modification, protein turnover, and 

chaperone functions do not seem to be linked to genome length. d, Histogram of cumulative 

quantitative entropy (QE) index with respect to the distance from the root of the phylogenetic 

tree. A decreasing trend in this histogram suggests decreasing diversification rates on a global 

evolutionary time-scale. However, a presence of nodes of high diversity closer to the leaves 

points to recent evolution of BGC repertoires. Each bar plots a sum of QE indices of all nodes 

within a given bar's limits with respect to the root of the phylogenetic tree. e, Examples of 

previously unknown saccharide gene clusters. The saccharide gene clusters are from 

unexplored or underexplored genera. Colors represent functions of the genes, as indicated in 

the figure legend. f, Type diversity of BGCs within the same taxonomic genera. The bar graph 

shows the percentage of gene clusters per class that is shared between two genomes randomly 
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sampled from the same genus. While fatty acid biosynthesis gene clusters are often similar in 

species of the same genus, RiPP and saccharide BGC repertoires are often radically different 

between species within the same genus. g, Rarefaction analysis of numbers of BGC families 

(red) and Pfam families (green). BGC families (or “BGC clusters”) were calculated from the BGC 

similarity network with a similarity threshold of 0.5 and MCL clustering with I = 2.0. For a given 

number of genomes, a random sample of organisms was selected 20 times (the thickness of the 

lines denote 68% confidence intervals based on these 20 bootstraps). h, Identification and 

classification of BGCs in 201 single-cell genomes from uncultivated organisms. Functional 

classification of the 947 BGCs identified in the set of 201 single-cell genomes from JGI (Rinke et 

al., 2013), using the same antiSMASH-based classification scheme used for the dataset of full 

genomes from JGI. Besides a significant number of saccharide-encoding gene clusters, the vast 

majority of putative BGCs falls outside known biosynthetic classes.!

!
!
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Figure S2. Diversity of BGCs is independent from the phylogeny, Related to Figure 1. a, 

The decomposition of BGC diversity among species of the phylum Actinobacteria. The diversity 

of each node in the phylogenetic tree is measured by the quadratic entropy index, and 

represented by the size of the circle (larger circle defines higher degree of diversity). Color bars 

at the leaf tips represent number of BGCs per species, with different colors denoting different 

BGC types (colors as in Figure 1b). Hybrid gene clusters (orange) are unusually prominent in 

�44

SI Figure 2
A

B

Bifidobacterium longum NCC2705
Bifidobacterium longum infantis ATCC 15697
Bifidobacterium longum subsp  longum JDM301

Bifidobacterium animalis lactis AD011
Bifidobacterium animalis subsp  lactis Bl 04

Bifidobacterium animalis subsp  lactis DSM 10140
Bifidobacterium animalis subsp  lactis BB 12
Bifidobacterium animalis subsp  lactis V9

Bifidobacterium adolescentis ATCC 15703
Bifidobacterium dentium Bd1

Gardnerella vaginalis 409 05

Corynebacterium diphtheriae NCTC 13129
Corynebacterium jeikeium K411
Corynebacterium urealyticum DSM 7109

Corynebacterium kroppenstedtii DSM 44385

Corynebacterium glutamicum ATCC 13032 Bielefeld
Corynebacterium glutamicum ATCC 13032 Kitasato
Corynebacterium glutamicum R

Corynebacterium efficiens YS 314

Nocardia farcinica IFM 10152

Rhodococcus sp  RHA1
Rhodococcus opacus B4

Rhodococcus erythropolis PR4

Tsukamurella paurometabola DSM 20162
Segniliparus rotundus DSM 44985

Saccharomonospora viridis DSM 43017
Actinosynnema mirum DSM 43827

Propionibacterium acnes KPA171202
Propionibacterium acnes SK137

Stackebrandtia nassauensis DSM 44728

Leifsonia xyli xyli CTCB07
Clavibacter michiganensis michiganensis NCPPB 382
Clavibacter michiganensis sepedonicus ATCC 33113

Arthrobacter aurescens TC1
Arthrobacter chlorophenolicus A6

Arthrobacter sp  FB24
Renibacterium salmoninarum ATCC 33209

Kocuria rhizophila DC2201
Rothia mucilaginosa DY 18

Kytococcus sedentarius DSM 20547

Beutenbergia cavernae HKI 0122  DSM 12333
Jonesia denitrificans DSM 20603

Brachybacterium faecium DSM 4810
Sanguibacter keddieii DSM 10542

Xylanimonas cellulosilytica DSM 15894
Cellulomonas flavigena DSM 20109

Arcanobacterium haemolyticum DSM 20595

Tropheryma whipplei TW08 27
Tropheryma whipplei Twist

Streptomyces avermitilis MA 4680
Streptomyces griseus griseus NBRC 13350
Streptomyces coelicolor A32
Streptomyces bingchenggensis BCW 1

Streptomyces scabiei 87 22

Frankia alni ACN14a
Frankia sp  CcI3

Frankia sp  EAN1pec
Acidothermus cellulolyticus 11B

Thermobifida fusca YX
Nocardiopsis dassonvillei subsp  dassonvillei DSM 43111

Thermomonospora curvata DSM 43183
Streptosporangium roseum DSM 43021

Salinispora tropica CNB 440
Salinispora arenicola CNS 205

Nocardioides sp  JS614
Kribbella flavida DSM 17836

Nakamurella multipartita DSM 44233

Kineococcus radiotolerans SRS30216
Geodermatophilus obscurus DSM 43160

Catenulispora acidiphila DSM 44928

Thermobispora bispora DSM 43833

0 35 70
BGC count

Mycobacterium tuberculosis
CDC1551

31 31

31

30

Mycobacterium tuberculosis
H37Ra

Mycobacterium tuberculosis KZN 1435

Escherichia coli 042
10 9

12

6

Escherichia coli 0157:H7 EDL933

Escherichia coli SMS-3-5

Bacillus cereus Q1

17
14

22

9

Bacillus cereus AH820

Bacillus cereus G9842

0.01 16S RNA

C

1.0

0.8

0.6

0.4

0.2

0.0
98 99 100

Organism-pair similarity (% 16S RNA)

BG
C

 s
et

 d
is

ta
nc

e 
(J

ac
ca

rd
 in

de
x)

9
10

10

11
Corynebacterium 
glutamicum
ATCC13032-Kitasato

Corynebacterium 
glutamicum R

Corynebacterium 
glutamicum
ATCC13032-Bielefeld



Actinobacteria (~50%). For the entire phylogenetic tree, see Figure S3. b, The scatter plot 

shows no correlation between phylogenetic and BGC content distance for a given organism 

pair. c, The Venn diagrams show the number of BGCs shared among three different sets of 

closely related species. The phylogenetic tree sections to the right of the Venn diagrams are 

shown using the same scale. !

!
!
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Figure S3. Decomposition of BGC diversity among all sequenced prokaryotic genomes, 

Related to Figure 1. The diversity of each node in the phylogenetic tree is measured by the 

quadratic entropy index, and represented by the size of the circle (larger circle defines higher 

degree of diversity). Color bars at the leaf tips represent the number of BGCs per species, with 

different colors denoting different BGC types (colors as in Figure 1b). The outer ring shows the 

absence/presence of APE gene clusters in our initial set of 1154 genomes obtained from JGI-

IMG. The discontinuous pattern of APE gene cluster conservation suggests frequent horizontal 
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gene transfer and/or gene cluster loss. Pink indicates the presence of one APE gene cluster in a 

genome, red indicates the presence of two gene clusters in a genome. Several genomes from 

Burkholderia and Ralstonia have two different APE gene clusters located on two different 

chromosomes. The tree was generated using iTOL (Letunic and Bork, 2007).!

!
!
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Figure S4. BGC similarity networks, Related to Figure 2. a, Similarity network of known 

BGCs. The similarities between the BGCs were calculated by taking into account the 

architecture as well as the sequence similarity features of our distance metric (see Methods for 

details). This analysis shows that the gene cluster distance metric functions well in separating 

known families of BGCs, while maintaining links representing known genetic similarities 

between classes like aminoglycosides and saccharides. Cytoscape(Smoot et al., 2011) was 
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used to visualize the network. b, Analysis of the global BGC similarity network. Network (or 

graph) topology can be indicative of the relationships among its constituent nodes (here, BGCs). 

Tables b and c show different topology parameters for graphs with BGC similarity cutoffs of 0.6 

and 0.8, respectively; #nodes indicates the number of nodes in the graph; #edges indicates the 

number of edges in the graph; gamma equals the exponent of the node degree frequency 

diagram (the steepness of the linear fit in d); L is the average shortest path between any two 

nodes; C is the average clustering coefficient, Lrand is the average shortest path between any 

two nodes in the randomized graphs; Crand is the average clustering coefficient in the 

randomized graphs; and K(k) is coefficient of the linear fit in e. The values of the parameters 

were calculated for all nodes in the graph, as well as for subgraphs of nodes corresponding to 

individual classes of BGCs. Parameters were calculated using the NetworkX library.!

!
!

�49



Figure S5. Full annotated APE superfamily clustered heat map including COG 

annotations, Related to Figure 3. Full version of the clustered heat map shown in Figure 3a. 

In this version, the COG annotations are shown at the bottom, and the accession number and 

source strain are shown on the right.!

!
!
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Figure S6. Phylogenetic analysis of APE gene clusters and key biosynthetic enzymes, 

Related to Figure 4. a, Pairwise sequence identities of the ketosynthase and adenylation 

domains in the four characterized gene clusters. The numbers in the graph represent the 

average percentage identity between the amino acid sequences of the pairs of most closely 

related adenylation / ketosynthase enzymes in the four gene clusters, as inferred from the 

structure-guided sequence sequence alignment. Three pairs of adenylation enzymes whose 
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amino acid sequences are only 12% identical are shown as <20% identical, to account for the 

inexactness of sequence identity calculations for such distant relationships. b, Phylogenetic tree 

of APE ketosynthase domains with other ketosynthases. The maximum likelihood phylogenetic 

tree, based on a structure-guided multiple sequence alignment using PROMALS3D (Pei et al., 

2008), shows that the ketosynthases from representative APE gene clusters belong to two 

evolutionary clades. One clade is most closely related to FabF proteins from Escherichia coli 

and Bacillus subtilis, while the other clade is most closely related to ketosynthases putatively 

involved in ladderane lipid biosynthesis in the anammox bacterium Kuenenia stuttgartiensis. 

The gene clusters from Bacteroides and Flavobacterium contain a duplicate of the ketosynthase 

from the latter clade, while the xanthomonadin gene cluster from Xanthomonas campestris 

contains no ketosynthase from the first clade. c, Phylogenetic tree of APE adenylation domains 

with other adenylation enzymes. The maximum likelihood phylogenetic tree, based on a 

structure-guided multiple sequence alignment using PROMALS3D (Pei et al., 2008), shows that 

the adenylation enzymes involved in APE biosynthesis cluster in two uncharacterized clades 

within the ANL superfamily that includes Acyl-CoA synthetases, NRPS adenylation domains, 

and Luciferase enzymes. Most closely related are two adenylation enzymes that are involved in 

the ligation of two different aryl group-containing compounds, suggesting that convergent 

evolution may have lead to the independent evolution of two mechanisms to attach an aryl 

group to the polyene that is synthesized by the same clades of ketosynthases. d, Comparison of 

APE gene clusters with related BGCs. Alignment of the two APE superfamily gene clusters from 

Escherichia coli CFT073 and Flavobacterium johnsonii ATCC 17061, the putative ladderane 

lipid biosynthesis gene cluster from Kuenenia stuttgartiensis and the polyunsaturated 

hydrocarbon biosynthesis gene cluster from Desulfotalea psychrophila LSv54. Colors signify 

homologous genes based on a MultiGeneBlast comparison with the blastp algorithm.!
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Figure S7. Evaluation of the ClusterFinder algorithm and APE structural characterization, 

Related to Figure 3. A, The performance of the ClusterFinder algorithm was evaluated by 

calculating the ROC and AUC using 10 manually annotated genomes (SI Table VII) that were 

not used in the training of the algorithm. We obtained an AUC of 0.84, which is significantly 

better than the AUC of a random prediction (AUC of 0.5). The predictions were assessed on 

protein domain basis; for example, at each probability threshold, a given protein domain was 
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assigned to the true-positive class if the probability of being in a BGC was higher than the 

threshold, and if it was manually annotated as being part of a BGC. B, We assessed the true-

positive rate on a set of 74 BGCs from the literature (SI Table VIII). Only 7 BGCs (9.5%) did not 

pass our probability threshold of 0.4. C, Structure of APEEc with COSY (dashed lines) and 

HMBC (solid lines) correlations. D, Structure of APEVf with COSY (dashed lines) and HMBC 

(solid lines) correlations. E, HPLC traces for crude APE extracts. a) Overlay of traces for V. 

fischeri ES114 wild type (blue) and the V. fischeri ES114 Δape deletion strain (red). b) Overlay 

of traces for E. coli Top10 expressing the CFT073 cluster (blue) and the E. coli Top10 control 

strain containing the empty vector (red). HPLC conditions: gradient of acetonitrile in 0.02% 

formic acid water: 0% to 30% organic phase in 2 min, 30% to 90% organic phase from 2 min to 

22 min, followed by a hold at 90% for 3 minutes and a 3 min wash at 100% organic phase. 

Detection was at λ = 441 nm. The peak purified and subjected to structural analysis is denoted 

with an asterisk. F, Second RP-HPLC purification for APEEc (a) and APEVF (b). G, UV spectrum 

for APEEc (a) and APEVF (b).!

!
Supplementary text and tables!

The manuscript is currently in press, and the material will become available online upon its 

publication at http://www.cell.com. 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Summary!

!
! HIV has a small genome and therefore relies heavily on the host cellular machinery to 

replicate. In this study, we used an affinity tagging/purification mass spectrometry (AP-MS) 

approach to determine the interactions of all 18 HIV-1 proteins and polyproteins with host 

proteins in two different human cell lines (HEK293 and Jurkat).  Using a novel quantitative 

scoring system, termed MiST, we identified 497 high-confidence HIV-human protein-protein 

interactions (PPIs) involving 435 individual human proteins, with ~40% of them being identified 

in both cell types. We found that the host proteins hijacked by HIV are highly conserved across 

primates, especially those found interacting in both cell types.  We uncovered a number of host 

complexes targeted by viral proteins including the discovery that HIV protease cleaves a 

component of the eIF3 translational initiation complex, eIF3d, a protein that inhibits HIV 

replication. This dataset facilitates a more comprehensive and detailed understanding of how 

the host machinery is manipulated during the course of HIV infection.  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Introduction!

!
! As described in Chapter 1, the map of the physical interactions between proteins within 

a particular system is necessary for studying the molecular mechanisms that underlie! the 

system.  Analysis of protein-protein interactions (PPIs) has been successfully accomplished in 

different organisms using a variety of technologies, including mass spectrometry approaches 

(Gavin et al., 2006; Ho et al., 2002; Krogan et al., 2006; Sowa et al., 2009) and those designed 

to detect pair-wise physical interactions, including two-hybrid yeast system (Stelzl et al., 2005; 

Yu et al., 2008) and protein-fragment complementation assays (Tarassov et al., 2008). Although 

two-hybrid methodologies have been used to systematically study host-pathogen interactions, 

including studies targeting hepatitis C virus (HCV) (de Chassey et al., 2008), Epstein-Barr virus 

(EBV) (Calderwood et al., 2007) and influenza virus (H1N1) (Shapira et al., 2009), to date, a 

systematic AP-MS study has not yet been carried out on any host-pathogen system.  Here, we 

have targeted HIV-1 for such an analysis, uncovering a plethora of host proteins, complexes 

and pathways that are hijacked by the virus during the course of infection. !

!
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Results and discussion!

AP-MS PLATFORM FOR ANALYZING HIV-HUMAN PROTEIN COMPLEXES !

! We aimed to systematically and quantitatively identify host proteins associated with HIV1 

proteins using an AP-MS approach (Jäger et al., 2010).  To this end, we cloned each gene 

corresponding to all 18 HIV-1 proteins and polyproteins, including the accessory factors (Vif, 

Vpu, Vpr and Nef), Tat, Rev, the polyproteins (Gag, Pol and Gp160) and the corresponding 

processed products (MA, CA, NC and p6; PR, RT and IN; and Gp120 and Gp41, respectively) 

(Supplementary Figure 1).  The majority of these factors were codon optimized to express all 

proteins optimally at comparable levels (Supplementary Table 1).   Each clone was transiently 

transfected into HEK293 cells and was also used to generate stably expressed, tetracycline 

inducible versions in Jurkat cells (Figure 1a). Western blot analysis confirmed each factor was 

expressed in both HEK293 and Jurkat cell lines (Supplementary Figure 2). Following multiple 

purifications of each factor from both cell lines, the material on the anti-Flag or StrepTactin 

beads, as well as the eluted material, was analyzed by mass spectrometry (Figure 1a; 

Supplementary Table 2).  Finally, an aliquot of each purification was subjected to SDS-PAGE, 

stained (Supplementary Figure 3) and subjected to analysis by mass spectrometry. !

! We identified a range of co-purifying host proteins for each HIV factor that were 

reproducible regardless of the protocol used (Supplementary Figures 4,5,7; Supplementary 

Data 1). Several scoring systems can quantify protein-protein interactions from AP-MS 

proteomic datasets, including PE (Collins et al., 2007), COMPASS (Sowa et al., 2009) and 

SAINT (Choi et al., 2010). For this dataset, however, we devised a new scoring system 

particularly suited for identifying AP-MS derived host-pathogen PPIs, termed MiST (Mass 

Spectrometry Interaction Statistics) (available as a web-server at http://salilab.org/mist).  The 

MiST score a weighted sum of three measures: 1) protein abundance measured by peak 

intensities from the mass spectrum (abundance); 2) invariability of abundance over replicated 
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experiments (reproducibility); and 3) uniqueness of an observed host-pathogen interaction 

across all viral purifications (specificity) (Figure 1b; Supplementary Methods). These three 

metrics are summed through a principal component analysis into an optimal composite score 

(Figure 1c, Supplementary Data 2).  By using a benchmark of well-characterized HIV-human 

PPIs (Supplementary Table 3), analysis of the MiST scoring system revealed superior 

performance on our dataset when compared to CompPASS and SAInt (Supplementary Figure 

6) (and comparable performance using other datasets (Supplementary Figure 8)) and allowed 

us to define a MiST cut-off of 0.75, which corresponds to ~4% of all detected interactions. To 

estimate how many interactions would exceed this threshold by chance, we randomly shuffled 

our dataset 1000-times. A random MiST score of 0.75 or greater was assigned to an interaction 

10-times less frequently than seen among the MiST scores for the real data, and the probability 

of an interaction assignment with the random MiST score higher than 0.75 was 2.5  ·  10-4 

(Figure 1d). !

! At the MiST threshold >0.75, the number of host proteins we found associated with each 

HIV protein ranged from 63 (Gp160) to 0 (CA and p6) (Figure 1e). In total, we observed 497 

different HIV-human PPIs (347 and 348 identified from HEK293 and Jurkat cells, respectively) 

(Supplementary Data 3). 196 interactions (~40%) were detected in both cell types; 150 and 

151 were specific to the HEK293 and Jurkat cells, respectively (Figure 1e). Only some of these 

specificities could be explained by differential gene expression in the two cell lines 

(Supplementary Figure 9). Using antibodies against 26 of the human proteins, and affinity 

tagged versions of an additional 101, we could confirm 100/130 AP-MS derived HIV-human 

PPIs via co-immunoprecipitation/Western blot analysis (77% success rate) (Supplementary 

Figures 10, 11), suggesting we have derived a high quality physical interaction dataset.!

! We next analyzed the sets of host proteins associated with each HIV protein with 

respect to functional categories, uncovering many expected connections. These include an 
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enrichment of host factors involved in transcription physically linked to the HIV transcription 

factor Tat (Frankel and Young, 1998); and Vpu, Vpr and Vif, HIV accessory factors that hijack 

ubiquitin ligases, associating with host machinery implicated in the regulation of ubiqutination 

(Malim and Emerman, 2008) (Figure 1f) (Supplementary Data 4). Notably, we found an 

enrichment of host factors involved in translation not only associated with the mRNA export 

factor Rev, but also Pol and PR.  Similar notable trends are present when one considers domain 

types instead of whole proteins (Figure 1g; Supplementary Table 4). For example, host 

proteins interacting with IN are enriched for 14‑3‑3 domains, which generally bind 

phosphorylated regions of proteins(Yaffe et al., 1997); and proteins containing β-propellers have 

a higher propensity for binding to Vpr (for additional domain enrichment analysis, see 

Supplementary Figure 12).  These domain analyses could facilitate future structural modeling 

of HIV-human PPIs.!

!
COMPARISON TO OTHER HIV-HOST RELATED DATASETS!

! Next, we compared the data derived during the course of our work to other HIV-related 

datasets, including previously published HIV-human PPIs and host factors implicated in HIV 

function from genome-wide RNAi screens.  For example, the VirusMint database(Chatr-

aryamontri et al., 2009) contains 587 HIV-human literature-curated PPIs (Supplementary Data 

5), which are mostly derived from small-scale, targeted studies.  While the overlap between the 

497 interactions identified in this work and VirusMint is statistically significant (p-value = 8  10-8), 

it corresponds to only 19 PPIs (Figure 2a; Supplementary Table 5).  However, a greater 

overlap exists, one that remains statistically significant, when interactions below the MiST 

threshold of 0.75 are considered using a sliding cut-off (e.g., at a MiST score of 0.2, there exists 

an overlap of 67, p-value = 1  10-3) (Figure 2c, red lines; Supplementary Data 6).  This overlap 

argues that we have indeed identified many interactions that have been previously reported. 
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However, it is likely that the higher scoring interactions identified here have a greater chance of 

being biologically relevant with respect to HIV function compared to many of those in VirusMint. 

  !

! Recently, four RNAi screens identified host factors that have an adverse effect on HIV-1 

replication when knocked down. In total, 1071 human genes were identified in these four studies 

(Supplementary Data 7), 55 of which are overlapping with our 435 proteins (p-value = 

2.7    10‑10) (Figure 2b; Supplementary Table 6). Again, this overlap increases (as does its 

statistical significance) as we consider proteins participating in HIV-human PPIs with MiST 

scores below 0.75 (Figure 2c, blue lines; Supplementary Data 8).  !

! To identify the evolutionary forces operating on host proteins interacting with HIV-1, we 

performed a comparative genomics analysis of divergence patterns between human and rhesus 

macaque. The proteins identified in both HEK293 and Jurkat cell lines exhibit stronger 

signatures of evolutionary restraint than those identified exclusively in one cell line or in 

VirusMint (Figure 2d). Points in the lower right quadrant of Figure 2d show characteristic 

signatures of strong purifying selection, while the upper right quadrant shows signatures more 

consistent with neutral evolution. This observation suggests that the PPIs identified in our study, 

especially the ones identified in both cell types, are more physiologically relevant to mammalian 

evolution than those identified in VirusMint.!

!
NETWORK REPRESENTATION OF HIV-HUMAN PPI SET!

! We next plotted the 497 HIV-human interactions identified in this study in a network 

representation containing nodes corresponding to 16 HIV (yellow) (note we did not detect any 

high-scoring interactions for CA or p6) and 435 human factors that were derived from the 

HEK293 cells (blue), Jurkat cells (red) or both (Figure 3).  We also introduced 289 interactions 

between human proteins (black edges) derived from several databases (Supplementary Data 
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9), including CORUM (Ruepp et al., 2009) and BIOGRID (Stark et al., 2006). These human-

human interactions helped to identify many host complexes, including several that have been 

previously characterized. For example, we identified components of the cullin-containing 

ubiqutin ligases associated with the accessory factors that are known to hijack them: Vif (Cul5); 

Vpu (Cul1) and Vpr (Cul4a) (Malim and Emerman, 2008). We previously identified several new 

components of the Tat/P-TEFb transcription complex that was derived from this analysis(He et 

al., 2010), as well as LARP7, a component of an inhibitory snRNP that controls Tat/P-TEFb 

activity(D'Orso and Frankel, 2010). Other notable connections include associations between: (i) 

the tRNA synthetase complex with MA, (ii) Vif with the histone deacetylation complex, HDAC3/

NCOR1 and (iii) the splicing complex, SMN and Dynein with Vpr.  Further discussion of the HIV-

human interactions is in Supplementary Information. Ultimately, all data will be able to be 

searched and compared to other HIV-related datasets using the web-based software, GPS-Prot 

(www.gpsprot.org) (Fahey et al., 2011).!

!
EIF3 IS TARGETED BY HIV PROTEASE!

! Interestingly, we found Pol and PR associated with the translational initiation complex, 

eIF3, which binds the 40S ribosomal subunit and serves as a scaffold for the assembly of other 

translation factors(Hinnebusch, 2006). eIF3 is a 13 subunit complex (eIF3a-m) and we detected 

12 of the subunits bound to Pol and/or PR, except eIF3j, which is only loosely associated with 

the complex(Hinnebusch, 2006) (Figure 4a).  Interestingly, even though PR is the smallest of 

the three processed proteins of Pol, we find it associated with the greatest number of host 

factors (Figure 4a). To determine whether or not components of the translation complex are 

substrates for PR, purified human eIF3 was incubated with active PR, resulting in the removal of 

a 70 kDa band and appearance of a ~60 kDa protein product (Figure 4b).  Analysis of the 

cleaved product by N-terminal sequencing revealed a cleavage of eIF3d between Met114 and 
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Leu115, which corresponds to the consensus sequence for HIV-1 protease(Schilling and 

Overall, 2008), and falls with the RNA binding domain (RRM) with eIF3d (Asano et al., 1997) 

(Figure 4b).  To validate this result in vivo, Flag-tagged versions of 10 eIF3 subunits were 

independently co-transfected, each with a small amount of active HIV-1 PR into HEK293 cells, 

and the cell lysates were analyzed by Western blotting (Figure 4c). Consistent with the in vitro 

data, only eIF3d was found to be cleaved, resulting in the expected size of the C-terminal 

fragment of ~60 kDa. Purification of tagged versions of the N- and C-terminal ends of cleaved 

eIF3d revealed that only the N-terminus of 114 amino acid residues associates with the eIF3 

complex (Supplementary Table 7). The cleavage occurred with a similar efficiency as the 

processing of the natural PR substrate Gag (Figure 4d), while two cellular proteins previously 

described to be cleaved by HIV PR, PAPBC1 (Alvarez et al., 2006) and Bcl2 (Strack et al., 

1996), were cleaved only at higher PR concentrations or not at all, respectively.  !

! Next, 4-6 siRNAs against different eIF3 subunits were used in HIV infectivity assays 

(Figure 4e, f; Supplementary Table 8).  Using an HIV-VSVg construct, which only allows for a 

single round of replication, knockdown of eIF3d, but not other subunits, provided an increase of 

infectivity (Figure 4e), suggesting that this factor is acting at early stages of infection.    

Interestingly, using the virus NL4.3, which allows for multiple rounds of infection, knock-down of 

eIF3d, as well as e, and f enhanced NL4.3 infectivity 3 to 5 fold, whereas inhibition of subunits c, 

g, and i had no promoting effect (Figure 4f). Consistent with these results, a previous 

overexpression screen for factors that restrict HIV-1 replication identified eIF3f as the most 

potent inhibitory clone (Valente et al., 2009). The knockdown efficiency was >90% for all siRNAs 

and their impact on cell viability was similar, ruling out an unspecific effect on translation 

(Supplementary Figure 14). Furthermore, we found that knockdown of eIF3d results in an 

increase of reverse transcription activity using assays monitoring both early and late RT (Figure 

4g; Supplementary Figure 15).  This suggests that eIF3 does, in fact, play a role in the early 
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stages of infection, perhaps by binding to the viral RNA through the RRM domain in eIF3d, and 

thus inhibiting RT, an effect that is overcome by PR cleavage of eIF3d (Supplementary Figure 

16).  Further work will be required to fully understand the advantage the virus seemingly 

achieves via remodeling eIF3.!

! This work represents the first systematic AP-MS study aimed at characterizing host-

pathogen interactions.  We identified several previously described human complexes hijacked 

by HIV proteins, but most of the interactions have not been previously described.  We further 

explored the biological significance of two such identified HIV-human interactions: (i) HIV 

protease targeting a component of eIF3 that is inhibitory to HIV replication and (ii) CBF (PEBB), 

a new component of the Vif/Cul5 ubiquitin ligase complex required for APOBEC3G stability and 

HIV infectivity (Jäger et al., accompanying manuscript).  Previous work using this AP-MS 

pipeline allowed for the identification of four new components of the P-TEFb complex required 

for Tat activation(He et al., 2010).  Further work will be required to determine if, how and at what 

stage of infection the remaining host factors impinge on HIV function. Ultimately, work should be 

carried out to characterize the interactions in the context of infection and a more targeted, 

quantitative genetic, proteomic, and structural analysis of the set of host factors identified in this 

study will provide a more accurate view of how the host machinery is being re-wired during the 

course of HIV infection. Finally, analysis of the host factors co-opted by different viruses using 

the same proteomic pipeline described here will allow for the identification of protein complexes 

routinely targeted by different pathogens, in turn leading to better therapeutic targets for future 

studies.!

!
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Methods Summary!

! Details on experimental assays, plasmid constructs, sequences, cell lines, 

antibodies ,and computational analysis are provided online at http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3310911/. Briefly, affinity tagging and purification was carried out as previously 

described(Jäger et al., 2010) and the protein samples were analyzed on a Thermo Scientific 

LTQ Orbitrap XL mass spectrometer. For the evolutionary analysis, genome-wide alignments to 

rhesus macaque were downloaded from the UCSC genome browser (http://genome.ucsc.edu/) 

and evolutionary rates for each group of genes considered were measured using the 

synonymous and non-synonymous rates of evolution. For the in vitro protease assay, MBP-

tagged PR was expressed in BL21 (Gold) DE3 cells in the presence of 100 μM Saquinavir and 

purified on a MBP-TRAP column. Purified eIF3 was obtained from Jamie Cate, UC Berkeley. 

For the infection assays, HeLa P4.R5 cells were transfected with siRNAs and after 48 h infected 

with pNL4-3 or a pNL4-3 derived VSV-G pseudotyped reporter virus. Infection levels were 

determined by luminescence readout.!
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Figures!

Figure 1: Affinity purification of HIV-1 proteins, analysis and scoring of MS data.  a, 

Flowchart of the proteomic AP-MS used to define the HIV-host interactome.  b, Data from AP-

MS experiments are organized in an interaction table with cells representing amount of prey 

protein purified (e.g. spectral counts or peptide intensities). Three features are used to describe 

bait-prey relationships: 1) abundance (blue); 2) reproducibility (red) (the invariability of bait-prey 

pair quantities); and 3) specificity (green) (a measure of how selective is the observed prey for a 

given bait when compared with other baits). c, All bait-prey pairs are mapped into the three 

feature space (abundance, reproducibility and specificity). The MiST score is defined as a 

projection on the first principal component (red line).  All interactions, represented as nodes, 

above the defined threshold (0.75) are red. This procedure separates the more likely biologically 

relevant bait-prey pairs (e.g. Vif-ELOC, Vpr-VPRBP, and Tat-CCNT1) from the interactions that 
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are likely less biologically relevant due to low reproducibility (Vpu-ATP4A) or specificity (RT-

HSP71 and NC-Rl23A).  For a complete list of the three component scores for all pair-wise 

interactions, see Supplementary Data 2.   d, The histogram of MiST scores (Real Data) is 

compared to a randomized set of scores obtained from randomly shuffling the bait-prey table 

(Simulated Data). The MiST score threshold (0.75) was defined using a benchmark 

(Supplementary Table 3) where the predictions are enriched for true, biologically relevant 

interactions by at least a factor of 10 compared to random predictions (as well as through ROC 

and recall plots (Supplementary Figure 6)).  The large peak at ~0.7 corresponds to interactions 

that were specific to a single HIV protein but were not reproducible. e, Bar graph of the number 

of host proteins we found interacting with each HIV factor (MiST score > 0.75).  The cell type in 

which the interaction was found is represented in blue (HEK293 only), yellow (Jurkat only) or 

red (both).  In total, there are 497 HIV-host interactions involving 435 individual human proteins. 

f, A heatmap representing enriched biological functions of the human proteins identified as 

interacting with HIV proteins. The biological functions represent manually collapsed Gene 

Ontology terms obtained via DAVID (Methods). g, A heatmap representing enriched domains 

present in the human proteins identified as interacting with HIV proteins. The domain titles 

represent clan/domain/family names in the Pfam database (Supplementary Methods). 

Coordinates are colored according to corresponding statistical significance (-log of p-value) of 

the enriched biological functions (f) and domain over-representation (g).!

!
!

�78



Figure 2: Comparison of PPI data with other HIV datasets.  a, Using a MiST score cut-off of 

0.75, we identified 497 HIV-human PPIs from both cell types, 19 of which overlap with the 587 

PPIs reported in VirusMint (p-value = 2.97    10-7) (Supplementary Table 5).  b, Out of the 

possible 1071 human factors identified in 4 HIV-dependency RNAi screens (Brass et al., 2008; 

König et al., 2008; Yeung et al., 2009; Zhou et al., 2008a), there is an overlap of 55 with the 435 

individual host factors identified in our proteomic screen (p-value = 2.7   10-10) (Supplementary 
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Table 6). c, Overlapping number of interactions with VirusMint (solid red line) and proteins with 

RNAi screens (solid blue line) as a function of the MiST cutoff.  The p-values of the overlap are 

represented as dashed lines using the same colors (Supplementary Data 6, 8).  d, 

Comparative genomics analysis of divergence patterns between human and rhesus macaque 

reveals strong evolutionary constraint. The x- and y-axes represent p-values for the 

synonymous (dS) and non-synonymous (dN) rates of evolution, respectively, based on 10,000 

bootstrap simulations of the human genome (controlling for expression patterns across human 

tissues), and the size of the circle indicates the significance of the evolutionary parameter ω = 

dN/dS (Supplementary Methods). Horizontal and vertical dotted lines are drawn at 0.5% to 

indicate the Bonferroni significance threshold for each axis. For the VirusMint data, the 

significance of ω is primarily driven by higher rates of synonymous evolution.!

!
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Figure 3:  Network representation of the HIV-human PPIs.  In total, 497 HIV-human 

interactions are represented between 16 HIV proteins and 435 human factors. The node is split 

into two colors and the intensity of the color corresponds to the MiST score from interactions 

derived from HEK293 (blue) and Jurkat (red) cells. Black edges correspond to interactions 

between host factors (289) that were obtained from publicly available databases, such as 

CORUM, HPRD and BIOGRID; several complexes are labeled. Dashed edges correspond to 
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interactions also found in VirusMint. Ultimately, all data will be able to be searched and 

compared to other HIV-related datasets using the web-based software, GPS-Prot 

(www.gpsprot.org) (Fahey et al., 2011).!

!
!

�82

http://www.gpsprot


Figure 4: eIF3d is cleaved by HIV-1 PR and inhibits infection.  a, MiST scores for eIF3 

subunits associated with PR and Pol in HEK293 and Jurkat cells (left). Sizes of the proteins and 

number of significant interactions (MiST >0.75) detected for Pol and its subunits (right). Modular 

representation of the eIF3 complex. Subunit positions are based on prior studies(Cai et al., 

2010; Zhou et al., 2008b) that indicate subunit d is exposed on the complex surface(Cai et al., 

2010; Siridechadilok et al., 2005). b, Silver stain of purified eIF3 complex incubated with 

recombinant HIV-1 PR, demonstrating the decrease of a single band and appearance of an 

approximately 60 kDa product band. The product band was excised and sequenced, revealing 

the cleavage location between Met 114 and Leu 115 of eIF3d. Weblogo representing the HIV-1 

protease consensus cleavage sequence from P3 to P3’(Schilling and Overall, 2008). The 

residues corresponding to the eIF3d cleavage site (red) is located within the RNA binding 

domain(Asano et al., 1997). c, Flag western blot of HEK293 cell lysate expressing Flag-tagged 

eIF3 subunits in the absence (-) or presence (+) of active PR. d, HEK293 cells were co-

transfected with Gag, or Flag-tagged eIF3d, PABPC1, Bcl2 and increasing amounts of PR. Cell 
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lysates were probed against CA (upper panel), Flag (middle panel), or tubulin as control (lower 

panel). e, f, Hela-derived P4/R5 MAGI cells were transfected with siRNAs targeting individual 

subunits of the eIF3 complex (Supplementary Table 7) and subsequently infected with either 

wild-type pNL4-3 (f) or a pNL4-3-derived, VSVg pseudotyped, single-cycle virus (HIV-VSVg) (e). 

The results of two distinct siRNAs targeting non-overlapping sequences are shown for each 

gene. Values represent average and standard deviation of triplicates, normalized to a negative 

control (Supplementary Table 9). g, Early (left) and late (right) HIV-1 DNA levels measured by 

Q-PCR amplification in cells transfected with two independent eIF3D siRNAs or with control 

siRNAs. Samples were normalized by input DNA amount or by cellular gene (PBGD) copy 

number (Supplementary Tables 10 and 11).  * indicates p<0.05 (Kruskal-Wallis test with 

Dunn's correction for multiple comparisons).!

!!
Supplementary text, tables, and figures!

Available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310911/.!!!!!!!! !!!!!
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Summary!

! To understand the workings of a living cell, we need to know the structures of its 

macromolecular assemblies. Determining these structures has required pure samples of the 

studied assembly. Here, we present an alternative strategy based on in vivo measurements of 

genetic interactions between the assembly proteins. We show that genetic interactions can be 

sufficient to define the molecular architecture of an assembly, and are thus comparable in their 

utility to a sparse set of chemical cross-links.!

!
!
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Introduction !

! A mechanistic understanding of the cell requires structural characterization of the 

thousands of its constituent biological assemblies (Alber et al., 2008). So far, conventional 

approaches have provided a valuable but limited window into the structures of these 

assemblies. For example, X-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy, and electron microscopy (EM) can resolve the atomic details of individual proteins 

and small complexes. However, it is often difficult to determine structural data, especially when 

the assembly is difficult to isolate and purify in sufficient quantities, which is generally the case 

for weak and transient complexes, such as, membrane assemblies and transient assemblies 

involved in signaling pathways (Herzog et al., 2012). Moreover, even when the structure is 

determined, it may contain artifacts. Therefore, direct in vivo measurements of structural 

aspects of a wild-type assembly are needed.!

! Alternative approaches have emerged recently to determine the structures of 

macromolecules by considering multiple types of spatial information, including restraints from 

bioinformatics analyses, such as statistical potentials and evolutionary covariance (Marks et al., 

2011; Ovchinnikov et al., 2014), structures of assembly components determined by traditional 

methods, chemical cross-links, other proteomics data, electron microscopy density maps, and 

small-angle scattering profiles (Alber et al., 2007a; Alber et al., 2008; Russel et al., 2012; Ward 

et al., 2013). This information is often limited by low resolution, accuracy, and quantity; however, 

these shortcomings can be minimized by integration of all available information about a given 

assembly (Alber et al., 2008). The integrative modeling cycles through four stages: gathering 

information about the structure of the assembly, choosing how to represent the system and how 

to translate the information into spatial restraints, calculating an ensemble of structures that 

satisfy these restraints, and analyzing the ensemble (Figure 1). Examples of integrative 
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structures include nuclear pore complex (Alber et al., 2007b), yeast 26S proteasome (Lasker et 

al., 2012), bacterial type III secretion needle (Loquet et al., 2012), and a three-dimensional 

model of the yeast genome (Duan et al., 2010). !

!
!
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Results and Discussion!

! Here, we describe how integrative structure determination can benefit critically from 

spatial restraints computed from the correlation between the functional impacts of two mutations 

and their distance. This correlation reflects that site-directed mutagenesis of residues within the 

same functional region (eg, active sites, allosteric sites, and protein-protein binding interfaces) is 

likely to cause more similar phenotypes than mutagenesis of sites that are distant in space 

(Halabi et al., 2009; Marks et al., 2011). Therefore, phenotypic similarity of a pair of point 

mutations can be informative about the 3D structure of a macromolecular assembly.!

! The point-mutant epistatic miniarray profiling (pE-MAP) approach was recently 

suggested to measure such correlation between structural proximity and phenotypic similarity 

(Braberg et al., 2013). In pE-MAP, each point mutation in the target macromolecule is crossed 

against a gene deletion mutant allele, followed by measuring the growth phenotype of the 

resulting double mutant allele. The genetic interaction between the point mutant and gene 

deletion mutant is then quantified by comparing this growth phenotype to growth phenotypes of 

the two individual single mutant alleles (Collins et al., 2010). An array of growth phenotypes, 

termed a phenotypic profile, is generated for each point mutation crossed against multiple single 

gene deletions (Figure 1); growth phenotypes can be collected in a high-throughput fashion for 

hundreds of point mutations against thousands of gene deletion alleles of yeast and mammalian 

cells. In addition, similar phenotypic profiles can be obtained by pairing point mutations with a 

number of assays that measure a growth phenotype under different conditions (eg, presence of 

antibiotics and other chemicals, change in temperature or pH, and UV radiation), and by 

measuring phenotypes other than the growth rate (eg, nucleus size, number of mitochondria, 

and response to chemicals).  !
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! pE-MAP data is based on phenotypic (hence indirect) structural observations, and, 

therefore, subject not only to random noise originating from compositional and structural 

heterogeneities of a macromolecular assembly, but also to random and systematic noise 

originating from complex cellular networks; for example, distant positions that are part of an 

allosteric network, mutations at non-functional sites, functionally irrelevant mutations, 

“destructive” mutations (ie, mutations that lead to misfolding of a macromolecule or those that 

are highly harmful to the cell), and mutations that perturb the gene, mRNA, and their 

interactions, but not the structure (mutations that perturb expression, translation, or stability of 

corresponding nucleic acids). While some of these sources of noise could be minimized during 

site-directed mutagenesis (eg, by only selecting point mutations that cause a measurable 

phenotype, but do not harm the cell too much), many will have to be considered through the 

construction of spatial restraints and subsequent modeling.  !

! Here, we quantify the utility of pE-MAP data for structure determination by reconstructing 

the known molecular architecture of RNA polymerase II (RNAPII) (Hahn, 2004; Wang et al., 

2006; Ward et al., 2013) based on a previously determined pE-MAP dataset (Braberg et al., 

2013), using our open-source Integrative Modeling Platform (IMP) package (Russel et al., 

2012). The dataset includes quantitative genetic interactions between 53 single point mutants in 

RNAPII genes and a library of ~1,200 gene-deletion alleles (Braberg et al., 2013). Due to the 

limited distribution of point mutations in the pE-MAP dataset, a sufficient number of point 

mutations was only available for subunits Rpb1 and Rpb2; therefore, we focused on modeling 

the sub-complex of these two subunits. To realistically mimic application of the proposed 

approach, we split the Rpb1 subunit into two parts, resulting into three components, and used 

comparative models of the components rather than their X-ray structures.!

! We encoded the pE-MAP data into a scoring function that restrains the distance between 

a pair of mutated residues (Methods). The similarity between a pair of pE-MAP profiles (ie, pE-
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MAP link) was computed using maximum information coefficient (MIC) (Reshef et al., 2011). 

Although MIC values correlate poorly with distances between the mutated positions (correlation 

coefficient of -0.32), the maximum distances between a pair of phenotypic profiles and MIC 

values tend to be inversely proportional (Figure 2a). In other words, a high MIC value is more 

likely obtained for a pair of point mutations that are close in structure. Most of the phenotypic 

profiles, even those that correspond to positions less than 30 Å apart, are highly dissimilar (68% 

of pairs with MIC lower than 0.3). The lack of high MIC values for a pair of proximal point 

mutations does not seem to depend on the nature of chemical change caused by mutations 

(Figure S1a); an average BLOSUM62 score of a pair of point mutations does not depend on 

that pair’s MIC value (correlation coefficient of 0.03 between MIC values and the average 

BLOSUM62 scores for pairs of point mutations within 30 Å of each other). This noise also 

cannot be explained by structural heterogeneity in the polymerase, such as conformational 

changes in the trigger loop (Figure S1b). These observations justify imposing an upper bound 

on a distance between two mutations that depends on the MIC value (Figure 1 and 2, 

Methods). !

! Next, we obtained many configurations of the 3 components of the system that minimize 

the violations of the pE-MAP restraints and the overlap between the components, by using 

exhaustive Monte Carlo sampling starting with random initial configurations. Finally, we 

evaluated the accuracy of the resulting models by calculating C-atom RMSD between the C-

terminal half of Rpb1 and Rpb2 of the top-scoring models and the native structure superposed 

on N-terminal half of Rpb1. We defined a successful prediction when a model has the RMSD 

value lower than 30 Å (corresponding to 1.5 times the shortest pE-MAP restraint). While the 

resulting models do not reveal the atomic features of the interfaces between the components, 

even a coarse characterization can be useful for studying evolution and function as well as for a 

higher-resolution structure determination (Alber et al., 2008).!
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! We find that the pE-MAP dataset can successfully determine the structure of the RNAPII 

sub-complex. Our approach predicts the architecture of RNAPII with an RMSD error of 27.8  2.5 

Å (Figure 3), which is significantly better than models computed by the standard protein-protein 

docking techniques (RMSD error of 61.2  16.8 Å). Moreover, the accuracy of the model is also 

significantly better than that of models computed by our approach but based on bootstrapped 

subsamples of the original dataset (56.6  11.6 Å using 26% of the data points), or based on a 

dataset with randomly shuffled pE-MAP links and the corresponding MIC values (50.1  10.3 Å). 

To appreciate the value of the pE-MAP data, we compared it with a previously published cross-

linking dataset (Chen et al., 2010). Cross-linking is widely used for structural determination of 

macromolecular assemblies (Herzog et al., 2012; Lasker et al., 2012). Unexpectedly, we find 

that the pE-MAP dataset determines the structure of RNAPII as accurately as the cross-linking 

dataset (RMSD of 26.2  1.1 Å; Figure 3). Moreover, the accuracy of the model improves even 

further if both data types are combined (RMSD of 22.4  1.2 Å), indicating complementarity 

between the two datasets and demonstrating the premise of integrative structure determination 

(Figure S2). In principle, cross-links should carry more structural information than a pE-MAP 

link (the distance restraint for a cross-link was set to a constant 12 Å), and should therefore 

result in more accurate models. However, the number of possible cross-links is limited by the 

number of proximal lysine pairs (20 in our case), whereas the number of pE-MAP pairs grows 

quadratically with every new point mutation introduced (in our case, 98 pairs with MIC larger 

than 0.3 from 44 point mutations). Therefore, the larger number of coarse distance restraints 

can lead to models as accurate as those obtained by finer but sparse cross-link restraints. This 

observation agrees with our previous work (Erzberger et al., Submitted).!

! There are at least three caveats in our approach: First, modeling accuracy was 

assessed with the aid of the assembly used for fitting the parameters of the spatial restraint 

function; therefore, it also needs to be tested by modeling other assemblies. Second, the 
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components are large (over 1,200 residues per subunit) and it needs to be determined whether 

or not the success of the approach depends on the protein size. Third, constructing large gene 

deletion allele libraries and crossing them against point mutations is laborious. Therefore,  

alternative approaches to pE-MAP design, such as pairing point mutant alleles with chemicals 

and physical perturbations, need to be explored. To address these three points, we have 

modeled two additional assemblies based on unpublished pE-MAP datasets: (i) 253 point 

mutations in H3 and H4 histones paired with ~1,350 gene deletion alleles and (ii) 49 point 

mutations in subunits RpoB and RpoC of a bacterial RNA polymerase subject to 139 different 

conditions (eg, treatments with chemicals and temperature shocks).!

! Importantly, the negative correlation between the MIC value and distance upper bound is 

also apparent in the histone dataset, indicating that our structural interpretation of the pE-MAP 

data can be applied to different macromolecular assemblies (Figure 2b). However, because 

histones H3 and H4 are small proteins (the length of the second largest axis almost falls within 

the pE-MAP dataset resolution; ~30 Å), in principle, multiple solutions around the longest axis 

should satisfy the restraints, resulting in a model of low precision and accuracy. Indeed, the 

models were not statistically significantly different from those based on the random shuffling of 

the dataset (21.3  3.4 Å; P = 0.78 based on Student’s t-test). Thus, the size of the system 

restrained by the pE-MAP data should be larger than ~30 Å in all dimensions.!

! We have also assessed the pE-MAP restraint by predicting the architecture of bacterial 

RNA polymerase based on a “non-standard” dataset for which phenotypes of point mutant 

alleles were measured under different perturbations (eg, antibiotics, change in temperature, and 

pH). The MIC-distance graph is noisier (about 10% of data points violate the pE-MAP restraint) 

than those based on the RNAPII and histone datasets. We attribute this noise mostly to the low 

number of non-redundant perturbations in the dataset; hierarchical clustering of the 

perturbations revealed only 10 major clusters (data not shown). The pE-MAP dataset, however, 
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was still informative. Both constant distance restraints of 90 Å and random shuffling of the data 

points resulted in models of significantly lower accuracy than those computed with pE-MAP data 

(RMSD errors of 73.4  28.2 Å and 71.0  16.2 Å, respectively, compared to 25.6  13.5 Å; Figure 

S4). This result suggests that a relatively small number of orthogonal phenotypes per point 

mutation can be used to accurately predict the architecture of a macromolecular assembly; for 

example, 50 representative cluster members of more than 1,000 available gene-deletion alleles 

were used to calculate MIC values. !

! In summary, we show that the architectures of macromolecular assemblies can be 

determined using quantitative genetic interaction data. Remarkably, the precision and accuracy 

of such modeling are comparable to those of models based on chemical cross-linking. A key 

advantage is that pE-MAP data is determined in vivo, and can thus inform structures of 

macromolecular assemblies that are difficult or impossible to isolate and purify. Moreover, the 

approach can also reveal functionally coupled sites that are distant in structure, even when the 

structure is unknown. Finally, in addition to protein assemblies, the method can be applied to 

assemblies of nucleic acids and proteins and nucleic acid, thus significantly expanding the 

scope of integrative structural biology.!
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Figures!

!
Figure 1: Modeling based on pE-MAP data. First, pE-MAP data is generated by site-directed 

mutagenesis of genes encoding the subunits in a macromomolecular assembly of interest. 

These mutants are then crossed against a series of alleles under different conditions (eg, 

chemical perturbation and gene deletions), followed by measurement of the respective 

phenotypes. Second, the raw phenotypic profiles are translated into spatial restraints by 

comparing all pairs of phenotypic profiles; a pair of sites with similar phenotypic profiles is 
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expected to be close in the structure of the assembly. Third, many models are generated by 

simultaneously minimizing the violations of all pE-MAP and other restraints. Fourth, the 

ensemble of structural models is clustered, and each cluster analyzed in terms of precision, 

accuracy, contacts, geometry, and violations of restraints. !

!
!
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Figure 2: Phenotypic similarity vs. distance plots for 3 assemblies of known structure. 

pE-MAP datasets were generated for yeast RNAPII complex (a) and histones H3 and H4 (b), as 

well as for bacterial RNA polymerase (c). Maximal information coefficient (MIC) measure was 

used to calculate the phenotypic similarities. The pE-MAP distance restraint is represented as a 

blue-red color map.!

!
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Figure 3: Model of RNAPII sub-complex. (a) Three component comparative models were 

used to represent the sub-complex of Rpb1 and Rpb2 subunits (Methods). (b) The panel shows 

four configurations of the sub-complex based on the pE-MAP data, cross-linking data (XL), the 

combination of the pE-MAP and cross-linking data, and protein-protein docking. (c) The bar 

chart shows the accuracies of the modeling based on different types and subsets of data points.!

!
!
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Figure S1: Phenotypic similarity values do not correlate with sequence similarities or 

structural dynamics. (a) The panel shows the phenotypic similarity vs. distance plot based on 

the yeast RNAPII dataset, with data points colored by the average sequence similarity between 

a pair of wild-type residues and the respective point mutations. (b) This panel also shows the 

phenotypic similarity vs. distance plot based on the yeast RNAPII dataset (with MIC cutoff of 

0.3). The size and ends of an error-bar of each data point denote respectively the average and 
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the minimum and maximum distances between the pair of point mutations among 97 different 

structures from the PDB. !

!
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Figure S2: Contact maps. The contacts between C atoms that are less than 25 Å apart are 

shown for all pairs of subunits. !

!
!
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Figure S3: Model of yeast H3-H4 histones interaction. The H3 and H4 histones were 

represented as two rigid bodies based on their crystal structure (PDB ID: 1id3). (a) The chart 

shows the accuracy as RMSD values of the 20 best-scoring models based on the pE-MAP data, 

a constant distance restraint, and randomized pE-MAP data. The red lines denote sample 

medians, whereas the grey boxes and whiskers extend from the lower to upper quartile values 

of the data, and to the most extreme points within the 1.5th multiple of the lower and upper 

quartiles, respectively. (b) The panel shows the structure of the native complex (blue and grey), 

overlaid with a density map of H4 (red) from the localizations of the 20 best-scoring models.  !

!
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!

Figure S4: Model of RpoB and RpoC interaction from bacterial RNAP. The subunits were 

represented as two rigid components based on their crystal structure (PDB ID: 4igc). (a) The 

chart shows the accuracy as RMSD errors of the 20 best-scoring models based on the pE-MAP 

data, a constant distance restraint, and randomized pE-MAP data. The red lines denote sample 

medians, whereas the grey boxes and whiskers extend from the lower to upper quartile values 

of the data, and to the most extreme points within the 1.5th multiple of the lower and upper 

quartiles, respectively. (b) The panel shows the structure of the native complex (blue and grey) 

and location of RpoC in the best-scoring model (red). 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Figure S5: Sampling convergence. The thoroughness of sampling was assessed by the 

analysis of the RMSD-score landscape (a), convergence of RMSD error during sampling (b), 

and clustering of the best-scoring models based on RMSD between all the pairs of models (c).!

!
!
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Methods!

PE-MAP DATA GENERATION!

! The pE-MAP datasets were generated as described previously (Braberg et al., 2013). 

The yeast RNAPII pE-MAP dataset has been previously published (Braberg et al., 2013) and is 

available in GEO database, under series GSE47429. The other two datasets are not published 

yet (cite all authors, in preparation; separately for the two datasets). !

!
DESIGN OF PE-MAP SPATIAL RESTRAINT!

! The distance restraint was designed as follows: First, the gene deletion alleles with E-

MAP values larger than 7 against at least one point mutation were removed from the pE-MAP 

dataset. The remaining data were then clustered by gene deletion alleles using K-mean 

clustering (Pedregosa et al., 2011) with K = 50 (or K = 10 for the bacterial RNAP dataset), and a 

random representative gene deletion allele was selected from each cluster; other K values were 

tested as well, but no significant improvements in correlation between the maximum information 

coefficient (MIC) (Reshef et al., 2011) values and 3D distances were observed for K larger than 

50 (data not shown). The missing values in the pE-MAP dataset were imputed as the mean of 

the corresponding gene deletion allele E-MAP values. Second, a similarity between a pair of 

point mutation phenotypic profiles was calculated using MIC; Pearson product-moment 

correlation coefficient was also tested, but it did not improve the accuracy of the modeling. 

Third, the upper bound distance threshold was computed from the corresponding MIC values, 

based on fitting the data points with the largest MIC value from each of 10 distance bins:!

!
!

!
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where d is the upper bound distance threshold between the surfaces of a pair of C atoms, and k 

and n are -0.0127 and -0.3861, respectively. Fourth, an upper-bound distance restraint for each 

MIC value is defined as a harmonic function centered at the corresponding distance threshold 

from the previous step. The harmonic scoring function is truncated to disregard point mutant 

pairs whose MIC values are much higher than expected:!

!
!

!
where s, x, and w are the restraint score, a surface-to-surface distance between a pair of  C 

atoms, and a restraint weight (set to 1 in our case), respectively, and b and o are constants 

chosen to make the function smooth and continuous. To improve computational efficiency, we 

only considered point mutation pairs with MIC values larger than 0.3. Cross-linking data were 

also transformed into a truncated upper-bound distance restraints using harmonic function 

centered on a constant upper bound distance threshold of 12 Å. !

!
DATA REPRESENTATION!

! The Rpb1 and Rpb2 subunits of the yeast RNAPII were represented as three rigid 

bodies consisting of C atoms, by splitting the structure of Rpb1 into two parts (residues 12-837 

and residues 1068-1379). Moreover, instead of using the experimentally determined structures 

of the three particles, we built the respective comparative models based on templates that are 

all less than 45% identical in sequence; BLAST (Altschul et al., 1990) was used for alignment 

and Modeller (Sali and Blundell, 1993) for model building; the template PDB IDs were 2y0s 

(Rpb1 12-837) and 3iyd (Rpb1 1068-1379) and 2pmz (Rpb2). The C-atom RMSDs between the 

crystal structures and the comparative models range between 2.8 and 5.5 Å. Crystal structures 

were used for modeling the other two sub-complexes (Figures S2 and S3).!
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!
SAMPLING AND ANALYSIS!

! The scoring function was defined as a sum of the pE-MAP (or cross-linking) distance 

restraints and the excluded volume restraints (Lasker et al., 2012). To sample good-scoring 

models, we used the Monte Carlo algorithm with simulated annealing (Kirkpatrick et al., 1983). 

The structures of the subunits, represented by their C-atoms, were kept rigid during sampling. 

For each set of restraints, we ran in parallel 20 optimizations, each starting with random initial 

positions and orientations. Each optimization consisted of 25,000 Monte Carlo steps, cycling 

between 50 steps at temperature 3.0 and 10 steps at temperature 10.0. The Monte Carlo steps 

included random translation and rotation of rigid components (drawn randomly from uniform 

distributions limited to 2 Å and 0.3 radians, respectively). The accuracy of the resulting 0.5 

million models was analyzed by computing C-atom RMSDs between 20 top-scoring models and 

the native configuration!

! The landscape of the scoring function including the pE-MAP restraints is funnel-shaped, 

with a single pronounced minimum at RMSD error of ~27 Å (Figure S5a). The sampling is 

sufficient; an average simulation converges to the 95th percentile of the best score in 

approximately 50 of 25,000 Monte Carlo steps (Figure S5b). The precisions of the best-scoring 

conformations from 20 different runs based on the pE-MAP, cross-linking, and both datasets are 

13.5 Å (Figure S5c), 4.9 Å, and 3.9 Å, respectively. !

!
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Abstract!

! Many proteins have small molecule-binding pockets that are not easily detectable in the 

ligand-free structures. These cryptic sites require a conformational change to become apparent; 

a cryptic site can therefore be defined as a site that forms a pocket in a holo structure, but not in 

the apo structure. Because many proteins appear to lack druggable pockets, understanding and 

accurately identifying cryptic sites could expand the set of drug targets. Previously, cryptic sites 

have been identified experimentally by fragment-based ligand discovery and computationally by 

long molecular dynamics simulations. Here, we begin by constructing a set of structurally 

defined apo-holo pairs with cryptic sites. Next, we comprehensively characterize the cryptic 

sites in terms of their sequence, structure, and dynamics attributes. We find that cryptic sites 

tend to be as conserved in evolution as traditional binding pockets, but are less hydrophobic 

and more flexible. Relying on this characterization, we also use machine learning to predict 

cryptic sites with relatively high accuracy (for our benchmark, the true positive and false positive 

rates are 73% and 29%, respectively). We then predict cryptic sites in the entire structurally 

characterized human proteome (11,201 structures, covering 23% of all residues in the 

proteome). The method increases the size of the potentially “druggable” human proteome from 

estimated ~40% to ~78% of disease-associated proteins. Finally, to demonstrate the utility of 

our approach in practice, we experimentally validate a predicted cryptic site in human protein 

tyrosine phosphatase 1B using a covalent ligand and NMR spectroscopy.!

!
!
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Introduction!

! Biological function often involves binding of proteins to other molecules, including small 

ligands and macromolecules. Usually, these interactions occur at defined binding sites in the 

protein structure (Nisius et al., 2012). Knowledge of binding site location has a number of 

applications (Campbell et al., 2003). For example, in drug discovery, binding site localization is 

often the starting point followed by virtual screening or de novo ligand design (Laurie and 

Jackson, 2005); in cell biology, it facilitates prediction of protein substrates, especially when the 

target protein cannot be reliably related to homologs of known function (Hermann et al., 2007). !

! Binding sites, particularly those for small molecules, are often located in exposed 

concave pockets, which provide an increased surface area that in turn maximizes intra-

molecular interactions (Laskowski et al., 1996). A concave pocket can already exist in a ligand-

free structure of a protein; such binding sites are called here binding pockets. Sometimes, 

however, a binding site is flat in the absence of a ligand and only forms in the presence of a 

ligand; such binding sites are called cryptic sites (Figure 1a) (Bowman and Geissler, 2012; 

Diskin et al., 2008; Durrant and McCammon, 2011; Horn and Shoichet, 2004; Lexa and Carlson, 

2011). !

! Many computational methods have been developed to localize binding pockets on 

proteins. These methods are based on a variety of principles (Henrich et al., 2010): (i) concavity 

of the protein surface, (ii) energy functions including van der Waals terms, (iii) geometrical and 

physico-chemical similarity to known binding pockets, and (iv) composite approaches that use a 

combination of different features (Capra et al., 2009; Le Guilloux et al., 2009; Rossi et al., 2006). 

Unfortunately, only ~60% of protein structures were judged to have pockets larger than 250 Å3 

(many of which may not be druggable), and could potentially be subjected to ligand discovery 

based on binding pocket knowledge (Hopkins and Groom, 2002; Sheridan et al., 2010).!
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! In contrast to binding pockets, cryptic sites are not easily detectable in a ligand-free 

structure of a protein because they by definition require ligand-induced conformational changes 

to become apparent. For example, large and flat interfaces between interacting proteins were 

considered undruggable, although several examples of protein interfaces undergoing a 

conformational change coupled with binding a small molecule were recently described (Arkin 

and Wells, 2004; Wells and McClendon, 2007). Similarly, allosterically regulated sites are 

sometimes not apparent in the absence of a small-molecule allosteric regulator (e.g., p38 MAP 

kinase (Diskin et al., 2008) and TEM1 -lactamase (Horn and Shoichet, 2004)). !

! Currently, the only two approaches to cryptic site discovery are exhaustive site-directed 

small-molecule tethering by experiment (Hardy and Wells, 2004; Ostrem et al., 2013; Sadowsky 

et al., 2011) and long time-scale molecular dynamics simulations by computation (Bowman and 

Geissler, 2012; Brenke et al., 2009; Durrant and McCammon, 2011; Grove et al., 2013; Lexa 

and Carlson, 2011), both of which are time-consuming, expensive, and not always successful. 

Therefore, there is a need for an accurate, automated, and efficient method to predict the 

location of cryptic pockets in a given ligand-free protein structure. Such a method would offer 

several advantages. First, a cryptic site may be the only suitable binding site on the target 

protein; for example, when activation is required and thus the active site cannot be targeted, the 

active site is not druggable, or active site ligands need to be avoided due to adverse off-target 

effects. Second, binding sites may be discovered on structures determined or computed at only 

moderate resolution.!

! Here, we analyze known cryptic sites and develop a method for predicting cryptic site 

locations to address a number of questions: What are the sequence, structure, and dynamics 

attributes of a cryptic site, especially in comparison to binding pockets? Can we accurately, 

automatically, and efficiently predict cryptic sites? How common are cryptic sites? Are they 
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common enough to significantly expand the druggable proteome? Can we predict cryptic sites in 

specific proteins of clinical significance?!

!
!
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Results and Discussion!

! Our analysis proceeded according to Figure 1b. In outline, we started by creating a 

representative dataset of 84 known examples of cryptic binding sites, 92 binding pockets, and 

705 concave surface patches from the Protein Data Bank (Bernstein et al., 1977) and the 

MOAD database (Benson et al., 2008) (Methods, SI Text, and Table S1). We selected cryptic 

sites and binding pockets whose ligands are biologically relevant (Benson et al., 2008). Next, 

we designed a set of 29 features that describe sequence, structure, and dynamics of individual 

residues and their neighbors (SI Text and Table S2), based on the crystal structures. We then 

compared these attributes between the three types of a site to better understand the underlying 

characteristics of each site. Based on these comparisons, we expanded the set of features for 

proteins containing cryptic sites to 105 (Table S2), describing their crystal structures as well as 

their alternative conformations obtained by molecular dynamics simulations using AllosMod 

(Weinkam et al., 2013) (SI Text). Next, we put to test 11 supervised machine-learning 

algorithms (Pedregosa et al., 2011; Schaul et al., 2010) to classify residues as belonging to a 

cryptic site or not. We then predicted cryptic sites in the entire structurally characterized human 

proteome. Finally, we focused on a detailed characterization of protein tyrosine phosphatase 1B 

(PTP1B), a protein that is involved in the insulin signaling pathway and is considered a validated 

therapeutic target for treatment of type 2 diabetes (Combs, 2010). !

POCKET FORMATION AT A CRYPTIC SITE IS DRIVEN BY SMALL CHANGES IN THE STRUCTURE, 

RESULTING IN A CONFORMATIONALLY CONSERVED CRYPTIC SITE REGARDLESS OF THE 

LIGAND TYPE. !

! First, we set out to analyze structural changes needed for a binding pocket formation at 

a cryptic site. The dataset of cryptic sites reveals mostly minor structural changes required for 

formation of a detectable pocket. The all-atom RMSD of cryptic binding sites between apo and 
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holo conformations ranges between 0.45 Å and 22.45 Å (Figure S1a) with 67% apo-holo pairs 

differing less than 3 Å in RMSD. The only two apo-holo pairs whose differences in RMSD 

exceed 10 Å are calcium ATPase and calmodulin (PDB IDs 1su4–3fgo and 1cll–1ctr, 

respectively). Loop movement is the most prominent type of conformational changes (detected 

in 45% of the binding sites), followed by side-chain rotation (18%), domain motion (17%), 

displacement of secondary structure elements (16%), and N- or C-terminus flexibility (4%). !

! To determine whether or not a cryptic site assumes the same bound conformation 

irrespective of the ligand type, we computed similarities between cryptic site conformations in a 

protein bound to at least 5 different ligands (58 proteins). Interestingly, only 26% of such cases 

have an average RMSD exceeding 2 Å (Figure S1b), even though the average Tanimoto 

distance (calculated by Open Babel (O'Boyle et al., 2011), SI Text) is low (0.8). This finding 

suggests that the conformation of a given cryptic site generally does not depend strongly on the 

ligand type (similar analysis of binding pockets yields 9% of cases with an average RMSD 

exceeding 2 Å, and an average Tanimoto distance of 0.7). Moreover, the magnitude of the 

conformational difference within a group of holo structures is not significantly correlated with 

ligand similarity (the correlation coefficient between the all-atom binding site RMSD and 

Tanimoto distance is 0.01; Figures S1c and S1d). Finally, the average RMSD of 1.7 Å between 

bound cryptic binding sites is significantly lower than the average RMSD of 3.0 Å between the 

unbound and bound conformations (P = 1.410-3, based on two-sample Kolmogorov-Smirnov 

statistics). Thus, the bound form of the cryptic site is surprisingly conformationally conserved 

with respect to the ligand type (the average RMSD values of bound conformations of cryptic 

sites and binding pockets are 1.7 and 2.0 Å, respectively). These observations are consistent 

with a limited number of protein conformational states as well as with the variability in 

allosterically regulated proteins, where the binding of the effector alters the conformational 

distribution between two or more conformational states (Gunasekaran et al., 2004). Indeed, 24 
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of the 58 cryptic sites are found in allosterically regulated proteins, with 17 of the 24 annotated 

as effector binding sites (Huang et al., 2011). 20 of the remaining 34 cryptic sites are found on 

proteins with two or more different binding sites that may or may not be allosteric. The remaining 

14 cryptic sites occur on enzymes with flexible active sites and receptors for large hydrophobic 

ligands, where cryptic site residues modulate binding site accessibility (e.g., the “portal” 

hypothesis for glycolipid transfer protein, lactoglobulin, and adipocyte lipid binding protein) 

(Jenkins et al., 2002). In other words, a cryptic site does not convert from flat to concave to 

accommodate a number of different ligands; rather, cryptic sites may have evolved the ability to 

convert from flat to concave to modulate ligand-binding kinetics, specificity, affinity, and allostery.!

CRYPTIC SITES ARE AS FLEXIBLE AS RANDOM CONCAVE SURFACE PATCHES, BUT 

EVOLUTIONARILY AS CONSERVED AS BINDING POCKETS.!

! Next, we analyzed the differences between the sequence, structure, and dynamics 

attributes of cryptic sites, binding pockets, and concave surface patches. While the differences 

between cryptic sites and binding pockets are generally small, 4 characteristics distinguish a 

cryptic site from a binding pocket and/or a concave surface patch: First, a cryptic site 

predominantly localizes at concave protein regions, even though the site itself is not as concave 

in the unbound form as a binding pocket. For example, while the average number of protruding 

atoms at a cryptic site and a binding pocket is 170 and 183 (P = 8.010-3) and the average 

convexity value of 2.4 and 1.9 (P = 0.8), the average pocket score is 0.07 and 0.42 (P = 

1.710-31), respectively (Table S3). Second, a cryptic site tends to be less hydrophobic than a 

binding pocket, due mostly to an increased frequency of charged residues (arginine in particular, 

P = 1.810-5) (Figure 2a and Table S3). Third, a cryptic site is more flexible than a binding 

pocket, as indicated by significantly higher normalized B-factors (Figure 2b). Finally, cryptic site 

residues are evolutionarily as conserved as those of a binding pocket (Figure 2c), suggesting a 

similar degree of evolutionary pressure and selection on the function of many of these two types 
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of binding sites. Evolutionarily conserved residues have been previously associated with low B-

factors (Schlessinger and Rost, 2005; Shih et al., 2012; Swapna et al., 2012); low B-factors are 

an indicator of residue rigidity. Both evolutionarily conserved residues and residues with low B-

factors are often found in functionally important regions of a protein, including binding pockets 

(Bartova et al., 2008; Capra et al., 2009). In contrast to binding pockets, cryptic sites conserve 

conformational flexibility to convert from flat to concave.  !

CRYPTIC SITES AND BINDING POCKETS BIND THE SAME TYPES OF LIGANDS.!

! To find whether or not the differences between cryptic sites and binding pockets are 

associated with differences between their ligands, we also compared properties of ligands of 

cryptic sites and binding pockets. We found no statistically significant differences (Figure S2a 

and S2b). However, clustering of apo structures of cryptic sites and binding pockets based on 

the basic ligand properties and the sequence, structure, and dynamics attributes reveals 4 

clusters (Figure S2c). Two of the clusters are significantly enriched with cryptic sites: one that 

comprises convex sites with evolutionarily conserved residues and small hydrophilic ligands, 

and another one that comprises less convex and less conserved sites that bind larger 

hydrophobic ligands. The third cluster contains an equal number of cryptic sites and binding 

pockets that are evolutionarily conserved and bind large hydrophilic ligands. The final cluster 

contains mostly binding pockets that are concave and evolutionarily conserved, and bind small 

and hydrophobic ligands. !

MOLECULAR DYNAMICS SIMULATIONS BASED ON A SIMPLIFIED ENERGY LANDSCAPE, 

SEQUENCE CONSERVATION, AND DISTANCE TO THE SURFACE ARE SUFFICIENT TO PREDICT 

CRYPTIC SITES.!

! To test if cryptic sites could be predicted accurately, automatically, and efficiently, we 

used the dataset of apo structures with cryptic sites to train 10 different machine-predictive 
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models for the prediction of cryptic site residues, based on the extended set of 105 features 

(Table S2). The optimal predictive model and its parameter values were selected by maximizing 

the sensitivity (true positive rate) and the specificity (true negative rate) of cryptic site residue 

prediction, using leave-one-out cross validation on the training set of proteins with 84 cryptic 

binding sites (Figure S3a). The optimal predictive model is a support vector machine (SVM) 

with a quadratic kernel function and full set of features. The area under the receiver-operator 

curve (AUC), a measure of accuracy, is 0.78. By removing redundant and irrelevant features 

using greedy-forward selection that maximizes the AUC, we selected a subset of 19 features, 

resulting in the AUC of 0.81 (Figure S3b).!

! Although an SVM operates as a “black-box”, the relative importance of different features 

is determined by their order of selection, and may be informative about the cryptic site 

characteristics (Martens et al., 2008). We find the average pocket score from the molecular 

dynamics simulations is the most informative single feature according to greedy-forward 

selection (AUC = 0.73) as well as the two-sample Kolmogorov-Smirnov test (P = 1.310-151) 

(Figure 2D and Table S2). This feature alone is almost as informative as the remaining 29 

crystal structure features combined (AUC = 0.74) (Figure S3b). Therefore, molecular dynamics 

simulations on a simplified energy landscape, which is significantly more computationally 

efficient than a traditional all-atom molecular dynamics simulation (Bowman and Geissler, 

2012), often provides sufficient information for localizing cryptic sites. The second feature added 

to the subset of the 19 features by the greedy-forward approach was sequence conservation. 

Cryptic site residues are significantly more conserved than the rest of a protein (P = 2.710-68). 

The third feature, distance of a residue to the protein surface, also significantly improves the 

accuracy of the model (AUC = 0.77), even though by itself is one of the least informative 

features (P = 0.34). The remaining 16 selected features further improve the accuracy of the 

model, but only modestly so (Figure S3b). In summary, a cryptic site can be predicted relatively 
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accurately based primarily on pocket formation in molecular dynamics simulations, evolutionary 

conservation, and proximity to the protein surface.!

!
THE PREDICTIVE MODEL ACCURATELY LOCALIZES OVER 92% OF CRYPTIC BINDING SITES.!

! To assess the performance of our predictive model, we applied it to the test set of 14 apo 

structures with one or more known cryptic sites that were not used during the training or any of 

the analyses above. The prediction capability of the SVM model is satisfactory; we measure an 

overall AUC of 0.79, with respective true positive and false positive rates of 73% and 29% at the 

residue score threshold of 0.1 (Figure 3a). To further dissect the performance of the learning 

algorithm, we evaluated predictions for individual proteins from our training and test sets 

(Figure 3b). We define a prediction of a cryptic site to be accurate when at least one third of its 

residues are identified (sensitivity > 33%). Predictions above this threshold can arguably guide 

small-molecule tethering experiments and more detailed molecular dynamics simulations. 

Remarkably, all 14 proteins in the test set and 73 out of 79 proteins in the cross-validation/

training set have all of their cryptic sites identified accurately, resulting in 92% recall (Tables S1 

and S4); even for 50% sensitivity, the recall is still 85%.!

! The predictions are particularly accurate when a large and hydrophobic ligand binds to a 

cryptic site. For example, we identified all cryptic site residues in the acyl-CoA binding site of the 

fatty acid responsive transcription factor and 94% of cryptic site residues in the lipid-binding site 

of -lactoglobulin (Figure S4). Our predictive model also accurately predicted cryptic sites in 18 

out of 20 proteins (including the proteins from the cross-validation set) that undergo domain 

movements to expose small-molecule binding sites. For example, more than half of the cryptic 

site residues of GluR2 receptor, exportin-1, and biotin carboxylase were predicted correctly 

(Figures 3c and S4). Generally, the predictive model accurately predicts known cryptic sites 

that are allosteric or at relatively flat protein-protein interfaces. For example, TEM-1 -lactamase 
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contains one known allosteric cryptic binding site that requires unfolding of a short helix, and 

was previously studied using extensive molecular dynamics simulations in explicit solvent and 

Markov state models (Bowman and Geissler, 2012). In comparison, our approach was also 

accurate (sensitivity of 60%), but significantly faster and completely automated (Figure S4d). 

Additional examples of accurate predictions include a lipid-binding site in MAP kinase insert of 

p38 kinase (sensitivity of 74%) (Diskin et al., 2008) (Figures 3b and S4c) as well as the 

nucleotide- and substrate-binding sites in this kinase that were not included in our dataset of 

cryptic sites, but are known binding sites that undergo conformational changes during 

phosphorylation (Shukla et al., 2014). Our test set also included three examples of cryptic sites 

at protein-protein interfaces of exportin 1, Bcl-XL, and interleukin-2 (IL-2) (Sun et al., 2013; Wells 

and McClendon, 2007); we identified 73%, 58%, and 47% of the cryptic binding site residues, 

respectively (Figures 3 and S4).      !

!
FALSE NEGATIVES RESULT FROM LARGE REARRANGEMENTS.!

! Next, we analyze false negatives and false positives (defined based on the cryptic sites 

annotated in MOAD). Our predictive model failed to predict most cryptic sites that undergo 

extensive conformational changes and whose pockets are difficult to sample with current 

molecular dynamics approaches, and some sites whose sequence is not conserved in evolution 

(Figures 3b and S5). In particular, we failed at predicting the cryptic site for stabilizing 

substrates (eg, cyclopiazonic acid) in Ca-ATPase (sensitivity of 0%) that resides at the interface 

between three domains, two of which are ~50 Å apart in the apo conformation (Figure S5a). 

Similarly, we also failed at predicting two allosteric sites in the thumb site of HCV RNA 

polymerase (sensitivities of 0% and 23%, respectively), in glycogen phosphorylase B (sensitivity 

of 27%), in pyruvate kinase, and in PTP1B (sensitivity of 29%) (Figure S5). In the future, 

inadequate sampling in AllosMod will be addressed by using multiple input structures and/or 
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restraints from experimental data (e.g., small-angle X-ray scattering profiles (Weinkam et al., 

TBD), chemical cross-links (Molnar et al., 2014), hydrogen/deuterium exchange with mass 

spectrometry, and electron microscopy density maps (Liao et al., 2013)).!

A FALSE POSITIVE PREDICTION CAN BE AN UNKNOWN CRYPTIC SITE.!

! While it is difficult to be certain that a predicted cryptic site does not bind a ligand, 

potential false positives include high-scoring isolated residues or terminal regions of truncated 

proteins, which may not be as flexible in full-length proteins. However, our benchmark probably 

overestimates the false positive rate, because some predicted cryptic sites are in fact true 

binding sites, even though they are not annotated as such in the MOAD database (e.g., proteins 

that bind peptides or other proteins). For example, our predictive model identifies the binding 

site for the light chain of coagulation factor VII in the heavy chain of coagulation factor VII; the 

binding site for guanine-nucleotide exchange factor DBS in CDC42 protein; the dimer interfaces 

in fructose-1,6-bisphosphate aldolase and estrogen-related receptor ; the docking site for its N-

terminal motif in Bcl-XL; the phosphate binding site in acid--glucosidase; and the binding sites 

for Ran, snurportin, and its own loop in exportin-1 (Figures 3c and S4). In summary, the 

analysis of successes and failures demonstrates the potential of our approach to guide the 

experimental identification of new sites in difficult small-molecule targets.!

THE DRUGGABLE PROTEOME IS SIGNIFICANTLY LARGER THAN ESTIMATED PREVIOUSLY.!

! Given the overall accuracy of our approach (above), a large number of predicted cryptic 

sites that are not yet annotated as such in our benchmark might also indicate that there are 

many cryptic sites yet to be discovered. If so, our predictive model could facilitate finding novel 

binding sites in “undruggable” proteins, and hence expand the druggable proteome space. It 

has been suggested that the human proteome of approximately 20,000 proteins contains 

~3,000 proteins associated with disease and ~3,000 druggable proteins, with the overlap 
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between the two sets of only ~600 – 1,500 (Hopkins and Groom, 2002; Overington et al., 2006; 

Russ and Lampel, 2005). To predict how much cryptic binding sites expand the druggable 

proteome space, we first applied a faster version of our predictive model (based only on the 

features that are not extracted from molecular dynamics simulations, resulting in the speedup 

factor of 1000) on 4,421 human proteins with at least one domain of known structure (11,201 

structures in total). Next, we counted the numbers of cryptic sites and pockets in each structure 

(SI Text). Pockets were predicted in ~1,900 (43%) proteins, and cryptic sites were predicted in 

~3,300 (74%) proteins. Among the 1,420 disease-associated proteins of known structure, 40% 

have pockets in their crystal structures (in agreement with the previous estimate that the fraction 

of proteins that are both disease-associated and druggable is 20-50% (Schmidtke and Barril, 

2010)). In contrast to pockets, cryptic sites were predicted in 72% of the disease-associated 

proteins, 38% of which have no apparent pockets (Figure 4). However, some of the predictions 

may be false positives (the sites may in fact not bind any ligands). Moreover, for some sites, it 

may be very difficult to find a ligand (even if it does exist), and even if the ligand is found, it may 

not be a drug because it does not target the disease-modifying function of a protein or because 

it does not meet clinical development criteria. Nevertheless, the prediction of cryptic sites on the 

disease-associated proteins of known structure indicates that small molecules might be used to 

target significantly more disease-associated proteins than were previously thought druggable.!

! If cryptic sites are more abundant than previously estimated, why does high-throughput 

screening not identify them more often than it does? It has been shown that small-molecule 

libraries are biased towards traditional drug targets, such as G protein-coupled receptors, ion 

channels, and kinases, while they are not as suitable for antimicrobial targets and those 

identified from genomic studies (Hert et al., 2009). It is conceivable that the existing libraries are 

also less suitable for cryptic sites. Moreover, cryptic sites may tend to bind ligands more weakly 

than binding pockets, due to the need to compensate for the free energy of site formation 

�130



(Mobley and Dill, 2009), and may thus be ranked lower on the high-throughput screening lists. 

Therefore, different approaches based on larger and more diverse chemical libraries, including 

small fragments (Hardy and Wells, 2004; Makley and Gestwicki, 2013; Wiesmann et al., 2004), 

peptides, peptidomimetics, and natural products may be needed for more efficient discovery of 

cryptic site ligands. A case in point is the discovery of a number of ligands for cryptic allosteric 

sites and cryptic sites at protein-protein interfaces, such as IL-2, caspases, kinase PDK1, and 

PTP1B, by fragment-based tethering (Hardy and Wells, 2004; Ostrem et al., 2013; Sadowsky et 

al., 2011; Wiesmann et al., 2004). Our data suggests that cryptic sites are much more prevalent 

than previously expected. However, while such sites do provide additional opportunities for drug 

discovery, they may not ultimately lead to drugs.!

EXPERIMENTAL CHARACTERIZATION OF A PREDICTED CRYPTIC SITE IN PTP1B BY NMR 

SPECTROSCOPY.!

! Finally, to demonstrate the practical utility of our approach, we focused on the clinically 

significant protein PTP1B. Targeting PTP1B with small molecules has been challenging due to 

the lack of specificity and bioavailability of substrate mimetics as well as the presence of only a 

single known allosteric pocket (Combs, 2010; Wiesmann et al., 2004). In addition to identifying 4 

of the 14 residues in the known allosteric cryptic site (Wiesmann et al., 2004), out predictive 

model also suggested another putative cryptic site (Figure 5). This site is interesting for several 

reasons: First, the predicted cryptic site residues form an internal cavity (between residues Ile 

67 and Phe 95) in crystal structures of PTP1B that is large enough to accommodate a small 

molecule (volume of ~150 Å3). Our molecular dynamics simulations suggest that small 

conformational changes in the cavity-forming loops could make the cavity accessible to the 

solvent and expand its size (up to 430 Å3). Second, the site is in proximity of two cysteine 

residues (Cys 92 and Cys 121) that could be targeted covalently in small-molecule fragment 

screening by tethering (Hardy and Wells, 2004). Even though residue Cys 121 seems to be 
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buried in the crystal structure, small conformational changes could expose it to the solvent (Cys 

121 is exposed in 0.4% of the molecular dynamics snapshots at 300 K). Third, this cryptic site in 

PTP1B differs from the corresponding region in the closely related tyrosine-protein phosphatase 

non-receptor type 2 (TCPTP) at, for example, position 97 (glutamate instead of leucine). This 

difference between PTP homologs could be exploited to develop selective inhibitors that avoid 

the serious adverse effects associated with TCPTP inhibition in mice (Wiesmann et al., 2004). 

Finally, the cryptic site may be allosterically coupled to the catalytic site; examining contacts 

between pairs of residues (Weinkam et al., 2013) suggests extensive coupling between the 

cryptic and catalytic sites (Figure S6a). !

! To experimentally test our cryptic site prediction, we studied a previously discovered 

ligand, ABDF (Hansen et al., 2005), which allosterically inhibits PTP1B through an undefined 

mechanism. Although PTP1B has three other surface-exposed cysteine residues, ABDF 

covalently attaches specifically to the side chain of Cys 121, which is adjacent to our predicted 

cryptic site (Figure 5 and Figure S6b).  The Cys 121 side chain points towards the interior of 

the unlabeled protein, so binding of ABDF likely requires a conformational change in the protein. 

We were unable to obtain a crystal structure of ABDF-labeled PTP1B, in agreement with other 

reports that ABDF-labeled PTP1B, unlike apo PTP1B, is recalcitrant to crystallization (Hansen et 

al., 2005). To determine whether or not the covalent label causes specific local conformational 

changes or globally perturbs the protein, we collected 1H, 15N TROSY HSQC NMR spectra of 

both apo and ABDF-labeled protein (SI Text and Figure S6c-f).  Using previously published 

backbone resonance assignments (Meier et al., 2002), we observed no perturbation of chemical 

shifts for a number of residues distal to the predicted cryptic site, indicating that the effects are 

local and that the protein remains folded. In contrast, a cluster of residues nearby the predicted 

cryptic site were significantly perturbed (Figure 5 and Figure S6c-f).  Many other residues near 

the predicted cryptic site that would need to move for ligand binding, including the adjacent β-
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sheet and Cys 121 loop, were unassigned due to resonance broadening, which is indicative of 

conformational exchange.  Collectively, these results point to structural flexibility in the vicinity of 

the predicted cryptic site and the specific perturbation of residues surrounding the predicted 

binding pocket, validating our prediction.!

! To conclude, we describe cryptic sites and a method that accurately, automatically, and 

efficiently predicts their locations in protein structures. Our results support the hypothesis of 

ubiquitous cryptic sites and suggest many new small-molecule protein targets, including those 

that are associated with diseases. Moreover, we illustrate how chemical tethering can be used 

to validate cryptic site predictions by discovering cryptic site ligands. Cryptic sites can also be 

characterized by experimental techniques that measure protein dynamics, such as NMR 

spectroscopy and room-temperature X-ray crystallography (Fraser et al., 2011), as well as by 

discovery of ligands through virtual screening against conformations with pockets computed by 

AllosMod or molecular dynamics simulations. Our approach provides a convenient first step for 

such characterizations. !

!
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Materials and Methods!

! We started by finding cryptic sites in the Protein Data Bank (PDB) (Berman et al., 

2002; Berman et al., 2000), as follows. First, we gathered structures of protein-ligand 

complexes as well as structures of proteins in ligand-free (unbound) conformations. We 

define binding residues as the residues with at least one atom within 5 Å from any atom 

of a ligand in the bound conformation (a binding site). Second, we removed the 

redundant protein occurrences in the dataset by applying sequence identity threshold of 

40% (SI Text). Finally, we evaluated each binding site in the unbound conformation 

using pocket scores based on two pocket-detection algorithms, Fpocket and ConCavity 

(Capra et al., 2009; Le Guilloux et al., 2009). Binding sites with bad pocket sores in the 

unbound conformation and good pocket scores in the bound conformation were defined 

as cryptic sites, whereas those with good pocket scores in both conformations were 

defined as binding pockets (Tables S1 and S4). More details and methods are available 

in SI Text. The web server for predicting cryptic binding sites is available at http://

salilab.org/cryptosite. !
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Figures!

 

Figure 1: (A) Examples of a pocket and cryptic site in p38 MAP kinase. The nucleotide-binding 

site of the p38 MAP kinase is a pocket visible in both bound (holo; blue ribbon; PDB ID: 2zb1) 

and unbound (apo; grey ribbon; PDB ID: 2npq) conformations. The ligand, biphenyl amide 

inhibitor, is depicted as blue spheres. On the other hand, the site in the C-lobe domain that 

binds octyglucoside lipid (green spheres) becomes a visible pocket only after the movement of 

the -helix at the left of the structure (marked with the double-headed arrow). The small 

molecules are shown as they bind in the holo structures. UCSF Chimera software was used for 

the visualization (Pettersen et al., 2004). (B) Flowchart summarizing the analyses in this study 

(Materials and Methods, SI Text).!

!
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Figure 2: Comparison of cryptic sites, binding pockets, and random concave surface patches. 

(A-C) In each panel, the distribution of the feature values of binding site residues are shown as 

violin plots for cryptic sites (green), binding pockets (blue), and random concave surface 

patches (grey). The edges between distributions denote P-values based on Kolmogorov-

Smirnov two-sample statistics; numbers/letters in red are statistically significant (P < 0.05). (D) 

For a few selected residue-based features, the distributions of their values for the cryptic sites 

and the rest of residues in our dataset are compared. The bars denote statistical significance 

(P-value) from the two-sample Kologorov-Smirnov non-equality test (Table S2 for the P-values 

of other features). !
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Figure 3: The accuracy of our predictive model or Fpocket is measured as the area under the 

receiver-operating characteristic (ROC) curve based on predictions on all proteins in the test set 

(A), as well as based on sensitivity (true positive rate) and specificity (true negative rate) values 

from predictions on individual proteins (B). (A) Only ~45% of cryptic site residues were detected 

by Fpocket; the area under the ROC curve was calculated by connecting the end of the ROC 

curve and the upper-right corner as a straight line. (B) Sensitivities and specificities were 

determined for each protein in our test set (larger data points with black circle) and training set 

(smaller data points) based on leave-one-out cross-validation. The classification of the residues 

is based on the score threshold of 0.1. The two empty circles in the lower third of the graph 

denote two failed predictions of cryptic sites in proteins with more than one cryptic site. (C) The 

cryptic sites from our dataset are marked by green rectangles, and the computed scores that a 
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residue is in a cryptic site are shown on the blue-to-red color scale. The small molecules that 

bind into the known cryptic sites are superposed from the alignment to the bound conformations 

and represented as yellow sticks. The predictive model also identifies additional binding sites in 

the structure of exportin-1 that are known binding sites for other proteins (for example, Ran 

represented as white ribbon), or parts of the same protein (grey loop) that bind to a site after a 

conformational change (all examples are marked with green arrows). !

!
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Figure 4: Cryptic binding sites are predicted to expand the size of the druggable proteome. The 

percentage of proteins for which no binding sites (grey), only cryptic sites (green), only binding 

pockets (blue), and both cryptic sites and binding pockets (orange) were predicted for all human 

proteins with known structure (left pie chart) and for a subset of disease-associated proteins 

(right pie chart). Shown are the results of the fast version of our predictive model that does not 

take into account features based on molecular dynamics simulations. !

!
!
!

�146

36.5%

37.7% 19.4%

6.4%

Cryptic sites only

Pockets
&

cryptic sites

Pockets only

Undruggable

Human PDB
(N = 4,421)

38.0%

34.5% 22.3%

5.2%

Disease-associated
human PDB (N = 1,420)



Figure 5: Cryptic binding sites in PTP1B. Ribbon (left and center) and surface (right) 

representations of the PTP1B structure (PDB ID: 2f6v) are colored based on the cryptic site 

score as in Figure 3C. Residues with definitive chemical shift changes (||) upon ABDF labeling 

(green) cluster around the cryptic and ABDF binding sites, whereas residues whose chemical 

shifts definitively do not change (purple) are more distal. The panel also shows positions and 

average volumes of the pockets (grey densities) that are at least partially open more than 50% 

of the time, as observed in the molecular dynamics simulation at 300 K. !
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Figure S1: (A) Histogram of all-atom binding site RMSDs between apo and holo conformations. 

(B) Structural similarity (all-atom binding site RMSD) between cryptic site structures bound to at 

least 5 different ligands. Boxes, whiskers, and red lines denote 10th and 90th percentile, 5th and 

95th percentile, and the median of the distribution. The similarities between unbound and bound 

conformations from our dataset are denoted by star symbols. The degree of structural similarity 

between bound cryptic sites (C) or binding pockets (D) is independent of the 2D structural 

similarity between the bound ligands. Linear path fingerprints (FP2) and Open Babel package 

were used to calculate the Tanimoto distances. The red line denotes linear fit, with a slope 

parameter that is not significantly different (R-value < 0.01) from the horizontal regression.!

!
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Figure S2: Comparison of small molecule-based features between ligands in cryptic sites 

(green half-violin plots), and ligands in pockets (blue-half violin plots). (A) The distributions of 

ligand similarities to biological compounds collected from the KEGG database of biological 

processes. (B) Distributions of several ligand descriptors, as determined by Open Babel. (C) 2-

dimensional clustering of ligand and binding site features as well as binding sites identifies 4 

clusters. Two of the clusters are significantly enriched with cryptic sites. One cluster includes 

convex sites with evolutionarily conserved residues and small hydrophilic ligands (cluster 4), 

and another one includes less convex and less conserved sites that bind larger hydrophobic 

ligands (cluster 3). The third cluster contains an equal number of cryptic sites and binding 

pockets that are evolutionarily conserved and bind large hydrophilic ligands (cluster 2). The final 
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Cluster 4: 32 of 46 cryptic sites (P=0.001)

Cluster 3: 19 of 26 cryptic sites (P=0.003)

Cluster 2: 14 of 30 cryptic sites (P=0.500)Cluster 1: 23 of 80 cryptic sites (P=0.003)

C



cluster contains mostly binding pockets that are concave and evolutionarily conserved, and bind 

small and hydrophobic ligands (cluster 1).!

!
!
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Figure S3: (A) Search for the most accurate machine-learning algorithm, data pre-processing 

method, and the corresponding set of parameters. The most accurate predictive model and its 

parameter values were selected by maximizing the sensitivity (true-positive rate) and the 

specificity (true-negative rate) of cryptic site residue classification, using leave-one-out cross 

validation on the training set of proteins with 84 cryptic binding sites. The arrow points to the 

most accurate algorithm. (B) Feature selection using greedy-forward approach. Feature 

�151

SVM (poly) 
SVM (linear) 
Naive Bayes
K-mean
Other

True-positive rate

Tr
ue

-n
eg

at
iv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(CVX_mean_450)

BMI
BMI + n(BMI)

ALL

CNC_mean_300
SQC

DST
CN5_std_450

CNs_300
Hn
CN5_std_450
CN5_std_300
SQCn
CN5_std_350
CNCn

In

BMI
BMI + n(BMI)
ALL

AUC
0.800.780.760.740.720.70

A

B

Li
ne

ar
 k

er
ne

l -
 S

VM

Q
ua

dr
at

ic
 k

er
ne

l -
 S

VM

CNC_mean_300

D2S
SQCn
PCKn

Hn
CN5_std_450
CN5_std_300
CN5_std_350

CNC

CN5_mean_500

σ400SAS14_std_400

Bn
CHRn

In
CNC_std_300

SASn

PRT_std_450

SQC

CNS_300



selection approach was used for two versions of SVMs, one with a quadratic kernel function 

(blue) and another one with a linear kernel function (red). Due to the higher accuracy, only the 

SVM with a quadratic kernel function was used here. See SI Table 3 for a description of feature 

labels.!

!
!
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Figure S4: Examples of accurate predictions, shown in surface and ribbon representation of 

apo conformations. Ligands (yellow sticks) are superposed from the alignments with the holo 

conformations. (A) 94% of cryptic site residues are predicted accurately in the -lactoglobulin 
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(PDB ID: 1bsq). To demonstrate the ability of our method to correctly identify the cryptic binding 

site residues, a few residues on -strands are shown as sticks. These residues are predicted as 

a cryptic site with high scores and correctly point towards the binding site, whereas the 

neighboring residues on the -strands that point in the other direction have low scores (the same 

pattern is observed in other proteins where a cryptic binding site includes -strands). (B) Binding 

to the cryptic site of glutamate receptor 2 requires domain opening (indicated by a black double-

headed arrow). The ribbon representation shows both the apo (PDB ID: 1my1) and holo 

conformations (in grey; PDB ID: 1ftl). (C) Binding into the cryptic site of MAP p38 kinase 

requires -helix translocation (Fig. 1). (D) Cryptic site residues that are not solvent accessible in 

the apo conformation of TEM-1 -lactamase are correctly predicted (red patches on -strands). (E) 

Cryptic site in Bcl-XL is located at the protein-protein interface. The predictive model predicts 

another cryptic site at the interface of the Bcl-XL core and its terminal -helix (denoted by green 

arrow). Proteins are shown in scale.!

!
!
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Figure S5: Six inaccurately predicted cryptic sites (marked by red ovals). To characterize the 

failures, we plot the values of the two most informative features for each cryptic site residue 

(black bars) as well as SVM scores from the prediction (red bars). Negative values denote 
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values that disfavor identification of cryptic site residues. (A) The cryptic site in Ca-dependent 

ATPase requires large conformational changes (denoted by black arrows and the holo 

conformation represented by grey trace), not sampled by our molecular dynamics simulations 

(PDB ID: 1su4). (B) Cryptic site scores for the binding site residues in glycogen phosphorylase 

B are higher then in the rest of the protein, but below our threshold (PDB ID: 1a8i). (C) Similarly 

as in B, the cryptic binding site residues in tyrosin phosphatase 1B were predicted with scores 

higher than those for most of the protein, but are below our threshold for most of the binding site 

residues (PDB ID: 2f6v). The predictive model identifies two additional cryptic sites, one that is a 

known active site and an unannotated site next to the active site. (D) The panel shows the 

structure of HCV RNA polymerase (PDB ID: 2brk). The red patch on the right to the cryptic 

binding site is also a known cryptic site, and was predicted correctly. Two more failures include a 

cryptic site in pyruvate kinase (PDB ID: 1pkl) (E) and the third cryptic site in HCV RNA 

polymerase (PDB ID: 3cj0) (F). The last panel (G) shows an example of an accurate cryptic site 

prediction.!

!
!
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!

Figure S6: (A) Residues coupled with the active site of PTP1B are shown as green sticks 

(Weinkam et al., 2013). (B) Mass spectra of non-modified (top) and ABDF-modified PTP1B 

(bottom). The difference in mass (196) corresponds to the mass of the ABDF modification (197). 

(C) Many residues in PTP1B surrounding the predicted cryptic site (green surface) and the 

ABDF labeling site, Cys 121 (yellow surface), are unassigned due to broadened resonances 

(red spheres) (Meier et al., 2002). (D) Overlay of 1H, 15N TROSY HSQC spectra of PTP1B with 
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(black) and without (red) labeling by ABDF. PTP1B residues with no significant (E) or significant 

(F) chemical shift perturbations upon ABDF binding.  Resonances are colored using the same 

color scheme as in D. 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Supporting information!

SI TEXT!

The data set generation. We started by collecting all crystal structure PDB IDs of protein-

ligand complexes from Binding MOAD (Benson et al., 2008) (downloaded on 2-27-2012); we 

only considered as ligands organic small molecules of biological relevance, excluding water and 

other solvent molecules, counterions, buffer components, metal ions, and crystallographic 

additives. We defined a binding site by selecting residues with at least one atom less than 5 Å 

away from any of the ligand atoms. Next, we searched for the structures of the same protein 

without any ligands at a given binding site, following these steps and criteria:!

(i) we aligned all protein chain sequences from the Binding MOAD database to all protein 

chain sequences from PDB that are longer than 50 residues using the blastp algorithm 

(Altschul et al., 1990), and then selected pairs with 100% sequence identity as apo-holo pair 

candidates (504,647 pairs); !

(ii) we removed pairs for which either of the two structures was determined at worse than 2.5 

Å resolution;!

(iii) we removed pairs with ligands in apo structures that have at least one atom closer than 

10 Å to any atom in the holo binding site;!

(iv) we grouped apo-holo pairs with identical sequences into clusters and for each cluster 

selected a single pair with the lowest all-atom binding site RMSD as the cluster 

representative (this resulted in 46,436 pairs);!

(v) we further removed apo structures that contain other proteins, peptides, or nucleic acids 

bound within 10 Å from the ligand of interest, superimposed from the holo structure;!

(vi)!we removed apo-holo pairs that contained multiple copies of a ligand at the holo binding 

site, that contained amino acid ligands, or pairs whose holo binding sites contained less 

than 5 residues (21,928 pairs remained);!

�159



(vii)! we removed apo-holo pairs with sequence gaps in apo structures longer than 3 

residues or less than 5 Å away from the binding site;!

(viii) we grouped protein sequences into clusters of 40% protein sequence identity, and then 

further split these clusters into groups of proteins that bind similar ligands (we defined ligand 

similarity by the Tanimoto distance using linear path fingerprints (FP2) from Open Babel 

(O'Boyle et al., 2011), followed by selecting the pair with the lowest all-atom RMSD from 

each group as the cluster representative;!

(ix)!and finally, we removed all apo-holo pairs with C-RMSD > 10 Å. This filtering resulted in 

a set of 4,766 apo-holo structure pairs.!

We next utilized two pocket detection algorithms, ConCavity (Capra et al., 2009) and Fpocket 

(Le Guilloux et al., 2009), to evaluate the “goodness” of pockets in the apo and holo structures. 

The output of the Fpocket algorithm is a list of pockets with corresponding druggability scores, 

with each pocket defined as a set of coordinates depicting centers of fitting (alpha) spheres. We 

define the Fpocket residue pocket score as the maximum druggability score among the alpha 

spheres within 5 Å of the residue, or 0 if there are no alpha spheres (and hence pockets) in its 

neighbourhood. In contrast, ConCavity already provides a score on a per-residue basis, which 

we define as the ConCavity residue pocket score without additional processing. We use both 

Fpocket and ConCavity residue pocket scores to define cryptic sites and binding pockets. 

Cryptic sites are defined as sites with an average residue pocket score of less than 0.1 in the 

apo form and more than 0.4 in the holo form. Similarly, we defined binding pockets as binding 

sites with an average residue pocket score of more than 0.4 for the apo and holo forms, and Qi 

(Weinkam et al., 2013) between the apo and holo forms larger than 0.95. Such filtering resulted 

in a dataset of 468 apo-holo pairs with cryptic sites (190 unique apo structures), and 839 apo-

holo pairs with binding pockets (191 unique apo structures).!
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We had to manually inspect both datasets of binding sites because of the high false-positive 

rate of pocket detection algorithms (the state-of-the-art algorithms are only ~70% sensitive 

(Schmidtke and Barril, 2010; Schmidtke et al., 2010) when applied to the unbound conformation 

of a protein), which resulted in the final datasets of 89 cryptic sites and 92 binding pocket apo-

holo pairs. 10 randomly chosen cryptic apo-holo pairs were put aside for testing purposes. Also 

for testing purposes, we additionally selected 4 proteins with known cryptic sites from the 

literature (exportin-1, TEM1 -lactamse, IL-2, and Bcl-X) (Tables S1 and S4).  !

In summary, the sequence similarity between a pair of two apo structures never exceeds 40%, 

except for 7 proteins that contain 2 different cryptic sites each, and a protein that contained 3 

different cryptic sites. Moreover, out of 79 proteins in total, we obtained 59 groups of proteins 

with putative unique folds based on protein structure alignment (TM-align and TM-score 

thresholds of more than 0.7) (Xu and Zhang, 2010). Similarly, we retrieved a non-redundant 

dataset of 92 protein structures with binding pockets; none of the protein sequences is more 

than 40% identical to any other sequence, and protein structure alignment suggests 69 putative 

folds. !

!
Pre-processing PDB files. Many PDB files contain more than 1 macromolecule (ie, a 

biologically relevant assembly of multiple macromolecules or an assembly of macromolecules 

interacting through crystallographic contacts), non-specific solvent molecules, regions of 

missing density, and modified protein sequences (eg, truncated loops or termini). To more 

accurately assess structural properties (for example, an estimate of surface area would be 

inaccurate for the residues next to an interacting molecule or a region with a missing density), 

we deleted from the PDB file all macromolecules except the macromolecule (ie, chain) of 

interest. Furthermore, we filled the gaps in the crystal structures by aligning a PDB structure to 

the corresponding SEQRES sequence, and then used the loop-modeling routine in Modeller 
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(Sali and Blundell, 1993) to build a loop conformation while keeping the rest of the protein 

structure rigid. We built 20 models per chain, and kept the one with the lowest DOPE score 

(Shen and Sali, 2006) for further analyses.!

!
Molecular dynamics simulations. Standard molecular dynamics simulations are 

computationally expensive, which makes them impractical for studying the dynamics of the large 

number of proteins in our dataset. In contrast, AllosMod simulates dynamics more efficiently, by 

relying on a simplified energy landscape whose minimum is defined by the input native structure 

(Weinkam et al., 2013). We initialized 50 simulations from the randomized apo crystal structure 

coordinates, each one 6 ns long. The 50 simulations include 10 repeats at 5 different 

temperatures (300 K, 350 K, 400 K, 450 K, and 500 K), with 3 ps time steps – resulting in a total 

of 100,000 snapshot conformations.!

!
Feature design. In total, we designed a set of 105 residue-based features that can be grouped 

into 3 categories: (i) features that describe protein sequence conservation, protein shape, and 

energetics, (ii) features that describe sequence conservation, shape, and energetics of 

neighborhood residues, and (iii) features derived from molecular dynamics simulations 

describing flexibility and dynamics of residues (Table S2). Protein shape calculations include 

protrusion, compactness, convexity, rigidity, hydrophobicity (using Wimley-White solvent model), 

and charge density, as described previously (Rossi et al., 2006). Residue surface area is 

defined as a sum of surface areas of individual atoms, which was determined by the CHASA 

algorithm (default probe radius) (Fleming et al., 2005) and Modeller (probe radius of 1.4 Å and 

3.0 Å). We define residue packing of a given residue as the number of atoms of other residues 

within 4 Å from any atom in the residue, divided by the number of atoms in the residue. The 

number of neighbors is defined as the number of different residues within the same distance. 
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Distance to the surface is defined as the smallest distance between any atom of a given residue 

and the closest atom with surface area > 2 Å2. Pocket score is derived from pocket prediction by 

Fpocket as explained above (Data set generation section).!

Sequence conservation of a given sequence position is defined as the Shannon’s entropy of 

reweighted amino-acid frequency counts in a multiple sequence alignment (Morcos et al., 2011). 

Multiple sequence alignments were obtained by aligning an individual apo sequence against the 

entire Uniprot (UniProt, 2013, 2014) database using the blastp algorithm. Clusters of 

homologous sequences above the 80% sequence identity threshold (used to reweight the 

amino-acid frequency counts) were calculated using the usearch algorithm (Edgar, 2010). !

Features derived from molecular dynamics simulations include the mean and standard deviation 

of the following residue features: pairwise distance similarity metric (Qi), surface exposed area 

(with probe radius of 1.4 Å and 3.0 Å), protrusion, convexity, and pocket score. Additionally, we 

also calculated the percentage of snapshots with a given residue pocket score higher than 0.4, 

as well as the mean and standard deviation of the residue pocket scores above the 95th 

percentile. !

!
Machine learning. To predict whether a given residue belongs to a cryptic site, we utilized 

Scikit-Learn and PyBrain implementations (Pedregosa et al., 2011; Schaul et al., 2010) of 

several different supervised machine-learning algorithms. We varied many parameters 

associated with a given algorithm (eg, different kernel functions, a range of different values for 

penalty parameters, different penalty functions, etc.). Furthermore, we mapped the accuracy as 

a function of scaling the dataset or changing class weights to take into account the unbalanced 

dataset (only ~5% of residues in our dataset are in cryptic sites). The residue classification 

accuracy of each combination of scaling, algorithm, and the corresponding set of parameters 

was evaluated using the confusion matrix with leave-one-out cross-validation (Fig. S3A). The 
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SVM algorithm with quadratic kernel function, scaling, and penalty parameter C, kernel 

coefficient gamma, and independent term in kernel function coef0 of 0.158, 0.0, 2.154, 

respectively, was found to perform most accurately. Furthermore, we selected the subset of 19 

features that gives the highest accuracy using a greedy-forward approach, evaluating area 

under the ROC curve and leave-one-out cross-validation (Fig. S3B). The web server for 

predicting cryptic binding sites is available at http://salilab.org/cryptosite. On average, it takes 

less than 2 days to predict cryptic sites in a protein of ~300 residues (most of this time is spent 

on molecular dynamics simulations by AllosMod).!

!
Estimating the size of the druggable proteome. To estimate the size of the druggable 

proteome, we first retrieved a subset of 11,201 human protein structures from the PDB longer 

than 50 residues and with X-ray resolution better than 3.5 Å. For each one of these structures, 

we predicted cryptic sites by using our algorithm without residue-based features that require 

time-consuming AllosMod simulations. A cryptic site is predicted when at least 5 adjacent 

residues have the cryptic site score larger than 0.056; two residues are adjacent when any of 

their atoms are within 3.5 Å of each other. A binding pocket is predicted equivalently, but using 

the Fpocket-based pocket score with a threshold of 0.5. The two thresholds were chosen to 

approximately match the sensitivity and specificity of cryptic site and binding pocket prediction 

(true positive rates of 0.51 and 0.57, and false positive rates of 0.22 and 0.21 for cryptic sites 

and binding pockets, respectively (Schmidtke and Barril, 2010)). To estimate the number of 

druggable disease-associated proteins, we first retrieved a dataset of disease-associated genes 

from OMIM morbidmap (3,329 genes) (Hamosh et al., 2005). Druggable disease-associated 

proteins are defined as proteins of known structure that are encoded by these genes and have 

at least one predicted cryptic site or binding pocket; for proteins with more than one determined 
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structure, we only include into our analysis the structure with the highest number of predicted 

cryptic sites or pockets.!

!
Protein expression and purification. The short form of the catalytic domain (residues 1-298) 

of wild-type human PTP1B was cloned into pET24b. BL21 E. coli cells were transformed with 

this construct. 5 mL overnight cultures of the transformed cells were diluted into 1 L of M9 

minimal medium with 1 g/L 15NH4Cl and 35 μg/mL kanamycin, and grown at 37ºC until 

absorbance at 600 nm reached 0.95 (about 7 hours). PTP1B expression was induced by adding 

isopropyl-β-D-thiogalactoside (IPTG) to a concentration of 0.5 mM and incubating for 16 hours 

at 18ºC. Cell pellets were harvested by centrifugation and stored at -80ºC.!

! For purification, cell pellets were resuspended in lysis buffer (100 mM MES pH 6.5, 1 

mM EDTA, 1 mM DTT) (Puius et al., 1997) and lysed by homogenization with an Emulsiflex C3 

machine. After centrifugation of the lysate, the supernatant was filtered and loaded onto a 

Sepharase (SP) cation exchange column equilibrated in lysis buffer. The column was run over a 

gradient from 0-1 M NaCl; PTP1B eluted around 200 mM NaCl. Those fractions were pooled, 

concentrated by centrifugation, and loaded onto a Superdex 200 (S200) size-exclusion column 

equilibrated in 100 mM MES pH 6.5, 1 mM EDTA, 1 mM DTT, 200 mM NaCl. PTP1B-containing 

fractions were pooled, filtered, and dialysed at 4ºC for 1-2 hours into NMR buffer (20 mM Bis-

Tris propane, 25 mM NaCl, 3mM DTT, 0.2 mM EDTA, pH 6.5) (Whittier et al., 2013). The protein 

sample was then concentrated via centrifugation to 230 μM.!

!
Covalent labeling of PTP1B with ABDF. The protein sample was diluted to 25 μM in NMR 

buffer without DTT. We then added 500 μM ABDF for 1 hour at room temperature. Next, the 

unreacted ABDF was removed and the protein was exchanged back into NMR buffer with DTT 
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using a PD10 desalting column. Finally, the protein was concentrated via centrifugation to 110 

μM.!

!
TROSY NMR data acquisition. We prepared NMR samples with 7% D2O and 200 and 110 μM 

of the apo and ABDF-labeled protein species, respectively.  1H, 15N TROSY HSQC spectra were 

collected with a Bruker 800 MHz magnet at 293 K for >5 hours and >7 hours, respectively.  

Although many resonances were too broadened to confidently match with published 

assignments (Meier et al., 2002) because we used undeuterated protein in contrast to previous 

work (Krishnan et al., 2014; Meier et al., 2002; Whittier et al., 2013), we were able to confidently 

monitor the resonances of several residues between the two spectra (Fig. 5 and S6).!
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