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Summary

We consider statistical inference for potentially heterogeneous patterns of association char-

acterizing the expression of bio-molecular pathways across different biologic conditions. We

discuss a modeling approach based on Gaussian directed acyclic graphs and provide com-

putational and methodological details needed for posterior inference. Our application finds

motivation in reverse phase protein array data from a study on acute myeloid leukemia,

where interest centers on contrasting refractory vs. relapsed patients. We illustrate the pro-

posed method through both synthetic and case study data.
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1. INTRODUCTION

In “omics” studies, data often manifests as an n×pmatrix Y , which forms the empirical basis

for the exploration of scientific hypotheses relating a set of p genes, metabolites, proteins, etc.

to an underlying biological process. When inference focuses on molecular interactions, bio-

melecular pathways are often interpreted as describing marginal or conditional independence

restrictions, compatible with a data generating mechanism for Y . See for example: Dobra

and others 2004 or Telesca and others 2012. More precisely, the joint sampling distribution

of Y is assumed to factor according to stochastic restrictions encoded in a graphical model G

(Lauritzen, 1996) and inference about molecular pathways is interpreted as inference about

a graph G supporting the observed data Y .

These biomedical studies are often designed to contrast characteristics of population sub-

groups. In this manuscript we consider the problem of contrasting differential association

structures characterizing labeled subsets of a data matrix Y . Our application finds motiva-

tion in a proteomics study of Acute Myeloid Leukemia (AML) patients (Tibes and others

2006). This study targets a specific proteomic pathway, thought to be associated with dis-

ease progression. Interest centers on understanding what components of this pathway be-

have differently when one compares refractory patients to patients experiencing relapse after

standard treatment. Figure 1 shows the targeted protein expression level for AML patients,

measured using a high-throughput proteomic technology called reverse phase protein array

(RPPA) (Tibes and others , 2006), along with the sample partial correlation matrix of the

expression levels for both refectory and relapsed patients in the upper and lower triangle

respectively. The two sample partial correlation mostly agree with each other, yet there are

clear discrepancies that may signify differing interactions mechanism.

There is a large body of literature focused on the estimation of a single graphical model.

However, limited attention has been given to the estimation of a collection of graphs ac-
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counting for data heterogeneity. Flexible models for heterogeneous association have been

introduced by Ickstadt and others (2010) and Rodriguez and others (2011). These models

focus on relaxing the assumption of multivariate Gaussianity, rather then testing specific

contrasts in biological pathways. More in line with our inferential goals are the procedures

introduced by Guo and others (2011) and Danaher and others (2011). Both manuscripts

consider regularized estimation of inverse covariance matrices, using hierarchical extensions

of the graphical lasso, originally proposed by Friedman and others (2008). The proposed

procedures are shown to be scalable to large undirected graphs, with estimators that enjoy

asymptotic consistency.

Beyond statistical exploration of structured dependence, proteomics studies, like the one

motivating this manuscript, are inherently designed to test statistical hypotheses that go

beyond simpler hypothesis generation exercises. This need finds available statistical tech-

niques to be wanting in several directions. First, substantive understanding of biomolecular

interactions is often based on directed graphs. Therefore, statistical inference should consider

more general classes of graphical models, that go beyond the estimation of structural zeros

in inverse covariances. Second, even in the simplified setting of undirected graphs, the use

of lasso-based estimation techniques, beyond exploratory analyses, does raise methodologi-

cal and theoretical concerns regarding multiplicity correction and error estimation (Kyung

and others , 2010). Third, gene and protein interactions have been studied for decades, with

comprehensive databases providing the opportunity for informed priors on model spaces

(The Gene Ontology Consortium, 2000, http://geneontology.org; The Kyoto Encyclo-

pedia of Genes and Genomes http://genome.jp/kegg/; the BioCarta pathways, http:

//biocarta.com/genes/index/asp; etc.).

This manuscript addresses these issues considering a model of differential interaction based

on Directed Acyclic Graphs (DAGs). A DAG is a directed graph with no directed cycles,
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encoding Markov properties by d-separation (Pearl, 1986, 2000). We discuss how scientific

knowledge about pathways known a priori can be incorporated in the inference through

different classes of prior probabilities. Finally, we propose inference based on Bayesian model

determination through decision theoretic principles aimed at controlling false discoveries.

This paper is structured as follows. In Section 2 we propose a Gaussian Differential DAG

model followed by computational detail in Section 3. We illustrate the application of the

proposed method with a simulated example and an application to the Reverse Phase Protein

Array data. We conclude the manuscript with a critical discussion in Section 5.

2. A Model for Differential Interactions

We consider data in the form of an n× p matrix Y = [yij], where the rows of Y are assumed

to be indexed by two known sample subgroups and are labelled by s = (s1, ..., sn)
′, with

si ∈ {0, 1}. We refer to the group indexed with si = 0 as the baseline group and the

ones indexed with si = 1 as the differential group. Within each group, we assume that the

joint sampling distribution factors according to a DAG G(k) = {V, E (k)}, (k = 0, 1); where

V indexes the set of p genes or proteins and E (k) ⊆ {(vi → vj), vℓ ∈ V} is the set of

edges characterizing G(k). Finally, the strength of conditional dependence is indexed by two

parameter vectors β and γ.

Letting G = {G(k), k = 0, 1} denote the collection of graphs associated with Y , the

proposed joint probability model is constructed as follows:

p(Y, α,β,γ, σ2,G | s) = p(Y | α,β,γ, σ2,G; s)
︸ ︷︷ ︸

2.1

p(α,β,γ | σ2,G; s) p(σ2 | G; s)
︸ ︷︷ ︸

2.2

p(G | s)
︸ ︷︷ ︸

2.3

. (2.1)

The model includes two separate graphs, G(0) = {V, E (0)} for the baseline sample (si = 0) and

G(1) = {V, E (1)} for the differential sample (si = 1). Our inference will focus on identifying a

set of differential interactions partially indexed by the set {(E (0))c ∩ E (1)} ∪ {E (0) ∩ (E (1))c}.
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Each sub model is discussed in individual sections, as indicated by the under-braces.

2.1 Sampling model: p(Y | β,γ,G; s)

We assume that Y can be subdivided into two groups Y (0) and Y (1) each of size n0 and n1,

where n0+n1 = n. Given the graphical structures G(0) and G(1), let pak(j) denote the parent

nodes of vertex j, induced by graph G(k), (k = 0, 1), and Yj = (y1j , . . . , ynj)
T , denote the jth

column of Y , (j = 1, . . . , p). The joint likelihood is defined as

p(Y | ·) =

1∏

k=0

p
∏

j

p
(

Y
(k)
j | Y

(k)
pak(j)

,G(k), ·
)

=

1∏

k=0

p
∏

j

nk∏

i=1

p
(

y
(k)
ij | Y

(k)
pak(j)

,G(k), ·
)

.

In the multivariate Gaussian framework, we can express each of p
(

y
(k)
ij | Y

(k)
pak(j)

,G(k), ·
)

as a

conditional linear model of the form

y
(k)
ij | Y

(k)
pak(j)

, αj ,βj ,γj, σ
2
j ,G

(k) ∼ N



αj +
∑

l∈pak(j)

y
(k)
il (βlj + γlj I{k = 1}) , σ2

j



 , (2.2)

for i = 1, . . . , n, j = 1, . . . , p, and k = 0, 1. Here αj parametrizes a conditional mean value

and σ2
j a conditional variance. In the foregoing formulation, βlj indexes the strength of

association between y
(0)
il and y

(0)
ij , with the convention βlj = 0 when (l → j) /∈ E0. The

strength of association between y
(1)
il and y

(1)
ij is defined by βlj + γlj, with (βlj + γlj) = 0

whenever (l → j) /∈ E (1). In this setting, the parameter γlj becomes the main quantity

of interest as it directly informs the differences in association between subgroup random

quantities.

Throughout the manuscript we will refer to β and γ to index full sets of interaction

coefficients and a will use a subscript to denote their column subsets. Details about how γ

is used to index the differences between E (0) and E (1) and final inference about differential

interactions are discussed in Section 2.2.
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2.2 Priors on continuous parameters α, β, γ and σ2
j

The strength of association between random quantities in the baseline group is parametrized

through the β coefficients. Differential parameters γ distinguish the strength of association

between the baseline and differential groups. We explicitly address two inferential questions.

First, are there differences in patterns of conditional dependence between baseline and dif-

ferential groups? This question relates to the identification of the set {(E (0))c∩E (1)}∪{E (0)∩

(E (1))c}. Second, when considering edges that are shared between both baseline and dif-

ferential groups, are there significant differences in the way these edges define conditional

dependence patters? Here, we consider the set (E (0)∩E (1)), but we are specifically interested

in the size of γlj.

We encode these inferential goals directly in the prior. In particular, it is convenient to

define latent trinary indicators zlj ∈ {0, 1, 2} distinguishing between three cases: (1) zlj = 0,

whenever the association implied by the edge (l → j) is invariant with group label; (2)

zlj = 1, whenever (l → j) ∈ E (0), but (l → j) /∈ E (1); and (3) zlj = 2, whenever the strength

of association implied by (l → j) varies with group label, beyond the scenario of case (2).

Note that G(0) and Z = [zlj ] together deterministically determine G(1). However, Z codes

information beyond topological differences between G(0) and G(1) by also indicating common

edges with varying strength across conditions.

For any configuration of G(0) and Z (implying also a configuration of G(1)), and for all

j = 1, ..., p; let Ỹj0 denote the matrix including all parents of Yj in G
(0). Similarly, let Ỹj1

denote the matrix including all parents of Yj in G
(1), for which zℓj = 2. We define a differential

autoregression matrix X̃j s.t.

X̃j =






1n0 Ỹ
(0)
j0 0

1n1 Ỹ
(1)
j0 Ỹ

(1)
j1




 , with associated coefficient vector BT

j = (αj ,β
T
j ,γ

T
j ).
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Using this notation, the conditional likelihood in (2.2) is represented as

Yj | X̃j ,G0,Z,Bj, σ
2
j ∼ N

(

X̃jBj, σ
2
j In

)

.

A conditional Zellner g-prior (Zellner, 1986) is then defined as

Bj | G0,Z, σ
2
j ∼ N

(

0, ωjσ
2
j

(

X̃T
j X̃j

)−1
)

.

Different choices of ωj have been proposed in the model selection literature (Celeux and

others , 2012). We consider the benchmark prior ωj = max(n, p̃2j ) (Fernandez and others ,

2001), where p̃j is the number of columns in X̃j. Alternatively, data-dependent choices have

been discussed in Consonni and La Rocca (2012).

Given this parametrization, posterior inference over differential patterns of interaction

focuses on p(γlj | Y ), as this quantity is directly informative about the size of differences in

partial correlation and about the significance of such differences, as measured by p(γlj 6= 0 |

Y ). Finally, dispersions σ2
j , j = {1, . . . , p}, are modeled independently as a conjugate Inverse

Gamma priors with hyper parameters
δj
2
and

τj
2
, so that σ2

j ∼ IG
(
δj
2
,
τj
2

)

.

2.3 Model space priors

Let G⋆ = {V, E⋆}, be a prior graph derived through direct expert opinion or constructed

using public databases (for example, a DAG derived through Gene Ontology, http://

genontology.org). In order to define a prior centered on G⋆, we follow Telesca and oth-

ers (2012) and define an exponentially decaying function centered around the prior graph

G⋆, so that p(G(k) | ψ; G⋆) ∝ ψd(G
(k),G⋆), ψ ∈ [0, 1]; where the graph distance function is

defined as d(G(k),G⋆) = |E (k)c ∩ E⋆| + δ|E (k) ∩ E⋆c|, δ > 1. This prior depends on inclusion

probabilities ψ, on which we place a hierarchical beta(aψ, bψ) prior, as suggests in Scott and

Berger (2006) to control for error control in the multiple comparison problem. Marginaliz-

ing over ψ the model space prior becomes p
(
G(k) | G⋆

)
∝ B(aψ + d(G(k),G⋆), bψ)/B(aψ, bψ),
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which is strictly decaying function with respect to d(G(k),G⋆). Given the prior graph G⋆, we

model G(0) and G(1) as partially exchangeable, thus we define the overall model space prior

as p
(
G(0),G(1) | ψ; G⋆

)
= p

(
G(0) | ψ; G⋆

)
p
(
G(1) | ψ; G⋆

)
. We note that this prior becomes

a simple sparsity prior when E⋆ is empty, making it useful for de-novo analyses. Our simula-

tion (see supplement) do however outline the advantage of partially informative model space

priors, even in the context of partial misspecification.

3. Posterior Simulation

To obtain draws from the posterior distribution p(α,β,γ, σ2,G(1),G(0) | Y ), we use a Gibbs

sampling algorithm similar to Smith and Kohn (1996). with slight modification in the pro-

posal strategy. The conditionally conjugate structure of priors and likelihood allows for the

computation of models marginal likelihood (see appendix D for details) and efficient transi-

tions in the model space (Eklund and Karlsson, 2007).

The proposed transition sequence extends the method proposed by Fronk and Giudici

(2004). to allow for transitions over the additional structure G(1). We note that, in our for-

mulation, G(1) is fully determined by G(0) and latent components Z. It follows that, systematic

or random scans through the following transition sequence define an ergodic Markov chain

that we can use to sample from posterior quantities of interest. In particular, we consider

the following transition sequence

(i) G(0),Z | G(1) (3.1) (ii) Z | G(0) (3.2)

(iii) σ2 | G(0),Z (3.3) (iv) α,β,γ | G(0),Z, σ2 (3.3)

Details about each transition are explained in the corresponding sections.
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3.1 Updating the baseline DAG G(0)

To update G(0), we select an edge (l → j) at random, i.e., using a uniform distribution over

all possible edges. If (l → j) /∈ E (0) we propose its addition to E (0) (birth); if (l → j) ∈ E (0)

we propose removal (death); if (l ← j) ∈ E (0) but (l → j) /∈ E (0) then propose to remove

(l ← j) and add (l → j) (switch). This transition can be represented through changes in the

differential autoregressive matrix X̃j consistent with the proposed G(0)′ and Z′. Acceptance

of a move is defined as

R(G(0)
,G(0)′) = 1 ∧

p

(

Yj | X̃′
j

)

p
(

G(0)′
)

p
(

Z
′
)

q(G(0) | G(0)′)q
(

Z | Z′
)

p

(

Yj | X̃j

)

p
(

G(0)
)

p
(

Z
)

q(G(0)′ | G(0))q
(

Z′ | Z
)

.

The moves are deterministic except for the case when (l → j) /∈ E (0) but (l → j) ∈ E (1)

where we propose zlj as 0 or 2 with equal probability. For the list of all possible moves see

supplementary table 3 . Computational efficiency can be gained by pre-computing X̃T
j X̃j

and X̃T
j Yj for saturated models. Details are discussed in Eklund and Karlsson (2007).

3.2 Updating the differential model space through latent indicators Z

Given the baseline graph G(0) we propose to move over the differential model space updating

the latent variables zlj. Updates in the state of Z = [zlj ] will also define changes in G(1).

We select an edge (l → j) at random. Depending on the current state of G(0) and zlj , we

consider the proposal transitions summarized in Table 2. The proposed extension on simple

birth, death and switch moves allows for transitions that do not alter the structure of G(1)

but change the magnitude of association (move#4,7). As before, all moves define a new

differential autoregression matrix X̃′
j . The acceptance ratio is defined as

Rz(G
(1)

,G(1)′) = 1 ∧
p

(

Yj | X̃ ′
j

)

p
(

G(1)′
)

q
(

Z | Z′
)

p

(

Yj | X̃j

)

p
(

G(1)
)

q
(

Z′ | Z
)

.
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3.3 Updating σ2, α, β, and γ

Given G(0) and Z, sampling σ2
j from their marginal posterior distributions and α, β, and γ

given σ2 from their conditional posterior distributions is achieved through direct simulation.

Detailed calculations are reported in the supplemental appendix.

3.4 Posterior Summaries

Posterior probabilities p(G | Y ), p(z | Y ) and corresponding MCMC samples characterize our

knowledge about baseline and differential interactions in light of the data. Based on these

quantities, the main inferential goal is to select representative baseline and differential graphs,

say G(0)∗ and G(1)∗. While posterior probabilities do summarize evidence about interaction

structures, selecting a point estimate in these model spaces requires further consideration.

Given a joint model on edge and parameter inclusion probabilities, in the Bayesian frame-

work, selection of point estimators for interaction structures G(0) and G(1) usually translates

into the appropriate definition of a cutoff value for posterior inclusion probabilities (Scott

and Berger, 2006; Müller and others , 2006). A cutoff threshold is often determined in order

to ensure optimization of a chosen loss function.

An alternative operational strategy is to select a point estimator, on the basis of multiple

comparison arguments. An often used error rate is the false discovery rate (FDR) (Benjamini

and Hochberg, 1995). Rules as discussed in Benjamini and Hochberg (1995) control the fre-

quentist expectation of the error rate across repeat experimention. Several authors chose

instead to control the posterior expectation of the same error rate. See, for example, Newton

(2004). From a Bayesian perspective, Müller and others (2006) illustrate a decision-theoretic

procedure aimed at minimizing the posterior expected false negative rate (FNR), while con-

trolling for the posterior expected false discovery rate (FDR) at a level α. The rest of this

article is based on results obtained under Bayesian FDR control proposed by Müller and
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others (2006). Details, along with simulations, can be found in the supplement. Our studies

show that the procedure controls for empirical FDR and FNR at the specified error rate.

4. CASE STUDY: Acute Myeloid Leukemia

We apply our model to the data from a study of Acute Myeloid Leukemia (AML) ob-

tained using the reverse phase protein arrays (RPPA) (Tibes and others , 2006). RPPA is a

high-throughput proteomic technology that provides a quantification of the expression for

specifically targeted proteins selected from molecular pathways. Our study is based on RPPA

of bone marrow specimens collected from 435 newly diagnosed AML patients; 332 primary

refractory patients and 103 relapsed patients. We will call the refractory patients the baseline

group and the relapsed patients the differential group.

Scientific interest centers on the identification of differential signal transduction pathways

(STPs), which are suspected to contribute to leukemogenesis by perturbing the rates of

proliferation, differentiation, and apoptosis (Kornblau and others , 2006). The objective of

this study is to investigate the difference in interactions of important protein markers related

to AML for the refractory patients and the relapsed patients. We selected 29 proteins in signal

transduction, apoptosis, and cell cycle regulatory pathways and studied their expression

profiles in all 435 samples. An attractive feature of the AML data under study is that the

number of samples (n = 435) is much greater than the number of proteins (p = 29), which

provides an opportunity for principled inference about differential interaction structures on

the basis of a highly structured stochastic system.

The prior signaling network was developed based on published articles from PubMed

searches as well as from the connections map in Signal Transduction Knowledge Environment

( http://www.stke.org ). Other prior distributions on the parameters were selected as vague

as possible to show that it is suitable for initial studies since the likelihood will dominate
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the posterior when the sample size is large. The two parameters of the dispersion parameter

σ2
l where set to 0.5 and 0.5. The prior on ψ is set to Beta(1, p2). We ran our algorithm for

2 million iteration saving every 100th sample while discarding the initial 1 million samples.

For the decision rule we employed the criteria of Bayesian FDR control method proposed

by (Müller and others , 2006) that simultaneously controls for the expected posterior false

discovery rates and false negative rates. We control the expected posterior FDR at 1% for

both baseline and differential associations separately.

Figure 2 is a network representation of the estimated graph in the form of essential graph

(Chickering, 2002) for the refractory and relapsed patients. The bottom three figures show

edges that patients in two conditions agree on, that exists only in the refractory patients and

that exists only in the relapsed patients. A solid line indicates a positive coefficient estimate

and a dotted line indicates a negative coefficient.

While we maintain that our findings are exploratory, we have observed that selected

differential interaction patterns have been confirmed in the literature as potential indicators

of more aggressive forms of AML. For example, we find a the striking differential role of the

YAP protein (Yes associated protein) as a hub node in the relapse sample. This protein plays

a key role in the Hippo pathway, usually associated with the regulation of proliferation and

apoptosis. While the role of Hippo has been established in solid tumors, only recent reports

(Kornblau and others , 2013) associate YAP with differential prognostics in AML.

Figure 3 is the estimated posterior inclusion probability. The figures for the estimated

mixing proportion and the posterior density plot of the coefficients can also be found in

the supplementary materials. A comprehensive bio-medical interpretation of our findings is

perhaps out of the scope or this paper, but it is our hope that our illustration shows the

potential and practical relevance of the proposed method.

To validate our modeling approach, we compared our proposal to a model ignoring sample
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labeling and fitting a Gaussian DAG model without differential interactions. The result

showed that the difference in average log marginal likelihood was 325.19 and the difference

in log conditional predictive ordinate was 75.04, both suggesting strong evidence for the

differential association.

5. DISCUSSION

We proposed a probability model for inference on differential interaction in Gaussian DAGs.

The proposed framework is likely to be particularly useful when primary interest focuses

on potential contrasts characterizing the association structure between known subgroups

of a given sample. Although we worked on a case where there are only two subgroups, the

method is directly generalizable to the case of k subgroups. Monte Carlo studies (supplemen-

tary material) show the model to be robust against prior graph misspecification. Inference

yields well calibrated empirical FDR and FNR scaling to larger graphs and sample sizes. We

evaluated our method analyzing data generated from a synthetic experiment and showed

that our inferences have desirable operative characteristics (see the supplementary materials

for details). The application of the proposed model to the analysis of RPPA data in AML

identified interesting differential regulation patterns, distinguishing refractory from relapsed

patients. While we are well aware that our model belongs to the class of hypothesis gener-

ation tools, we remark that the proposed methodology avoids the use of step-wise analyses

and ad hock penalization choices, providing a principled tool for inference on differential

networks.

Although we avoided all the costly matrix inversion steps in our computation, when

dealing with large and dense graphs, the sheer size of the space to explore could make the

computation challenging. Alternative strategies may be necessary for these large problems.

The proposed framework of differential network inference could be extended beyond the
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multivariate Gaussian distribution. Models space and interaction parameters could, for ex-

ample be applied to the approach of Telesca and others (2012), who show how to incorporate

heavy tails in the observations by the use of a mixture model. As for the case of discrete

and mixed data, the copula Gaussian graphical model framework proposed by Dobra and

Lenkoski (2011) could be easily expanded using a modeling strategy similar to the one pro-

posed in this paper.

Extension beyond DAGs may be desirable in many applied settings. For example, in the

setting of Reciprocal Graphs (Koster, 1996), used in Telesca and others (2011) one may

allow baseline and differential models, to be defined in terms of undirected edges as well

as the directed ones, with the possibility of including cycles and reciprocal relations. We

should also point out that the same idea could of course be applied to undirected graphical

models. While these extension are conceptually trivial, coherent multivariate representation

and computational constraints may require extensive additional work.
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Fig. 1. The observed expression levels of targeted proteins for AML patients quantified using RPPA (left) and a image
plot of the sample partial correlation coefficients for refractory patients in the upper triangle and relapsed patients
in the lower triangle (right).

Extra Edges
CASP9 → YAP, STAT3 → YAP, SRC → YAP, P38 → YAP, FOXO3A→ YAP,RB → YAP,
GSK3→ AKT,PTEN → GSK3, CASP9→ GSK3, BAX → GSK3, BCL2→ BAD
Canceled Edges
NF2 → EGFR, PDK1 → P53, PDK1 → STAT3, BCL2 → PDK1, BCL2 → HER2,
GAB2 → HER2, PDK1 → HER2, P38 → BAD, PRC −BAX, FOXO3A− GAB2

Table 1. The list of differential edges.

G(0) current zlj proposed zlj probability move # type

(i, j) /∈ E(0) zlj = 0 z′lj = 2 1 1 birth

zlj = 2 z′lj = 0 1 2 death

zlj = 0 z′lj = 1 1/2 3 death

z′lj = 2 1/2 4 differential

(i, j) ∈ E(0) zlj = 1 z′lj = 0 1/2 5 birth

z′lj = 2 1/2 6 birth

zlj = 2 z′lj = 0 1/2 7 differential

z′lj = 1 1/2 8 death

Table 2. Proposal transition scheme for exploration of the differential model space to update zlj . The transition
probabilities 1 through 8 include four pairs of moves that are each other’s inverse: (1,2), (3,5), (4,7) and (6,8).
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Fig. 2. Network representation of the estimated protein network for refectory patients and relapsed patients for
associations chosen at α level of 0.01 using the decision criteria of Müller and others (2006) . The positive associations
are shown as a solid line and negative associations are shown as a dotted line. The bottom three plots classify the
edges into three categories: the edges that two groups agree on, the edges that does not exist in the differential graph,
and edges that only exist in the differential graph.
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Fig. 3. Barplot of the estimated edge inclusion probability for the refractory patients (left) and the relapsed patients
(right) for each edge.




