
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Topics in Prediction for Spatially Varying Functional Data

Permalink
https://escholarship.org/uc/item/2v49f7cz

Author
Voloshin, Nir

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2v49f7cz
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Topics in Prediction for Spatially Varying Functional Data

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Applied Statistics

by

Nir Voloshin

December 2024

Dissertation Committee:

Dr. Yehua Li, Chairperson
Dr. Esra Kurum
Dr. Jun Li
Dr. Weixin Yao



Copyright by
Nir Voloshin

2024



The Dissertation of Nir Voloshin is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am deeply grateful to my advisor, Dr. Yehua Li, for his guidance, advice, and patience

throughout my research. This dissertation would not have been possible without your

mentorship, and I sincerely appreciate the time and effort you have invested in me.

I would also like to thank my dissertation and oral exam committee members, Dr.

Weixin Yao, Dr. Esra Kurum, and Dr. Jun Li, for their insightful questions, unwavering

support, and valuable suggestions. To my teachers and mentors, I extend my heartfelt

gratitude for inspiring me to pursue research in Statistics.

Lastly, I want to express my deepest appreciation to my friends and family for

their steadfast support and unconditional love. To my friends, thank you for keeping me

motivated, especially during the most challenging moments. To my family, your encourage-

ment means the world to me, and I am forever indebted to you. In particular, I want to

thank my dad for showing me the beauty of mathematics, which ultimately led me to the

field of Statistics.

iv



This dissertation is dedicated to my parents, Moshe and Anat. I wouldn’t be where

I am today without all your support throughout the years.

v



ABSTRACT OF THE DISSERTATION

Topics in Prediction for Spatially Varying Functional Data

by

Nir Voloshin

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, December 2024

Dr. Yehua Li, Chairperson

The rise in technological developments in collecting data has allowed for variables to be

continuously measured over time and space. This type of data can be characterized as

multivariate spatially varying functional data. The field of Functional Data Analysis (FDA)

consists of different types of models for functional data. Many existing functional regression

models don’t consider the spatial component which could be detrimental to prediction since

there is the possibility of location-specific effects. The main emphasis of this dissertation

is the development of a novel two-step procedure for prediction in Generalized Spatially

Varying Functional Models (GSVFM).

Functional data are inherently infinite-dimensional because they represent continu-

ous functions. Since the GSVFM suffers from the curse of dimensionality, functional models

can not be estimated directly. To address both the infinite-dimensionality and the spatial

varying components of the data, a novel two-step procedure is introduced. The first step of

the procedure is to reduce the dimension of the GSVFM through the method of Functional

Principal Components Analysis (FPCA). This reduces the GSVFM to a Generalized Spa-
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tial Varying Coefficient Model (GSVCM) which is the second step in the procedure. The

GSVCM considers the spatial locations in the data. The proposed two-step procedure is

able to capture location-specific effects that previous functional regression models can’t.

This research is motivated by a crop-yield prediction application in agriculture.

The agriculture data is collected at the county-level from five Midwest states, Kansas, Iowa,

Illinois, Indiana and Missouri. For each county, we observe daily minimum and maximum

temperature time series data. The temperature time series data can be viewed as functions,

where the temperature is indexed by the day. Since the temperature data varies across the

Midwest counties, this represents the multivariate spatially varying functional data. The

precipitation, irrigated land and crop-yield are collected at the county level. The goal is to

apply the GSVFM to predict the spatially varying crop yield through the scalar predictor

variables and the multivariate spatially varying functional data. Existing functional models

are used to compare performance with the GSVFM.

The dissertation consists of two projects that use the novel two-step procedure to

estimate the GSVFM and the Spatially Varying Functional Quantile Model (SVFQM). The

first project aims at predicting the conditional mean and the second project extends the

GSVFM to the SVFQM that predicts the conditional quantile. This research addresses the

current gap in functional models that do not consider the spatial component.
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Chapter 1

Introduction

1.1 Functional Data Analysis

Functional Data Analysis (FDA) is a branch of Statistics that consists of methods

and theory for functional data or otherwise known as curves or surfaces. Functional data

are observed as functions that vary over a continuum such as time or space where each

observation results from an underlying stochastic process. Intrinsically, functional data are

infinite dimensional since they are defined over a continuum. While this can cause chal-

lenges for theory and computation, the high dimensionality is a rich source of information.

Although functional data are treated as infinite dimension random functions, in practice the

“functions” are discretely observed. Similarly to any type of multivariate data, the analy-

sis of functional data can be performed using multivariate statistical methods by treating

each discrete data point as a variable in the model. This leads to a model with potentially

hundreds of predictor variables which can result in overfitting. In addition to overfitting,
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treating the data as discrete ignores the true underlying function for each observation. This

leaves out a lot of information that can be gained from treating the data as functions.

It is impossible to observe the true function because of the infinite domain. The

data that’s available to us is a collection of discrete data points collected at finite times or

locations. This data can be sparse or dense which is important for the data to be treated

correctly. To treat the data as functions, the underlying function is estimated by using

the basis functions approach. There are many basis function methods such as polynomial

splines, truncated-power splines, B-splines, and Fourier series. Each method has its own

advantages depending on the application but some methods have similar performance. This

gives a representation of the function that can be used in many types of statistical analyses.

The use of basis functions results in a smooth function that is estimated from the discrete

data. Since these smooth functions are continuous, a functional model can’t be estimated

directly and a dimension reduction method must be used. There are different approaches

to dimension reduction but the most common is Functional Principal Components Analysis

(FPCA) which is used to find the principal components that contribute the most variation.

The general approach is to use the highest order principal components as predictor vari-

ables in a functional model. There are many different types of functional models that are

extensions of multivariate models. Some of the most common models are the functional

linear regression model, the generalized functional linear model and the functional additive

model. Although these models have been shown to perform well for non-spatial functional

data, they are not necessarily the best models for spatially varying functional data.
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With the improvement of data collection technology, functional data has become

more widely available and offers a lot of opportunities for gaining more insight from the

data. Since there are many applications where we know that the sampled data result from

some underlying function, it is advantageous to use FDA methods as opposed to classical

mulitvariate statistical methods.

1.1.1 Examples of Functional Data

Weather data, such as daily temperature or daily precipitation throughout the

year, is an example of a set of variables that change with respect to time and space (Wong

et al., 2018). Because weather data has an impact on many aspects of our lives, it is of

interest to study its patterns. It is unlikely to extract meaningful insights from the weather

data without the spatial information, as the data is treated as if it all originates from the

same location.

The frequency of car crashes on a highway changes with respect to location and

can change over time (Kim and Wang, 2021). The frequency of car crashes can be treated

as either spatial data or spatiotemporal data. With the inclusion of other variables, this

data has multiple potential uses such as predicting the number of accidents at a specific

location and time of day.

Stock prices fluctuate multiple times throughout the day. For very large companies,

their shares can be traded up to a thousand times per second. The stock price data from

each day is treated as a function (Kokoszka and Reimherr, 2017). This kind of data can be

used to discover trends over a period of time and make predictions of the stock price at a

given time.
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An example of dense functional data is the concentration of nitrogen dioxide in a

certain location (Horváth and Kokoszka, 2012). The concentration of nitrogen dioxide is

measured at different times throughout the day. This type of data can be used to detect

abnormal levels of nitrogen dioxide pollutants.

1.1.2 Representation of Functional Data

When working with functional models, the functions are assumed to be smooth,

continuous functions. In practice, functional data are discretely observed where each dis-

crete function x is defined as x = {x(t1), x(t2), . . . , x(tn)} on a grid (t1, t2 . . . , tn). The

most popular method of converting discrete functions to smooth functions is through basis

functions. The basis functions approach is to use a set of known functions ϕk that satisfy

certain mathematical properties. These basis functions are mathematically independent

from each other and are able to represent any function reasonably well by using a linear

combination of a sufficiently large number K of the basis functions.

One of the most familiar basis functions is the set of monomials which are used to

construct power series,
1, t, t2, t3, . . . , tk, . . .

A more complicated set of basis functions that is very popular is the Fourier series system,

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(3ωt), . . . , sin(kωt), cos(kωt), . . . ,

where ω represents the period of the sine or cosine function. For a given point t, x(t) can be

represented by a linear expansion of a finite number of K basis functions {ϕ1, ϕ2, . . . , ϕK}

where
x(t) =

K∑
k=1

ckϕk(t).

4



Letting c = (c1, . . . , ck)
′ and ϕ = (ϕ1, . . . , ϕK)′, x(t) can be expressed in matrix notation as

x(t) = c′ϕ = ϕ′c.

Using basis functions allows us to approximate a function by K basis functions. The choice

of basis functions should be chosen such that the functions have similar characteristics to

the functions being estimated. The basis function approach is able to capture the rich

source of information that functional data can provide.

1.2 Spatial Statistics

Spatial Statistics is a branch of Statistics that consists of methods and theory

for data that are collected at different locations in space. More specifically, a variable is

measured at different locations on a two-dimensional grid where, for example, the x and y

axis represent the longitude and latitude, respectively. There are many different types of

spatial data such as weather, population, and agriculture. Spatial data is an inherent part

of our world since many variables change over space. Even though the value of a variable

changes with respect to location, clearly there are some similarities between locations within

some radius. As a result, there is some dependency among spatial data. Similar to the usual

statistics framework, if this dependency is not taken into account, then the results will be

inaccurate.

Spatial data can be viewed as a type of functional data since it represents a vari-

able continuously changing over a continuum which is space in this case. The true un-

derlying function in this case would be a bivariate function which is a surface over the

two-dimensional spatial domain. Therefore, FDA methods can be applied to spatial data.
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In some applications, there is data which vary over both time and space. Such data

is considered spatiotemporal and can be viewed as resulting from an underlying function of

both time and space (i.e. f(t, s)). This type of function is considered a random field which

is a generalization of a stochastic process in the space Rn with n = 3 (Schabenberger and

Gotway, 2005). This type of data provides a very rich source of information about different

patterns but also has many challenges.

1.2.1 Foundations of Spatial Statistics

This section covers the foundations of spatial statistics and more detail can be

found in Schabenberger and Gotway (2005). In spatial statistics, we define a collection of

random variables over a spatial domain in d dimensions as a spatial process which is denoted

as

{Z(s) : s ∈ D ⊂ Rd},

where Z is the variable of interest. The spatial domain is of dimension d ≥ 2 but generally

we work with d = 2, the two-dimensional domain where s = (s1, s2) are the Cartesian

coordinates. The variable Z(s) can be observed everywhere within the spatial domain D.

A common occurrence in spatial data is spatial autocorrelation which refers to

correlation between Z(si) and Z(sj). To describe the autocorrelation function for a spatial

process, consider a (weakly) stationary time series Z(t1), . . . , Z(tn) with E{Z(ti)} = 0 and

V ar{Z(ti)} = σ2, i = 1, . . . , n. The covariance function of the series between Z(ti) and

Z(tj) is given by

Cov{Z(ti), Z(tj)} = E{Z(ti)Z(tj)} = C(tj − ti)
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and the autocorrelation function is

R(tj − ti) =
Cov{Z(ti), Z(tj)}√

V ar{Z(ti)}V ar{Z(tj)}
=
C(tj − ti)

C(0)
.

In spatial data, autocorrelation decreases with increasing distance. The covariance function

of a spatial process for spatial lag h is defined as

C(s,h) = Cov{Z(s), Z(s+ h)} = E
[{
Z(s)− µ(s)

}{
Z(s+ h)− µ(s+ h)

}]

and the spatial autocorrelation function is

R(s,h) =
C(h)√

V ar[Z(s)]V ar[Z(s+ h)]
.

An alternative to the autocorrelation function that originated in the geostatistical commu-

nity is the semivariogram which is defined as

γ(s,h) =
1

2
V ar{Z(s)− Z(s+ h)}

=
1

2

[
V ar{Z(s)}+ V ar{Z(s+ h)} − 2Cov{Z(s), Z(s+ h)}

]
.

Although the semivariogram has its benefits, in the rest of the discussion we will be using

the covariance function C(h). The modeling of the autocorrelation of spatial processes can

occur in all directions which presents some challenges in modeling.

1.2.2 Random Fields

To introduce random fields, the definition of a stochastic process is defined in

Definition 1.

Definition 1 A stochastic process is a family or collection of random variables, the mem-

bers of which can be identified or located (indexed) according to some metric.
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A random field is a stochastic process with an index set of dimension d > 1. Since a spatial

process is a stochastic process with an index set of dimension d = 2, it is a random field. It

is important to treat the spatial data as a random field because of the random mechanism

that generates the data. Consider a random experiment ω where the outcome is Z(s), the

value of Z at location s. A surface Z(., ω) is generated by a particular realization of ω. The

key difference in this type of setting, is that if we collect n spatial observations, this does

not translate to a sample of size n. Quite the contrary, these spatial observations represent

a single realization of a random experiment, a sample size of one. It might seem that we

can’t make any progress with a sample size of one, but it is possible if the random field has

certain stationary properties.

Definition 2 A random field {Z(s) : s ∈ D ⊂ Rd} is called a strict (or strong) stationary

field if the spatial distribution is invariant under translation of coordinates

P
{
Z(s1) < z1, Z(s2) < z2, . . . , Z(sk) < zk

}
= P

{
Z(s1 + h) < z1, Z(s2 + h) < z2, . . . , Z(sk + h) < zk

}
,

for all k and h.

As the name suggests, this is the strongest type of stationarity. A weaker type of stationarity

is second-order stationarity which is defined as in Definition 3.

Definition 3 Second-order (or weak) stationarity of a random function implies that E{Z(s)} =

µ and Cov{Z(s), Z(s+ h)} = C(h).
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A second-order random field is the spatial equivalent of a random sample in classical statis-

tics. When the lag h = 0, then the covariance function C(h) is

Cov{Z(s), Z(s+ 0)} = V ar{Z(s} = C(0),

which means that the variability for a second-order random field is constant across space.

It can be shown that a strictly stationary random field is also a second-order stationary

random field. To define different types of covariance functions for random fields, we first

need to consider what conditions a valid covariance function must satisfy.

Definition 4 For a covariance function C(si − sj) of a second-order stationary spatial

random field in Rd to be valid, C must satisfy the positive-definiteness condition
k∑
i=1

k∑
j=1

aiajC(si − sj) ≥ 0, (1.1)

for any set of locations and real numbers.

In some situations, a random field won’t satisfy strict or second-order stationary but it’s

possible that the increments Z(s)−Z(s+h) might be second-order stationary. A random

field that satisfies this property is called intrinsic stationarity which is defined in Definition

5.

Definition 5 The random field {Z(s) : s ∈ D ⊂ Rd} is said to be intrinsically stationary

if

E{Z(s)} = µ and
1

2
V ar{Z(s)− Z(s+ h)} = γ(h),

where γ(h) is the semivariogram of the random field.
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If a random field is second-order stationary, then it is also intrinsically stationary. As we

saw in Section 1.2.1, the covariance between two points can depend on the direction within

the spatial domain. For example, suppose that Z(s1) is north of Z(s2) and Z(s3) is west

from Z(s1), where Z(s2) and Z(s3) are the same distance away from Z(s1), respectively.

The covariance between Z(s1) and Z(s2) could be different than the covariance between

Z(s1) and Z(s3) which is what is meant by direction dependence. In some instances, the

covariance between two spatial points does not depend on the direction but instead depends

only on the absolute distance between the points. When this is the case, the random field

posses a property called isotropy which can be defined as follows

Definition 6 A covariance function C(h) of a second-order stationary random field is

isotropic if the covariance function depends only on the absolute distance between points.

When we have a second-order stationary isotropic random field, the covariance function

C(h) can be written as follows

C(h) = C∗(∥h∥),

where ∥h∥ is the Euclidean norm of the lag vector

∥(s+ h)− s)∥ = ∥h∥ =
√
h21 + h22.

A commonly used random field is the Gaussian random field which has many useful prop-

erties can be defined in Definition 7.
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Definition 7 A random field {Z(s) : s ∈ D ⊂ Rd} is a Gaussian random field if the

cumulative distribution function

P
{
Z(s1) < z1, Z(s2) < z2, . . . , Z(sk) < zk

}

is that of a k-variate Gaussian random variable for all k.

1.3 Functional Principal Components Analysis (FPCA)

Whenever we have a dataset with multiple variables, it is useful to reduce the

dimensionality of the dataset for many reasons such as model overfitting and computation.

Dimension reduction can also be very beneficial for exploratory data analysis since visual-

izing a dataset with multiple variables is often difficult. To perform dimension reduction,

one of the most popular methods is Principal Components Analysis (PCA). PCA is an

established method in the field of multivariate statistics where the basic idea is to find the

most important modes of variation in the variables (Ramsay and Silverman, 2005). Func-

tional Principal Components Analysis (FPCA) is an extension of PCA in Rn to functions in

Hilbert spaces such as the L2 space of square-integrable functions. To develop the method

of FPCA, it is useful to discuss multivariate PCA to gain some intuition for FPCA.

1.3.1 Multivariate Principal Components Analysis

This section provides an overview of multivariate PCA. More detail can be found

in Ramsay and Silverman (2005). Because of the high-dimensionaltity in multivariate statis-
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tics, it is common to look at linear combinations of variable values where

ξi =

p∑
j=1

ψjxij , i = 1, . . . , N,

where ψj is a weight applied to the observed values xij of the jth variables. Defining

ψ = (ψ1, . . . , ψp)
T and xi = (xi1, . . . , xip)

T we get that

ξi = ψ
Txi, i = 1, . . . , N.

PCA can be defined in the following steps:

1. We want to solve for the weight vector ψ1 = (ψ11, . . . , ψp1)
T such that the linear

combination values

ξi1 =
∑
j

ψj1xij = ψ
′
1xi

maximizes the mean square N−1
∑

i ξ
2
i1 subject to the constraint∑

j

ψ2
j1 = ∥ψ1∥2 = 1.

This can be rewritten as a maximization problem

argmax
∥ψ1∥2=1

N−1
∑
i

ξ2i1. (1.2)

2. For the second and subsequent steps, the goal is the same as in 1.2 but for the mth

step, ξim = ψ′
mxi must satisfy (m− 1) additional constraints∑

j

ψjkψjm = ψ′
kψm = 0, k < m.

The mth step in the PCA procedure can be rewritten as

argmax
∥ψ1∥2=1

ξ′kξm=0, ∀k<m

N−1
∑
i

ξ2im.
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Maximizing the mean square in the first step is essential because we want to identify the

strongest and most important mode of variation in the variables. The unit sum of squares

constraint is necessary for the problem to be well-defined since without it, the mean squares

of ξim can be made arbitrarily large. The (m− 1) additional constraints on the mth step of

the procedure are necessary so that the mth weight vector ψm is orthogonal to the (m− 1)

previous weight vectors. We want to impose orthogonality since at each step, we only want a

new weight vector that is indicative of some new information. Since there is finite variation

within a dataset, at each step, the variation will decrease. The most common situation

is that the first few principal components will explain the majority of the variation in the

data. Now the chosen principal components can be used to do some data exploration or as

variables in our model.

The PCA procedure described above is one of the ways to define PCA but another

common characterization of PCA that is used is in terms of the eigendecomposition of the

covariance function or operator. To define this PCA procedure, let the N × p matrix X

contain the values xij and the vector ψ the weights for a linear combination. Using X and

ψ, we can rewrite the mean square error criterion for finding the first principal component

as
max
ψ′ψ=1

N−1ψ′X ′Xψ (1.3)

since the PC scores are defined as ξ =Xψ. Letting V = N−1X ′X be the sample covariance

matrix, equation (1.3) can now be written as

max
ψ′ψ=1

N−1ψ′V ψ.
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It can be shown that the solution to this maximization problem is found by finding the

eigenvector with the largest eigenvalue λ of the eigenequation

V ψ = λψ.

This representation of PCA simplifies the problem since now our goal is to find the eigende-

composition of the sample covariance matrix V . This representation will be used throughout

the rest of this section.

1.3.2 Univariate Functional Principal Components Analysis

The following section extends the method of multivariate PCA described in section

1.3.1 to univariate functional data. More detail can be found in Ramsay and Silverman

(2005). To begin the discussion of FPCA, we first need to define an inner product between

two functions ψ and x where
⟨ψ, x⟩ =

∫
ψ(s)x(s)ds. (1.4)

Using equation 1.4, the principal component scores are now defined as

ξi =

∫
ψ(s)xi(s)ds.

In the first step of FPCA, the goal is to find the weight function ψ1(s) that maximizes

max∫
ψ1(s)2=1

∑
i

ξ2i1 = max∫
ψ1(s)2=1

N−1
∑
i

{∫
ψ1(s)xi(s)ds

}2

.

Now to define FPCA in terms of the eigendecomposition of its sample covariance function,

let x1, . . . , xN be a sample of a random function x and then we have

v(s, t) = N−1
N∑
i=1

xi(s)xi(t).
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Each of the eigenfunctions ψ(s) satisfy the following equation∫
v(s, t)ψ(t)dt = λψ(s) (1.5)

for an eigenvalue λ. The left side of the equation (1.5) is called an integral transform V of

the weight function ψ defined by

V =

∫
v(., t)ψ(t)dt.

In this context, V is called the covariance operator. Therefore, we can express the eigenequa-

tion as
V ψ = λψ, (1.6)

where now ψ is an eigenfunction rather than an eigenvector. Because of the infinite dimen-

sionality of equation 1.6, it is difficult to solve for the eigendecomposition of the covariance

operator V directly. To reduce the dimension of the eigenequation, we can use a basis ex-

pansion for each functional observation xi. Suppose that each function has basis expansion

xi(t) =

K∑
k=1

cikϕk(t),

where K represents the number of basis functions. To write this more compactly, define the

vector-valued function x to have components x1, . . . , xN and the vector-valued function ϕ

to have components ϕ1, . . . , ϕK . Then the simultaneous expansion of all N curves is

x = Cϕ, (1.7)
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where the coefficient matrix C is N ×K. Using equation (1.7), the covariance function can

be written as

v(s, t) = N−1
N∑
i=1

xi(s)xi(t)

= N−1ϕ(s)′C(s)′C(t)ϕ(t).

For any choice of bases, we define the order K symmetric matrix W

wk1,k2 =

∫
ϕk1ϕk2 or W =

∫
ϕ′ϕ.

Our knowledge of W depends on the choice of bases. If, for example, we were to use

the orthonormal Fourier series, W = I, the order K identity matrix. Suppose that the

eigenfunction ψ has the expansion

ψ(s) =
K∑
k=1

bkϕk(s) = ϕ(s)
′b.

The left hand side of 1.5 now becomes∫
v(s, t)ψ(t)dt = ϕ(s)′N−1C ′CWb.

Therefore, the eigenequation can be expressed as

ϕ(s)′N−1C ′CWb = λϕ(s)′b. (1.8)

Since 1.8 must hold for all s, this implies the matrix equation

N−1C ′CWb = λb. (1.9)

It can be shown that ∥ψ∥2 ⇒ b′Wb = 1 and that two functions ψ1 and ψ2 are orthogonal

if and only if b′1Wb2 = 0. To solve for the principal components, define u =W 1/2b so that
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now the eigenequation in (1.9) becomes

N−1W 1/2C ′CW 1/2u = λu.

Then, we solve for the eigendecomposition of the matrix A = N−1W 1/2C ′CW 1/2 and get

eigenvectors u1, . . . ,uK and eigenvalues λ1, . . . , λK . Using the eigenvectors, we can solve

for the basis coefficient vectors bi = W−1/2ui and then the eigenfunctions ψ1, . . . , ψK are

defined as

ψl(s) = ϕ(s)
′bl = ϕ(s)

′W−1/2ul. (1.10)

Since the eigenfunction in 1.10 can’t be estimated for all values of s, ψl(s) is discretized by

n time points. Then the matrix of estimated eigenfunctions ψ1, . . . ,ψK can be written as

Ψ =



ψ11, ψ21, . . . , ψK1

ψ12, ψ22, . . . , ψK2

...
...

. . .
...

ψ1n, ψ2n, . . . , ψKn


=

[
ψ1, ψ2, . . . , ψK

]
,

where ψlt for t = 1, . . . , n, represents the value of the l’th eigenfunction at a given point t

and each discrete eigenfunction ψl for n time points is defined as

ψl =

[
ψ11, ψ12, . . . , ψ1n

]′
=

[
ϕ(s1)

′bl, ϕ(s2)
′bl, . . . , ϕ(sn)

′bl

]′
.

Defining the basis functions matrix Φ =

[
ϕ(s1), ϕ(s2), . . . , ϕ(sn)

]′
and the basis co-

efficient vector bl =

[
bl1, bl2, . . . , blK

]′
we get

ψl = Φbl.
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Now we have that the matrix Ψ can be expressed as

Ψ =

[
ψ1, ψ2, . . . , ψK

]
= ΦB.

Using the estimates of the eigenfunctions, we can calculate the principal component scores

for each functional observation xi. In the case where we use orthonormal basis functions

and the matrix W = I, the lth principal component score of the ith observation can be

calculated as follows

ξil =

∫
ψl(t)xi(t)dt ≈

K∑
k=1

cikblk = ξ̃il.

Then for the ith observation xi, the vector of principal component scores is

ξ̃i =

[
ξ̃i1, ξ̃i2, . . . , ξ̃iK

]′
, i = 1, . . . , N.

1.3.3 Multivariate Functional Principal Components Analysis

This section extends univariate FPCA described in Section 1.3.2 to multivariate

FPCA. More detail can be found in Ramsay and Silverman (2005). In Section 1.3.2, we

focused on FPCA for only one variable of interest. In many applications, we are often

interested in studying two or more variables. More specifically, it is of interest to look at

the simultaneous variation of both variables when they vary jointly. In this case, it is better

to perform multivariate FPCA as opposed to univariate FPCA on each of the variables.

Suppose we observe two random samples of random functions, x1, x2, . . . , xN and

y1, y2, . . . , yN . Define vxx to be the covariance function of xi, vyy that of yi and vxy to be

the cross-covariance function where vyx(s, t) = vxy(s, t)
′. The vector ψ = (ψx, ψy) of weight

functions is a principal component where ψx denotes the variation in x and ψy that in y.
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To define multivariate FPCA, we first need to define an inner product between these kinds

of functions. The inner product for two functions is defined as

⟨ψ1,ψ2⟩ =
∫
ψx1ψ

x
2 +

∫
ψy1ψ

y
2 .

To define the principal component scores, we define the random functions to have the same

structure as the principal components where Fi = (xi, yi) and then ξil is defined as

ξil = ⟨ψl,Fi⟩ =
∫
ψxl xi +

∫
ψyl yi.

The covariance operator V is now defined as

V =

vxx vxy

vyx vyy

 .
Then the eigenequations can be written as

Vψl = λlψl ⇒

vxx vxy

vyx vyy


ψXl
ψyl

 = λl

ψxl
ψyl

 ,
vxxψ

x
l + vxyψ

Y
l = λlψ

x
l ,

vyxψ
x
l + vyyψ

y
l = λlψ

y
l ,∫

vxx(s, t)ψ
x
l (t)dt+

∫
vxy(s, t)ψ

y
l (t)dt = λlψ

x
l ,∫

vyx(s, t)ψ
x
l (t)dt+

∫
vyy(s, t)ψ

y
l (t)dt = λlψ

y
l .

To solve for the eigendecomposition of the covariance operator V , we follow the same

procedure as before where we have the following basis expansions of xi(t) and yi(t) as
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follows

xi(t) =
K∑
k=1

cikϕk(t) = ϕ(s)
′C ′Cϕ(t),

yi(t) =

K∑
k=1

dikϕk(t) = ϕ(s)
′D′Dϕ(t),

and the estimates of the covariance functions are defined as

vxx(s, t) = N−1
N∑
i=1

xi(s)xi(t) = N−1ϕ(s)′C ′Cϕ(s),

vyy(s, t) = N−1
N∑
i=1

yi(s)yi(t) = N−1ϕ(s)′D′Dϕ(s),

vxy(s, t) = N−1
N∑
i=1

xi(s)yi(t) = N−1ϕ(s)′C ′Dϕ(s) = vyx(t, s).

For the expansions of the eigenfunctions ψxl (s) and ψ
y
l (s) we have

ψxl (s) =
K∑
k=1

bklϕk(s) = ϕ(s)
′bl,

ψyl (s) =

K∑
k=1

gklϕk(s) = ϕ(s)
′gl.

Using the expansions and covariance functions defined above, it can be shown that the

eigenequations reduce to

N−1ϕ(s)′C ′CWbl +N−1ϕ(s)′C ′DWgl = λlϕ(s)bl, (1.11)

N−1ϕ(s)′D′CWbl +N−1ϕ(s)′D′DWgl = λlϕ(s)gl. (1.12)

Since 1.11 and 1.12 must hold for all time points s, this implies the purely matrix equations

N−1C ′CWbl +N−1C ′DWgl = λlbl,

N−1D′CWbl +N−1D′DWgl = λlgl.
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To enforce the constraint ∥ψl∥ = 1 it can be shown that

∥ψl∥ =

∫
ψxl1ψ

x
l2 +

∫
ψyl1ψ

y
l2 = b

′
lWbl + g

′
lWgl.

Letting ul =W
1/2bl and ql =W

1/2gl we get

∥ψl∥ = 1 ⇒ b′lWbl + g
′
lWgl = 1 ⇒ u′

lul + q
′
lql = 1.

Using the transformed variables u and q, equations (1.12) and (1.13) can now be written

as

N−1

W 1/2C ′CW 1/2 W 1/2C ′DW 1/2

W 1/2D′CW 1/2 W 1/2D′DW 1/2


ul
ql

 = λl

ul
ql

 ⇒ F

ul
ql

 = λl

ul
ql

 .
For the eigendecomposition of the covariance operator V , we need to solve for the eigende-

composition of F . The eigendecomposition of F has m = 2K eigenvalues and eigenvectors.

There are K eigenvectors u1, . . . ,uK and K eigenvectors q1, . . . , qK . The basis coefficient

matrices B and G can be calculated as follows

B =

[
b1, b2, . . . , bK

]
=W−1/2

[
u1, u2, . . . , uK

]
=W−1/2U ,

G =

[
g1, g2, . . . , gK

]
=W−1/2

[
q1, q2, . . . , qK

]
=W−1/2Q.

Therefore, each eigenfunction ψl for l = 1, . . . ,K is defined as

ψl =

ψxl
ψyl

 =

Φ′bl

Φ′gl

 .
Similarly to section 1.3.2, the eigenfunction ψl can’t be estimated for all values of s. There-

fore, it is represented for discrete values t = 1, . . . , n. Then, the matrix of eigenfunctions Ψ
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is

Ψ =

[
ψ1, ψ2, . . . , ψK

]
=

Φ′b1, Φ′b2, . . . , Φ′bK

Φ′g1, Φ′g2, . . . , Φ′gK

 ,
where the eigenfunction ψl is defined for discrete points t = 1, . . . , n. The lth joint principal

component score of the ith observation can be calculated as follows

ξil =

∫
ψxl (t)xi(t)dt+

∫
ψyl (t)yi(t)dt ≈

K∑
k=1

bklcik +

K∑
k=1

gkldik = ξ̃il.

Then for the ith observation Fi, the vector of principal component scores vector is

ξ̃i =

[
ξ̃i1, ξ̃i2, . . . , ξ̃iK

]′
, i = 1, . . . , N.

1.3.4 Karhunen-Loeve Expansion

The Karhunen-Loeve expansion is a very useful representation of a stochastic pro-

cess X in terms of its eigendecomposition that facilitates dimension reduction (Wang et al.,

2016). This representation aids in the estimation of functional models. Before stating the

Karhunen-Loeve expansion Theorem, we first need to state Mercer’s Lemma. Let δ denote

the Kronecker delta. Then, following Bosq (2000) the Mercer Lemma is defined in Lemma

8.
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Lemma 8 (Mercer Lemma) Let v be a covariance function continuous over [0, 1]2. Then

there exists a sequence (ψk) of continuous functions and a decreasing sequence (λk) of

positive numbers such that∫ 1

0
v(s, t)ψk(s)ds = λkψk, t ∈ [0, 1], k ∈ N

and, ∫ 1

0
ψk(s)ψj(s)ds = δk,j ; k, j ∈ N. (1.13)

Moreover,

v(s, t) =

∞∑
k=0

λkψk(s)ψk(t); s, t ∈ [0, 1],

where the series converges uniformly on [0, 1]2; hence
∞∑
k=0

λk =

∫ 1

0
v(t, t)dt <∞.

Theorem 9 (Karhunen-Loeve) Let X = {X(t), 0 ≤ t ≤ 1} be a second order zero-mean

measurable process with continuous covariance function v. Then

X(t) =
∞∑
k=0

ξkψk(t), t ∈ [0, 1], (1.14)

where (ξk) is a sequence of real zero-mean random variables such that

E(ξkξj) = λkδk,j ; k, j ∈ N;

and where the sequence (λk, ψk) is defined in the Mercer Lemma. The series in 1.14 con-

verges uniformly with respect to the L2(Ω,A, P )-norm.

The dimension reduction of X occurs through choosing the first K terms for large enough K

in the Karhunen-Loeve expansion which provides a good approximation since 1.14 converges
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uniformly as K → ∞. The Karhunen-Loeve expansion is used in many different functional

data analysis methods as we will see in the next section.

1.4 Models

As in any area of Statistics, there are many different types of models that exist in

FDA. The types of models range from simple linear models to complex nonlinear models.

One of the key differences in the FDA context is that the response variable or the predictor

variables can both be functional data. This of course depends on the type of application

and what kinds of questions the researcher wants to answer. Every model has its advantages

and disadvantages which can vary from a simple model and easier interpretation to more

complex models but more difficult to interpret.

In this dissertation, functional models are used in two different settings. In the

first project, the aim is to predict the conditional mean while the second project focuses

on predicting the conditional quantile. Functional models can be used to model both types

of responses but not all models that can be used for the conditional mean can be used for

the conditional quantile. Most of the models described in this section can be used for both

responses. The case where the response variable is functional can’t be used to predict a

conditional quantile.

1.4.1 Functional Regression Model with Scalar Response

One of the most common functional models is an extension of the the classic

multivariate regression model. The main difference is that the predictor variable is now
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a function as opposed to a scalar. With the scalar response Y ∈ R and the functional

predictor variable X observed on the time domain t ∈ T , the model is defined as (Cai and

Hall, 2006)
Y = η0 +

∫
T
X(t)η1(t)dt+ ϵ. (1.15)

The summation in the standard multivariate regression model is replaced by an integral over

the time domain. Even though the function X changes continuously with time, the effect of

X(t) on Y is minimal but the effect over the entire time domain is more significant. One of

the main differences is that now the coefficient of X, η1, is a function over time rather than

a vector. The estimate of the function η1 can provide meaningful insights about what time

points a future observation x of X will have the greatest effect on the response Y . This is

one of the many advantages in using a functional model over a multivariate model.

This model can be extended to include multiple functional predictor variables

X1, X2, . . . , Xp where each variable can be defined on a separate domain Tj . The model is

then defined as

Y = η0 +

p∑
j=1

∫
Tj
Xj(t)ηj(t)dt+ ϵ.

Furthermore, the model above can be extended to include vector covariatesZ = {Z1, Z2, . . . , Zq}T

Y = α0 +Z
Tα+

p∑
j=1

∫
Tj
Xj(t)ηj(t)dt+ ϵ.

1.4.2 Functional Regression Model with Functional Response

This model is an extension of the model described in section 1.4.1 where the

response variable is now a function. There are two major models that have been considered
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which are (Wang et al., 2016),

Y (t) = η0(t) +X(t)η1(t) + ϵ(t), (1.16)

Y (s) = η0(s) +

∫
T
X(t)η1(s, t)dt+ ϵ(s). (1.17)

Model 1.16 implicitly assumes that the time domains of Y and X are equivalent and is most

often referred to as a Varying Coefficient Model (VCM). This model assumes that Y is only

dependent on X at a specific time t and not on the history of X, {X(s), s ≤ t}. The varying

coefficient model is a well-established model where a lot of theoretical and methodological

developments have been made. Model 1.17 differs substantially from model 1.16 since the

value of Y at any given time point s, depends on the entire trajectory of X.

1.4.3 Spatially Varying Coefficient Models

Varying Coefficient Models (VCM) are very useful models in the area of nonpara-

metric statistics since they allow for modeling of different types of relationships. Tradi-

tionally, VCM’s are used to model the relationship between two variables that vary with

respect to time or with respect to one of the predictor variables. The goal is to determine

how the effect of the predictor variable on the response changes over time. In this context,

the varying coefficient is a function of time but this can be generalized to any variable such

as age and height.

In spatial data analysis, it is often the case that a simple “global” model cannot

explain some relationships, this is referred to as “spatial nonstationarity” (Mu et al., 2018).

Since in the spatial context variables are changing over a spatial domain, a varying coefficient

that is a function of space can help model the nonstationarity of the data. To define
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the model, suppose we have n independent copies of {(Yi, Xi0, Xi1, . . . , Xip, Si1, Si2)}ni=1,

where Y is the response variable, X = (X0, X1, . . . , Xp)
T is a (p + 1)-dimensional vector

of explanatory variables with X0 = 1, and S = (S1, S2)
T is the spatial coordinates of the

observation. Following the model proposed in Mu et al. (2018) and Kim and Wang (2021),

suppose that {(Yi,Xi,Si)}ni=1 satisfies the following model:

Yi =X
T
i β(Si) + ϵi =

p∑
k=0

Xikβk(Si) + ϵi, i = 1, . . . , n, (1.18)

where βk(.) are unknown varying-coefficient functions, and ϵi are iid random errors with

E(ϵi) = 0 and V ar(ϵi) = σ2 and are independent of Xi. The interest is then to estimate

the varying coefficient functions β0, . . . , βp based on the observations {(Yi,Xi,Si)}ni=1.

1.4.4 Estimation of Functional Models

What is common to the models presented in Section 1.4.1 and 1.4.2 is that the

estimation of the coefficients is intrinsically infinite dimensional (Cai and Hall, 2006). There-

fore, estimation of these models directly is incredibly difficult. To reduce the dimensionality,

the Karhunen-Loeve expansions of X(t) and η1(t) in terms of the eigendecomposition of the

covariance operator V are

X(t) =
∞∑
k=0

ξkψk(t), t ∈ [0, 1],

η1(t) =
∞∑
k=0

βkψk(t), t ∈ [0, 1],
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where ξk =
∫
T X(t)ψk(t)dt and βk =

∫
T η(t)ψk(t)dt. Then using the first K terms in the

expansion, model (1.16) can be rewritten as

Y = η0 +

∫
T
X(t)η1(t)dt+ ϵ

≈ η0 +

∫
T

{ K∑
k=0

ξkψk(t)

}{ K∑
k=0

βkψk(t)

}
dt+ ϵ

= η0 +

∫
T

{ K∑
k=0

ξkψk(t)βkψk(t) +
∑
k ̸=j

ξkψk(t)βjψj(t)

}
dt+ ϵ

= η0 +

K∑
k=0

ξkβk

∫
T
ψk(t)ψk(t)dt+

∑
k ̸=j

ξkβj

∫
T
ψk(t)ψj(t)dt+ ϵ. (1.19)

By 1.13 in Lemma 8, we have that∫ 1

0
ψk(s)ψj(s)ds = δk,j ; k, j ∈ N.

Then 1.19 is expressed as

Y ≈ η0 +
K∑
k=0

ξkβk + ϵ. (1.20)

The functional linear regression model in 1.20 has now reduced to a finite dimensional

linear regression model. The model in 1.15 can now be estimated directly using classical

estimation methods such as least squares.

1.5 Bivariate Splines on Triangulations

1.5.1 Triangulation

The method of triangulation has historically been used in computer vision and

graphics to represent the structure of geometric objects. Its methods and theory have

been established within mathematics for a long time. It is only in the last decade or so that
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triangulation has been used in the context of statistics (Lai and Wang, 2013; Mu et al., 2018;

Kim and Wang, 2021). More specifically, there is a rich area in mathematics that focuses on

the use of splines (of different dimension) on triangulation’s. Even though this is the case,

the exploration of its uses in statistics has been limited. The method of triangulation can

be extended to any kind of polygon shapes but we focus on triangles since any polygonal

domain of arbitrary shape can be partitioned into finitely many triangles.

Two-dimensional space takes on many shapes such as rectangles, circles, trape-

zoids and many other undefined shapes. This is an inherent part of spatial data since

phenomena doesn’t change over pre-specified domains. When fitting a model to data col-

lected over a spatial domain, there are certain methods that were built specifically for this

purpose. Some of the common techniques that have been used are tensor-product splines,

kriging, soap film smoothing, and thin-plate splines (TPS). While these methods have been

successful at modeling rectangular spatial domains, their accuracy decreases when irregular-

shaped spatial domains are used. This is because these methods were developed under the

assumption that the domain is rectangular. The issue with complex domains is that the

corners and edges are difficult to cover with shapes other than triangles. Following Kim and

Wang (2021), assume we observe spatial locations v = (x, y) on a bounded domain Ω ⊆ R2

of arbitrary shape. Suppose that Ω can be covered by a finite collection of N triangles

T1, T2, . . . , TN such that Ω =
⋃N
i=1 Ti. A collection of triangles ∆ := (T1, T2, . . . , TN ) is

called a triangulation over the domain Ω where it’s assumed that if two triangles intersect,

then their intersection is either an edge or a vertex. For any triangle T ∈ ∆ ⊆ R2 with

vertices v = (x, y) ∈ R2, T is defined in terms of its vertices where T = ⟨v1,v2,v3⟩. An

29



example of a triangulation of a rectangular domain and a complex domain can be seen in

Figure 1.1.

(a) Triangulation over Rectangular Domain. (b) Triangulation over Complex Domain.

Figure 1.1: Triangulation Examples.

1.5.2 Bivariate Splines

This section provides the foundations for bivariate splines over triangulations.

More details can be found in Lai and Schumaker (2007). Bivariate splines are a simple

extension of univariate splines where only the dimension changes. In univariate splines,

the domain is split up into a finite set of intervals where a basis is used to fit a curve

over each interval. In the case of a two-dimensional domain, the domain is split into a set

of triangles as described in Section 1.5.1 where a surface is fit over each triangle. Before

defining bivariate splines, bivariate polynomials are defined in Definition 10.
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Definition 10 Given a nonnegative integer d, we write Pd for the space of bivariate poly-

nomials of degree d, i.e., the linear space of all real-valued functions of the form

p(x, y) =
∑

0≤i+j≤d
cijx

iyj ,

where (cij)0≤i+j≤d are real numbers. The monomials

(xiyj)0≤i+j≤d

form a basis for Pd.

To arrive at a point where we can fit bivariate splines over triangles, we first need to

introduce barycentric coordinates. In the following section, for v ∈ R2, define v1,v2,v3 as

the vertices of a triangle T .

Lemma 11 Every point v ∈ R2 has a unique representation in the form

v = b1v10 + b2v2 + b3v3 (1.21)

with
1 = b1 + b2 + b3. (1.22)

By Lemma 11, we have that any point v ∈ R2 can be uniquely represented by its barycentric

coordinates b1, b2, b3 with respect to triangle T as

v = b1v1 + b2v2 + b3v3.

This is a very unique way to represent a point that lies within a triangle. To gain some

intuition, an interesting representation of the barycentric coordinates is a geometric one

where given a point v ∈ T , define the triangles T1 = ⟨v,v1,v3⟩, T2 = ⟨v,v3,v1⟩, T3 =

⟨v,v1,v2⟩ which can be seen in Figure 1.2 below.
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Figure 1.2: Geometric Representation of Barycentric Coordinates.

Then the barycentric coordinates of v relative to T are given by

bi =
ATi
AT

, i = 1, 2, 3,

where A represents the area of the corresponding triangle.

Lemma 12 For each i = 1, 2, 3, the function bi is a linear polynomial in x and y which

assumes the value 1 at the vertex vi and vanishes at all points on the edge of T opposite to

vi.

An example of Lemma 12 for the barycentric coordinate b1 of a point v = (x, y) ∈ R2 is

b1 =
1

2AT
det


1 1 1

x x2 x3

y y2 x3

 =
(x2y3 − y2x3)− x(y3 − y2) + y(x3 − x2)

2AT
,

which shows that b1 is indeed a linear polynomial. The expressions for b2 and b3 follow

similarly. Using the barycentric coordinates, we can define bivariate basis functions in

Definition 13.
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Definition 13 Given a point v = (x, y) ∈ R2 with barycentric coordinates b1, b2, b3 and

nonnegative integers summing to d, define the Bernstein basis polynomials of degree d ≥ 1

relative to T by

Bd
ijk =

d!

i!j!k!
bi1b

j
2b
k
3.

The Bernstein basis polynomials have many nice properties. One very useful property is

described in Theorem 14.

Theorem 14 The set

Bd = (Bd
ijk)i+j+k=d

of Bernstein basis polynomials is a basis for the space of all polynomials Pd.

Since the set Bd of Bernstein basis polynomials is a basis for Pd, we can use the basis

functions Bd
ijk to represent any functions in the space Pd. Let the space Pd(T ) be the space

of all polynomials of degree less than or equal to d with respect to triangle T . Then by

Theorem 14, every polynomial P ∈ Pd(T ) can be uniquely written as

P(s) =
∑

i+j+k=d

γT ;ijkBT ;ijk(s),

which is called the B-form of P relative to T .
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Chapter 2

Prediction in Generalized Spatially

Varying Functional Regression

Model

2.1 Introduction

Technological improvements in data collection have allowed for variables to be

continuously measured over time and space which give rise to multivariate spatially varying

functional data (Ramsay and Silverman, 2005). Analyzing complex data such as this,

creates challenges in gaining insight from the data. There are many existing models for

functional data such as the Functional Linear Model (FLM), Functional Additive Model

(FAM) and Partially Linear Functional Additive Model (PLFAM) but they don’t consider

spatial variation (Cai and Hall, 2006). Varying Coefficient Models (VCM) have been used
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for data that change with respect to some other variable. They are very flexible models

since they allow for the behavior to change across the domain of the predictor variables.

VCM’s were first introduced in the paper by Hastie and Tibshirani (1993). In this paper,

they explored a class of regression models and generalized regression models where the

coefficients can vary as smooth functions of other variables. The general approach to model

estimation in VCM’s is the local linear regression method. This method assumes degrees of

smoothness for each coefficient. In Fan and Zhang (1999), they introduce a new estimation

method when different coefficients have different degrees of smoothness. Furthermore, Fan

and Zhang (1999) introduced methods to perform inference with VCM’s. There has been

significant development in VCM’s since their introduction and they are widely applicable in

many different settings. The coefficients in a VCM can be a smooth function of any other

variable such as space. In the past decade, there has been a strong development in spatial

models, more specifically, Spatially Varying Coefficient Models (SVCM). In this chapter, we

introduce the Generalized Spatially Varying Functional Model (GSVFM) for predicting a

spatial response variable dependent on a spatial predictor variable and multivariate spatially

varying functional predictors that is performed by a novel two-step procedure.

Spatially varying functional data provide a rich source of information but is infinite-

dimensional. A common approach to reduce the dimensionality is by using multivariate

Functional Principal Components Analysis (mFPCA). In most existing functional models,

the principal component scores are used as scalar predictor variables. For the proposed

two-step procedure, the theoretical model is the GSVFM. There is no closed form for the

estimation of the GSVFM since it is a infinite-dimensional model. To estimate the GSVFM,
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it needs to be reduced to a finite-dimensional model. We project the functional data (at

each spatial location) to a low-dimensional space and the projections are used as predictors

in a Generalized Spatially Varying Coefficient Model (GSVCM). The GSVCM allows the

principal component scores and coefficient functions to vary over space. By allowing the

coefficients to vary over space, the GSVCM can capture location-specific effects. This is the

main distinction between existing functional models and the two-step procedure through

the use of the GSVCM. For spatially varying functional data, using the GSVCM could pro-

vide improved model performance. The GSVCM also provides flexibility for different types

of data since it allows for different link functions to be used.

There are existing methods that can be used to estimate varying coefficients in

SVCM’s. One of the popular estimation methods is the local kernel based approach, such

as Geographically Weighted Regression proposed by Brunsdon et al. (2010) and local poly-

nomial maximum likelihood method by Sun et al. (2014). The kernel method works well

for nonstationary data but can become computationally complex as the sample size grows.

In many spatial data applications there is a possibility of complex boundaries as well as

interior holes. There is a vast-literature concerning the handling of complex domains. Some

of the existing methods include differential regularization (Ramsay, 2002; Sangalli et al.,

2013; Azzimonti et al., 2015; Wilhelm and Sangalli, 2016), geodesic low-rank thin plate

splines (Wang and Ranalli, 2007), complex region spatial smoother (Scott-Hayward et al.,

2014), and soap-film smoothing (Wood et al., 2008). While these methods have been shown

to work well for spatial data that can be represented using a single bivariate function, they

don’t allow for coefficient functions to vary over space. This means that previous models
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don’t allow for any predictor variables in the model, only the spatial locations. This limits

the applicability of these models, in applications where spatially varying variables have an

effect. To model data distributed over complex domains, the method of Bivariate Penalized

Splines over Triangulations (BPST) is introduced in Lai and Wang (2013). The method

of triangulation has been shown to be a computationally efficient tool to model complex

domains. In Lai and Wang (2013), they were able to show that the BPST method provided

better efficiency and optimal convergence rates for the nonparametric components in the

model. In Mu et al. (2018), the triangulation method was extended to included varying

coefficients for predictor variables. The Generalized Spatially Varying Coefficient Model

(Kim and Wang, 2021) extended the SVCM and provided a new estimation method using

a quasi-likelihood approach to accommodate different link functions.

The present research is motivated by a crop yield prediction application in agri-

culture. Agriculture is an industry of major importance in the United States, because it

is the source of livelihood for millions and global food security. Getting reliable crop yield

predictions in a timely manner is of great importance because of the agriculture industry

significance. The temperature data is accessed through publicly available data at NOAA

and the agricultural data is accessed through the USDA database. Since county-level daily

minimum and maximum temperature time series data are available, it is natural to treat

the temperature time series as functional data. It is natural to model the relationship be-

tween weather and crop-yield since it is well known that weather has a significant effect on

crop yield (Wong et al., 2018). The county-level crop yield, precipitation and proportion
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of irrigated land are also provided. In the present work, we use data from five Midwestern

states, Kansas, Missouri, Indiana, Illinois and Iowa.

In this chapter, we aim to show that the GSVFM is advantageous for spatially

varying functional data. Although the GSVFM was introduced in (Park et al., 2022), their

approach applies a Bayesian framework while the following research utilizes a frequentist

approach. The Bayesian approach worked well compared to existing methods but requires

multiple prior distributions. The performance of the GSVFM using the two-step procedure

is compared to non-spatial functional models, the PLFAM (Wong et al., 2018) and FLM

(Cai and Hall, 2006). This comparison will show that the GSVFM is able to capture

location-specific effects present in the data.

The organization of the rest of the chapter is as follows. In Sections 2.2-2.3, we

describe the model, methodology and estimation procedure used for the proposed method.

We investigate the performance of the proposed method by conducting simulations on spa-

tially varying data in Section 2.4 and apply it to the agriculture data application in Section

2.5. Concluding remarks are discussed in Section 2.6.

2.2 Methodology

The model in consideration is intended to perform prediction for the scalar re-

sponse variable Y (s). Let Y (s) denote the scalar response variable located at s ∈ Ω for a

spatial domain Ω ⊂ R2. The scalar response Y (s) is assumed to be dependent on q func-

tional variables X(s; t) = {X1(s; t), X2(s; t), . . . , Xq(s; t)}T defined for t ∈ T and m scalar

predictors Z(s) = {Z1(s), Z2(s), . . . , Zm(s)}T . Without loss of generality, we rescale the
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time domain to a unit interval where T = [0, 1]. We want to model the spatially varying

relationship between the scalar responses and associated predictors. To allow for different

families within the exponential family, the conditional density of Y given (X,Z, s) can be

represented as

fY |X,Z,s(y) = exp

{
1

σ2
[yϱ(x, z, s)− B{ϱ(x, z, s)}] + C(y, σ2)

}
,

for some functions B and C, dispersion parameter σ2 and canonical parameter ϱ. Define the

conditional mean µ(X,Z, s) = E[Y |X,Z, s]. We assume that µ(X,Z, s) is modeled by a

link function g as follows

g{µ(X,Z, s)} = η0(s) +Z
T (s)α(s) +

∫
T
XT (s; t)η(s; t)dt, (2.1)

where η0(s) is the location-specific intercept, α(s) = {α1(s), α2(s), . . . , αm(s)}T is a vector

of the spatially varying coefficients, and η(s; t) = {η1(s; t), η2(s; t), . . . , ηq(s; t)}T is a vector

of spatially varying functions over t ∈ T modeling the effect of functional trajectories on

the scalar response at location s. Define the conditional variance of Y as Var(Y |X,Z, s) =

σ2V {µ(X,Z, s)} for some variance function V .

Since the direct estimation of model 2.1 suffers from the curse of dimensionality,

we need a low-dimensional representation of the spatially dependent multivariate functional

predictors. To reduce the dimensionality, we use the method of mFPCA for the functional

variables. We perform mFPCA assuming second-order stationarity. A direct consequence

of second-order stationarity, is that the variance is the same for each location and a constant

mean across locations. Since we don’t assume the mean is constant across space, we enforce

second-order stationarity by centering the functional data by its location-specific mean
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before performing mFPCA. This step results in the functional data having a constant mean

across all locations. To estimate the eigenvalues and eigenfunctions of the functional data

X(s; t), its covariance function first needs to be defined. The covariance function is defined

as follows

C(t1, t2) = E[{X(s; t1)− µ(s; t1)}{X(s; t1)− µ(s; t2)}T ], (2.2)

where µ(s; t) = E{X(s; t)} = {µ1(s; t), µ2(s; t), . . . , µq(s; t)}T is the mean function of the

multivariate functional predictors. The eigendecomposition of C(t1, t2) for time points t1 ̸=

t2, is defined as (λr,ψr)
∞
r=1. By Mercer’s Lemma, the covariance function has the following

spectral decomposition,

C(t1, t2) =

∞∑
r=1

λrψr(t)ψ
T
r (t),

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and ψr = (ψr1, . . . , ψrq)
T are the corresponding

eigenfunctions such that ⟨ψr,ψr′⟩ =
∫
T ψ

T
r ψr′dt = I(r = r′). Then we can define the

Karhunen-Loeve expansions of X(s; t) and η(s; t) as follows

X(s; t) = µ(s; t) +

∞∑
r=1

ξr(s)ψr(t),

η(s; t) =

∞∑
r=1

βr(s)ψr(t),

where ξr(s) and βr(s) are the corresponding principal component scores for X(s; t) and

η(s; t), respectively. The functional principal component scores ξr(s) and βr(s) are defined
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as

ξr(s) =

∫
T
{X(s; t)− µ(s; t)}Tψr(t)dt,

βr(s) =

∫
T
ηT (s; t)ψr(t)dt,

where ξr(s) and βr(s) are zero-mean random variables with E{ξr(s)ξr′(s)} = λrI(r = r′)

and E{βr(s)βr′(s)} = λrI(r = r′). Using the expansions of X(s; t) and η(s; t), model 2.1

can now be rewritten as a Generalized Spatially Varying Coefficient Model (GSVCM) (Mu

et al. (2018); Kim and Wang (2021))

g{µ(X,Z, s)} = α0(s) +
m∑
l=1

Zl(s)αl(s) +
∞∑
r=1

ξr(s)βr(s). (2.3)

2.2.1 Estimation in mFPCA

Let {Yk(su),Xk(su; t),Zk(su)}Ku
k=1 be an independent copy of Ku spatial repli-

cates from the joint distribution (Y,X,Z, s) at location su ∈ Ω ⊂ R2, u = 1, . . . , U . De-

fine the total number of observations by n =
∑U

u=1Ku and denote the ith observation

as {Yi(si),Xi(si; t),Zi(si)}, for i = 1, . . . , n, where si represents the location for the ith

observation. Since the covariance function in 2.2 is unknown, we can estimate it as follows

Ĉ(t1, t2) =
1

n

U∑
u=1

Ku∑
k=1

{Xk(su; t1)− X̄(su; t1)}{Xk(su; t2)− X̄(su; t2)}T (2.4)

=
n−1∑
r=1

λ̂rψ̂(t1)ψ̂(t2), t1, t2 ∈ [0, 1], (2.5)

where X̄(su; t) = 1
Ku

∑Ku
k=1Xk(su; t) and (λ̂r, ψ̂r)

∞
r=1 are the estimated eigenvalues and

eigenfunctions. Since Ĉ has rank n − 1(Wong et al., 2018), it has the following spectral
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decomposition by Mercer’s Lemma (8),

Ĉ(t1, t2) =
n−1∑
r=1

λ̂rψ̂(t1)ψ̂(t2), t1, t2 ∈ [0, 1].

To reduce the dimension, the first p functional principal components for large enough p are

chosen. Then the r’th functinal principal component score can be estimated by,

ξ̂ir =

∫
T
{Xi(si; t)− µ(si; t)}T ψ̂rdt, i = 1, . . . , n,

for r = 1, . . . , n− 1. The GSVCM introduced in 2.3 can be approximated by

g{µ(Xi,Zi, si)} ≈ α0(si) +
m∑
l=1

Zil(si)αl(si) +

p∑
r=1

ξ̂ir(si)βr(si). (2.6)

LetX i(si) = {Xi0(si),Xi1(si), . . . ,Xi(m+p)(si)}T = {Zi0(si) ≡ 1, Zi1(si), . . . , Zim(si), ξ̂i1(s),

. . . , ξ̂ip(si)}T be the vector of predictor variables and θ(s) = {θ0(s), θ1(s), . . . , θm+p(s)}T =

{α0(s), α1(s), . . . , αm(s), β1(s), . . . , βp(s)}T the vector of coefficients, for j = 0, . . . , (m+p),

then model 2.6 can be rewritten as

g{µ(Xi,Zi, si)} ≈
m+p∑
j=0

Xij(s)θj(si) = X i(si)
Tθ(si). (2.7)

We want to find an estimator for θ(s) by using the triangulation method introduced in

Section 2.2.2.

2.2.2 Bivariate Spline Approximation over Triangulation

Suppose that Ω can be covered by a finite collection of N triangles δ1, δ2, . . . , δN

such that Ω =
⋃N
i=1 δi. A collection of triangles ∆ := {δ1, δ2, . . . , δN} is called a triangulation

over the domain Ω where it’s assumed that if two triangles intersect, then their intersection
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is either an edge or a vertex. For any triangle δ ∈ ∆ ⊆ R2 with vertices s = (s1, s2) ∈ R2,

δ is defined in terms of its vertices where δ = ⟨s1, s2, s3⟩.

A unique property of triangles, is that for any point su = (su1, su2) ∈ δ, s can

be represented as su = b1s1 + b2s2 + b3s3, where b1, b2, b3 are the barycentric coordinates

of the point s. Barycentric coordinates are useful since they can be used to define basis

functions over the complex domain. For a given point s and nonnegative integers i, j, k with

degree d = i + j + k ≥ 1, its Bernstein basis polynomials relative to triangle δ are defined

as Bd
ijk = d!

i!j!k!b
i
1b
j
2b
k
3. An important property of the Bernstein polynomials is that the set

B = {Bd
ijk(s)}i+j+k=d is a basis for the space of all bivariate polynomials of degree d, denoted

as Pd, of the form p(x, y) =
∑

0≤i+j≤d cijx
iyj . Based on this property, for a nondegenerate

triangle δ and spline coefficients {γδ;ijk}, any polynomial P ∈ Pd(δ), P can be expressed

in terms of the Bernstein basis polynomials where P(s) =
∑

i+j+k=d γδ;ijkB
d
ijk(s) which is

called the B-form of P relative to δ.

Given 0 ≤ v < d and a triangulation ∆, define the spline space of degree d and

smoothness v over ∆ as Svd(∆) = {P ∈ Cv(Ω) : P|δg ∈ Pd(δg), δg ∈ ∆, g = 1, . . . , G},

where Cv(Ω) is the space of v times continuously differentiable functions over the spatial

domain Ω. Now suppose we have a triangulation ∆j with Nj triangles for each parameter

j = 0, . . . ,m + p. To estimate the parameter θj , define the set of bivariate Bernstein

polynomials for the spline space Svd(∆j) as {Bjw}w∈Wj , where Wj represents an index set for

the basis functions on ∆j with cardinality |Wj | = Nj(d+1)(d+2)
2 . Then, the bivariate functions

θj ∈ Svd(∆j) can be approximated by θj(s) =
∑

w∈Wj
Bjw(su)γjw = Bj(su)

Tγj where

Bj(s) = {Bjw, w ∈ Wj}T and γj = {γjw, w ∈ Wj} is the vector of bivariate basis functions

43



evaluated at location s and the corresponding spline coefficient vector, respectively. To

ensure that the spline surface is smooth across the shared edges of triangles in ∆j , we

enforce global smoothness restrictions in Svd(∆j) where we introduce the constraint matrix

Hj that satisfies Hjγj = 0 for all j = 0, . . . ,m + p. The matrix Hj depends on the

smoothness of the basis functions and the structure of the triangulation ∆j .

2.2.3 Penalized Quasi-Likelihood Method

To estimate the bivariate functions θj(s), j = 0, . . . , (m + p), a quasi-likelihood

approach is used (Kim and Wang, 2021). The quasi-likelihood method is quite flexible

since it doesn’t require any distributional assumptions. If there exists a positive function

V for the Var(Y |X,Z, s) defined in the beginning of Section 2.2, then the estimation of

the mean function µ(X,Z, s) in model 2.3 can be achieved by replacing the conditional

log-likelihood function log{fY |X,Z,s(y)} with a quasi-likelihood function lQ{µ(X,Z, s)},

which satisfies ∂
∂µ lQ{µ(X,Z, s)} = y−µ

σ2V (µ)
. Let ζ(X , s) =

∑(m+p)
j=0 Xj(s)θj(s). Then for the

quasi-likelihood lQ{g−1(ζ), y}, denote ϕ1(ζ, y) and ϕ2(ζ, y) as follows

ϕ1(ζ, y) =
∂

∂ζ
lQ{g−1(ζ), y} = {y − g−1(ζ)}ϕ1(ζ),

ϕ2(ζ, y) =
∂2

∂ζ2
lQ{g−1(ζ), y} = {y − g−1(ζ)}ϕ′1(ζ)− ϕ2(ζ),

where ϕh(ζ) is defined as

ϕh(ζ) =
{ ∂
∂ζ g

−1(ζ)}h

[σ2V {g−1(ζ)}]
=

[g′{g−1(ζ)}]h

[σ2V {g−1(ζ)}]

for h = 1, 2.
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It is common for points to be irregularly spaced within a spatial domain. This

can lead to difficulty in estimating a smooth bivariate function over the domain. Because

of this, we use penalization in the estimation through the energy functional penalty. The

energy functional penalty is defined as

ε(f) =

∫
Ω
{(∇2

s1f)
2 + 2(∇s1∇s2f)

2 + (∇2
s2f)

2} ds1ds2,

which enforces smoothness conditions between the bivariate functions spread out across the

domain. The energy penalty enforces smoothness across space since the second gradient

over space is a measure for the curvature of a spatially varying function. Using the quasi-

likehood function lQ and the energy penalty method, the objective function is defined as

max
θ

n∑
i=1

lQ

[
g−1

{m+p∑
j=0

Xij(si)θj(si)
}
, Yi(si)

]
−1

2

m+p∑
j=0

τjε(θj), (2.8)

for nonnegative smoothness parameters τ1, . . . , τm+p. Although different triangulations can

be used for estimation, Bernstein basis polynomials and constraint matrices can be used for

each parameter, for simplicity we assume that ∆j = ∆, Bj = B = {B(s1), . . . ,B(sn)}T

and Hj =H where Bj(si) = B(si) = {Bw(si), w ∈ Wj} j = 0, . . . ,m+ p and i = 1, . . . , n.

The coefficient θj ∈ Svd(∆) is penalized over the entire spatial domain Ω. Since θj can’t

be calculated for every s ∈ Ω, it is approximated by BTγj . Then the energy functional

ε(θj) can be approximated by ε(θj) = ε(BTγj) = γTj Kγj , where K is the block diagonal

penalty matrix. Using the basis expansions and the constraint matrixH, the maximization

problem in 2.8 can be rewritten as a minimization problem as follows

min
γ

Hγj=0

−
n∑
i=1

lQ

[
g−1

{m+p∑
j=0

Xij(si)B(si)
Tγj

}
, Yi(si)

]
+
1

2

m+p∑
j=0

τjγ
T
j Kγj , (2.9)
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where γ = (γ0,γ1, . . . ,γm+p). A key component of solving this minimization problem is

removing the constraint Hγj = 0 by using the QR decomposition of HT whose rank is the

smoothness parameter v. The QR decomposition of HT is defined as

HT = QR =

[
Q1, Q2

]R1

R2

 ,
where Q is an orthogonal matrix and R is an upper triangular matrix. Here, Q1 represents

the first v columns of Q and R2 is a matrix of zeros. Then γj can be reparametrized

by using γj = Q2γ
∗
j which guarantees that Hγj = 0. Now the constrained minimization

problem becomes an unconstrained penalized minimization problem where

min
γ∗

−
n∑
i=1

lQ

[
g−1

{m+p∑
j=0

XijB(si)
TQ2γ

∗
j , Yi(si)

}]
+
1

2

m+p∑
j=0

τjγ
∗T
j Q

T
2KQ2γ

∗
j , (2.10)

where γ∗ = (γ∗T
0 , . . . ,γ∗T

m+p)
T .

2.3 Implementation of GSVFM

We can estimate the spatially varying coefficients θj(si) by minimizing the objec-

tive function in equation 2.10. For certain link functions, there is a closed-form solution

for 2.10. Since this isn’t the case for all link functions, the minimization of the objective

function is solved by using a Penalized Iteratively Reweighted Least Squares (PIRLS) pro-

cedure (Kim and Wang, 2021). Before describing the procedure, some notation needs to be

defined. Let Y = (Y1, . . . , Yn)
T and X i = (1,Xi1, . . . ,Xi(m+p)) be the response vector and

the ith row vector of the design matrix. Define the matrix X ∗ = (X ∗
1, . . . ,X ∗

n)
T , where
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X ∗
i = X i ⊗B∗(si) and B

∗(si) = Q
T
2B(si). Define ζ(γ∗) as follows

ζ(γ∗) = (ζi)
n
i=1 =

{m+p∑
b=0

XibB(si)
TQ2γ

∗
b

}n
i=1

.

Futhermore, denote the mean vector µ(γ∗) = (µi)
n
i=1 = {g−1(ζi)}ni=1, the variance func-

tion matrix V = diag{V (µi)}ni=1, the diagonal matrix with elements of the derivative

of the link function g, G = diag{g′(µi)}ni=1, and the weight matrix W = V −1G−2 =

diag[{V (µi)g
′(µi)

2}−1]ni=1.

To describe the procedure, suppose we are at the jth iteration with the current

parameter estimates γ∗(j), µ(j) = µ(γ∗(j)), ζ(j) = ζ(γ∗(j)) and V (j). As in any iterative

procedure, we want to find the updated estimates at the (j + 1)’th iteration. To find the

estimates, we need to define the objective function in terms of the estimates at the jth

iteration. The objective function at the (j + 1)’th iteration can be defined as follows

L(j+1)
p = ∥{V (j)− 1

2 {Y − µ(γ∗)}}∥2 + 1

2

m+p∑
b=0

τbγ
∗T
b Q

T
2KQ2γ

∗
b . (2.11)

The general procedure of an iterative algorithm is to find an approximation for a function

with respect to the variables. In equation 2.11, the expectation function is unknown but

we can approximate it by its first-order Taylor expansion around γ∗(j) as follows

µ(γ∗) = µ(j) + {G(j)}−1X ∗(γ∗ − γ∗(j)). (2.12)
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Using the Taylor expansion in 2.12, L
(j+1)
p can be approximated as follows

L(j+1)
p ≈ ∥{V (j)}−

1
2 (Y − µ(j))− {V (j)}−

1
2 {G(j)}−1X (γ∗ − γ∗(j))∥2 + 1

2

m+p∑
b=0

τbγ
∗T
b Q

T
2KQ2γ

∗
b

= ∥{V (j)}−
1
2 {G(j)}−1G(j)(Y − µ(j))− {V (j)}−

1
2 {G(j)}−1X (γ∗ − γ∗(j))∥2

+
1

2

m+p∑
b=0

τbγ
∗T
b Q

T
2KQ2γ

∗
b

= ∥{V (j)}−
1
2 {G(j)}−1[G(j)(Y − µ(j))−X (γ∗ − γ∗(j))]∥2 + 1

2

m+p∑
b=0

τbγ
∗T
b Q

T
2KQ2γ

∗
b .

SinceW (j) = {V (j)}−1{G(j)}−2, we can define {W (j)}
1
2 to be {W (j)}

1
2 =

[
{V (j)}−1{G(j)}−2

] 1
2=

{V (j)}−
1
2 {G(j)}−1. Notice that, X (γ∗ − γ∗(j)) = Xγ∗ − Xγ∗(j) = Xγ∗ − ζ(j). Then we

can rewrite the above equation as follows

L(j+1)
p ≈ ∥{W (j)}

1
2 [Ỹ (j) −X ∗(γ∗)]∥2 + 1

2

m+p∑
b=0

τbγ
∗T
b Q

T
2KQ2γ

∗
b , (2.13)

where Ỹ (j) = {Ỹ (j)
1 , . . . , Ỹ

(j)
n }T = G(j)(Y − µ(j)) + ζ(j). Using the approximation of the

objective function in 2.13, the PIRLS algorithm can be described as in Algorithm 1 below.
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Algorithm 1 PIRLS Algorithm

Step 1: Initial values need to be chosen for the parameters ζ(0) and µ(0). The weight

matrixW (0) is initialized by calculating the values of g′(µ
(0)
i ) and V (µ

(0)
i ), for i = 1, . . . , n.

Using these components, Ỹ (0) can be calculated.
Step 2: The algorithm is executed for a specified number of iterations J until the
sequence of γ∗’s converges. For each iteration j, the following procedure is implemented:
for each 0 ≤ j ≤ J do

(i) The current estimates ζ(j) and µ(j) are used to update g′(µ
(j)
i ) and V (µ

(j)
i ) and then

W (j) and Ỹ (j) can be updated accordingly.

(ii) Using the updated variables from (i), the objective function in equation 2.13 can be
updated and then minimized with respect to γ∗. The value of γ∗ that minimizes
2.13, is set to γ∗(j+1). The solution γ∗(j+1) is used to update ζ(j+1) = ζ(γ∗(j+1))
and µ(j+1) = µ(γ∗(j+1)).

(iii) Set j to j + 1.

end for

In the following analyses, the initial values for µ(0) and ζ(0) are chosen as µ(0) = Y + 0.1n

and ζ(0) = {g(µ(0)1 ), g(µ
(0)
2 ), . . . , g(µ

(0)
n )}T , where 0.1n is a vector of 0.1’s of size n.

The PIRLS procedure described above is dependent on the selection of the smooth-

ing parameters τ = (τ1, . . . , τm+p)
T . The purpose of the penalty is to control the smoothness

of the coefficient functions. Imposing smoothness on the coefficients controls overfitting but

affects the model fit. The smoothing parameters control the balance between the model fit

and the variability of the functions. In general, cross-validation is used to determine the op-

timal smoothing parameters but it is computationally burdernsome. Therefore, the General-

ized Cross-Validation (GCV) criterion is considered. Define the matrixDΛ = Λ⊗QT
2KQ2,

where Λ = diag(τ0, τ1, . . . , τ(m+p)). LetM(τ ) = X ∗TWX ∗+DΛ and denote the smoothing

matrix S(τ ) = X ∗{M(τ )}−1X ∗TW . Then the GCV criterion can be defined as

GCV(τ ) =
n−1∥W

1
2 {Ỹ − S(τ )Ỹ }∥

[n−1tr{I − S(τ )}]
. (2.14)
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The smoothing parameters τ can then be minimized using the GCV criterion over a grid

of values to select the optimal τ .

2.4 Simulations

To evaluate the performance of the proposed methodology, it is necessary to con-

duct simulations using generated data that represents the ideal setting for real world data

and compare the model to existing functional models. The following simulations will be

used the show the advantage of the GSVFM over models that don’t include the spatial

component.

2.4.1 Data Generation

The spatial domain is one of the key distinguishing components in the GSVFM.

In real data applications, the spatial domain can’t be chosen but in simulations there is

no restriction. The shape of the spatial domain can be simple or complex. The real data

spatial domain is used in the simulations for simplicity and to try to replicate the real-world

setting as much as possible. In the agricultural data, the variables are measured across the

state of Kansas. In the following simulations, the spatial domain used is all 105 Kansas

counties. The spatial domain is defined as Ω = (s1, . . . , sU ) ⊂ R2, where U = 105 counties

and can be seen in Figure 2.1.
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Figure 2.1: Kansas Spatial Domain with County Centroids.

In this case, the shape of the spatial domain can be considered simple since it has min-

imal complex boundaries. Although the method of Bivariate Splines over Triangulations

is advantageous for complex spatial domains, this is not its only benefit. It’s other main

advantage is that it allows for the coefficient functions to vary over space as opposed to

bivariate spline methods that only allowed for a single bivariate function varying over the

spatial domain.

Because the agriculture dataset is separated into two distinct datasets, the data

generation consists of two parts. The two main data sets that are generated are the func-

tional dataset and the non-functional dataset. The functional dataset includes the daily

minimum and maximum temparature time series. The non-functional dataset includes the

agricultural yield, precipitation and the county-specific identifiers. All variables are gener-

ated with respect to each county (location) in the spatial domain. In the Kansas data, each

county has at most 13 years of data. To replicate the setting of the agriculture data, we

51



generate 10 years of data for each county which implies that Ku = K = 10. There are a

total of n = K ∗ U = 100 ∗ 105 = 1050 observations generated for the simulations.

The multivariate spatially varying functional predictor variables Xk(su, t) =

{Xk1(su, t), Xk2(su, t)}T , k = 1, . . . ,Ku, u = 1, . . . , 105, is generated by the Karhunen-

Loeve decomposition using p = 5 eigenfunctions

Xk(su; t) =

5∑
r=1

ξkr(su)ψr(t), (2.15)

where ψr(t) =
{
cos(2πrt), sin(2πrt)

}
for 100 time points over the time domain [0, 1] and

ξkr = {ξkr(s1), . . . , ξkr(sU )} for r = 1, . . . , 5 and k = 1, . . . ,Ku. In the preprocessing step

of smoothing the discrete functional data, a time domain is required. The time domain of

[0,1] is used throughout the simulations which is a scaled version of the the time domain of

[1,365]. Since the GSVFM allows for the coefficients to spatially vary, there is inherently

spatial correlation to some degree. Therefore, it is important to simulate data based on the

assumed underlying structure. To determine how much of an effect spatial correlation has

on prediction performance, there are two different settings for the generation of the principal

component scores. To test the effect of spatial correlation, the FPC scores are generated

with spatial correlation and without. In the case of spatial correlation, the FPC score

vectors are generated by ξkr ∼ N(0U , λrΣ(ϕ)) whereΣ(ϕ) is the Matern covariance function

and λ = (λ1, . . . , λ5) = (9, 4, 3, 2, 1)T where V ar{ξkr(su)} = λr for u = 1, . . . , 105 and

k = 1, . . . , 10 (Park et al., 2022). The Matern correlation function describes the correlation

between two points separated by d distance units and is defined as

ρ(d) =
1

γ(κ)2κ−1

(d
ϕ

)κ
Kκ

(d
ϕ

)
,
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where κ is the smoothness parameter, ϕ the range parameter, and Kκ is the modified Bessel

function of the second kind (Stein, 2012). The parameter ϕ controls the rate of decay

across space. The larger ϕ is, the slower the rate of decay and thus stronger correlation.

The parameters for the Matern correlation function used in the simulation are ϕ = 50/111

and κ = 1. For the range parameter ϕ, 50 km represents the decay rate and it is scaled

by the number of kilometers per unit of longitude and latitude. In the case of no spatial

correlation, the covariance matrix Σ = I, the identity matrix. The identity matrix implies

that there is no covariance. When real data is collected, there can be some measurement

error introduced because of issues with the measurement devices among other factors. To

account for this in the simulations, the multivariate functional predictors Xk(su; t) are

generated with measurement errors following N(0, 0.2) (Wong et al., 2018). To generate

the response variable, the scalar predictor variable and the coefficient functions need to

be generated. The scalar predictor variable is generated by Zk(su)
iid∼ U [0, 3] (Park et al.,

2022). Since the GSVFM allows the coefficients to behave as smooth bivariate functions,

the model should work well with complex functions. In the case where the true coefficients

are constant, the GSVFM reduces to a Functional Linear Model since there is no variation

across space. In this instance, the Functional Linear Model and the GSVFM should have

similar performance. In the case where the coefficient function complexity increases, the

GSVFM should perform better than existing functional models. To determine how much

of an effect the complexity of the coefficient functions has on the results, there are three

different cases for the coefficient functions, constant, linear and complex functions. The

constant setting is used to verify that the model is behaving similarly to the Functional
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Linear Model. The coefficient functions for the constant setting are

α0(su) = 0.004, α1(su) = 0.08, β1(su) = 0.16, β2(su) = −0.16, β3(su) = −0.2,

β4(su) = −0.104, β5(su) = 0.2.

For the linear setting, the functions are

α0(su) =
1

65
(1.5s1u + 1.2s2u), α1(su) =

1

65
(2s1u + 2s2u),

β1(su) =
1

65
(4s1u + 6s2u), β2(su) =

1

65
(3s1u + 5s2u),

β3(su) =
1

65
(5s1u), β4(su) =

1

65
(2s1u + 5s2u), β5(su) =

1

65
(2s1u + 2.5s2u).

And for the complex setting we have,

α0(su) =
1

4
sin

(
πs1u
6

)
, α1 =

1

8
sin(s1u + s2u),

β1(su) =
1

81
{9− (3− s1u)

2}{9− (3− s2u)
2}, β2(su) =

1

4
sin

{
π(s1u + s2u)

6

}
,

β3(su) =
1

2640
{8 + (4− s1u)

2}{8− (4− s2u)
2}, β4(su) =

1

4
sin{2π(s1u + s2u)},

β5(su) =
1

40
{3 + (2−

√
|s1u|)2}{3− (2−

√
|s1u|)2}.

In all the coefficient settings described, the coefficients were chosen such that the scale of the

response variable Yk(su) will be similar in all settings so that their prediction performance

can be compared. Since the GSVFM is defined for multiple link functions, two different

scenarios are used in the simulations to demonstrate its applicability. The first scenario

assumes that Yk(su) ∼ N(µk(su), σ
2
ϵ ) using an identity link function. The second scenario

assumes that Yk(su) ∼ Poisson(µk(su)) using a log link function. Using the data and

parameters generated above, the mean µk(su) is calculated by using the GSVCM.
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• In the scenario where Yk(su) ∼ N(µk(su), σ
2
ϵ ), the model is defined as

µk(su) = α0(su) + α1(su)Zk(su) +
5∑
r=1

ξkr(su)βr(su), ∀ k = 1, . . . , 10, u = 1, . . . , 105.

The measurement error for the response variable is based on a signal-to-noise ratio

(SNR) of 3.3.

• When Yk(su) ∼ Poisson(µk(su)), the model is defined as

log{µk(su)} = α0(su) + α1(su)Zk(su) +

5∑
r=1

ξkr(su)βr(su), ∀ k = 1, . . . , 10, u = 1, . . . , 105.

No measurement error is added in the case of a Poisson response since µk(su) =

Var{Yk(su)} for a Poisson random variable.

2.4.2 Smoothing Parameters

When creating a triangulation of a complex spatial domain, there are many pos-

sible triangulations. A triangulation can have anywhere from a small number of very large

triangles to a large number of very small triangles. The number and size of the triangles

describes the fineness of the triangulation. The number of triangles determines how many

locations there are in each triangles. In the case of a small number of triangles, each triangle

will contain multiple points. As the number of triangles increases, the number of points

in each triangle decreases. The number of triangles has a similar effect to the number of

knots for univariate splines. Since the fineness can affect the prediction performance, it

is treated as a smoothing parameter. Similar to other smoothing parameters, there is a

threshold where the fineness has no effect. Before determining which fineness values to test,

it is beneficial to create some triangulations to get a visual of how much the triangulation is
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changing with the fineness. The best triangulations is where the triangles are approximately

uniform in size. When this characteristic is met, each triangle will have a similar number of

points. After this initial step, certain values can be chosen for performing cross-validation.

The degree of the Bernstein basis polynomials also has an effect on prediction as is common

in many other applications of splines. The combination of the degree and spline should be

chosen through cross-validation to determine which pair of smoothing parameters results in

the lowest MSPE.

To determine what effect the degree and triangulation have on the GSVFM’s

performance, the following settings are tested, (d = 2, triangles = 9) (d = 3, triangles = 9),

(d = 2, triangles = 22) and (d = 3, triangles = 22). The two different triangulations that

are used can be seen in Figure 2.2 below.

(a) Triangulation with 9 triangles. (b) Triangulation with 22 triangles.

Figure 2.2: Triangulations of Kansas.

For the model fitting of the Generalized Spatially Varying Coefficient Model (GSVCM),

there is an energy functional penalty with a corresponding penalty parameter. Given a se-

quence of penalty parameters, the optimal penalty parameter is chosen through generalized

cross-validation at each fold.

The simulations are repeated 25 times using 5-fold CV to account for random-

ness across samples for each setting. For testing the smoothing parameters, only complex
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coefficient functions are used. To assess the prediction performance, the Mean Squared Pre-

diction Error (MSPE) is used. For a given testing set, let {Yi(si)}ni=1 be the true response

values and {Ŷi(si)}ni=1 be the corresponding predicted values. Then the MSPE calculated

at each fold is defined as follows,

MSPE =
1

n

n∑
i=1

{Yi(si)− Ŷi(si)}2. (2.16)

The MSPE and the training run time (per fold) averaged over the 25 repetitions can be

seen in Table 2.1 below.

d # triangles MSPE Run Time (sec/fold)

2 9 0.26 3.42

3 9 0.25 3.28

2 22 0.24 2.95

3 22 0.25 5

Table 2.1: MSPE for combinations of degree and triangles.

Based on the results in Table 2.1, there is a negligible difference in MSPE between the

smoothing parameter combinations. Using only the MSPE as the deciding factor, the best

combination is d = 2 and 22 triangles. It’s important to consider that in general, the higher

the degree, the more complexity the model is able to capture. Increasing the degree might

lead to slightly better results but it can also make interpretation more difficult and increase

computation time. The advantage of using more triangles is the ability to capture more

variations across space. Although the run time is slightly longer for d = 3 and 22 triangles,

this is an insignificant difference. Taking all these factors into account and the fact that the
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triangulation in Figure 2.2a includes one triangle that is significantly different in size than

the others, the combination of d = 3 and 22 triangles is used for the remaining simulations

and real data application in Section 2.5. The smoothness v is set to 1 for all simulations.

2.4.3 Gaussian Response Simulation Results

To evaluate the performance of the GSVFM, it is necessary to compare it to

existing functional models. From this comparison, we will be able to determine if the

GSVFM performance shows an improvement over existing models. The models that are

used for comparison are the Generalized Spatially Varying Functional Model (GSVFM),

the Partially Linear Functional Additive Model (PLFAM) and the Functional Linear Model

(FLM). The models are defined as follows

GSVFM; g{µ(X,Z, s)} = η0(s) +Z
T (s)α(s) +

∫
T
XT (s; t)η(s; t)dt,

PLFAM; Y = m(X,Z) + ϵ,

FLM; Y = η0 +Z
Tα+

∫
T
XT (t)η(t)dt+ ϵ.

As described in Section 2.4.1, the spatial correlation (SC) component is coming from the

FPC scores through the use of the Matern correlation function. The GSVFM should perform

well in the prescence of spatial correlation. Therefore, it is of interest to see how the model’s

performance changes depending on different combinations of spatial correlation and function

complexity, the following six settings are used: (No SC, Constant), (SC, Constant), (No

SC, Linear), (SC, Linear), (No SC, Complex), (SC, Complex). To account for randomness,

each setting is repeated 25 times with different seeds to generate the data. For each data

generation, 5-fold Cross-Validation MSPE is calculated and the training run time (for each
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fold) is measured for the GSVFM, PLFAM and FLM. For each model setting, the MSPE

and run time are averaged across the 25 repetitions. The MSPE used is defined in 2.16.

The results for each setting can be seen in Tables 2.2-2.4

Model SC Function MSPE Run Time (sec/fold)

GSVFM No Constant 0.17 8.15

PLFAM No Constant 0.18 108.03

FLM No Constant 0.19 6.81

GSVFM Yes Constant 0.16 7.02

PLFAM Yes Constant 0.17 134.77

FLM Yes Constant 0.18 4.14

Table 2.2: Gaussian - Constant Functions.

Model SC Function MSPE Run Time (sec/fold)

GSVFM No Linear 0.13 4.69

PLFAM No Linear 0.55 56.005

FLM No Linear 0.55 4.46

GSVFM Yes Linear 0.13 12.009

PLFAM Yes Linear 0.54 64.29

FLM Yes Linear 0.54 4.38

Table 2.3: Gaussian - Linear Functions.
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Model SC Function MSPE Run Time (sec/fold)

GSVFM No Complex 0.23 6.73

PLFAM No Complex 0.63 115.84

FLM No Complex 0.62 11.56

GSVFM Yes Complex 0.24 4.71

PLFAM Yes Complex 0.65 109.39

FLM Yes Complex 0.65 6.43

Table 2.4: Gaussian - Complex Functions.

The results for the constant setting are presented in Table 2.2. When the true coefficient

functions are constant, there is no significant difference in MSPE between the models. This

outcome aligns with expectations, as a spatially dependent model offers no advantage in

this scenario. Consequently, the GSVFM behaves similarly to the PLFAM and FLM. In the

presence of spatial correlation, the results remain consistent since the coefficient functions

are constant. This constant setting was used to verify that the GSVFM operates correctly,

but the more interesting case involves coefficient functions that vary across space.

Table 2.3 shows the results for the linear function setting. Here, the true coefficient

functions are bivariate linear functions, and we observe a significant difference in MSPE.

The competing models’ MSPE remains the same and is about four times larger than that

of the GSVFM. As expected, the GSVFM shows superior performance when the coefficient

functions vary spatially. While it is reassuring that the GSVFM works well for linear

functions that change over space, in practice, more complex functions are often encountered.

As these functions become more intricate, it becomes increasingly challenging for the model
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to accurately recover them. The true power and generalizability of the GSVFM can be

assessed using more complex functions.

Table 2.4 presents the results when the true coefficient functions are complex. The

behavior in this setting is similar to the linear case, with the MSPE for the PLFAM and

FLM being equivalent but approximately 2.5 times higher than the GSVFM MSPE, under

both spatial correlation settings. The results from both the linear and complex settings

highlight the advantages of using the GSVFM over the PLFAM and FLM when spatial

correlation is present. Furthermore, even in the absence of spatial correlation, the GSVFM

continues to perform well.

In Tables 2.2-2.4, the MSPE values reported are averages across 25 data gener-

ations, with five folds per generation. Examining all 125 MSPE values for each setting

wouldn’t be practical, so using the average provides a general sense of overall model per-

formance. However, relying solely on the mean may not fully capture performance, as it

can be influenced by outliers. To gain a clearer understanding of the distribution of MSPE

across all data generations, we can generate box plots for each model. Since the complex

setting is of greatest interest, the box plots will focus on the complex functions and spatial

correlation setting.
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Figure 2.3: Boxplots of the MSPE’s.

The boxplots in Figure 2.3 clearly reinforce the findings from Table 2.4, but a key observation

is that the spread of the MSPE for the PLFAM and FLM is significantly wider than for the

GSVFM. This indicates that, even across different samples, the GSVFM’s performance is

more stable compared to the PLFAM and FLM. This is a critical aspect of the GSVFM’s

performance, as in real-world applications, there can be thousands of potential samples. It

further highlights the broad applicability of the GSVFM.

The MSPE is just one method for evaluating the GSVFM, but since this is a

simulation, we can also assess how well the model recovers the true coefficient functions. If

the model is accurate, the estimated coefficient functions should closely match the true ones.

Heat maps can be used to visualize this recovery. Since the estimated coefficient functions

are discrete—limited to 105 spatial locations in the domain—they are not continuous over

space. To better capture the behavior of the coefficient functions across the spatial domain,
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a grid of values is created, and the estimated coefficient value at each point is calculated.

This approach produces a smooth heat map over the spatial domain. By comparing the

heat maps of the true and estimated coefficient functions, we can assess the accuracy of

the GSVFM’s estimations. Figures 2.4-2.13, display the recovery of the true coefficient

functions in both the linear and complex settings.

Figure 2.4: α1 Linear Heatmaps.
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Figure 2.5: β1 Linear Heatmaps.

Figure 2.6: β2 Linear Heatmaps.
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Figure 2.7: β3 Linear Heatmaps.

Figure 2.8: β4 Linear Heatmaps.
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Figure 2.9: α1 Complex Heatmaps.

Figure 2.10: β1 Complex Heatmaps.
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Figure 2.11: β2 Complex Heatmaps.

Figure 2.12: β3 Complex Heatmaps.

67



Figure 2.13: β5 Complex Heatmaps.

At a glance, the heatmaps show that the GSVFM performs quite well in recovering

the true coefficient functions, especially in the linear setting, where the estimated coefficients

closely follow the behavior of the true functions. Although there is a small discrepancy

between the true and estimated linear functions, it is minor and does not significantly affect

the overall trend. Only in the case of β4 in Figure 2.8 do we see slightly more deviation

compared to the other coefficients. It’s possible that increasing the sample size would bring

the estimated linear functions even closer to the true values. The relative simplicity of the

linear functions, compared to the complex functions, clearly influences the accuracy of the

recovery, as seen in Figures 2.4-2.8. While the recovery of the linear functions is reassuring,

the more critical scenario involves the complex functions.

Figures 2.9-2.13, display the heatmaps for the complex functions, where the dif-

ference between the true and estimated functions is more noticeable than in the linear case.

Some complex functions, such as α1, β1, and β2 in Figures 2.9-2.11 are estimated more
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accurately than others. However, for β3 in Figure 2.12 and β5 in Figure 2.13, the deviation

between the true and estimated functions is more pronounced. For instance, in Figure 2.13,

the true β5 heatmap shows a very complex pattern, and the GSVFM has greater difficulty

producing a similar estimate. While the estimated heat map for β3 captures the general

trend of the true function, it could be more precise. The higher order FPC scores, β4 and

β5, have smaller values and thus would had have less of an effect on the response. This could

possibly explain a lesser recovery of the original function for higher order FPC coefficient

functions. Overall, based on the comparison between the true and estimated coefficient

function heatmaps, the GSVFM does a reasonable job of recovering the true functions.

2.4.4 Poisson Response Simulation Results

One of the GSVFM’s many advantages, is that it’s defined for different link func-

tions. This makes it widely applicable for different kinds of applications where the response

variable might not follow a Normal distribution. The GSVFM extends the class of General-

ized Linear Models (GLM) to multivariate spatially varying functional data. One of the pos-

sible link functions is the log-link function where the goal is to model a Poisson distributed

response variable. When the response variable is distributed as Poisson, this means that

the response represents the number of times an event occurs in a particular time interval.

The model is defined as in Section 2.4.3 but now the response Yk(su) ∼ Poisson(µk(su)).

The data generation is the same as described in Section 2.4.1 instead of the addition of

measurement error to the response as stated at the end of Section 2.4.1. The two models

used for comparison are the GSVFM and the Generalized Functional Linear Model (GFLM)
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which are defined as follows

GSVFM, g{µ(X,Z, s)} = η0(s) +Z
T (s)α(s) +

∫
T
XT (s; t)η(s; t)dt,

GFLM, g{µ(X,Z)} = η0 +Z
Tα+

∫
T
XT (t)η(t)dt,

where g is a log link function. The simulation results for the constant, linear and complex

function settings with respect to spatial correlation, can be in Tables 2.5-2.7

Model SC Function MSPE

GSVFM No Constant 1.66

GFLM No Constant 1.71

GSVFM Yes Constant 1.64

GFLM Yes Constant 1.73

Table 2.5: Poisson - Constant Functions.

Model SC Function MSPE

GSVFM No Linear 1.54

GFLM No Linear 3.75

GSVFM Yes Linear 1.55

GFLM Yes Linear 3.75

Table 2.6: Poisson - Linear Functions.
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Model SC Function MSPE

GSVFM No Complex 2.12

GFLM No Complex 2.69

GSVFM Yes Complex 1.93

GFLM Yes Complex 3.34

Table 2.7: Poisson - Complex Functions.

As mentioned in Section 2.4.3, the constant setting is used to verify that the GSVFM is

working correctly. In Table 2.5, the MSPE in all settings are fairly close to each other with

the GSVFM resulting in a slightly smaller MSPE. The linear and complex settings offer

a different perspective of the GSVFM’s performance. In Table 2.6, the GSVFM outper-

forms the GFLM significantly since the GFLM MSPE is around 2.5 times greater than the

GSVFM. Looking at the complex setting in Table 2.7, there is similar behavior in the spatial

correlation case. When spatial correlation is present, the GFLM MSPE is approximately

1.75 times greater than the GSVFM MSPE. These results confirm what we see in the linear

setting but what is interesting is the smaller difference in MSPE under the complex and

no spatial correlation setting. In this setting, the GSVFM still outperforms the GFLM but

not by as much in the spatial correlation case. A possible explanation for this, is that since

the complex functions are periodic, the GFLM may have some cancelation of errors. The

results displayed in this section prove that the GSVFM has better prediction performance

over the GFLM in the case of a log-link function.
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2.5 Application

The motivating application for this research is crop yield prediction for corn yield

using weather data and other agricultural variables collected from the Midwest region in-

cluding the states of Kansas, Missouri, Indiana, Illinois and Iowa over a time period of 21

years from 1999-2019 across 513 counties. For each county, we observe spatial replicates of

the average corn yield per acre (measured in bushels per acre), average yearly precipita-

tion, proportion of irrigated land and the minimum and maximum temperature time series

observed over the time domain T = [0, 365]. For simplicity, the rescaled time domain of

T = [0, 1] is used throughout this section. The number of available years of data for each

county varies across all counties. The data could be missing for all variables for a single year

or a combination of variables. There are different ways of handling missing data and the

approach used needs to be applied with care. More details concerning missing data handling

is covered in Appendix A. The spatial domain Ω is defined to be the entire boundaries of

the five Midwest states.

The agriculture industry in the US contributes 136.1 billion dollars to national

GDP and 11% of total employment (USDA, 2020a). Agriculture is clearly a significant

industry for GDP, employment and food security. The US agriculture industry not only

provides food security for the US, it also provides global food security as it is a leading

producer in the world. Because of this, obtaining reliable crop-yield predictions is of even

more importance. There are different agricultural regions throughout the US, with the

Midwest being one of the largest. The Midwest happens to be one of the worlds largest

crop production areas with 127 million acres and produces 85% of US corn and soybean

72



(USDA, 2020b) which only emphasizes how important the US agricultural industry is to

the world. Corn is an important crop in the Midwest since it is used for many different

purposes such as human food, livestock, and biofuel (ethanol). The Midwest is a prime

region for growing corn since the soils are deep, fertile, and rich in organic material and

nitrogen, and the land is relatively level. Crop-yield can be affected by a multitude of

different variables. There might be certain variables that are very difficult to measure but

through multiple research studies, it has been discovered that climate variables such as

temperature and precipitation have a significant impact on all plant growth and therefore

affect agricultural productivity. One example that provides evidence for this claim is in

Ray et al. (2015) which states that approximately 60% of corn yield variability and 36%

of soybean yield variability in the Midwest can be explained by climate variability. As

one can imagine, the problem of crop-yield prediction is not new and there has been a lot

of development in predictive models by crop scientists. Some of these predictive models

include, process-based simulation models under comprehensive mechanism processes (Guan

et al., 2017; Jones et al., 2017; Peng et al., 2018), empirical statistical crop models based on

historical climate observations and yield measurements (Prasad et al., 2006; Gornott and

Wechsung, 2016; Kern et al., 2018) and machine learning methods in recent studies (Kang

et al., 2020; Van Klompenburg et al., 2020). Although there are differences in these methods,

one of their commonalities, is that they all use a summary of climate data such as using

monthly or yearly averages instead of complete trajectories. Beyond crop-yield prediction

for the importance of sustaining agriculture, prediction models can help us understand the

potential impacts of weather patterns on crop productivity which is of great interest to
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agriculture and the economy as climate change becomes a fast approaching challenge for

humanity. The ultimate goal in this application is to use the spatially varying functional

model to perform crop yield prediction given a new observation.

In the following section, the aim is to first provide some data exploration in Section

2.5.1 and the remaining sections cover different components of the model fitting. Sections

2.5.2 and 2.5.3 focus on the results for the Midwest agriculture data. The sample size and

size of the spatial domain could play a part in the model performance. To contrast the

effect of these two characteristics, two separate analyses are performed, one on the Kansas

dataset, and one on the complete Midwest dataset. In Section 2.5.4, a Bootstrap Hypothesis

Testing procedure is applied to the Midwest data to provide evidence for non-stationarity.

2.5.1 Data Exploration

In any data analysis, exploring the data before fitting different models is important

since it delivers useful information that could be of importance in model fitting. Before

fitting the model to the Kansas and Midwest data, it is important to get some sense of the

behavior of the data. For simplicity, the data exploration is conducted only for the Kansas

data but similar behaviors arise for the Midwest data.

The daily minimum and maximum time series data are the functional data in the

model that we are using in our model through FPCA. To demonstrate the behavior of the

temperature time series, we can plot the behavior for one Kansas county in 1999 which can

be seen in Figure 2.14.
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Figure 2.14: Allen County Temperature Curves for the year 1999.

The minimum and maximum temperature fluctuate by about a couple degrees for most

days, but for some, it fluctuates between 10-20 degrees from one day to another. As we

would expect, the temperature curves start with colder temperatures in the winter and shift

to warmer temperatures in the summer and then decreases again from summer to fall. This

is common behavior in any location since there are unique seasons for each location. The

curves seem to be some kind of linear combination of sine and cosine functions. Figure 2.14

shows us the typical behavior of one county’s minimum and maximum time series data but

there exists some variation among counties and years. To get a sense of the behavior across

different counties and years, 50 randomly selected minimum and maximum temperature

time series were for different combinations of county and year. The plot of the time series

for these counties and years can be seen in Figure 2.15.
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(a) 50 randomly selected minimum temperature
curves with the mean curve in red.

(b) 50 randomly selected maximum temperature
curves with the mean curve in red.

Figure 2.15: Minimum and Maximum Temperature Curves.

In Figure 2.15, there is some variation across counties and years, especially among the

maximum temperature curves. The variation in both plots relative to the mean is anywhere

between 10-15 degrees Celsius. Although there is some variation among the curves, which

is to be expected, for the most part all curves follow a similar kind of behavior to what was

seen in Figure 2.14. There is similar behavior in the curves because all counties are coming

from the same region. This does not mean there aren’t climate differences but to some

degree there are similarities in climate. Figure 2.15 gives one view of the variation across

counties. A useful perspective is to get an idea of how the average minimum and maximum

temperature change over counties, by creating a 3D scatterplot and surface which can be

seen in Figure 2.16.
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(a) 3D scatterplot of average minimum tempera-
ture across counties.

(b) 3D surface of average minimum temperature
across counties.

Figure 2.16: Average Minimum Temperature 3D plots.

In Figure 2.16a, the variation among the average minimum temperature from county to

county can be seen more distinctly. The averages vary by only a couple degrees since only the

average is reported per county. Counties that are closer to each other have similar average

minimum temperatures which can be seen more clearly in Figure 2.16b where specific regions

are separated by color. The area of Kansas with the highest average minimum temperatures

is in red and an area with lowest averages in blue. For the average maximum temperatures,

the same plots can be created as seen in Figure 2.17.

(a) 3D scatterplot of average maximum temper-
ature across counties.

(b) 3D surface of average maximum temperature
across counties.

Figure 2.17: Average Maximum Temperature 3D plots.

In Figures 2.17a and 2.17b, there also seems to be quite a bit of variation in the average

maximum temperatures across counties but the spread of low and high average maximum
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temperatures is slightly different than the plots for average minimum temperatures. Unlike

the surface plot for average minimum temperatures in Figure 2.16b, in the surface plot in

Figure 2.17b, the low and high average maximum temperatures occur in different locations.

The region of high averages is different and now there’s some low averages in the center of

the plot. There is a similar pattern in the average maximum temperatures for counties that

are nearby one another. In Figure 2.17b, we can also see a clear separation of regions by

the different colors.

The plots in Figures 2.16 and 2.17 give clear evidence that although there are

similarities in climate across Kansas, there are distinct regions with unique climates that

could have different effects on agriculture. The average temperature plots give us an under-

standing of where the temperature could have a greater effect on yield but to get a clearer

picture, we can look at the same plots for the average yield across counties in Figure 2.18.

(a) 3D Scatterplot of average yield across coun-
ties. (b) 3D surface of average yield across counties.

Figure 2.18: Average Yield 3D Plots.

In Figures 2.18a and 2.18b, the yield varies significantly from county to county with neigh-

boring counties having similar yields. Looking at the surface plot, the yield changes between

high and low as we move across the state of Kansas. This kind of variation across counties

tells us that the yield could be affected by other variables than just temperature. The
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average yield could be affected by variables such as the temperature curves, precipitation,

proportion of irrigated land among other variables.

Over the past several decades, there have been major advancements in genetics and

production technology. Due to these advancements, corn yields have significantly increased.

The variation of corn yields across 21 years could be significant and affect the results even

though a proportion of the variation in corn yields isn’t explained by the predictor variables.

Figure 2.19 shows that the average yield per year (across all locations) is affected by the

advancements in agriculture. Due to this trend, the yield for a given year is centered by its

corresponding average to eliminate this effect.

Figure 2.19: Average Yield vs. Year (Midwest).
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2.5.2 Kansas Data

The Kansas data used in the following analysis is a subset of the original Midwest

data. There are 105 counties across Kansas where the yield, precipitation, irrigated land

and temperature data are available from 1999-2019. For simplicity, only the years 1999-

2011 are used in this analysis with a total of 1218 observations. The spatial domain of

Kansas is the same domain that was used in the simulations which can be seen in Figure

2.1. The irrigated land is a variable that measures the average acreage of irrigated land

in a given county in thousands. Since this variable has a large scale, it is convenient to

scale it to some degree so that it doesn’t skew the model coefficients. The total area is

also available and we can use it to define a new variable. The proportion of irrigated area

is calculated as the ratio between irrigated area and total area so that no information is

lost but the new variable is now scaled to be between 0 and 1. As mentioned in Section

2.4, the basis function degree and triangulation fineness plays an important part in the

GSVFM’s performance. Even though the simulated data was used for cross-validation of

these smoothing parameters, it is reasonable to use the same combination in the Kansas

analysis. Therefore, the combination used is d = 3 and 22 triangles. The smoothness v

is set to 1 for the remainder of this section. To fit the GSVCM introduced in Section

2.2, cross-validation needs to be performed for the penalty parameter τ in equation 2.8.

The GCV criterion in 2.14 is used to choose the optimal penalty parameter τ at each fold

throughout the remainder of this section.

One of the most important smoothing parameter that significantly affects predic-

tion performance is the number of Functional Principal Component (FPC) scores. The
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number of FPC scores included in the model corresponds to the percentage of variation

explained by them. The more FPC scores that are used, the higher percentage of variation

that is explained. There is a threshold where the number of scores doesn’t change the

models performance. The more FPC scores used implies that we are including more of the

variation in the model but, this could also lead to overfitting just as in any model. It is

necessary to determine the number of scores that results in the best prediction performance.

To evaluate the performance, initially a grid of values from 0.15-0.90 by increments of 15%,

and 0.95 was used. This was done to get an understanding of the behavior to decide where

a finer grid of values should be used to find the minimum test error. The cross-validation

was performed using 9 iterations of 5-folds. Both the train and test errors are reported, the

train error is used to understand the models ability to fit the data, but the number of FPC

scores is chosen based on the test error. The average train and test MSE (across all folds)

results can be seen in Figure 2.20.

Figure 2.20: MSE vs. Variance Percentage CV (Kansas).
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At a glance, it is clear that the MSE doesn’t change significantly between the percentages of

15% to 60%. There is a significant drop in the MSE when the variance percentage increases

from 60% to 70%. The MSE decreases pretty consistently up until it reaches about 90%.

The jump from 90% to 92% is the most drastic, with the MSE decreasing from 155.40 to

103.02 for train and 257.37 to 196.02 for test. There is a small decrease from 92% to 93%

with the MSE decreasing from 105.15 to 104.011 for train and 196.02 to 195.52 for test. As

the percentage increases from 92%, training error stays almost the same, while test error

increases significantly. That’s where adding more scores starts having a negative effect. The

train and test curves both show similar behavior up until the highest variance percentages.

The model is fitted with the training set so it will generally be more biased and result in

a better fit than the testing set. The optimal variance percentage is chosen based on the

test MSE since the emphasis is on our prediction performance. Given this, the variance

percentage of 93% (16 FPC scores) results in the lowest MSE of 195.52 and is used in the

remainder of this section.

In the data preparation stage, the smoothing of the discrete functional data is done

for each fold separately to ensure that the smoothing parameters are unique to the respective

fold. The functional dataset contains more observations than the non-functional dataset.

Only observations that are in both datasets are used for model fitting but including more

observations in FPCA can increase it’s accuracy. Therefore, all the functional training data

is used to perform FPCA. It is a common procedure to center the functional data before

FPCA. In general, the global mean is used for centering but since the data is spatially

varying, the location-specific means differ from each other. Because the means differ across
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space, it is more sensible to center the functional data by its location-specific mean. In

Section 2.5.1, it was shown that the yield should be centered. The yield is centered according

to the average yield per year across all counties. The GSVFM is evaluated by performing

5-fold cross-validation across 9 repetitions. This is done to increase the number of validation

sets to show how the model can handle variability across datasets.

The models used for comparison are the PLFAM and FLM introduced in Section

2.4.3. The PLFAM and FLM have a different approach to FPCA since they do not consider

the spatial component. For these models, the functional data is centered by a global mean

before FPCA. It is worth mentioning that both models use a variance percentage of 99.9%

which selects essentially the maximum number of FPC scores. Both models use a penalty

function to prevent overfitting. The PLFAM uses the COSSO penalty first introduced in

Lin and Zhang (2006) and the FLM implements a ridge regression penalty. The tuning

parameters for COSSO are selected using 5-fold cross-validation and for PLFAM, general-

ized cross-validation is used. Both models use year indicator variables to account for the

consistent increasing trends in yield and an interaction term between proportion of irrigated

land and precipitation. There is inherent heteroscedasticity in the errors when not taking

the location into account. To account for this in the PLFAM and FLM, they use the size of

harvested land as weights in the model fitting. The data is split into five-year windows (i.e.

1999-2003, 2000-2004,..., 2007-2011). For each five-year window, the data is split into five

training and testing sets. Since the sizes of harvested land are included in the model, the

MSPE is weighted by them as well. The reported MSPE is an average over the 5 validation
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sets and over all five-year periods. The average MSPE for each model can be seen in Table

2.8

Model MSPE

GSVFM 195.52

PLFAM 317.19

FLM 298.18

Table 2.8: Kansas Model Comparison.

The GSVFM has the smallest MSPE across all models. Its performance is significantly

better than the PLFAM and FLM. Part of the reason the GSVFM has significantly better

prediction performance, is because it considers location-specific effects while the competing

models do not. These results agree with the importance of including the spatial component

when the data exhibits variation across space.

Similarly to the simulations in Section 2.4, we can produce heatmaps of the

GSVFM model coefficients to understand their behavior across space. In Figure 2.21, the

coefficient heat maps for non-functional predictors and the first three functional principal

components are displayed over a grid a values across the spatial domain of Kansas.
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Figure 2.21: Kansas Heatmaps.

The intercept heatmap displays a linear function across space which isn’t surprising since

the intercept is supposed to capture the global effect at each location. In the red region,

we can see that the intercept has the strongest effect which could be because of the other

variables being less influential. There is a lot more variation in the precipitation plot with

some kind of decreasing exponential function. The irrigation plot also exhibits a linear

trend similar to the intercept with its strongest effect being in the upper lefthand corner.

In the heatmaps for the coefficients, the behavior is a little bit more scattered than the

non-functional variables with no clear pattern. This is to be expected since the FPC scores

represent a summary of the functional data with respect to a given eigenfunction. Thus,

the interpretation is more difficult when using FPC scores since there isn’t a one-to-one
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correspondence between them and the functional data. We can get some more insight into

the FPC scores by looking at the few of the eigenfunctions displayed in Figure 2.22.

Figure 2.22: Kansas Eigenfunctions.

In all the above plots, the black and dashed red curves represent the maximum and min-

imum, respectively. The eigenfunctions represent the strongest sources of variation in the

functional data. For example, the first eigenfunction shows a lot of variation in the be-

ginning of the year which could be explaining the variation from the winter season. The

plot for the second eigenfunction, seems to show a bit more variation towards the end of

year. This could be explaining the variation from the fall season. The third eigenfunction

exhibits significant variation in the beginning of the year which might explain other sources

of variation in the winter season. The minimum and maximum temperature eigenfunctions

largely coincide with each other since there is strong correlation between the two functional
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variables. Overall, the eigenfunctions capture the main sources of variation in the functional

data.

2.5.3 Midwest Data

The Midwest data is used in the following analysis which contains data for all

variables from Kansas, Missouri, Illinois, Indiana and Iowa over the years 1999-2019 with a

total of 8405 observations. The spatial domain of the Midwest region can be seen in Figure

2.24 below.

Figure 2.23: Midwest Spatial Domain with County Centroids.

There are 513 counties in the Midwest spatial domain. The triangulation used for the

Midwest can be seen in Figure 2.24 below.
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Figure 2.24: Midwest Triangulation with County Centroids.

The Midwest triangulation shown above has 94 triangles and is used throughout the re-

maining analysis and a basis functions degree of d = 3. The smoothness v is set to 1 for

the remainder of this section. To fit the GSVCM introduced in Section 2.2, cross-validation

needs to be performed for the penalty parameter τ in equation 2.8. The GCV criterion

in 2.14 is used to choose the optimal penalty parameter τ at each fold throughout the

remainder of this section.

Since the Midwest has significantly more observations than the Kansas dataset, the

optimal variance percentage might not be the same as it was in Section 2.5.2. Therefore, it

is necessary to perform cross-validation again to ensure the best results. The same approach

to cross-validation mentioned in Section 2.5.2, is used for the Midwest data other than the

number of repetitions. Running each fold of the Midwest data takes significantly longer

than the Kansas data. For this reason, only 3 iterations of 5-fold CV is used. Both the

train and test errors are reported, the train error is used to understand the models ability
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to fit the data, but the number of FPC scores is chosen based on the test error. The results

for the cross-validation of the Midwest data is displayed in Figure 2.25.

Figure 2.25: MSE vs. Variance Percentage CV (Midwest).

In contrast to Kansas percentage variation CV in Figure 2.20, there is a noticeable decrease

in MSE between 15% to 60% for both curves. A possible explanation for this, is that FPCA

performs better with more data so the estimated FPC’s and FPC scores are improved. There

is a consistent decreasing trend throughout the entire range of variance percentage but the

sharpest decrease seems to occur between 81% to 84%. The MSE continues to decrease

beyond 84% but there is a point where the change is minimal or increasing. Looking at

the test curve in red, there is a similar behavior to Figure 2.20 where the MSE starts to

increase again after a certain variance percentage. In this case, the threshold is 95% with a

train MSE of 77.49 and a test MSE of 143.56. Based strictly on the test MSE, the optimal

variance percentage is 95% but this results in a large number of FPC scores. The MSE for
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90% is 145.44 which is very close to the MSE for 95%. The number of FPC scores used for

95% variation is 34 and for 90% variation, 21. Since 90% variation uses significantly less

scores and results in a comparable test MSE, it is preferable to use 90% variation to avoid

the possibility of overfitting. Therefore, 90% variation using 21 FPC scores is used for the

remainder of this section.

The data preparation for the GSVFM, PLFAM and FLM follows the same proce-

dure discussed in Section 2.5.2. The reported MSPE for the GSVFM is based on 9 repe-

titions of 5-folds as was done for the Kansas data. The same calculations for the PLFAM

and FLM MSPE are used. The Midwest MSPE results for each model can be seen in Table

2.9.

Model MSPE

GSVFM 144.10

PLFAM 312.87

FLM 387.64

Table 2.9: Midwest Model Comparison.

The GSVFM results in the lowest MSPE with a value of 144.10. This is a significant

difference seeing as the PLFAM and FLM MSPE’s are more than two times greater than the

GSVFM MSPE. It was mentioned in Section 2.5.2 that the main reason for the difference

in performance, is that the PLFAM and FLM do not take location-specific effects into

consideration. Increasing the size of the spatial domain portrays that location-specific

effects become more important as can be seen in the GSVFM performance to competing
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models. Comparing the Kansas GSVFM MSPE of 195.32 with the Midwest’s MSPE of

144.10, further emphasizes the effect a larger spatial domain has on the prediction results.

Akin to the heat maps created for the Kansas data, the Midwest heatmaps are

created for the non-functional predictors and the first three FPC scores. The value of the

coefficients is displayed for each county rather than a grid of values like in the Kansas data.

Gray counties represent missing data. The midwest heatmaps are displayed in Figures

2.26-2.31.

Figure 2.26: α0 Heatmap (Midwest).

Figure 2.27: α1 Heatmap (Midwest).
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Figure 2.28: α2 Heatmap (Midwest).

Figure 2.29: β1 Heatmap (Midwest).
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Figure 2.30: β2 Heatmap (Midwest).

Figure 2.31: β3 Heatmap (Midwest).

The yield depends on several factors that are included in the model, such as precipitation,

irrigation and temperature as well as some factors that are not included such as land

quality and soil nutrition. In Figure 2.26, the intercept seems to have a significant influence

in multiple counties with only some counties in the center that have an intercept value of

zero. This behavior is analogous to the Kansas intercept heatmap in Figure 2.21. As can

be seen from the heatmaps, the contribution proportion of the various factors (which has
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more effect and which has less) does not stay the same in each location. In some locations

there are coefficients that are larger than others and in others vice versa. That can be seen

through the different range of variations for each coefficient. For example, the top center

region of the intercept is very strong in the positive direction which can also be seen in the

irrigation heatmap, while the rest of the variables effect is weaker. In contrast, in the center

region of the intercept, its values are strong in the negative direction but the irrigation

has a larger effect in the positive direction. To accurately study the effect of each factor

requires evaluating the magnitude range of the predictor variable with the magnitude of its

corresponding coefficient.

As a result of the FPC scores being difficult to intrepret as mentioned in Section

2.5.2, more insight can be gained by plotting the midwest eigenfunctions displayed in Figure

2.32.
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Figure 2.32: Midwest Eigenfunctions.

The first eigenfunction exhibits a lot of variation in the beginning of the year which could

be explaining the variation coming from the winter season. In the second eigenfunction

plot, there is still exceptional variation in the beginning of the year which may explain

other sources of variation coming from winter. The third eigenfunction plot has some

variation in the second quarter of the year and towards the end of the year. This might be

explaining the variation coming from the spring and fall seasons. What is common across all

eigenfunctions, is the minimum and maximum temperature eigenfunctions coincide. This

is not surprising, since there is strong correlation between the two functional variables. In

summary, the plots suggest that the eigenfunctions capture the most important sources of

variation in the functional variables.
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2.5.4 Bootstrap Hypothesis Testing Procedure

Throughout this chapter, the spatially varying functional data has been shown

to exhibit location-specific effects. These results are based on a finite number of random

samples but we need to be wary of making this claim about the population. To determine

whether there is evidence for non-stationarity, the coefficient functions are investigated. We

can consider the following hypothesis test

H0j : θj(s) = θj vs. H1j : θj(s) ̸= θj . (2.17)

If the coefficient functions are truly non-stationary, the data should provide evidence to

reject the null hypothesis. In the case that the null hypothesis isn’t rejected, then the

GSVCM is equivalent to a multiple linear regression model. To perform the hypothesis

test in 2.17, we consider a Generalized Quasi-Likelihood Ratio (GQLR) test, where the test

statistic is defined to be difference between the quasi-likelihoods under the full and reduced

models, respectively. The test statistic is defined as follows

λn(H0) =
n∑
i=1

[lQ{g−1(X T
i θ̂F ), Yi} − lQ{g−1(X T

i θ̂R), Yi}], (2.18)

where θ̂F and θ̂R are the estimators under the full and reduced models, respectively. In

the full model, all parameters are included in the model. Under the reduced model, all

parameters are included and the coefficient being tested, θj(s), is treated as a constant

coefficient. If there is evidence for non-stationarity, the quasi-likelihood function under

the full model should be larger than the quasi-likelihood function under the reduced model.

Since the distribution of the test statistic λn(H0) is unknown, we use a Bootstrap procedure
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that is motivated by the GQLR test in Tang et al. (2016). The Bootstrap hypothesis test

procedure can be described as in Algorithm 2.

Algorithm 2 GQLR Test

Step 1: Calculate the GQLR test statistic λn(H0) based on the data {Yi,X i, si}ni=1.
Step 2: Generate the response variable Y ∗

i = g(µ∗i ) + ϵ∗i , i = 1, . . . , n, where µ∗i =
X T
i θ̂R(si), ϵ

∗
i = ϕiϵ̂i, ϵ̂i’s are residuals from the full model, and ϕi’s follow a Mammen’s

two-point distribution with the following probabilities

P

{
ϕi =

−(
√
5− 1)

2

}
=

(
√
5 + 1)

2
√
5

,

P

{
ϕi =

(
√
5 + 1)

2

}
=

(
√
5− 1)

2
√
5

.

Step 3: For iterations b = 1, . . . , B, calculate the GQLR test statistic λn(H0) in equation
2.18 based on the bootstrap sample {Y ∗

i ,X i, si}ni=1 generated in step 2.
Step 4: Repeat steps 2 and 3 B times and obtain the estimated p-value which is calcu-

lated by p̂ =
∑B

b=1 I{λ
(b)
n (H0) ≥ λn(H0)}, where I(.) is the indicator function.

The Bootstrap hypothesis test procedure described in Algorithm 2, is applied to the Kansas

and Midwest datasets. For each variable, B = 500 replications are used to stabilize the

results. All hyptohesis tests are conducted using an significance-level of α = 0.05. In the

Kansas data, nearly all coefficients are statistically significant with p-values smaller than

0.002 other than β1 (prcp) and β16 (14th FPC score) with p-values of 0.02 and 0.022,

respectively. The coefficient of the 15th FPC score, β17 is not statistically significant with

a p-value of 0.084. In the Midwest data, all coefficients are statistically significant with

p-values smaller than 0.002. These results provide sufficient evidence that the coefficient

functions are non-stationary.
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2.6 Conclusion

In this chapter, the GSVFM was introduced along with its estimation method,

which uses a novel two-step procedure. The GSVFM extends the generalized functional

linear model by incorporating spatially varying functional data. The two-step procedure,

described in Section 2.2, effectively captures variations across both time and space. This

approach leverages the mFPCA method to explain the variation in functional data and

the GSVCM to account for spatial variation. The results from both simulations and real-

world application data presented in this chapter highlight the significance of considering

location-specific effects in the presence of spatial variation. The GSVFM demonstrates

strong predictive performance for spatially varying functional data and surpasses existing

functional models.
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Chapter 3

Prediction in Spatially Varying

Functional Quantile Model

3.1 Introduction

Most regression models in Statistics are designed to estimate the conditional mean,

typically expressed as µ = E[Y |X], since it serves as a useful measure of central tendency.

There are many types of regression models tailored for this purpose, and the theory sur-

rounding them is well established. In numerous cases, these models have proven to work

effectively, offering interpretable results. While conditional mean regression models are still

widely used today, they are not always the best choice. It’s well known that the mean

can be sensitive to outliers, making it a less reliable measure of central tendency in some

datasets. In such cases, conditional mean regression models may provide adequate but not

optimal results.
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When applying statistics to various fields, the goal is to find the method that

best fits the data structure and the analysis objectives. For data prone to outliers, where

the conditional mean might not be sufficient, the GSVFM discussed in Chapter 2 may not

be the ideal approach. The median, often regarded as a more robust measure of central

tendency in the presence of outliers, is a better alternative in these situations. Additionally,

there are cases where estimating quantiles is more relevant than focusing solely on the

conditional mean, especially in the presence of heteroscedasticity. In such scenarios, multiple

quantiles provide a more comprehensive view of the distribution than the mean alone. To

address these problems, the method of quantile regression was first proposed in Koenker and

Bassett (1978). In this paper, the goal was to develop a class of linear models to estimate

conditional quantiles of the form QY (τ |X) for the τth quantile. This development arised

from a simple minimization problem providing the ordinary sample quantiles in the location

model. They showed that this minimization problem can be generalized to the linear model.

This generated a new class of Statistics called regression quantiles. Although quantile

regression offers considerable flexibility, it also presents certain challenges, particularly from

a computational perspective. The method of ordinary least squares is particularly attractive

not only for its utility, but also its ease of computation. In the case of quantile regression, the

minimization of absolute residuals is used through the check loss function which complicates

the model estimation. For the τth quantile, the check function is defined as ρτ (a) =

a× (τ − I(a < 0)). Since the check function is an absolute value, its derivative is undefined.

There are different ways to solve this kind of objective function, mainly methods involving

linear programming and MM (Majorize-Minorize) algorithms. In Koenker and Bassett

100



(1978), the linear programming approach is used through the use of the simplex method.

Since the introduction of quantile regression, there have been many developments. In Yu

and Jones (1998), a local linear estimator was introduced for quantile regression through

two distinct methods. The first method is more direct which involves the minimization of

a local linear kernel weighted version expected loss function E{ρτ (Y − a|X = x)}. The

second method involves inverting a local linear estimator of the conditional distribution

FY |X(y|X = x). Another nonparameteric estimation method for quantile regression was

introduced in Koenker et al. (1994) where they explored a class of quantile smoothing

splines with a roughness penalty. Koenker and Park (1996) created a new alogrithm for

computing quantile regression estimators where the response is nonlinear in the parameters.

Their approach to estimation is based on interior point methods. An alternative estimation

method to nonlinear models is through an MM algorithm introduced in Hunter and Lange

(2000). As in any area of Statistics, it is important to create tools to perform inference in the

quantile regression process. Most inference procedures for quantile regression were based on

nonparameteric tests but in Koenker and Xiao (2002), they introduce parametric hypothesis

tests that can be applied to a variety of inference problems. Since it is of interest to test

hypotheses including nuisance parameters, this jeopardizes the distribution free character

of nonparametric tests. This can be characterized as “the Durbin problem” as mentioned

in Watson (1973). Their approach to the Durbin problem involes the use of a martingale

transformation of the parametric empirical process suggested by Khmaladze (1982).

There have been numerous developments in both theory and methodology in quan-

tile regression since it was proposed by Koenker and Bassett (1978). The research for
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conditional quantiles using functional data is a relatively newer area of research but with

significant developments since its introduction. Conditional quantile estimation where the

covariates are functions, was first introduced in Cardot et al. (2007) where they proposed a

smoothing spline estimator and studied its asymptotic behavior. Similar to the estimation

approach used in Yu and Jones (1998), in Ferraty et al. (2005), they also used the inversion

of conditional distribution function which is estimated by a kernel estimator. In contrast

to this method, Chen and Müller (2011) developed a new inversion method where the con-

ditional distribution function is represented as a functional generalized linear model. The

method of FPCA is frequently used in functional models and was first used in estimating

conditional quantiles in Kato (2012) through the plug-in method. They establish some con-

vergence rates for the estimator in a minimax sense. Building on the research done in Kato

(2012), Yao et al. (2017) implemented FPCA in their proposed regularized partially func-

tional linear quantile regression model with high-dimensional scalar covariates. A shrinkage

penalty is used to select the most important variables from the high-dimensional covariates.

Although there has been notable progress in functional quantile regression, the

functional data is only allowed to vary with respect to time. As was described in Chapter 2,

there is the possibility for location-specific effects in the presence spatially varying functional

data. Not including the spatial component could affect prediction performance. Therefore,

in this chapter we introduce the Spatially Varying Functional Quantile Regression Model

(SVFQM) that extends the methodology of the GSVFM introduced in Section 2.2. The

spatial conditional quantile is estimated through scalar predictor variables and spatially

varying functional data. Other than the quantity being estimated, the main distinction is
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that the SVFQM doesn’t allow for any link function. The approach we utilize uses the

novel two-step procedure introduced in Section 2.2 with some inherent differences. The

advantage of the SVFQM over existing functional quantile regression models, is shown

through simulations and the analysis of the agriculture data.

The organization of the rest of the chapter is as follows. In Sections 3.2-2.3,

we describe the model, methodology and estimation used for the SVFQM. The SVFQM’s

performance is investigated by conducting simulations on spatially varying data in Section

2.4 and applying it to the agriculture data application in Section 3.3. Concluding remarks

are discussed in Section 3.3.

3.2 Methodology

The model in consideration is intended to perform prediction for the spatially

varying conditional quantile. Let Y (s) denote the scalar response variable located at s ∈ Ω

for a spatial domain Ω ⊂ R2. The scalar response Y (s) is assumed to be dependent on q

functional variables X(s; t) = {X1(s; t), X2(s; t), . . . , Xq(s; t)}T defined for t ∈ T and m

spatially varying predictors Z(s) = {Z1(s), Z2(s), . . . , Zm(s)}T . Without loss of generality,

the time domain is rescaled to a unit interval where T = [0, 1]. Then for a quantile τ ∈ (0, 1),

the SVFQM is defined as follows

Y (s) = η0;τ (s) +Z
T (s)ατ (s) +

∫
T
XT (s; t)ητ (s; t)dt+ ϵ(s), (3.1)

where the P (ϵ(s) < 0|X,Z, s) = τ and η0;τ (s) is the location-specific intercept, ατ (s) =

{α1;τ (s), α2;τ (s), . . . , αm;τ (s)}T is a vector of the spatially varying coefficients,
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and ητ (s; t) = {η1;τ (s; t), η2;τ (s; t), . . . , ηq;τ (s; t)}T is a vector of spatially varying functions

over t ∈ T modeling the effect of functional trajectories on the scalar response at location

s. The conditional distribution function of Y |(X,Z, s) is denoted as

FY (.|X,Z, s) = P (Y ≤ .|X,Z, s).

The τth conditional quantile of Y |(X,Z, s) can then be defined as follows

QY (τ |X,Z, s) = inf{y : FY (y|X,Z, s) ≥ τ}.

For 0 < τ < 1, we assume that QY (τ |X,Z, s) has a functional linear structure. Therefore,

the SVFQM in 3.1 can be rewritten as

QY (τ |X,Z, s) = F−1
ϵ (τ) + η0;τ (s) +Z

T (s)ατ (s) +

∫
T
XT (s; t)ητ (s; t)dt, (3.2)

where F−1
ϵ (τ) is the τth quantile of ϵ. The model in 3.2 has an infinite-dimensionality

problem exactly like the GSVFM model introduced in Section 2.2. To reduce the SVFQM’s

dimensionality, the method of mFPCA used in Section 2.2 is performed using the func-

tional data X(s; t) and we obtain the Karhunen-Loeve expansions of X(s; t) and η(s; t),

respectively. Using these expansions, model 3.2 can be rewritten as

QY (τ |X,Z, s) = F−1
ϵ (τ) + α0;τ (s) +Z

T (s)ατ (s) +
∞∑
r=1

ξr(s)βr;τ (s), (3.3)

which is a quantile spatially varying coefficient model. The FPC scores in model 3.3 ran-

dom variables and are therefore unobservable. A finite number p of estimated FPC scores

ξ̂1(s), . . . , ξ̂p(s) are used instead and the model can be approximated by

QY (τ |X,Z, s) ≈ F−1
ϵ (τ) + α0;τ (s) +Z

T (s)ατ (s) +

p∑
r=1

ξ̂r(s)βr;τ (s). (3.4)
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LettingX (s) = {X0(s),X1(s), . . . ,Xm+p(s)}T = {Z0(s) ≡ 1, Z1(s), . . . , Zm(s), ξ̂1(s), . . . , ξ̂p(s)}T

be the vector of predictor variables and θ(s) = {θ0;τ , θ1;τ , . . . , θm+p;τ}T = {α0;τ (s), α1(s), . . . , αm;τ (s),

β1;τ (s), . . . , βp;τ (s)}T the vector of coefficients, for j = 0, . . . , (m + p), model 3.4 can be

rewritten as follows

QY (τ |x, z, s) ≈ F−1
ϵ (τ) +

m+p∑
j=0

Xj(s)θj;τ (s) = F−1
ϵ (τ) +X T (s)θτ (s). (3.5)

3.3 Estimation

Suppose we observe Ku spatial replicates {Yk(su),Xk(su; t),Zk(su)}Ku
k=1 at loca-

tion su ∈ Ω ⊂ R2, u = 1, . . . , U . Define the total number of observations by n =
∑U

u=1Ku

and denote the ith observation as {Yi(si),Xi(si; t),Zi(si)}, for i = 1, . . . , n, where si repre-

sents the location for the ith observation. For the ith observation, there are p principal com-

ponent scores {ξ̂1(s), . . . , ξ̂p(s)}. The ith observation can be denoted by {Yi(si),X i(si)},

for i = 1, . . . , n.

The estimation of the model coefficients θ in model 3.5, we use the method of

Bivariate Penalized Splines over Triangulations introduced in Sections 2.2.2 and 2.2.3. The

objective function can be defined as follows

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

Xij(si)θj;τ (si)
)
+

m+p∑
j=0

νjε(θj;τ ), (3.6)

where ρτ (.) is the check-loss function defined as ρτ (a) = a× (τ − I(a < 0)) and ε(.) is the

energy functional penalty. Using the Bernstein basis expansion defined in Section 2.2.2, each

coefficient θj;τ (s) can be approximated by θj;τ (s) = B(s)Tγj;τ , where B(s) = {Bjw, w ∈

Wj}T and γj;τ = {γjw, w ∈ Wj}T is the vector of bivariate basis functions evaluated at

location s and the corresponding spline coefficient vector, respectively. The coefficient
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θj;τ ∈ Svd(∆) is penalized over the entire spatial domain Ω. Since θj;τ can’t be calculated

for every s ∈ Ω, it is approximated by BTγj;τ where B = {B(s1), . . . ,B(sn)}T . Then the

energy functional penalty ε(θj;τ ) can be approximated by ε(Bγj;τ ) = γTj;τKγj;τ where K

is the block diagonal penalty matrix. The objective function in 3.6 can be rewritten as

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

Xij(si)B(si)
Tγj;τ

)
+

m+p∑
j=0

νjγ
T
j;τKγj;τ . (3.7)

It is necessary to enforce smoothness across the shared edges of the triangulation ∆. This

is accomplished by the constraint matrix H that satisfies Hγj = 0 ∀ j = 1, . . . , (m + p).

The constraints in H depend on the degree of smoothness for the basis functions and

the structure of the triangulation ∆. We remove the constraint Hγj;τ = 0 by the QR

decomposition. Through the QR decomposition introduced in Section 2.2.3, γj;τ can be

reparametrized by γj;τ = Q2γ
∗
j;τ which guarantees that Hγj;τ = 0. Plugging in this

expression for γj;τ , we now have the following

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

Xij(si)B(si)
TQ2γ

∗
j;τ

)
+

m+p∑
j=0

νjγ
∗T
j;τQ

T
2KQ2γ

∗
j;τ . (3.8)

Letting γ∗
τ = {γ∗T

1:τ , . . . ,γ
∗T
m+p;τ}T , we have the following minimization problem

min
γ∗
τ

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

Xij(si)B(si)
TQ2γ

∗
j;τ

)
+

m+p∑
j=0

νjγ
∗T
j;τQ

T
2KQ2γ

∗
j;τ . (3.9)

This is a similar minimization problem compared with equation 2.10 in Section 2.3. The

main difference is the check loss function is used as opposed to the quasi-likelihood function

lQ(.). Therefore, the PIRLS algorithm described in Section 2.5.4, can’t be used to minimize

the objective function in equation 3.9. To minimize this objective function, we can use a

quantile linear regression model function from an existing package in R. There is no existing

quantile linear regression function that can minimize the objective function in 3.9. In order
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to use an existing quantile linear regression function in R, the objective function needs to

be reparametrized so that it is equivalent to a quantile linear regression model with a ridge

penalty.

3.4 Reparametrization Method

To convert the objective function in equation 3.9, we can use a reparameteriza-

tion method. The objective function can be rewritten by letting B∗(si) = QT
2B(si) and

X ∗
ij(si) = Xij(si)B∗

ij(si). Then we can rewrite the objective function as

min
γ∗

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

X ∗T
ij (si)γ

∗
j;τ

)
+

m+p∑
j=0

νjγ
∗T
j;τQ

T
2KQ2γ

∗
j;τ . (3.10)

The key to reparametrizing the objective function is by using a matrix decomposition. Let

D = QT
2KQ2. We want to find a decomposition forD such thatD = RRT for some matrix

R. The square root of the matrix D, D
1
2 satisfies this where D = D

1
2 (D

1
2 )T = D

1
2D

1
2 .

Using this decomposition, the objective function can be rewritten as

min
γ∗
τ

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

X ∗T
ij (si)γ

∗
j;τ

)
+

m+p∑
j=0

νjγ
∗T
j;τD

1
2D

1
2γ∗

j;τ . (3.11)

Since the error component of the objective function is already in terms of a linear quantile

regression model with respect to γ∗
j;τ , we want the penalty component to represent a ridge

penalty. This can be accomplished by defining new variables in terms of the square root

of the penalty, D
1
2 . Let γ̃j;τ = (D

1
2 )Tγ∗

j;τ = D
1
2γ∗

j;τ and X̃ ij = D− 1
2X ∗

ij . The objective
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function in equation 3.11 can be rewritten

min
γ̃τ

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

X̃
T

ij(si)γ̃j;τ

)
+

m+p∑
j=0

νjγ̃
T
j;τ γ̃j;τ

=min
γ̃τ

1

n

n∑
i=1

ρτ

(
Yi −

m+p∑
j=0

X̃
T

ij(si)γ̃j;τ

)
+

m+p∑
j=0

νj∥γ̃j;τ∥22, (3.12)

which is equivalent to the objective function of a quantile linear regression model with a ridge

penalty. Using the estimates of γ̃j;τ , ̂̃γj;τ , we can solve for the original spline coefficients

γ∗
j by the following transformation

γ̃j;τ =D
1
2γ∗

j;τ ⇒ γ∗
j;τ =D− 1

2 γ̃j;τ ⇒ γ̂∗
j;τ =D− 1

2 ̂̃γj;τ .
The estimated model coefficients θ̂j;τ (s), can be found by

θj;τ (s) = B(s)Tγj;τ = B(s)TQ2γ
∗
j;τ = B(s)∗Tγ∗

j;τ ,

⇒ θ̂j;τ (s) = B(s)∗T γ̂∗
j;τ , j = 0, . . . , (m+ p).

3.5 Implementation in R

The minimization of the objective function in equation 3.12, can be accomplished

through the implementation of the rqPen package in R. The rqPen package fits linear quan-

tile regression with different penalties such as LASSO, ridge, and elastic net. There are

multiple functions within this package but the main functions used are rq.pen and rq.pen.cv.

The rq.pen function performs model fitting and rq.pen.cv performs cross-validation for the

penalty smoothing parameter ν. As was mentioned in Section 3.1, linear programming

methods are generally used to fit quantile regression models. In the case when the number

of observations n and variables (m + p) are large, the linear programming algorithms be-
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come computationally burdensome. In Yi and Huang (2015), they proposed a method that

consists of approximating the quantile loss function by a Huber-like function and a new

coordinate descent algorithm which necessitates a differentiable loss function. The rq.pen

function minimizes the objective function by using this approach. The proposed method is

based on the Huber loss function proposed by Huber (1973) which is defined as

hω(t) =


t2

2ω , if |t| ≤ ω

|t| − ω
2 , if |t| ≥ ω.

(3.13)

It is important to recognize that the check loss function ρτ (a) can be written as follows

ρτω(a) = a[τ − I(a ≤ 0)] =
1

2
(|a|+ (2τ − 1)a), (3.14)

and for sufficiently small ω, |a| = hω(a). The Huber-approximated quantile loss function is

defined as

hτω(a) = hω(a) + (2τ − 1)a, (3.15)

and for small ω, ρτ (a) ≈ 1
2h

τ
ω(a). The advantage of the Huber loss function, is that it is

a differentiable function which is important for developing an algorithm. The algorithm

proposed by Yi and Huang (2015) is implemented in the hqreg package in R. The function

hqreg solves the following minimization problem

min
γ̃

τ
1

2n

n∑
i=1

hτω

(
Yi −

m+p∑
j=0

X̃
T

ij(si)γ̃j;τ

)
+ν

m+p∑
j=0

∥γ̃j;τ∥22. (3.16)

Cross-validation for penalty parameter ν is performed using the rq.pen.cv function. A se-

quence of values of ν is chosen automatically according to a method integrated in rq.pen.cv.
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3.6 Simulations

In this section, we conduct simulation studies to evaluate the performance of the

SVFQM introduced in Section 3.2. It is of importance to compare the SVFQM to existing

quantile linear regression models, to determine if the SVFQM has any advantage over them.

The data generation for the SVFQM follows the same procedure introduced in

Section 2.4.1 with a few small alterations. The main difference is the generation of the

true conditional quantiles QY (τ |Xk, Zk, su) for k = 1, . . . ,K, u = 1, . . . , U where K = 10

replications and U = 105 locations. This is because the true conditional quantile is modeled

as

QY (τ |Xk, Zk, su) = F−1
ϵ (τ) + η0;τ (su) + ZTk (su)α1;τ (su) +

∫
T
XT
k (su; t)ητ (su; t)dt,

where F−1
ϵ (τ) is the τth quantile of the errors. The kth replication for location u, Xk(su; t),

is generated using the Karhunen-Loeve expansion of the X(s; t) with p = 5 eigenfunctions

where Xk(su, t) = {Xk1(su, t), Xk2(su, t)}T , k = 1, . . . ,K, u = 1, . . . , U , is generated by the

Karhunen-Loeve decomposition using p = 5 eigenfunctions

Xk(su; t) =
5∑
r=1

ξkr(su)ψr(t), (3.17)

where ψr(t) =
{
cos(2πrt), sin(2πrt)

}
for 100 time points over the time domain [0, 1] and

ξkr = {ξkr(s1), . . . , ξkr(sU )} for r = 1, . . . , 5 and k = 1, . . . ,K. The FPC scores ξkr ∼

N(0, λrΣ) where λr is the corresponding eigenvalue andΣ is the Matern correlation function

introduced in Section 2.4.1. This can be used to rewrite QY (τ |Xk, Zk, su) as follows

QY (τ |Xk, Zk, su) = F−1
ϵ (τ) + α0;τ (su) + ZTk (su)α1;τ (su) +

5∑
r=1

ξkr(s)βr;τ (s),
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where α0;τ , α1:τ , β1;τ , . . . , β5;τ are generated as described in Section 2.4.1. The measurement

errors for Yk(su) are generated based on a SNR value of 3.3 as in Section 2.4.1 and their

corresponding τth quantile F−1
ϵ (τ) is calculated. Then QY (τ |Xk, Zk, su) can be calculated

for k = 1, . . . , 10, u = 1, . . . , 105.

Similarly to Section 2.4.3, the simulations are performed using six different settings

to determine the applicability of the SVFQM. One of the advantages of quantile regression

is the ability to gain a better understanding of the response variables distribution by using

multiple quantiles. Any quantile can be chosen for τ ∈ (0, 1) but for simplicity, the quantiles

used in the following simulations are 0.25, 0.50 and 0.75. Cross-validation is performed for

the penalty parameter ν by using a sequence of ten automatically generated values provided

by the rq.pen.cv function as discussed in Section 3.5. The models used in the following

simulations are the SVFQM and the Functional Quantile Linear Regression Model (FQR).

They are defined as

SVFQM; QY (τ |X,Z, s) = F−1
ϵ (τ) + η0τ(s) +Z

T (s)ατ (s) +

∫
T
XT (s; t)ητ (s; t)dt, and

FQR; QY (τ |X,Z) = F−1
ϵ (τ) + η0;τ +Z

Tατ +

∫
T
XT (t)ητ (t)dt.

3.6.1 Simulation Results

The simulation results for each setting were run for quantiles 0.25, 0.50, and 0.75.

A similar measure to the MSE is used to assess the model performance. For a given train or

testing set, let {QY (τ |Xi,Zi, si)}ni=1 be the true quantile values and {Q̂Y (τ |Xi,Zi, si)}ni=1

be the corresponding predicted quantiles. Then, the Quantile Squared Error (QSE) calcu-
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lated at each fold is defined as follows,

QSE{Q̂Y (τ |Xi,Zi, si)} =
n∑
i=1

{Q̂Y (τ |Xi,Zi, si)−QY (τ |Xi,Zi, si)}2.

The main smoothing parameter in the simulation setting is the penalty paramater ν. At

each fold, the optimal penalty parameter is chosen over a grid of ten values through the

cross-validation procedure described in Section 3.5. For each setting, the model fitting is

repeated 25 times where each repetition uses 4 folds. The average error is calculated across

all repetitions. The results for each quantiles can be seen in Tables 3.1-3.3 below.

Quantile (τ = 0.25)

Constant Linear Complex

Model Train/Test SC No SC SC No SC SC No SC

SVFQM Train 0.07 0.073 0.038 0.039 0.27 0.27

FQR Train 0.0024 0.0026 0.46 0.46 0.56 0.56

SVFQM Test 0.073 0.071 0.038 0.039 0.29 0.28

FQR Test 0.0024 0.0026 0.47 0.45 0.58 0.56

Table 3.1: Simulation Results for τ = 0.25.
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Quantile (τ = 0.50)

Constant Linear Complex

Model Train/Test SC No SC SC No SC SC No SC

SVFQM Train 0.072 0.076 0.038 0.037 0.25 0.25

FQR Train 0.0021 0.0024 0.42 0.42 0.48 0.48

SVFQM Test 0.037 0.074 0.037 0.037 0.26 0.25

FQR Test 0.0021 0.0025 0.43 0.42 0.49 0.48

Table 3.2: Simulation Results for τ = 0.50.

Quantile (τ = 0.75)

Constant Linear Complex

Model Train/Test SC No SC SC No SC SC No SC

SVFQM Train 0.071 0.073 0.043 0.042 0.26 0.26

FQR Train 0.0026 0.0028 0.47 0.47 0.58 0.57

SVFQM Test 0.074 0.073 0.043 0.042 0.27 0.26

FQR Test 0.0026 0.0029 0.47 0.46 0.58 0.58

Table 3.3: Simulation Results for τ = 0.75.

For all quantiles, the SVFQM outperforms the FQR in both the linear and complex settings,

whereas the FQR performs better in the constant setting. This difference could be attributed

to the SVFQM’s greater ability to capture variations across locations, making it a more

powerful model. However, in the case of constant coefficients, the SVFQM may be too

sensitive, reacting to minor differences in distribution between locations. In contrast, the
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FQR treats all observations collectively, which could explain its better performance in the

constant setting.

There is no notable difference in the results between spatial correlation and no

spatial correlation. In the case of the linear functions setting, the difference is drastic where

the FQR error is around ten times greater than the SVFQM error. Under the complex

setting, the difference is less stark but still exceptional with the FQR error being around

two times greater than the SVFQM error. Across all quantiles, there is consistent behavior

under the linear and complex settings, where the SVFQM outperforms the FQR pretty

significantly. Overall, through these simulations we were able to see that the SVFQM

not only works well for quantile regression but it also has shows an improvement over the

FQR for spatially varying data. The SVFQM is able to achieve this because it considers

location-specific effects where as the FQR does not.

3.7 Application

The results presented in section 3.6 provides some assurance regarding the strength

of the SVFQM. Although this offers some insight into the SVFQM, it is necessary to assess

its utility for real world data. In this section, the SVFQM is used to analyze the agricutural

data presented in Section 2.5. Both the Kansas and Midwest data are used in the following

section. Similarly to the simulations in Section 3.6, model fitting is applied for the 25th,

50th and 75th quantiles to obtain a comprehensive understanding of the response variables

distribution. In the following section, we use the Quantile Exceedance Proportion (QEP)

statistic (Zhu et al., 2022) to measure the prediction error for an estimator Q̂Y (τ |X,Z, s)

114



of QY (τ |X,Z, s) which is defined as

QEP{Q̂Y (τ |X,Z, s)} =
1

n

n∑
i=1

I(Yi − Q̂Y (τ |Xi,Zi, si) > 0)− (1− τ). (3.18)

The QEP measures the models ability to estimate the (1 − τ) quantile by comparing the

observed proportion with the true proportion, (1− τ). If the model performs well, the QEP

should be close to 0.

3.7.1 Kansas Results

In the following section, the SVFQM and FQR are applied to the Kansas dataset.

There are two main smoothing parameters that need to be chosen, the penalty parameter ν

and the number of FPC scores. Both the train and test errors are reported, the train error

is used to understand the models ability to fit the data, but the number of FPC scores and

the optimal penalty parameter are chosen based on the test error.

The penalty parameter ν could have a significant effect on the model perfor-

mance. To determine the best value of ν, 5-fold CV is performed for each quantile τ ∈

[0.25, 0.50, 0.75] over a sequence of values. The optimal number of FPC scores could change

depending on the quantile but for simplicity, 60% variation is used for the penalty parame-

ter CV. The average of the absolute value of the QEP train and test results can be seen in

Figures 3.1-3.3.

115



Figure 3.1: SVFQM Penalty Parameter CV for τ = 0.25 (Kansas).

Figure 3.2: SVFQM Penalty Parameter CV for τ = 0.5 (Kansas).
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Figure 3.3: SVFQM Penalty Parameter CV for τ = 0.75 (Kansas).

In Figure 3.1, there is a clear increasing trend in the QEP as ν increases. The minimum test

QEP value for τ = 0.25 corresponds to the smallest value of ν at 0.0005. Figure 3.2 shows a

slightly different pattern, especially in the test curve in red. There is a slight decrease in the

beginning and then the QEP increases pretty significantly up until around ν = 0.075 but

stabilizes after. The minimum test QEP value for τ = 0.5 corresponds to ν = 0.0015. In

Figure 3.3, there is a slightly different behavior where the QEP decreases up until ν = 0.005

and then increases significantly for the rest of the penalty values. This is the case for both

the train and test curves but especially in the test curve there is a sharp dip in the QEP.

The minimum test QEP value for τ = 0.75 corresponds to ν = 0.05. These values of ν are

used throughout the remaining Kansas analysis.
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As was seen in sections 2.5.2 and 2.5.3, the number of FPC scores play an important

role in a models performance. The number of scores corresponds to the percentage of

variation the scores explain. To determine the optimal number of scores, nine repetitions

of 5-fold cross-validation is performed over a grid of values for the percentage of variation.

This is done for the SVFQM and the FQR for the 25th, 50th and 75th quantiles. The

average of the absolute value of the QEP train and test results for the Kansas data can be

seen in Figures 3.4-3.6 below.

(a) SVFQM (b) FQR

Figure 3.4: QEP vs. Variance Percentage CV for τ = 0.25 (Kansas).

(a) SVFQM (b) FQR

Figure 3.5: QEP vs. Variance Percentage CV for τ = 0.50 (Kansas).
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(a) SVFQM (b) FQR

Figure 3.6: QEP vs. Variance Percentage CV for τ = 0.75 (Kansas).

What is common to all quantiles and models, is that the number of FPC scores has a minimal

effect on the QEP. Most notably, for the SVFQM in Figures 3.4a- 3.6a is that there is almost

no change in the train QEP (in blue) as the number of FPC scores increases. There is a

similar pattern in the FQR plots in Figures 3.4b-3.6b, where there are small increases in the

train QEP but no significant changes. There is some change in the testing QEP in Figures

3.4a, 3.4b and 3.5a. With respect to the training curves, we can conclude that the model

fitting isn’t very sensitive to the number of FPC scores. The testing curves exhibit a similar

behavior. The optimal number of scores is determined for each model and quantile based

on the smallest value of the test QEP. The average of the absolute value of the QEP for

all models and quantiles are displayed in Table 3.4 with respect to the optimal number of

FPC scores.
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Quantile Variance Percentage Model QEP

0.25 0.75 SVFQM 0.0214

0.25 0.60 FQR 0.0207

0.50 0.75 SVFQM 0.0232

0.50 0.90 FQR 0.0195

0.75 0.90 SVFQM 0.0207

0.75 0.60 FQR 0.0171

Table 3.4: Kansas Model Comparison Results.

There is similar performance across all quantiles with the FQR performing slightly better

than the SVFQM. The performance for τ = 0.25 is almost equivalent where as for τ =

0.50 and τ = 0.75 there is a more of a difference between the SVFQM and FQR. The

SVFQM should have better performance if there is spatial variation since it’s able to model

complicated functions across space. To determine if there is evidence for spatial variation,

we can obtain another perspective of the SVFQM fit by plotting the coefficient heatmaps

across the spatial domain which can be seen in Figures 3.7-3.9.
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Figure 3.7: Kansas Coefficient Heatmaps for τ = 0.25.

Figure 3.8: Kansas Coefficient Heatmaps for τ = 0.50.
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Figure 3.9: Kansas Coefficient Heatmaps for τ = 0.75.

For all quantiles, the coefficient heatmaps clearly exhibit spatial variation across Kansas.

Every coefficient heatmap displays a pattern of linear behavior across space. For example,

the precipitation heatmap in Figure 3.7 has a slight positive linear behavior where as the β2

heatmap has a slight negative linear behavior. In Figure 3.8, the β1 heatmap has a negative

linear behavior and the irrigation heatmap has a strong negative linear behavior. In Figure

3.9, the irrigation heatmap also has a strong negative linear behavior. The β3 heatmap

exhibits a weak positive linear behavior. Overall, the heatmaps in Figures 3.7-3.9 display

considerable spatial variation. Based on this observation, the SVFQM should perform better

than the FQR since it is able to model complicated spatially varying functions. Since this

is not the case, there is another underlying problem with the SVFQM’s performance.
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3.7.2 Midwest Results

In the following section, the SVFQM and FQR are applied to the Midwest dataset.

Both the train and test errors are reported, the train error is used to understand the models

ability to fit the data, but the penalty parameter and number of FPC scores are chosen

based on the test error.

Similarly to the Kansas data, cross-validation for the penalty parameter ν is per-

formed for the Midwest data. 5-fold CV is performed for each quantile τ ∈ [0.25, 0.50, 0.75]

over a grid of values. For consistency, 60% variation is used for penalty parameter CV.

The average of the absoluate value of the QEP train and test results can be seen in Figures

3.10-3.12

Figure 3.10: SVFQM Penalty Parameter CV for τ = 0.25 (Midwest).
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Figure 3.11: SVFQM Penalty Parameter CV for τ = 0.5 (Midwest).

Figure 3.12: SVFQM Penalty Parameter CV for τ = 0.75 (Midwest).
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In Figure 3.10, there is a slight decrease in the QEP in the beginning but a sharp

increase in the QEP as ν increases from 0.025 in both curves. The minimum test QEP

value occurs at the values of ν = 0.0025 and ν = 0.025. The value of ν = 0.025 is used

for τ = 0.25. In Figure 3.11 there is a slight decrease in the beginning of the plot but only

minor increases in the QEP as ν increases, particularly in the training curve. The minimum

test QEP value for τ = 0.5 corresponds to ν = 0.01. In Figure 3.12, the QEP values vary

significantly as ν increases, especially in the training curve. There is a sharp increase in

the testing curve in the beginning but then smaller increases. In the training curve, there

is a slight decrease in the beginning and then a sharp increase for the remaining values of

ν. The minimum test QEP value for τ = 0.75 corresponds to ν = 0.0015.

Similarly to Section 2.5.3, the optimal number of FPC scores for the Midwest

could differ from Kansas. To determine the optimal number of FPC scores, nine repetitions

of 5-fold cross-validation is performed over a grid of values for the percentage of variation.

This is done for the SVFQM and the FQR for the 25th, 50th and 75th quantiles. The

average of the absolute value of the QEP train and test results for the Midwest data can

be seen in Figures 3.13-3.15 below.
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(a) SVFQM (b) FQR

Figure 3.13: QEP vs. Variance Percentage CV for τ = 0.25 (Midwest).

(a) SVFQM (b) FQR

Figure 3.14: QEP vs. Variance Percentage CV for τ = 0.50 (Midwest).
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(a) SVFQM (b) FQR

Figure 3.15: QEP vs. Variance Percentage CV for τ = 0.75 (Midwest).

In contrast to the Kansas plots in Figures 3.4-3.6, there is more variation with respect to

the number of FPC scores for the Midwest CV plots. This is especially apparent for the

SVFQM in Figures 3.13a-3.15a where there is sharp changes in the test QEP as the variance

percentage increases. There is noticeably less of a difference across the variance percentage

for the FQR in Figures 3.13b-3.15b, especially in the training curve which is similar to the

behavior seen in the Kansas CV plots. For the Midwest data, it seems that the number of

FPC scores has a more significant affect on the SVFQM than on the FQR. This is quite

different behavior from what was seen for the Kansas data since the FPC scores didn’t

have much of an effect on either model. An interesting observation is that the SVFQM

training values are significantly larger than the FQR training values relative to the Kansas

training results in Figures 3.4-3.6. This means that the SVFQM’s ability to fit the data

is notably worse than that of FQR where as in the Kansas data, the SVFQM and FQR’s

ability to fit the data was around the same. This could be attributed to the fact that there

are significantly more parameters in the Midwest model compared to the Kansas model
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due to triangulation over a much larger spatial domain. The optimal number of scores is

determined based on the testing QEP. The average of the absolute value of the QEP for all

models and quantiles can be seen in Table 3.5.

Quantile Variance Percentage Model test QEP

0.25 0.60 SVFQM 0.00721

0.25 0.15 FQR 0.00809

0.50 0.95 SVFQM 0.00955

0.50 0.80 FQR 0.00902

0.75 0.55 SVFQM 0.00612

0.75 0.90 FQR 0.00851

Table 3.5: Midwest Model Comparison Results.

For τ = 0.25 and τ = 0.75, the SVFQM test QEP values are smaller than the SVFQM.

The FQR has a slight advantage over the SVFQM for τ = 0.50. Even though the SVFQM’s

performance is better on average for τ = 0.25 and τ = 0.75, the difference isn’t significant.

This could be because of the difference in the SVFQM and FQR training QEP values that

was seen in Figures 3.13a-3.15a. The SVFQM is a stronger model in the sense that it can

model complicated functions over the spatial domain. To determine if the coefficients are

spatially varying or not, the SVFQM coefficient heatmaps can be plotted across the spatial

domain. The coefficient heatmaps for each value of τ can be seen in Figures 3.16 -3.18.
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Figure 3.16: Midwest Coefficient Heatmaps for τ = 0.25.

Figure 3.17: Midwest Coefficient Heatmaps for τ = 0.50.
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Figure 3.18: Midwest Coefficient Heatmaps for τ = 0.75.

Across all quantiles, it is immediately clear that there is some degree of spatial variation

with respect to the coefficients. There are some locations where the contribution proportion

of a given variable is stronger than others. For example, in Figure 3.16, the contribution in

the top center region of α0 and β2 heatmaps is very strong in the positive direction while

the α2 heatmap (irrigation) is very strong in the negative direction. In contrast, in the β1

heatmap, the contribution in the same region is essentially zero. In the lower left region

of the heatmaps for α2, β1, and β3, there is a strong contribution in the positive direction

while in the α0 heatmap, there is a strong contribution in the negative direction. In the α1

heatmap, there is almost no effect in the same region. In Figure 3.17, the top center region

of the α0, β2 and β3 heatmaps, have a moderate positive effect where as in the α1 and β1

heatmaps, there is almost no effect. In Figure 3.9, the top center region of the α0 and β2
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heatmaps, there is a strong contribution in the positive direction while there is a strong

negative contribution in the α1 and α2 heatmaps. An interesting observation is that in the

lower left region of the heatmaps for α1, α2, β1, and β3 has a strong positive effect while the

α0 and β2 heatmaps have a strong negative and minimal effect, respectively. The heatmaps

displayed in Figures 3.16-3.18 clearly exhibit spatial variation. The SVFQM should be able

to perform significantly better than the FQR under this setting. This means that there is

another underlying factor that is affecting the SVFQM’s performance.

3.8 Conclusion

In this chapter, the SVFQM was introduced as an extension of the GSVFM to esti-

mate conditional quantiles using spatially varying functional data. The estimation method

used for the SVFQM involves a reparametrization method. In the simulations, the SVFQM

showed a significant improvement over the FQR model. The real data results didn’t provide

the same kind of performance since for the Kansas data, both models have similar perfor-

mance, and for the Midwest data, the SVFQM only has a slight advantage over the FQR.

As was highlighted in Section 3.7.2, this could be seen by comparing the SVFQM training

values to the FQR training values. This behavior could be attributed to the increase in

parameters in the Midwest SVFQM. This type of behavior can also be seen in the Kansas

data when the number of triangles is increased. The Kansas and Midwest heatmaps dis-

played in Sections 3.7.1 and 3.7.2 clearly depict spatial variation, raising the question of

why the SVFQM does not significantly outperform the FQR. One possible explanation is

that the SVFQM’s location-specific coefficients are based on only a small number of ob-
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servations in the vicinity, whereas the FQR uses all observations across the spatial domain

to calculate its coefficients. The results in this chapter provide evidence that the SVFQM

provides reasonable results but needs to be investigated further.
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Chapter 4

Conclusions

4.1 Summary

In Chapter 2, the GSVFM was introduced as a functional model that accounts

for spatially varying functional data, marking a significant methodological advancement

since earlier functional models did not incorporate spatial effects. The SVFM, initially

introduced by Park et al. (2022), utilized a Bayesian framework for estimation, but Bayesian

models often involve complex and time-consuming computations. The GSVFM, on the other

hand, offers a more efficient estimation framework through a novel two-step procedure and

generalizes the SVFM by allowing for different link functions. These features make the

GSVFM versatile and applicable to a wide range of settings. The simulation and real

data results presented emphasize the importance of including location-specific effects when

analyzing spatially varying functional data. The use of triangulation to account for these

effects allows for the estimation of bivariate functions and provides flexibility when dealing

with irregular spatial domains.
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In Chapter 3, the SVFQM was introduced to underscore the value of considering

location-specific effects when predicting quantiles. This represents a major advancement,

as existing functional quantile regression models do not account for spatial effects. The

SVFQM shares a similar model formulation with the GSVFM but differs in its estimation

and interpretation. The SVFQM estimation leverages a novel reparametrization approach

to enable penalization. The simulation results highlight the importance of incorporating

location-specific effects while the real data results show promise but still require some im-

provements.

4.2 Future Work

There are several potential directions for future work on the GSVFM. One key area

to explore is developing convergence rates for the GSVFM’s functional coefficient estimator,

which would provide strong theoretical guarantees for the model’s overall performance.

Additionally, the GSVFM framework could be extended to handle a 3D spatial domain,

which would be useful in applications such as weather forecasting and brain imaging data.

Another promising avenue is integrating the functional and triangulation methods with deep

neural network models to enhance predictive capabilities.

While the SVFQM demonstrates reasonable predictive performance, there is still

room for improvement. The reparametrization method was employed to incorporate the

spatial penalty into the model due to the lack of existing R packages capable of handling

the original quantile regression objective function with a penalty. Although this approach

has been effective, developing an algorithm to solve for the estimators using the original

134



objective function could potentially enhance prediction performance. One additional goal

in creating a new algorithm would be to improve performance when dealing with a larger

number of parameters. Currently, in both the GSVFM and SVFQM, cross-validation for

the penalty parameter and the number of FPC scores is performed independently. It’s

possible that a different combination of the penalty parameter and the number of scores

could be selected if cross-validation is performed simultaneously, rather than choosing the

smoothing parameters independently. By optimizing both parameters together, the model

might achieve a more balanced trade-off between smoothness and flexibility, potentially

leading to improved prediction performance. Therefore, developing a two-dimensional cross-

validation approach for jointly selecting the penalty parameter and the number of FPC

scores is of particular interest.

135



Bibliography

Azzimonti, L., L. M. Sangalli, P. Secchi, M. Domanin, and F. Nobile (2015). Blood flow

velocity field estimation via spatial regression with pde penalization. Journal of the

American Statistical Association 110, 1057 – 1071.

Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Lecture

Notes in Statistics. Springer New York.

Brunsdon, C., S. A. Fotheringham, and M. Charlton (2010). Geographically weighted

regression: A method for exploring spatial nonstationarity. Geographical Analysis 28,

281–298.

Cai, T. T. and P. Hall (2006). Prediction in functional linear regression. Annals of Statis-

tics 34, 2159–2179.

Cai, Z., J. Fan, and R. Li (2000). Efficient estimation and inferences for varying-coefficient

models. Journal of the American Statistical Association 95, 888 – 902.

Cardot, H., C. Crambes, and P. Sarda (2007, March). Quantile regression when the covari-

ates are functions. arXiv Mathematics e-prints, math/0703056.

136



Chen, K. and H.-G. Müller (2011, 10). Conditional Quantile Analysis When Covariates

are Functions, with Application to Growth Data. Journal of the Royal Statistical Society

Series B: Statistical Methodology 74 (1), 67–89.

Fan, J. and W. Zhang (1999). Statistical estimation in varying coefficient models. The

Annals of Statistics 27 (5), 1491 – 1518.

Ferraty, F., A. Rabhi, and P. Vieu (2005). Conditional quantiles for dependent functional

data with application to the climatic ”el niño” phenomenon. Sankhyā: The Indian Journal
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Appendix A

Data Preparation

In any data analysis, the quality of the results heavily depends on the quality of

the data. If the data is not properly collected and processed, there is a risk of producing

misleading conclusions. Therefore, ensuring accurate data collection and careful processing

is essential and should be handled with the utmost care.

The Midwest data used in this dissertation was obtained from public government

databases, specifically the United States Department of Agriculture (USDA) and the Na-

tional Oceanic and Atmospheric Administration (NOAA). Two distinct datasets were uti-

lized in the research. The non-functional data, sourced from the USDA, includes agricultural

information such as yield, area, and irrigated area, along with identifiers for location and

year. The functional data, sourced from NOAA, consists of time series data for minimum

and maximum temperatures and precipitation across five Midwest states: Kansas, Missouri,

Illinois, Indiana, and Iowa.
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A.1 Non-functional Data

The agricultural data was obtained from the USDA database, accessible for all

states via quickstats.nass.usda.gov. To retrieve the desired data for a specific state, a

set of query variables must be selected, such as program, sector, commodity, category, and

year. The primary variables collected for each Midwest state include corn yield, total area,

irrigated area, and associated identifier variables.

The data provided by the USDA is not “clean”, requiring several preprocessing

steps. Many observations (county and year combinations) have missing yield values. Since

the yield is an average across hundreds of farms within a county, it is not practical to impute

missing values from nearby counties, so these observations are removed from the dataset.

For the irrigated area variable, which is crucial to the analysis, there are also

many missing values. Instead of discarding these observations, the missing values are filled

by calculating the average irrigated area (over all years) for each county in the Midwest.

Missing values for a given county are then replaced with this average. Additionally, the

scale of the irrigated area variable is quite large, which could potentially skew the results.

Since the raw values of irrigated area don’t provide direct insight (e.g., we don’t know what

percentage of the total area is irrigated), the variable is transformed into a proportion.

This is done by dividing the irrigated area by the total area for each county. Even after

this transformation, some missing values remain, which are replaced with 0 to complete the

dataset.
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A.2 Functional Data

The functional data in this analysis consists of weather data, including daily min-

imum and maximum temperatures and daily precipitation. This data is accessed through

NOAA using an API, handled via ACIS web services, which can be found at rcc-acis.

org/docs_webservices.html. The first step in extracting the weather data involves con-

necting to a server to retrieve the data for the desired counties and years. This process is

performed separately for each Midwest state.

After extracting the minimum and maximum temperature, and the precipitation

data, some missing values need to be addressed. It is reasonable to assume that nearby

counties will have similar weather on a given day. Therefore, for each county, missing data

for a specific day is replaced with the weather data from its nearest neighboring county

(within a certain distance). However, some missing values may still remain if neighboring

counties also have missing data. To handle these, each year is examined, and if a year has

more than 151 missing values (days), it is excluded from the dataset. For years with fewer

than 151 missing values, consecutive sequences of missing data are identified, ensuring the

sequence length does not exceed 365
3.5 days. These consecutive sequences of missing values are

filled using the average of the values at the beginning and end of the sequence, respectively.

Any remaining years with missing values after this process are removed from the dataset.

Daily precipitation is recorded for each county and year combination. Since daily

precipitation likely has minimal impact on the total yield of a given harvest over several

months, the yearly average precipitation is used instead. This average is calculated for each

county-year combination and is included as a variable in the non-functional dataset.
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