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Abstract

House mice (Mus musculus) arrived in the Americas only recently in association with Euro-

pean colonization (~400–600 generations), but have spread rapidly and show evidence of

local adaptation. Here, we take advantage of this genetic model system to investigate the

genomic basis of environmental adaptation in house mice. First, we documented clinal pat-

terns of phenotypic variation in 50 wild-caught mice from a latitudinal transect in Eastern

North America. Next, we found that progeny of mice from different latitudes, raised in a com-

mon laboratory environment, displayed differences in a number of complex traits related to

fitness. Consistent with Bergmann’s rule, mice from higher latitudes were larger and fatter

than mice from lower latitudes. They also built bigger nests and differed in aspects of blood

chemistry related to metabolism. Then, combining exomic, genomic, and transcriptomic

data, we identified specific candidate genes underlying adaptive variation. In particular, we

defined a short list of genes with cis-eQTL that were identified as candidates in exomic and

genomic analyses, all of which have known ties to phenotypes that vary among the studied

populations. Thus, wild mice and the newly developed strains represent a valuable resource

for future study of the links between genetic variation, phenotypic variation, and climate.

Author summary

The recent introduction of house mice into North America from Europe provides an

opportunity to investigate environmental adaptation in an important genetic model sys-

tem. We found that mice from different latitudes differed in body size and aspects of

blood chemistry and behavior, and that those differences have a genetic basis. Using

exome and whole genome sequencing, we identified genes that show signals of selection.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007672 September 24, 2018 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Phifer-Rixey M, Bi K, Ferris KG, Sheehan

MJ, Lin D, Mack KL, et al. (2018) The genomic

basis of environmental adaptation in house mice.

PLoS Genet 14(9): e1007672. https://doi.org/

10.1371/journal.pgen.1007672

Editor: Bret A. Payseur, University of Wisconsin–

Madison, UNITED STATES

Received: March 30, 2018

Accepted: August 30, 2018

Published: September 24, 2018

Copyright: © 2018 Phifer-Rixey et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Sequence data are

available via the NCBI SRA (https://www.ncbi.nlm.

nih.gov/sra) under BioProject IDs: PRJNA397150,

exome; PRJNA397406, genome; PRJNA412620,

RNA-Seq.

Funding: This work was supported by NIH grants

to MWN (RO1 GM074245) and JMG (R01

HD073439; R01 GM098536) and an Extreme

Science and Engineering Discovery Environment

(XSEDE) allocation to MWN and MPR

(MCB130109). XSEDE is supported by National

Science Foundation grant number ACI-1548562.

http://orcid.org/0000-0002-3804-6229
http://orcid.org/0000-0002-7318-3122
http://orcid.org/0000-0001-7800-8596
http://orcid.org/0000-0003-0707-5374
http://orcid.org/0000-0003-4321-5135
https://doi.org/10.1371/journal.pgen.1007672
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007672&domain=pdf&date_stamp=2018-10-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007672&domain=pdf&date_stamp=2018-10-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007672&domain=pdf&date_stamp=2018-10-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007672&domain=pdf&date_stamp=2018-10-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007672&domain=pdf&date_stamp=2018-10-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007672&domain=pdf&date_stamp=2018-10-04
https://doi.org/10.1371/journal.pgen.1007672
https://doi.org/10.1371/journal.pgen.1007672
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra


Gene expression in the laboratory also differed among mice from different latitudes. By

combining approaches, we were able identify specific candidate genes for environmental

adaptation. These results suggest wild mice may be a rich resource for future study of the

genes underlying metabolic variation.

Introduction

Understanding how organisms adapt to their environment is at the heart of evolutionary biol-

ogy. The recent introduction of the western house mouse (Mus musculus domesticus) into

North America from Europe provides a unique opportunity to study the genetic basis of envi-

ronmental adaptation over short evolutionary timescales in the context of a genetic model

system. While their time in the Americas may seem short, in most locations, mice breed sea-

sonally and may produce two generations per year. Therefore, mouse populations have been

evolving for ~400–600 generations in the Americas. In fact, some traits, including body size

and nest building, are known to vary among populations and those differences have been

shown to have a genetic basis [e.g., 1].

Connecting genotype, phenotype, and fitness remains challenging. Considerable progress

has been made in uncovering the genetic basis of adaptation for traits that are controlled by

one or a few genes of major effect, such as coat color in mice [e.g. 2, 3], ability to digest lactose

in adult humans [4], or armor plating in sticklebacks [5]. However, adaptive evolution often

involves traits controlled by many genes where gene-gene and gene-environment interactions

are important. Less progress has been made in understanding the genetic basis of adaptive evo-

lution for complex traits [but see 6, 7].

One approach to this problem is to conduct genome-wide scans for selection by looking

at allele frequencies that co-vary with some aspect of the environment. Statistical methods

have been developed that take population structure into account and thereby detect signals

of selection above and beyond the patterns that are produced by the demographic history of

the sampled populations [e.g. 8, 9]. Genome scans have now been applied to a wide range of

organisms and have led to the identification of many candidate genes for adaptation [e.g. 10–

18]. One strength of this method is that it is not predicated on phenotypes chosen a priori, and

thus, in principle, might lead to the discovery of genes not previously suspected to underlie a

particular adaptive phenotype [e.g. 19]. On the other hand, many studies using this approach

produce a list of genes showing unusual allele frequency distributions, but fail to make connec-

tions between particular genes and either molecular or organismal phenotypes. Moreover, in

cases where phenotypic differences are observed between wild populations, it is often unclear

whether they reflect genetic differences or simply phenotypic plasticity in different environ-

ments. A genetic basis for phenotypic differences can be demonstrated by observing individu-

als from different populations in a common environment, as has been frequently done with

plants [e.g. 20, 21]. In addition, gene expression provides an intermediate phenotype that can

be used to connect genome scans to organismal phenotypes [e.g. 22]. Finally, a large body of

literature on gene function can be used to link genetic and phenotypic variation in model spe-

cies such as house mice.

Here, we use a combination of approaches to investigate the genomic basis of adaptation in

house mice. First, we sampled mice across a latitudinal gradient ranging from Florida to Ver-

mont, initiating lab strains from populations at the ends of the cline. By measuring traits in a

common lab environment over multiple generations, we established that a number of complex

traits related to fitness differ between populations and that those differences are genetically

Environmental adaptation in house mice
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determined. Sequenced exomes and whole genomes of wild caught mice along the transect

were used to identify genes showing signatures of selection. We then studied gene expression

in lab progeny as an intermediate phenotype to highlight a set of genes likely connected to

adaptive organism-level phenotypes. Mice serve as an important biomedical model, and the

new inbred strains of mice developed here will be a valuable resource for phenotypic studies in

the future.

Results and discussion

Phenotypic differences among populations

We sampled ten wild house mice from each of five populations along a ~15˚ latitudinal gradi-

ent in Eastern North America over which major climatic factors vary linearly (Fig 1A). Each

mouse was collected at least 500 m from every other mouse to avoid sampling relatives. This

distance is well beyond the average dispersal distance of mice [23]. The sampled populations

fall along a strong and predictable linear gradient in major climatic factors (Fig 1A; S1 Fig).

Mice were sacrificed in the field, body measurements were recorded (total length, tail length,

hind foot length, ear length, and body mass), tissues were collected for DNA sequencing, and

museum specimens were prepared and have been deposited in the collections of the U.C.

Berkeley Museum of Vertebrate Zoology (S1 Data). Mice from natural populations exhibited

clinal variation in body weight, body length, and body mass index (BMI), with increasing body

size in mice from colder environments (Fig 1B and 1C; S1 Table), consistent with Bergmann’s

rule [24] and in accordance with earlier studies [1].

To determine whether population-specific phenotypic differences observed among wild

mice are genetically determined or represent phenotypic plasticity, we collected live mice from

the two ends of the transect (Saratoga Springs, NY and Gainesville, FL) and established labora-

tory colonies from wild-derived animals using brother-sister mating. We observed significant

population-specific differences in body size measures of wild-caught, N1, and N2 mice across

generations (Fig 1D; S2 and S3 Tables; S1 Data). We found that mice from New York (NY)

were heavier, longer, and had higher BMI than mice from Florida (Fig 1D; S2 and S3 Tables).

Differences in weight and BMI persisted into the second lab-born generation (N2) indicating

that they mainly reflect genetic differences rather than phenotypic plasticity or maternal effects

(Fig 1D; S3 and S4 Tables).

To better understand how these populations are adapted to their specific environments, we

measured additional phenotypes in N2 lab-born progeny of mice collected from the ends of

the transect (S1 Data). In particular, we reasoned that metabolic phenotypes might reflect

adaptation to environments that differ in temperature and food availability for much of the

year. We found that N2 mice from NY had significantly higher levels of adiponectin and lower

levels of leptin, triglycerides, and glucose in their blood compared to mice from FL (Fig 1E and

1H; S3 and S5 Tables). These measures relate to glucose and lipid metabolism and are bio-

markers for associated diseases in humans [25]. An inverse relationship between levels of adi-

ponectin and the other measures is well established, but obesity is generally associated with

lower adiponectin [25]. In this study, mice with higher BMI had higher levels of adiponectin.

Interestingly, however, population-specific differences in adiponectin have been documented

among healthy (non-obese) humans, with Europeans showing higher levels than people of

African ancestry [26, 27]. The reasons for these differences remain unclear, but they mirror

the latitudinal differences observed here in mice. Despite differences in body size, food intake

did not differ among N2 mice from NY and FL (S3 and S6 Tables). We also measured nest

building and wheel running in N2 mice. Nest building has clear links to fitness via effects on

thermoregulation in neonates [28] and there is evidence that wheel running is associated with

Environmental adaptation in house mice
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metabolic rate in rodents [29]. We found that mice from NY built bigger nests than those from

FL (Fig 1I and 1K; S3 and S7 Tables), consistent with earlier studies [1], and had higher activity

levels (Fig 1J and 1L; S3 and S8 Tables).

Fig 1. Phenotypic differences between mouse populations. (A) Winter minimum temperatures for the eastern US showing collection localities. Stars

indicate live mouse collection localities (B) Lab-reared offspring of mice from New York (top; NY) are visibly larger than those from Florida (bottom; FL;

photos by T. Suzuki). (C) Body weight in wild mice is linearly correlated with latitude (female: y = 0.332x + 1.592, n = 18, r = 0.492, p = 0.004; male:

y = 0.214x + 6.54, n = 27, r = 0.379, p = 0.051; see methods for additional details). (D) Body weight differences among populations persist over two

generations in the lab (p<0.0001; see methods for details). (E-H) N2 mice from NY show (E) higher levels of adiponectin (p = 0.046), (F) lower levels of

leptin (p = 0.010), (G) lower levels of triglycerides (p = 0.024), and (H) lower levels of blood glucose (p = 0.028) than N2 mice from FL. (I-L) Behaviors

also differ between populations. (I) NY N2 mice build larger nests (p = 0.003) and (J) are more active than FL N2 mice (p = 0.009). Example of (K) a

nesting mouse and (L) a mouse running on a wheel (photos by G. Heyer).

https://doi.org/10.1371/journal.pgen.1007672.g001
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The genomic signature of environmental adaptation

To identify the genetic basis of these differences, we sequenced the complete exomes of the 50

wild-caught mice at moderate coverage (S9 Table). We used several different approaches to

identify candidate genes underlying environmental adaptation (see Methods for a detailed

description of the methods and the rationale for each). To account for the confounding effects

of population structure which may arise from the demographic history of populations, we

used a Latent Factor Mixed Model (LFMM), a program that implements a variant of Bayesian

principal component analysis in which neutral population structure and covariance between

environmental and genetic variation are simultaneously inferred [9]. LFMM outliers were

identified using a z-score cut-off and a False Discovery Rate (FDR) correction (see Methods).

However, in these data, there was no significant evidence for isolation-by-distance among

populations (S10 Table;S2 Fig). Neighboring populations were not more closely related to each

other than were more distant populations. While the demographic history of these populations

is not explicitly modeled here, the lack of correlation between patterns of genetic differentia-

tion across the genome with geographic distance suggests an alternative approach to detecting

selection—identifying loci that show clinal variation [30]. We therefore also used linear regres-

sion to identify SNPs at which allele frequencies vary clinally with latitude. Latitude was used

as a proxy for climatic variation due to its strong correlation with the first principal component

summarizing climatic variables (Pearson’s r = -0.99, df = 3, p< 0.0006). We identified two

classes of SNPs. The first included SNPs that were in the top 5% of the distribution for R2 and

in the top 5% of the distribution for the absolute value of slope even when any one population

was dropped from the analysis (S3 Fig). The second included SNPs that were in the top 2.5%

of the distribution for R2, regardless of the slope, even when any one population was dropped

from the analysis (S3 Fig). While clinal patterns with large differences in allele frequency are

consistent with strong selection, clinal patterns with more subtle differences in allele frequency

are expected in a number of scenarios including selection on standing variation and on com-

plex traits [31]. After FDR correction, the outliers for both classes of SNPs were significant

(q< 0.01; see Methods).

Each method identified several hundred loci containing outlier SNPs (S1 Data). There was

significant overlap among the sets of loci identified using the different methods (permutation

test, p< 0.0001; Fig 2A). Candidates were distributed throughout the genome (Fig 2B). It is

not possible to precisely delineate the decay of linkage disequilibrium with discontinuous exo-

mic data. However, signals generally did not extend over large chromosomal distances. For

example, in> 70% of the genes identified by all three cut-offs, elevated LFMM scores extend

less than 25kb upstream and downstream, consistent with estimates of the decay distance of

linkage disequilibrium in mouse populations (Fig 2B; S11 Table; [32]). This pattern is also con-

sistent with selection on standing variation [33] and suggests that the results provide resolution

to individual genes in most cases. Classical strains of laboratory mice provide a rich catalog of

allelic variants, including loss-of-function alleles that have been associated with specific pheno-

types [MGI: MouseMine; 34,35]. Phenotypes known to be associated with the genes identified

here include many of those observed to be different between mice from Florida and mice from

New York, such as body weight, body fat, activity level, behavior, glucose metabolism, and lep-

tin and adiponectin levels.

Less than 10% of clinal SNPs in the exome-capture dataset were annotated as non-synony-

mous or missense mutations (Fig 2C), roughly equivalent with the fraction of variable sites

that were classified as non-synonymous or missense sites (9.5% and 9.2%, respectively; S12

Table). Most clinal SNPs were in introns (~42%), UTRs (~30%), or at synonymous sites

(~15%); these SNPs (if true positives) may either underlie environmental adaptation or be in

Environmental adaptation in house mice
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linkage disequilibrium with causative SNPs. Importantly, <15% of protein-coding genes iden-

tified as candidates in the regression analyses contain a non-synonymous or missense outlier

SNP. Results were similar for candidates identified using LFMM (S12 Table). While there is no

enrichment for regulatory regions, these results suggest that changes in gene regulation con-

tribute to adaptation in this system.

Fig 2. Candidate genes. (A) Overlap between genes with candidate SNPs identified using different methods in the exome: linear regression with a 95% cutoff for R2

and |slope|, linear regression with a 97.5% cutoff for R2 alone, and LFMM |z-score|� 3. (B) The minimum R2 for the linear relationship between allele frequency and

latitude for each SNP in the exome when including all populations or dropping any one population. Red and blue lines mark the top 2.5% and 5% respectively of the

distribution for R2 when including all populations; SNPs that also have a |slope| in the top 5% are highlighted in red. (C) The distribution of SNPs among annotation

categories for candidates identified in the exome using a regression approach with a 95% cutoff for R2 and |slope|. (D) Average R2 for the linear relationship between

allele frequency and latitude for 2.5 kb non-overlapping windows in the genome. The red line marks the top 5% of the distribution for R2; windows that also have a

|slope| in the top 5% are highlighted in red. (E) Four SNPs in Fbxo22/Nrg4 are highly correlated with latitude with steep shifts in allele frequency (one regression line

shown for clarity). (F) Exome data show that the signal of selection drops off around Fbxo22/Nrg4.

https://doi.org/10.1371/journal.pgen.1007672.g002
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To further explore the signal of regulatory evolution, we sequenced, at low coverage, the

complete genomes of the same 50 wild-caught mice included in the exome analysis (S13

Table). Candidate regions underlying adaptive differences were identified using sliding win-

dows of average R2 and |slope| from linear regressions of allele frequencies of SNPs in the

genomic data with latitude. Given the low coverage, most sites could not be called for all indi-

viduals and data were insufficient for analysis of the X chromosome. Despite this, estimates of

allele frequencies in the autosomal data were highly correlated with estimates from the exome

data in the entire dataset (Pearson’s r = 0.97, df = 242,136, p< 3 x 10−16; S4A Fig) as well as

within individual populations (Pearson’s r = 0.90, df = 989,907, p< 3 x 10−16; S4B Fig). Candi-

date regions were distributed throughout the genome (e.g., Fig 2D). Interestingly, approxi-

mately half of all these regions fell within 5 kb of a gene, suggesting that while many candidate

regions lie in or near genes, many do not (S14 Table). Approximately 10% of candidate win-

dows were within ± 500 bp of a putative promoter [Mouse ENCODE; 36], ~75% of which also

fell within 5 kb of a gene (S14 Table). The genes identified in this analysis overlapped signifi-

cantly with the genes identified using the exome-capture data (permutation test, p< 0.0001).

Differences in gene expression between populations and identification of

cis-eQTL

Because changes in gene regulation appear to contribute to adaptive evolution in this system

(Fig 2C), we measured differences in gene expression between lab-born progeny of wild-

caught mice from the ends of the transect. In principle, patterns of gene expression can be

used to make connections between genotype and organismal phenotypes. Many of the

observed phenotypic differences between mice from the ends of the transect are related to

metabolism (Fig 1), thus we measured gene expression in tissue from the liver, adipocytes

from fat pads on the hind limb, and the hypothalamus using RNAseq. Expression was mea-

sured in unrelated adult N1 progeny reared in a common environment and matched for age

and sex. To address potential maternal effects, liver tissue from unrelated adult N2 males was

also included. Principal components analysis (PCA) clearly distinguished the two populations

in all tissues, including liver from second-generation lab-born mice (S5 Fig). The persistence

of differences into the second generation in the lab suggests that observed differences in gene

expression are not likely to be mainly due to maternal effects. PCA was also used to identify

outliers that were removed from further analysis (S6 Fig). Differentially expressed genes were

observed in all tissues, with fat showing the greatest number by far, suggestive of the potential

biological significance of observed differences in metabolism and morphology (S15 Table).

Differences in gene expression may be caused by mutations in trans or by mutations in cis.
The genomic locations of trans-acting mutations are difficult to identify, however cis-acting

expression quantitative trait loci (cis-eQTL) may be identified by measuring allele-specific

expression patterns in heterozygous animals [e.g.37–39]. If expression differences between

mice from the ends of the transect reflect adaptation to different environments, we reasoned

that a subset of genes harboring cis-eQTL might overlap with those showing signatures of

selection in the exome or whole-genome analysis, allowing us to identify candidate loci with

strong evidence of local regulatory variation. Allele-specific patterns of expression in heterozy-

gous mice identified cis-eQTL in >3,500 genes across all tissues (S15 Table).

Candidate genes for environmental adaptation

The different datasets and analyses presented here each identify sets of candidate genes that

may underlie environmental adaptation in mice. One challenge of outlier approaches and

genome scans more broadly is sifting through the false positives to identify true signals of

Environmental adaptation in house mice
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selection. Here, we focused on candidates identified by LFMM for which there was also evi-

dence of clinal patterns of allele frequency and large shifts in allele frequency. Then, in order

to forge stronger links between genomic outliers and variation in traits related to fitness, we

searched for overlap between those genes and genes showing expression differences between

populations and genes harboring cis-eQTL. Specifically, 177 genes were identified at the inter-

section of the methods used in the analysis of exome sequences (Fig 2A). Of these, 127 were

also identified in the window analyses of the low-coverage whole-genome data, and of these,

10 showed significantly different levels of expression in the lab and also were associated with a

cis-eQTL (Table 1). When comparing the two most extreme populations, the distribution of

estimated Fst values for candidate genes was skewed compared to the full list of genes (S7 Fig).

Average per gene estimates of Fst for candidate genes were significantly higher than that of the

full list of genes for which Fst could be estimated (full list: Fst = 0.103, sd = 0.105, n = 20,366;

177 candidates: Fst = 0.268, sd = 0.109, n = 162, t = 19.06, df = 163.38, p< 2.2 x 10−16; 127 can-

didates: Fst = 0.266, sd = 0.095, n = 122, t = 18.88, df = 122.79, p< 2.2 x 10−16; 10 candidates:

Fst = 0.227, sd = 0.065, n = 10; t = 6.06, df = 9.02, p< 0.0002). In two-sided, two-sample Kol-

mogorov-Smirnov tests implemented in R, results indicate that the Fst estimates for the full set

of genes and for each set of candidates in turn (177, 127, and 10 genes) do not come from the

same distribution (p< 2.2 x 10−16, p< 2.2 x 10−16, p< 4.164 x 10−5, respectively). Results this

extreme were not observed in permutation tests for each set (1000 replicates with

replacement).

All of the 10 genes identified at the intersection of genome scans and gene expression stud-

ies (Table 1) are known to be associated with phenotypes that distinguish mice from the ends

of the transect. For example, we identified two overlapping candidate genes on chromosome 9,

Fbxo22 and Nrg4 (Fig 2E and 2F). While less is known regarding Fbxo22, Nrg4 is highly

expressed in adipose tissue and is linked to obesity and diet-induced insulin resistance in mice

and humans [40, 41]. In obese mice, Nrg4 appears to exert a beneficial effect, reducing the

effects of metabolic disorders associated with obesity [40, 42, 43]. In human studies of obese

adults, concentrations of Nrg4 are inversely correlated with risk of metabolic syndrome [43].

Since regulatory regions are sometimes located far from genes, we were also interested in

identifying those loci that showed signatures of selection in the whole genome data (but not

necessarily in the exome data) and for which there was evidence of differential expression and

Table 1. Genes identified as candidates from all analyses in the exome and in the genome that show evidence of differential expression (DE) and allele specific

expression (ASE) in comparisons between lab-bred mice from derived from populations in Florida and New York. Tissues come from N1 mice unless noted (F = Fat,

L = Liver, H = Hypothalamus).

Function, Phenotype, or QTL related to:

Gene

Name

Chr:Start(bp) Tissue w/ evidence of

DE

Tissue w/ evidence of

ASE

Body Size/Fat/

Obesity

Circadian

Rhythm

Immunity Blood Chemistry/

Diabetes

Col3a1 1:45,311,538 F F Y N Y N

Rgs16 1:153,740,349 F L N2 Y Y Y Y

Mvb12b 2:33,729,953 F H Y N Y Y

Pomp 5:147,860461 F F, H, L N1 & N2 N N N Y

Ndufa4 6:11,900,292 F L Y N N N

Fbxo22 9:55,208,925 F F, L Y N Y N

Nrg4 9:55,220,222 F F Y N Y Y

Tmie 9:11,0865,711 L N1 & N2 H Y N Y N

Gpr108 17:57,234,914 F L Y N Y N

Dsc2 18:20,030,633 F L N2 Y N N Y

https://doi.org/10.1371/journal.pgen.1007672.t001
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allele specific expression in the same tissue for lab-bred mice derived from populations in Flor-

ida and New York. These criteria identified 40 additional genes (S16 Table). The distribution

of Fst values for these genes, comparing the two most extreme populations, was also skewed

compared to the distribution for the full list of genes for which Fst could be estimated (S7 Fig;

two-sided, two-sample Kolmogorov-Smirnov tests, p< 5.2 x 10−7). Results this extreme were

not observed in permutation tests (1000 replicates with replacement). The average per gene

estimates of Fst for these candidate genes was significantly higher than that of the full list of

genes for which Fst could be estimated (full list: Fst = 0.103, sd = 0.105; 43 candidates: Fst =

0.191, sd = 0.100, n = 41, t = 5.64, df = 40.18, p< 1.5 x 10−6). Most of these 40 genes are linked

to phenotypes that differ between mice from the ends of the transect. Cav1, for example, affects

the regulation of fatty acids and cholesterol [e.g. 44]. Knockout mice show reduced adiposity

and resistance to diet-induced obesity. Cav1 overlaps with QTL related to body size/growth

and was identified as a candidate gene for extreme body size in Gough Island mice [45–47].

Gene network analyses in humans identify CAV1 as a key driver of cardiovascular disease and

type 2 diabetes [48].

It is important to recognize that the different datasets analyzed here contain distinct kinds

of information, and overlap is not expected in many cases. Therefore, while overlap among the

results points to candidates, many candidate genes that contribute to environmental adapta-

tion likely do not meet all criteria. For example, data on gene expression is limited by the tis-

sues and time points considered. Therefore, some candidate genes may not show expression

differences and/or may not harbor cis-eQTL, yet these genes may still be important in adaptive

phenotypic differences. For example, multiple SNPs in Mc3r are strongly clinal, with some of

the highest shifts in allele frequency seen in the exome (S8 Fig). Lab mouse variants at Mc3r
are associated with leptin levels, energy homeostasis, body fat, and activity levels [49–54]. Mc3r
is expressed in the hypothalamus [55], but levels of expression observed in this study were low

and no significant differences were detected. Moreover, the phenotypes measured here do not

include all that might be important in environmental adaptation. Some of the candidate genes

that do not relate to the phenotypes directly measured here do relate to other phenotypes that

may underlie environmental adaptation such as immunity and circadian rhythm, motivating

future functional studies.

Phenotypic and genetic parallels between mice and humans

Importantly, these results suggest that understanding environmental adaptation in mice may

shed light on human disease and climate-related adaptation in humans. The phenotypic varia-

tion in mouse populations observed here over a latitudinal cline parallels differences in human

populations. Humans, like mice, follow Bergmann’s rule, with larger individuals at higher lati-

tudes [56–58]. Further, while the relationship between adiponectin, leptin, trigyceride, and

glucose levels and obesity in humans is complex, the pattern of differences in these mouse pop-

ulations is similar to that observed between some human populations [26,27]. Moreover,

many of the phenotypes that vary and the candidate genes identified in the overlap analyses

have ties to metabolic diseases and/or blood chemistry variables associated with these diseases.

There are already mouse models for diseases like diabetes, but laboratory strains lack much of

the genetic variation present in wild mice [59]. Interestingly, there is overlap between the

genes identified here and those implicated in climate-related adaptation in humans in a series

of studies by DiRienzo and colleagues [60–62]. Of the genes they identified, 43 have one-to-

one orthologs in mice, and 18 of these were identified as showing signatures of selection in the

LFMM analyses of the exome data (|z-score|� 2; S17 Table). Moreover, nine also showed evi-

dence of allelic imbalance, differential expression, or both. While this result is, at most,
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suggestive, the overlap between the genes identified here and those identified in humans is

slightly more than expected by chance (permutation test, p<0.03), pointing to some common-

ality to the genetic basis of environmental adaptation despite different geographic sampling

and ~ 90 million years of divergence between humans and mice [e.g., 63–65].

Conclusions

Using an integrative approach, we were able to make connections between genetic and pheno-

typic variation for complex traits related to fitness. We found strong evidence of environmen-

tal adaptation in house mice. Wild mice show clinal patterns of variation in body size. Lab-

born progeny of wild mice from different environments differ in body size, metabolic traits,

and behavioral traits, indicating that these differences are genetically based. Genome scans for

selection revealed that most candidate SNPs likely affect gene regulation. We identified a short

list of genes that show signatures of selection, are associated with a cis-eQTL, exhibit differen-

tial expression, and are associated with organismal phenotypes in laboratory mice similar to

the phenotypic differences seen in mice from the ends of the transect. These results underscore

the value of investigating wild variation in a genetic model system. Future studies surveying

more individuals within sites and more sites across a broader landscape would increase the

power to detect allele frequency shifts consistent with environmental adaptation, allow for

investigation of site-specific local adaptation, and provide a clearer picture of the colonization

and demographic history of house mice in North America. The resources developed here,

including new wild-derived inbred strains of mice and extensive exomic and genomic data,

will facilitate future research aimed at uncovering the genetic basis of adaptation as well as

broader studies investigating genetic and phenotypic variation in house mice.

Methods

Ethics statement

This work was conducted with approval from the IACUC of the University of Arizona (Proto-

col #07–004) and the IACUC of the University of California, Berkeley (Protocol #R361-0514,

AUP-2016-03-8548). All wild-caught animals were collected with permits issued from the

states of Florida, Georgia, Virginia, Pennsylvania, New Hampshire, New York, and Vermont.

Sacrifice of animals was also performed under approval of the relevant IACUC either at the

University of Arizona or the University of California, Berkeley. Methods of euthanasia

included the humane use of isoflurane and cervical dislocation by trained personnel.

Collections

Five sampling locations were selected along a latitudinal gradient over which many climatic

factors covary (Fig 1A, S1 Fig). At each location, at least ten individuals were collected a mini-

mum of 500m apart to avoid collecting closely related animals. While larger sample sizes

would increase the power to detect smaller differences in allele frequencies among populations,

previous studies suggest that the sample sizes employed here are sufficient [e.g. 66]. Sex, repro-

ductive status, body weight, total body length, tail length, hind foot length and ear length were

recorded for each mouse along with latitude and longitude and elevation (S1 Data). Weight

and length were measured in the field by a single investigator using a micro-line spring scale

and a ruler. Animals were collected and sacrificed in accordance with a protocol approved by

the Institutional Animal Care and Use Committee (IACUC) of the University of Arizona.

Liver, kidney, heart, caecum, and spleen were collected in the field, stored on dry ice, and then

transferred to a -80˚C freezer. Skins, skulls, and skeletons were prepared as museum specimens
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and deposited in the Museum of Vertebrate Zoology, University of California, Berkeley (see S1

Data for accession numbers).

To characterize climate for each location on the transect, data for all BioClim variables

from the WorldClim database [67] were downloaded with a resolution of 2.5 arc-minutes

using the R package dismo using coordinates roughly central to all individual collection

sites within each location (S1 Data). Additional data were also downloaded from the

National Centers for Environmental Prediction/National Center for Atmospheric Research

(NCEP/NCAR) Reanalysis 1 using the R package RNCEP [68]. These variables include net

shortwave radiation, specific humidity, relative humidity and sunshine hours. Because

many climatic variables co-vary, climate data were standardized and then summarized

using principal components analysis (PCA) on correlations including all variables (S18

Table). The first PC explained ~71% of the variation among populations, and almost all of

the variables had large loading values for this axis. Latitude is highly correlated with PC1

(R2 = 0.98, df = 3, p< 0.001).

Live animals were collected from two locations, Saratoga Springs, NY and Gainesville, FL

(Fig 1A). Within locations, no more than two breeding pairs from a single site were included,

and sites were no closer than 500 m from each other. Animals were collected and shipped alive

to the University of California, Berkeley, where they were used to establish colonies. All work

was performed in accordance with a protocol approved by the Animal Care and Use Commit-

tee (ACUC) of U.C. Berkeley. Wild-caught animals were mated to create the first lab-reared

(N1) generation (S1 Data). N2 mice were generated via brother-sister mating of the N1 mice.

Inbred lines have subsequently been maintained via sib-sib matings. We currently have 8 lines

from each of these two locations, and most lines are in the tenth or later generation of sib-sib

mating.

Phenotyping and analyses: Field

Analyses of the correlation between latitude and measures of body size were completed using

R and included all animals, only females, and only males, respectively. Pregnant and/or lactat-

ing females and one juvenile male were excluded from the analyses. There was a significant

correlation between latitude and body mass from field collections along the transect when

both sexes were included (Fig 1B and 1C; S1 Table). Clinal variation was also seen in body

length, body mass corrected for length, and body mass index (BMI) (S1 Table). When consid-

ering the sexes separately, only body weight and body mass/body length were significantly cor-

related with latitude in females (S1 Table; p = 0.004, p = 0.004, respectively), but correlations in

males were marginally significant (p = 0.051, p = 0.054, respectively) and trends were clinal for

all traits in both sexes.

Phenotyping and analyses: Laboratory

Experimental mice phenotyped in the lab were housed singly in standard static cages at 23˚C

with 10 hour dark and 14 hour light cycles. Body weight and body length were measured for

over 300 wild-caught, N1, and N2 mice (see S1 Data) and Body Mass Index (BMI) was calcu-

lated from those measures. In total, we obtained data for 49 wild-caught, 56 N1, and 84 N2

mice from FL and 21 wild-caught, 77 N1, and 63 N2 mice from NY. To test whether body mass

was significantly different between lab reared mice from Florida and New York, we used a gen-

eralized linear model (GLM) implemented in R including all mice with generation, population,

and sex as factors to explain body mass (S2 and S3 Tables). Results were evaluated using the

anova function; F test results are reported (S2 Table), but the choice of test type does not affect

whether individual factors meet the criteria for significance. We repeated the analysis for body
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length, BMI, and body mass divided by body length (S2 and S3 Tables). We also analyzed the

data from just the N2 generation using GLMs with population, sex, and age as predictors of

each aspect of body size (S3 and S4 Tables).

A subset of the N2 mice was also included in phenotyping for blood chemistry, food intake,

nesting, and wheel running. For blood chemistry measurements, 20 mice from FL and 20 mice

from NY were sacrificed at an average age of 26.68 weeks (sd = 2.63) between 1-5pm after fast-

ing for 2–7 hours. There was no significant difference in age between the mice from FL and

the mice from NY (ageFL = 26.55, sdFL = 3.74; ageNY = 26.80, sd = 1.47; t = 0.30, p = 0.79). 100–

500 μl of blood was extracted from the heart and body cavity using a syringe and 22-gauge nee-

dle. Serum was isolated using BD Microtainer tubes with a serum separator additive. To mea-

sure potential differences in metabolism related to blood chemistry, standard assays of insulin,

leptin, adiponectin, glucose, trigylcerides, free fatty acids, cholesterol, and HDL were per-

formed at the UC Davis Mouse Metabolic Phenotyping Center. To test for significant differ-

ences in blood chemistry between lab reared N2 mice from New York and Florida we used

separate linear mixed effects models for each measure with population, sex, log(mass) and log

(length) as factors taking into account family (S5 Table).

Food intake, nest building and wheel running activity were observed in the N2 mice at an

average age of 12.97 (sd = 2.63), 15.28 (sd = 2.64), and 25.55 (sd = 7.54) weeks, respectively (S1

Data). Daily food intake was measured by administering 35g of Teklad Global food (18% Pro-

tein Rodent Diet) to each animal, and then weighing the remainder 24 hours later. All mice

were fed ad libitum prior to testing. Nest building behavior was assayed by placing 40g of cot-

ton on top of the wire of each cage and weighing the remaining unused cotton 24 hours later.

To determine if either food intake or nest building behavior was significantly different between

lab-reared mice from Florida and New York, we used separate GLMs with population, sex,

and body mass as factors (S6 and S7 Tables). Wheel-running activity was assayed by attaching

a Speedzone Sport Wireless bike odometer (Specialized) to a Fast-Trac Activity Wheel (Bio-

Serv). Running trials began at the start of the dark cycle (9:00 pm), and running distance and

time spent running were recorded at the end of the dark cycle. Distance was corrected for

slight differences in run time and was log transformed. A GLM with population and sex as fac-

tors was used to determine if there were differences in wheel-running activity between mice

from NY and FL (S8 Table). All mice that did not run at all, including two mice from NY and

6 from FL, were excluded from the analysis. The average, standard deviation, and sample size

by population for each measure in the analyses above are given in S3 Table.

Exome capture sequencing and SNP discovery

DNA was extracted from liver, kidney or spleen tissue using the Qiagen Gentra Puregene Kit.

Genomic libraries were prepared following Meyer and Kircher [69] with unique barcodes

added for each individual. A NimbleGen in-solution capture array was used to enrich the

libraries for regions in the mouse exome (SeqCap EZ). Targeted areas include ~ 54.3 Mb of

nuclear coding and UTR sequence. Individuals were pooled for capture in groups of sixteen or

seventeen. Each pool of enriched capture libraries was then sequenced on one lane of a Illu-

mina HiSeq2000 (100-bp paired-end) resulting in ~2 GB of raw data per individual.

Sequence data were cleaned using a combination of custom perl scripts and publicly avail-

able programs as in Singhal [70; see also https://github.com/CGRL-QB3-UCBerkeley/

denovoTargetCapturePopGen]. These scripts remove adapter sequences, filter out low com-

plexity reads, bacterial contamination and PCR duplicates, and merge overlapping paired

reads. The cleaned reads were then mapped to the mouse genome (GRGm38) using Bowtie

2.1.0 [71] using the sensitive setting, trimming three bases from both the 3’ and 5’ ends of each
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read, and allowing no discordant mapping for paired reads. Reads that did not map or that

mapped to multiple regions were removed, and target specificity and sensitivity were evaluated

(S9 Table). On average, ~63% of the data for an individual mapped to target regions and ~92%

of the targeted exome was covered. Overall, average sequence depth per site was ~15X. Data

from the Y chromosome was used to estimate error rates based on heterozygote calls for males

included in the study (average = 0.026%, sd = 0.004%, n = 25).

Individual sites were additionally filtered using a custom perl program, SNPcleaner [72],

with default parameters with the exception of requiring 3X coverage in at least 80% of the indi-

viduals. We called SNPs and estimated allele frequencies at variable sites using the software

ANGSD [73], a package that uses a Bayesian framework to address biases that result from

calling variant sites and genotypes with low to moderate coverage sequence data [74]. To be

included in further analyses, the posterior probability for the genotype of the individuals

had to be� 0.50 and the p-value of the likelihood ratio test for a SNP being variable had to

be� 0.001. These filters resulted in the identification of ~420,000 SNPs throughout the

exome. Because subsequent analyses depended on an assessment of the shift in allele frequen-

cies over a latitudinal gradient, we further required that there were data for eight individuals

from each of the five sampled locations. This additional filter reduced the number of SNPs to

~408,000. Finally, we required that the minor allele frequency of a SNP across all individuals

be at least 5%, resulting in a total of ~280,000 SNPs.

Genome sequencing and SNP discovery

DNA was extracted from liver, kidney or spleen tissue using the Qiagen Gentra Puregene Kit.

Genomic libraries were prepared using Illumina Truseq kits with unique barcodes added for

each individual. Libraries from two or three individuals were sequenced on one lane of a Illu-

mina HiSeq2000 (100-bp paired-end) at the Vincent J. Coates Genomics Sequencing Labora-

tory at UC Berkeley resulting ~9–19 GB of raw data per individual.

As with the exome data, genomic sequence data were cleaned using a combination of cus-

tom perl scripts and publicly available programs as in Singhal [70]. However, because of the

additional computational time required to process low coverage, whole genome data, we did

not remove PCR duplicates before mapping. After cleaning, reads were mapped to the mouse

genome (GRCm38) using the sensitive setting, trimming three bases from the 3’ and 5’ ends of

reads, and using the option to disable alignment of paired reads as unpaired. Unmapped and

multiply mapped reads were then removed and Picard [https://broadinstitute.github.io/

picard/] was used to remove PCR duplicates. Error rates for individuals were evaluated using

mtDNA sequence data. The average error rate was generally low (average = 0.062%,

sd = 0.024%, n = 49) with the exception of a single individual with an error rate of 0.29%. Aver-

age coverage of the total genome across individuals was ~2.5X. Average coverage for the sites

at which each individual had at least one read mapped was slightly higher, ~3.3X (S13 Table).

All sites for which 80% of the individuals had data were included in subsequent population

genetic analyses (e.g. Fst and PCA). However, for all analyses of variant sites, we used ANGSD

to call SNPs and estimate allele frequencies for populations. We first applied a liberal filter,

only estimating allele frequencies for those sites that had a posterior probability for the geno-

type of included individuals� 0.50 and a p-value of the likelihood ratio test for that SNP being

variable� 0.001. As with the exome data, we further required that there were data for eight

individuals from each of the five sampled populations and that the minor allele frequency of a

SNP across all individuals be at least 5%, resulting in a total of ~9,800,000 SNPs.

Low coverage, whole genome data has the potential to identify variants associated with

environmental adaptation far from genic regions at low cost. However, the utility of such an
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approach is dependent on the reliable identification of candidate variants with very little data

for a single individual. To test this approach, we calculated the correlation coefficient between

allele frequency estimates based on moderate coverage data from the exome and those based

on low coverage data from the genome. We restricted the data to those sites in common and

used the filtering described above. We found a high correlation between the allele frequency

estimates from the two approaches given the entire pool of fifty individuals (Pearson’s r = 0.97,

df = 242,136, p< 3 x 10−16; S4A Fig). We also found a high correlation between allele frequen-

cies estimates within the individual populations of just ten individuals (Pearson’s r = 0.90,

df = 989,907, p< 3 x 10−16; S4B Fig).

Population genetic analyses

Data from the exome and the genome were used, in turn, to estimate Fst a measure of differen-

tiation among populations using the unfolded site frequency spectra (SFS) generated for each

population via ANGSD (e.g. Fst; S10 Table). We also used genetic PCA to summarize variation

within and among populations. Both Fst calculations and genetic principal component analyses

were implemented via the ngsTools software package [75]. Estimates of Fst varied among pop-

ulation pairs (S10 Table). Genetic PCA clearly discriminated populations, and Fst values pro-

vide evidence of population differentiation. Importantly, however, there was no significant

signal of isolation by distance (S10 Table; S2 Fig). Statistical analyses including Mantel tests

and reduced major axis regression were completed as given in [76]. While individuals were

most closely related to other individuals from their own sampling location, there was no asso-

ciation between geographic and genetic distance among populations regardless of the data

used (genomic or exomic; S2 Fig). Fst was also estimated for each gene using the exomic data.

Genomic coordinates (5’ UTR-3’UTR) were obtained using Ensembl Biomart. Sites were only

included when at least 80% of the samples had at least 3X coverage. Two-sample, two-sided

Kolomogorov-Smirnov tests implemented in R were used to test whether the Fst estimates for

the full set of genes (20,367) and for different sets of candidate genes were drawn from the

same distribution (S7 Fig). Permutation tests with 1,000 replicates, also implemented in R,

were used to determine how many such results were expected when the same number of genes

were drawn, with replacement, from the full gene list. The significance of the differences

between the means of the distributions was determined via t-tests also implemented in R.

ANGSD was also used to estimate nucleotide diversity within populations. Coordinates for

all intronic sites and for all gene boundaries were obtained using Ensembl’s Biomart tool.

Intronic sites from the exome data were then used to estimate Watterson’s θ and π. For the

genomic data, average per site Watterson’s θ and π were estimated for 10kb non-overlapping

sliding windows. Windows that overlapped with any portion of a gene were excluded (S19

Table). Overall, estimates of nucleotide diversity were high and comparable to estimates from

European populations of Mus musculus domesticus [77]: genomic windows: 0.1694–0.2963;

intronic sites: 0.1388–0.2332.

Identifying candidate regions contributing to environmental adaptation in

the exome

There are several approaches to identifying candidate genes under selection using genome

scans, and each has advantages and limitations. One approach is to model the demographic

history of a population, usually conditioned on some summary of available polymorphism

data, and then to compare the observed data with model predictions. Individual loci that do

not fit the model are inferred to have been subject to selection [e.g. 78, 79]. A limitation of this

method is that it requires the correct specification of population history, which in practice is
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unknown. Incorrect model specification can lead to either false positives or false negatives. In

recognition of this, a second widely adopted approach is to generate an empirical distribution

of a given summary statistic and to compare individual loci to the genome-wide distribution

under the assumption that loci subject to selection will be outliers [e.g. 78–84]. The rationale

for this approach is that the demographic history of the population will shape patterns of varia-

tion genome-wide, so that the distribution of variation across loci will reflect the demographic

history even if the actual history is unknown. Simulations under particular demographic mod-

els suggest that the false positive and false negative rate using this approach depends on the

dominance of beneficial mutations and whether selection is acting on new mutations or stand-

ing variation [85]. A third approach is to use methods that account for population structure by

estimating correlations among populations from the data directly [e.g. 8, 9]. These methods

have the advantage of accounting for population history without requiring the specification of

a (possibly incorrect) demographic model. A final approach is to sample populations over a

known gradient of environmental factors and to look for clinal patterns of variation. This is a

classic method that has been applied successfully to identify many of the best-studied examples

of genes under selection [e.g., 30, 86].

Here we use a combination of several of these approaches. First, to account for the demo-

graphic history of the populations, we used LFMM [Latent Factor Mixed Model; 9], a com-

putationally efficient program that implements a variant of Bayesian PCA in which residual

population structure is introduced using unobserved (latent) factors. With this method,

neutral population structure and covariance between environmental and genetic variation

are simultaneously inferred. We initially explored settings for LFMM by running the pro-

gram fifty times each for values of K (the number of latent factors) from two to five. Each

run had a burn-in of 5,000 cycles of the Gibbs sampler algorithm and 10,000 iterations of

the algorithm with latitude as the environmental factor. Results among runs with the same

K were summarized using the R script provided in the LFMM manual. We then calculated

the correlation among adjusted p-values for SNPs obtained for values of K ranging from

two to five and evaluated the number of latent factors. Correlations were very high, with R2

values ranging from 0.89–0.99 and K = 2 was chosen based on a λ (genomic inflation factor)

value close to one (λ = 0.81). We then ran LFMM 50 times with 50,000 burn-in cycles and

100,000 iterations of the Gibbs Sampler algorithm with K = 2, and z-scores were combined

from the different runs using median values. Following the manual, p-values were adjusted

to control for the false discovery rate (FDR). The distribution of p-values was examined and

λ was modified to obtain a flatter distribution with a peak near zero (λ = 0.67; S9 Fig). A

large pool of outlier SNPs were identified as those for which |z-score| � 2 and each outlier

SNP was annotated as having a |z-score| greater than or equal to two, three, or four. How-

ever, all SNPs with a |z-score| �3 had q-values < 0.05 after correction for multiple testing,

thus a |z-score|� 3 was chosen as the cutoff value in analyses of overlap with other methods.

Candidate genes were identified as those containing outlier SNPs as annotated in

GRCm38.75. In many cases, a single SNP had annotations for more than one gene, and all

were included.

Second, we found that the five populations sampled in the eastern U.S. show no evidence of

isolation by distance (S2 Fig). In other words, most polymorphisms in the genome do not vary

in a clinal fashion. In contrast, many aspects of climate vary linearly with latitude (S1 Fig), sug-

gesting that those polymorphisms that do vary clinally may be under environmentally medi-

ated selection. Therefore, we compared individual loci to the genome-wide distribution of

correlations between allele frequency and latitude for all variant sites using linear regression.

We chose outliers according to two criteria. In the first case, we chose SNPs that were in the

top 5% of the distribution of R2 and also in the top 5% of the distribution of the absolute value
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of the slope of the regression line, even when any one population was dropped from the

analysis. Thus, these SNPs showed strong clinal patterns of variation with large frequency

differences between the ends of the transect. These cut-offs resulted in outliers, when

including all populations, with values of R2� 0.767 and values of |slope| � 0.174, which

translates into an allele frequency shift of ~44% or greater. These SNPs had a minimum

R2� 0.743 and |slope| � 0.167 when all populations were included or when any one popula-

tion was excluded from the analysis (S3 Fig). Latitude was used as a proxy for climatic

variation in all analyses due to its strong correlation with the first principal component

summarizing climatic variables (Pearson’s r = -0.99, df = 3; p<0.0006; S18 Table). Candi-

date genes were identified as all genes for which outlier SNPs were annotated. Using the

same regression approach, a second class of outliers was identified: all SNPs that were in the

top 2.5% of the distribution of R2 of allele frequency with latitude, even when any one popu-

lation was dropped from the analysis, regardless of slope. The rationale for this class of out-

liers is that covariance between allele frequency and environmental variables may be

biologically meaningful, even in the absence of large changes in allele frequency. For exam-

ple, such patterns are expected under a variety of conditions including selection on standing

variation and on polygenic traits [31,33]. Such signals of selection might be missed by only

focusing on genes showing major shifts in allele frequency. This criterion resulted in outli-

ers with values of R2� 0.834 when all populations were included and a minimum R2� 0.830

including all populations or when any one population was dropped (S3 Fig). Candidate

genes were identified as given above.

To address the effects of multiple testing, the minimum correlation coefficient and

slope for each SNP were standardized to obtain z-scores (S10 Fig). As above, the mini-

mum slope and correlation coefficient were determined by comparing values for each

statistic when all populations were included and when any one population was excluded

for a given SNP. The R package fdrtool [87] was then used to estimate p-values and

q-values for each SNP using those z-scores (S11 Fig). Approximately 3% of all SNPs had

q-values � 0.01 for both correlation coefficient and slope. All of the SNPs identified

as outliers with extreme correlation alone or with extreme correlation and slope had

q-values � 0.01 for the relevant statistic(s).

It should be noted that all methods that seek to identify genes under selection will be

subject to false positives and false negatives. More stringent criteria will typically reduce

the number of false positives at the cost of increasing the number of false negatives. Here,

we have provided lists of genes that meet different criteria as a resource (S1 Data), but we

have chosen to focus on those genes that contain outlier SNPs in LFMM and additionally

show extreme correlation and allele frequency shifts with latitude. We then further nar-

row the field of candidates using the overlap between this set and those identified from

whole-genome data, those harboring cis-eQTL, and those showing expression differences

between mice from the ends of the transect (see below). This small set of genes are thus

strong candidates for being targets of selection and are also associated with a known

expression phenotype.

There was considerable overlap between the candidate genes identified using LFMM and

those identified with linear regression. To test whether the overlap was more than expected

by chance, we randomly sampled (without replacement) the same number of genes from

each candidate list from a list of all of the genes sampled in our exomic data. We then calcu-

lated the overlap between each pair of methods and all three methods. We repeated this

10,000 times. In all cases, the observed overlap was more extreme than any overlap from the

random samples.
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Estimating the distance over which signals extend in the exome

Estimating the distance over which signals of environmental adaptation extend is complicated

by the nature of exome data that are necessarily limited to regions in or near genes. Moreover,

while genomic data were generated, this was done at low coverage preventing the use of meth-

ods for estimating linkage disequilibrium that rely on calling individual genotypes. In order to

approach this question, we used the exome data and identified the SNP for which the LFMM |

z-score| was the highest in each candidate gene. When multiple genes were included as candi-

dates as the result of a SNP or group of SNPs that were annotated to multiple genes, only one

gene was included in the analysis. We then identified the maximum |z-score| for windows of

2kb starting 50 bp upstream or downstream and ending at 36kb upstream or downstream. If

there were no data in a window, we continued to the next window. For each gene, we recorded

the first window upstream and downstream in which there were data and the first in which the

maximum |z-score| dropped below 3. We found that signals of selection do not generally

extend over long genomic distances. The signal of selection extends less than 25kb upstream

and downstream in > 70% of the genes identified by all three cut-offs (Fig 2A; S11 Table). We

then repeated the analysis with a maximum |z-score| of 2. In general, signals largely dropped

off within 22 kb (S11 Table).

Identifying the potential effects of candidate SNPs in the exome

The potential functional consequence of each SNP was determined using Ensembl’s variant

effect predictor [88]. SNPs often had more than one potential effect and all were included in

annotation. To determine the distribution of functional consequences among all SNPs and

among all candidate SNPs, a primary functional consequence was designated for each SNP.

The primary consequence was determined based on the minimum rank of all the annotations

for a SNP using the following scheme:

1. Missense, stop lost, or stop gained

2. 3’ or 5’ UTR

3. Synonymous

4. Non-coding exon variant, Non-coding transcript variant, and/or any other coding variant

5. Intronic or splice site variants

6. Any remaining non-coding variants

7. Upstream or downstream variants

The distribution of candidate SNPs among different potential effect categories was similar

for regression and LFMM (S12 Table).

Identifying candidate regions contributing to environmental adaptation in

the whole genome

We used linear regression of allele frequency and latitude to calculate R2 and |slope| for each

SNP that passed all filters. To identify regions of interest, we then used three different window

analyses: 1000 bp windows with a step size of 500 bp, 1500 bp windows with a step size of 750

bp, and 2500 bp windows with a step size of 2500 bp. Windows were only included in analyses

when they had at least three SNPs. The cut-off values for R2 and |slope| were determined from

the 95% percentile of the average values for those statistics calculated when all populations

were included and when any one population was excluded. Outlier windows were identified as
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those with average values of R2 and |slope| that met or exceeded the cut-off values when all

populations were included and when any one population was excluded. For example, for the

2500 bp window analysis, there were>715,000 windows for which there were sufficient data.

Less than 0.3% of those windows, ~2,100, were identified as outliers with jslopej � 0.153 and

R2 � 0.566 (S12 Fig). To determine whether these candidate regions fell in or near genes, we

used custom PERL scripts to identify when any candidate window fell within ± 5kb of a feature

in GRCm38.75 (S14 Table) or when any window overlapped putative promoters (± 500 bp)

from the Mouse ENCODE project [36]. Over 1,500 genes were identified in the candidate

regions from the three different window analyses combined (S1 Data).

Of the 177 genes that were identified in all exome approaches, 171 are autosomal, and 127

of those were identified in the genome analysis. To test whether the overlap was more than

expected by chance, we randomly sampled (without replacement) 171 genes from the autoso-

mal genes sampled in our exome data and calculated the overlap with genes identified in the

genome. We repeated this 10,000 times. In all cases, the observed overlap was more extreme

than any overlap from the random samples (permutation test, p< 0.0001). Repeating with

replacement did not change the results.

Patterns of gene expression in lab-reared mice

We compared gene expression in mice derived from wild populations at the northern (New

York) and southern (Florida) ends of the transect. First, we focused on three tissues in N1

males: the liver, the hypothalamus and the dorsal, hind limb fat pad. Four unrelated males

from each location were included. The mice ranged in age from 99–143 days. All were

unmated and housed singly in a common laboratory environment with the same diet. Second,

we focused on liver tissue in N2 males. While differences among populations in gene expres-

sion in the N1 generation cannot be attributed to environmental differences directly, expres-

sion differences could be due, in some part, to conditions experienced by wild caught mothers.

Evaluating gene expression in the N2 animals can address the potential impact of maternal

effects. Four unrelated male N2 mice from each location were included and they ranged in age

from 149–210 days. All animals were sacrificed at the same time of day, and tissue was col-

lected and either flash frozen in liquid nitrogen or submerged in RNAlater prior to storage at

-80˚C.

RNA was extracted from liver tissue using the Qiagen RNeasy Plus kit and from adipose tis-

sue and the hypothalamus using the Quiagen RNeasy Lipid Tissue Kit with a genomic DNA

digestion. RNA quality was verified using a Bioanalyzer (Agilent) or a Fragment Analyzer

(Advanced Analytic Technologies). Libraries were prepared following ribo-depletion at the

University of California, Davis DNA Technologies and Expression Analysis Cores Genome

Center. All libraries were pooled and run on two lanes of the HiSeq3000 (100 bp paired-end)

resulting in>2.5 GB of raw data per sample. Reads were trimmed using Trimmomatic [89].

The resulting reads were mapped to the mouse genome (GRCm38) using TopHat v2.0.13

[90,91]. Reads that mapped to multiple locations were removed and HTseq [92] was used to

summarize count data for each feature using the .gtf file associated with GRCm38.

DESeq 2 [93] was used to identify genes with significant differences in expression between

the descendants of wild-caught mice from New York and Florida. First, we used PCA to

explore differences in patterns of gene expression after transforming the data using the rlog

function in DESeq2 to account for the positive relationship between mean values and variance

in gene expression data (S5 Fig). PCA clearly distinguished the two populations in all tissues,

including the N2 liver. The persistence of differences into the second generation in the lab sug-

gests that observed differences in gene expression are not likely to be due to maternal effects.
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PCA was also used to identify outliers including one individual in the N2 liver analysis and two

individuals in the N1 fat analysis (S5 and S6 Figs). In the first case, a single individual was out-

side of the range of all individuals from both populations on the first principle component

axis, which explained 30% of the variance in gene expression (S5C and S6A Figs). That individ-

ual was excluded from all further analysis of differential gene expression. In the second case,

N1 fat, we found that a single individual from each population clustered with the opposite pop-

ulation (S5D Fig). Because we analyzed several tissues from the same individuals in the N1, we

were able to use sequence variants to confirm that individuals were labeled correctly. Interest-

ingly, we found that the two individuals who appeared “mismatched” in the fat analysis, were

also outliers in phenotype (S13 Fig); it was the leanest mouse from New York (as measured by

mass divided by length) that clustered with Florida, and the fattest mouse from Florida that

clustered with New York. These two individuals were excluded from further analysis of differ-

ential expression (S6B Fig), but underscore the biological connection between gene expression

and phenotype. Finally, gene-wise tests of differential expression were implemented in

DESeq2 with the default correction for multiple testing. When identifying genes with evidence

of selection and differential expression, a permissive cut-off of padj<0.10 was used. While

many genes were differentially expressed in fat, we found a modest number of genes with evi-

dence of differential expression in the other tissues (S15 Table).

Identifying cis-eQTL using expression data from lab-reared mice

Allelic imbalance, a difference in expression between two alleles at a locus, can be used to iden-

tify cis- regulatory variation in gene expression [37]. While trans- acting variants affect the

expression of both alleles in a cell, cis- regulatory variants affect expression in an allele-specific

manner. As a consequence, differences in the expression of two alleles at a heterozygous site

within an individual can be used to infer cis- regulatory variation. We used the RNAseq data to

identify cis- regulatory variation in lab-born progeny of individuals from Florida and New

York. Variants were called with samtools mpileup version 1.3.1 [94] and bcftools version 1.3.1,

requiring a minimum mapping quality score of 20 and a Phred-scaled quality (Q) score of 30.

Mapping bias towards the reference allele may reduce the accuracy of allele-specific expression

measurements [95]. To mitigate the effects of reference mapping bias, these genotype calls

were used to create personal reference genomes for each sample [96]. Heterozygous sites were

masked by inserting “Ns” in the mouse genome using bedtools [97]. While only heterozygous

sites were used in the downstream allele-specific expression analysis, indels were also masked

because these sites can cause biased allele-specific assignment [98]. Pre-processed reads were

then re-mapped to personal reference genomes with TopHat v2.0.13 [90, 91]. After re-map-

ping, only uniquely mapped reads that overlapped exonic heterozygous sites were retained for

further analysis. Sites present in more than one gene were removed from the analysis. Down-

sampling of allele-specific reads was used to equalize power [98]. Sites where more than 20

reads mapped to both the reference and alternative allele were tested for allelic imbalance [99].

Binomial exact tests were used to identify significant differences in relative allelic expression.

Sites within 350 bp and in the same gene were then grouped. The lowest p-value in each group

was corrected to a 10% false discovery rate (FDR). We found many genes with evidence for

cis-eQTL (S15 Table).

Functional information

A wealth of data is available on gene function in mice including phenotypic evaluation of mice

with gene knockouts or mutations, associations with human disease, gene ontologies, QTL

studies, and pathway maps. To explore the potential functional significance of candidates
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identified in our analyses, we used MouseMine to query for associated phenotypes, human dis-

eases, gene ontologies (GO), and overlapping QTL [34, 35]. We also used KEGG to identify all

pathways in which candidate genes were included [100, 101]. Phenotype summary informa-

tion (Table 1, S16 Table) was collated by searching mammalian phenotype terms, GO terms,

KEGG pathways, and overlapping QTL for each gene for terms related to the category of inter-

est, as follows:

1. Circadian Rhythm: known clock genes [see 102, 103], GO terms, phenotype terms, or QTL

with clock or circadian.

2. Fat: GO terms or phenotype terms with fat or adipose, hand-curated; QTL with fat, adipose,

obese, obesity, or body mass index, hand-curated.

3. Body Size: Phenotype terms with body, hand-curated; QTL with body, weight and weeks,

or growth, hand-curated.

4. Immunity: Phenotype or GO term with immun�; QTL or phenotype terms with resistance

or suscept�, hand-curated.

5. Blood Chemistry/Diabetes: KEGG pathway adipocytokine signaling, ampk signaling (relat-

ing to leptin, adiponectin); QTL, phenotype terms, or GO terms with diab�, nidd, gluc�, lep-

tin, cholesterol, adiponectin; phenotype or GO terms with clot or coagulation.

6. Nesting: Phenotype term nesting behavior.

Summary categories presented were chosen due to potential links to phenotypes that vary

in this study (e.g. body size, blood chemistry) or to traits that potentially could vary over large

geographic distances (e.g. immunity, circadian rhythm).

Overlap with results of analyses in human populations

We collated a list of genes associated with environmental adaptation in humans [60–62].

Forty-three of those genes had one-to-one orthologs in mice. Of those, 18 were identified as

candidates using LFMM with a cut-off of |z-score|� 2 (S17 Table). To determine if the overlap

between LFMM outliers in our study and the genes identified in humans was more than

expected by chance, we randomly sampled (without replacement) the same number of genes

as were identified using that same cut-off from among all genes sampled in our exomic data.

For all of these analyses, only genes with one-to-one orthologs in humans were included. We

then calculated the overlap between the candidate genes from human studies and the random

selection of genes. We repeated this 10,000 times. Outcomes equal to or more extreme than

the observed overlap of 18 genes occurred in 2.56% of the samples.

Accession numbers

Sequence data can be accessed via the NCBI SRA under BioProject IDs: PRJNA397150 –

exome, PRJNA397406 –genome, PRJNA412620 –RNA-Seq.
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