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Abstract

Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic 

alterations associated with inflammation and respiratory disease. The objective of this study was to 

address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory 

disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-

life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at 

two adult ages. Significant alterations in global DNA methylation and promoter methylation of 

IFN-γ and Thy-1 were found in ETS-exposed offspring at 10–12 and 20 weeks of age. These 

sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed 

at 20 weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic 

alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the 

adult onset of fibrotic lung pathology. These epigenetic findings could represent potential 

biomarkers of latent respiratory disease risk.
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Introduction

Prenatal and early-life environmental tobacco smoke (ETS) exposure causes premature 

death and can instigate chronic respiratory diseases, thus continuing to be an immense 

public health issue (DiFranza et al., 2004). A dynamic and regulated coordination of 

organogenesis occurs in prenatal and early life that, if disrupted by adverse environmental 

insult, can permanently alter physiology and immune function, predisposing individuals to 

lifelong diseas (Maritz and Harding, 2011; Renz et al., 2011).

Immunological and respiratory harm can manifest in the early years of life (Joad et al., 2009; 

Lovasi et al., 2010; Vardavas et al., 2016). Perinatal exposures are identified as risk factors 

for an increased incidence of allergic asthma, lower respiratory and ear infections, as well as 

decreased lung growth in young children and adolescents (Lee et al., 2003; DiFranza et al., 

2004; Dietert and Zelikoff, 2008; Thacher et al., 2014). Animal studies have shown that 

immunological disruption from prenatal and early-life ETS exposure is sustained over time 

and prenatal ETS exposure can persistently skew Th2 polarization (Basta et al., 2000; Wang 

et al., 2007; Singh et al., 2011). Therefore, ETS exposures in perinatal development may be 

related to an increased incidence of adult onset asthma and other respiratory harm, including 

chronic obstructive pulmonary disease (COPD), chronic wheezing, and breathlessness 

(Larsson et al., 2001; Janson, 2004; Penn et al., 2007; Xiao et al., 2012).

The developmental origins of health and disease (DOHaD) hypothesis proposes that the 

human respiratory system is highly susceptible to lifelong reprogramming through adverse 

environmental exposures during perinatal development, potentially through epigenetic 

mechanisms (Barker, 2004; Pinkerton and Joad, 2006; Swanson et al., 2009; Feil and Fraga, 

2011). Epigenetic mechanisms, which can be heritable and sensitive to exogenous influence, 

are independent of the consequences of changes in DNA sequence for regulating gene 

expression (Feil and Fraga, 2011). Epidemiological and experimental studies have reported 

an association between prenatal smoke exposure and altered epigenetic methylation patterns 

in both elementary school-aged children and 30 days post-birth mice (Breton et al., 2009; 

Meyer et al., 2017). DNA methylation alteration is the process of adding or removing methyl 

groups to DNA, particularly within gene promoter regions, which can then influence gene 

regulation, without altering the genetic sequence (Smith and Meissner, 2013). This 

epigenetic process has been suggested as a potential mechanism behind the altered immune 

responses observed in offspring exposed to perinatal ETS (Ho, 2010).

Previously, we reported altered global and gene-specific methylation in 6-week old mice 

exposed to prenatal ETS that corresponded with alterations in pulmonary inflammation and 

airway hyperreactivity, suggesting that prenatal ETS exposure can increase disease 

susceptibility through altered DNA methylation (Lee et al., 2015). However, whether the 

epigenetic effects of these exposures resolve with age and to what extent these effects may 

alter the mechanisms involved in adult onset lung pathologies remained unaddressed. In 

order to address the impact of significant methylation changes observed in early life on the 

susceptibility to adult respiratory disease, this study aimed to determine whether perinatal 

ETS exposure contributes to persistently altered DNA methylation, particularly for genes 

relevant to inflammation and fibrosis, and to address whether these patterns contribute to 
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adult lung disease. Interferon (IFN)-γ and thymus cell antigen-1 (Thy-1) genes were 

selected as genes relevant to the inflammatory immune response and respiratory fibrosis 

pathology (Miller and Ho, 2008; Sanders et al., 2008). IFN-γ in particular is a major Th1 

cytokine that is mechanistically understood to have an important anti-fibrotic function 

(Borthwick et al., 2013). IFN-γ dysregulation with decreased pulmonary Th1 cytokine 

production in response to tobacco smoke exposure is associated with chronic pulmonary 

inflammation (Ouyang et al., 2000; Tebow et al., 2008). Similarly, a loss of Thy-1 

expression attributable to DNA hypermethylation was found in patients with idiopathic 

pulmonary fibrosis (Sanders et al., 2012), suggesting that these can be mechanistically 

important for fibrogenesis (Hagood et al., 2005). We hypothesized that perinatal exposure to 

ETS would persistently alter methylation of IFN-γ and Thy-1 gene promoters and precede 

indications of latent pulmonary fibrotic disease in adult offspring.

Methods

Animals

C57BL/6 mice were maintained in pathogen-free conditions (22 ± 2 °C, 30–40% humidity, 

12 h light/12 h dark cycles) and offered food and water ad libitum in the animal facilities of 

the University of California, Davis (UCD, Davis, CA) and the University of Montana (UM, 

Missoula, MT). All experiments met the approval of the University of Montana Institutional 

Animal Care and Use Committee (IACUC).

Breeding and ETS exposure

Breeding and ETS exposure were conducted as previously described (Lee et al., 2015; 

Brown et al., 2016). Briefly, two female mice were paired with one male mouse to create a 

timed-pregnant exposure scenario. Twelve virgin female and 6 male mice (8–9 weeks old) 

were used for breeding. Following verification of a vaginal plug at day 0 of gestation, four 

and eight female mice were exposed to either filtered air (FA) or ETS throughout gestation, 

respectively. For the control group, time-mated dams were exposed to FA only for 24 h 7 d/

week for the duration of the study as shown in Figure 1. For the ETS-exposed groups, time-

mated dams were exposed daily to approximately 1.0 mg/m3 of tobacco smoke for 6 h/day 

for 7 d/week in a smoke exposure system (UC-Davis), with collection of both side-stream 

and mainstream cigarette smoke from 3R4F research cigarettes (Tobacco Research Institute, 

University of Kentucky, Lexington, KY). A concentration of 1.0 mg/m3 smoke is considered 

a low-dose since it represents a no-observable-effect level in rats (Rajini et al. 1994); 

therefore, the total concentration of suspended particulates was maintained at 1.01 ± 0.03 

mg/m3 for this study. This concentration was also similar to those reported in prior ETS 

exposure studies in mammals (Seymour et al., 2002; Slotkin et al., 2006). The burn rate was 

two cigarettes consumed per 10 min with a 35-mL puff volume per 2 s, once per min. The 

carbon monoxide and nicotine levels were 6.01 ± 0.44 ppm and 266 ± 48 μg/m3, 

respectively, and the average temperature was 21.1 °C. Following birth, four dams and their 

offspring were moved out of the ETS chamber and subsequently exposed to FA only (Pre 

ETS group); another four dams and offspring continued to receive ETS exposure under 

identical conditions for 3 consecutive weeks (Pre/Post ETS group). Following this additional 

period of ETS or FA exposure, the dams and pups were exposed to FA only until weaning 
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and then shipped to the University of Montana via air. Upon arriving at the University of 

Montana, the dams and their offspring were quarantined for 3–4 weeks.

Mean litter size per FA and ETS-exposed dams was 6.9 ± 0.3. Litter size and sex ratio were 

not significantly different among groups (data not shown). ETS exposure did not induce any 

spontaneous losses in mice. Offspring mice in each group were randomly selected across 

litters from 4 dams under the same conditions in an equal-sex ratio at 10- to 12- and 18- to 

20-week old intervals and euthanized via intraperitoneal injection of 0.1 mL sodium 

pentobarbital (Euthasol™). All analyses included 3–6 pups per group. Lungs from offspring 

mice were either prepared for histological analyses (10–12 and 18–20 weeks old) or snap-

frozen and stored at −80°C for later epigenetic analyses (10–12 and 20 weeks old).

Histological preparation

Lungs were prepared using protocols as previously described (Beamer et al., 2010; Hamilton 

et al., 2012). Briefly, lungs were inflation-fixed in 1 mL 3% paraformaldehyde-phosphate 

buffered saline (PBS) overnight at 4°C. Samples were then rinsed three times with PBS, 

placed into labeled cassettes, and submerged in 70% ethanol (EtOH). A Leica ASP 300 

tissue processor (Buffalo Grove, IL) was used on a 7.25-h program: 30 min in 70% and 95% 

EtOH; two 1-h changes in 100% EtOH; three changes of xylene for 30 min each; and three 

paraffin changes for 45 min in the first bath, and 1 h each in the second and third bath under 

vacuum. A Leica RM2235 microtome (Buffalo Grove, IL) was used to prepare tissue 

sections 5–6 microns thick. The tissue sections were stained with both hematoxylin and 

eosin (H&E) and trichrome using a Shandon 24–4 autostainer (GMI, Ramsey, MN). For the 

H&E program, Mayer’s hematoxylin (Richard-Allan Scientific, Kalamazoo, MI) and 

alcoholic eosin (Thermo Shandon Limited, Runcorn, UK) were used. Weigert’s hematoxylin 

(Electron Microscopy Sciences, Hatfield, PA) and Gomori trichrome (Harleco, EMD, VWR 

Randor, PA) were used for trichrome staining.

Collagen deposition

A Thor Labs (formerly CompuCyte) iCys Laser Scanning Cytometer (Sterling, VA) was 

used to analyze trichrome stained lung tissues with a protocol designed to quantitatively 

assess collagen deposition. A low-resolution scan of the entire tissue at 20X was first 

conducted for each tissue section. Using the incorporated iCys Workstation computer 

software (version 3.4) tools, we randomly hand-selected six interstitial areas and six airways 

for high-resolution scans. “Phantom” contours were used to divide tissues into very small (8-

µm diameter) circles as previously described (Brown et al., 2015; Brown et al., 2016). 

Briefly, a blue staining contour was considered a collagen-positive event via trichrome stain. 

Positive contour percentage over total tissue contours were determined to compare one 

tissue to the next. All airways and blood vessels were removed from the calculation of total 

collagen deposition. Two sections from one lung lobe 21–28 microns apart were analyzed 

and averaged. We analyzed three mice per exposure condition.

Lung pathology scoring

H&E stained lung tissues from 10- to 12- and 18- to 20-week old offspring were imaged at 

100X using a Zeiss Axioskop attached to a Zeiss digital camera and processed with Zeiss 
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Axiovision software (Thornwood, NY). As previously described, two experienced observers 

blinded to the experimental conditions independently scored the degree of visible 

inflammatory lung disease of the left and right lobes considering the parameters of 

cellularity, airway thickening, and structure distortion using a 5-point scale (0–4), with zero 

as no effect and 4 as the most severe pathology evident (Hamilton et al., 2012). There were 

three exposed mice per condition. Values shown are the median of both scorers’ median 

values per condition.

Global DNA methylation by LUminometric methylation assay (LUMA)

Genomic DNA was extracted from lung tissues according to the manufacturer’s protocols 

using the DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA). Global DNA methylation 

was measured via LUMA as previously described (Karimi, Johansson and Ekstrom, 2006; 

Karimi et al., 2006; Lee et al., 2015). The extent of cleavage within the digested samples 

was quantified by means of bioluminometric polymerase extension using pyrosequencing on 

a Pyromark Q96 MD (Qiagen). A HpaII/MspI ratio was used to calculate percentage of 5-

methylcytosine (5-mC). Samples were run in duplicates on plates with positive, negative, 

and water controls.

Gene-specific methylation by pyrosequencing assay

Methylation levels in the promoter regions of selected genes (IFN-γ and Thy-1) were 

measured using pyrosequencing assay with primers designed as previously described 

(Brown et al., 2015). Briefly, genomic DNA was modified via bisulfite conversion of 

unmethylated cytosine to uracil using Zymo EZ DNA Methylation kits according to the 

manufacturer’s protocols (Zymo Research, Orange, CA). Samples (50 ng) of bisulfite-

treated DNA were PCR amplified using Pyromark PCR kits (Qiagen). A Pyromark Q96 

Vacuum Workstation with Streptavidin Sepharose® High Performance Beads (GE 

Healthcare, Piscataway, NJ) was used for sample immobilization, and a Pyromark Q96 MD 

was used for all subsequent pyrosequencing (Qiagen). Samples were processed in duplicate 

on plates with water controls. Percent methylation of a sample was calculated by averaging 

all of the interrogated CpG sites.

Statistics

Statistical analyses were performed using Graphpad Prism 7.0 (Graphpad Software, San 

Diego, CA). In cases where multiple variables were simultaneously compared, statistical 

significance was tested using one-way ANOVA, followed by Tukey’s multiple comparisons 

post hoc analysis. Non-parametric one-tailed Mann-Whitney testing was used in certain 

cases of two comparisons. Ordinal data were analyzed by non-parametric Kruskal-Wallis 

testing, followed by Dunn’s post hoc analysis for pairwise median comparisons. All 

statistical significance was defined as the probability of type I error occurring at less than 

5% (p < 0.05).
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Results

Histology and collagen deposition of ETS-induced alterations in lung morphology

Abnormal collagen deposition in the interstitium was observed in both pre ETS and Pre/Post 

ETS groups as shown in the representative photomicrographs in 18- to 20-week old 

offspring (Figure 2). The visual observations indicate stable phenotypic alterations in lung 

morphology associated with the combined pre- and postnatal ETS exposures. Interstitial 

collagen deposition increased in a dose-dependent manner in the 18- to 20-week old 

offspring; however, the changes were not statistically significant (3A).

Average pathology scores from 18- to 20-week old mice increased across the FA, Pre ETS, 

and Pre/Post ETS groups (Figure 3B). There were significant differences in pathology scores 

between the FA and Pre/Post ETS groups. However, no significant pathology was observed 

in 10- to 12-week Pre- and/or Post-ETS-exposed groups and controls. In contrast, pathology 

was more noticeable in 18- to 20-week Pre/Post ETS than that in the 10- to 12-week tissues 

from corresponding ETS exposed groups (Supplementary Figure 1).

Prenatal and early-life ETS exposure vs. methylation alterations at two stages of adulthood

To determine the long-term epigenetic impact of prenatal and early-life ETS exposure, 

global DNA and gene promoter methylation was measured in 10- to 12-week (Figure 4A) 

and 20-week old adult offspring (Figure 4B).

Global DNA methylation was significantly hypomethylated in lung tissues from 10- to 12-

week old offspring exposed to combined Pre/Post ETS in a dose-dependent manner, which 

corresponded to the ETS exposure (Figure 4A). As an indication of stable global 

hypomethylation, a similar trend was observed in 20-week old offspring (Figure 4B). There 

were significant differences between the global DNA methylation of FA and Pre/Post ETS in 

both 10- to 12- (p < 0.01) and 20-week old offspring (p < 0.05).

We also measured genomic DNA methylation among dams that were directly exposed to 

ETS at the same time as the 20-week old offspring; however, there were no significant 

changes in lung tissue methylation in these dams (Supplementary Figure 2), indicating that 

the early-life stage can be uniquely sensitive to epigenetic reprogramming associated with 

ETS exposure.

For gene specific methylation, hypermethylation of IFN-γ was observed in 10- to 12-week 

old offspring (Figure 4A), compared across FA, Pre ETS, and Pre/Post ETS groups. A 

corresponding trend of persistent hypermethylation of IFN-γ was observed in 20-week old 

offspring (Figure 4B). There were significant differences in IFN-γ hypermethylation 

between the FA and Pre/Post ETS groups in both 10- to 12- (p < 0.01) and 20-week old 

offspring (p < 0.05).

In addition, Thy-1 hypermethylation was observed in 10- to 12-week old offspring across 

the FA, Pre ETS, and Pre/Post ETS groups in a dose-dependent manner (Figure 4A). Dose-

dependent trends in Thy-1 hypermethylation were also found in 20-week old offspring 

(Figure 4B). Significant differences of Thy-1 methylation levels between the FA and Pre/

Cole et al. Page 6

Inhal Toxicol. Author manuscript; available in PMC 2018 August 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Post groups were observed in 10- to 12-week (p < 0.001) and 20-week old (p < 0.05) 

offspring. Taken together, persistent Thy-1 hypermethylation corresponded to combined 

prenatal and early-life ETS exposure.

Discussion

Very few studies have reported the epigenetic status following prenatal and early-life ETS 

exposure in adult mice; therefore, we performed this study as an extended investigation into 

their effects on adult offspring respiratory health. To determine if the exposures induced 

distinct, persistent methylation patterns associated with fibrotic lung disease, we assessed 

methylation changes in lung tissue DNA from adult offspring mice at 10- to 12- and 20-

week old intervals. The exposure dose was designed to be relevant to ambient smoke that 

active smokers and young children and pregnant mothers could encounter if living with a 

tobacco smoker (Slotkin et al. 2006); active smokers can attain particulate levels as high as 

2.0 mg/m3 (Jinot and Bayard, 1992). Human and animal model studies have indicated that 

offspring exposed to prenatal and early-life ETS have lifelong adverse respiratory deficits 

(Gilliland et al., 2000; Li et al., 2000; Pugmire et al., 2014; Fernandez-Plata et al., 2016). 

Further evidence shows that combined prenatal and early-life ETS exposure into 

adolescence may induce the most severe degree of lung deficits in offspring, as the exposure 

follows the full duration of lung development (Gibbs et al., 2016). Our study was designed 

to determine both the adult physiological effects of combined prenatal and early-life ETS 

exposure and the correlation of those effects to preceding epigenetic alterations.

Epidemiological and laboratory studies have found distinct respiratory deficits in offspring 

associated with ETS exposure timing, suggesting that age at exposure is an important factor 

in respiratory outcomes (Wang and Pinkerton, 2008). Our results are in line with those 

studies, as the pathology scores in the 18- to 20-week old offspring were higher in the Pre 

ETS group than in the FA group and continued to increase and reach significance in the Pre/

Post ETS group. Since the presence of lung pathology was not visually evident in tissue 

examined from 10- to 12-week old ETS exposed offspring, it appears that the methylation 

changes reported could have preceded the manifestations of adult fibrotic lung disease that 

were observed in this study: increased collagen burden and significant pathology in 18- to 

20-week old Pre/Post ETS offspring. Similarly, global DNA and gene specific methylation 

alteration patterns in the Pre/Post ETS groups were significantly different from those in the 

FA groups. Furthermore, these methylation patterns persisted into the later stage of 

adulthood in ETS-exposed offspring only, suggestive of a stable epigenetic alteration 

induced in early life.

Genomic DNA hypomethylation has been identified as a biomarker sensitive to tobacco 

smoke exposure that is associated with the respiratory diseases of COPD (Qiu et al., 2012) 

and cancer (Liu et al., 2010). Epidemiological and animal model studies of tobacco smoke 

exposure have reported significant hypomethylation in genomic DNA associated with 

prenatal exposure (Wilhelm-Benartzi et al., 2012), including our own (Lee et al., 2015). In 

this study, global DNA hypomethylation at two adult ages was observed in pre- and/or 

postnatal ETS exposed offspring that was not observed in the directly exposed maternal 

dams of the same exposure duration, suggesting that age at exposure could be a crucial 
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factor for inducing stable epigenetic alterations that can increase risk of developing chronic 

respiratory disease.

Prenatal and early-life ETS exposure can augment the typical immune response, 

compromising its role in mitigating the effects of exposure to environmental agents in 

adulthood (Penn et al., 2007; Brown et al, 2016). Normally occurring, early-life 

immunological alterations in gene promoter methylation are a coordinated series of dynamic 

events that when disrupted, can lead to persistent skewed Th2 phenotypes and a greater risk 

for asthma and atopy into adulthood (Prescott et al., 1998; Lee et al., 2002; Siegle et al., 

2011). Exposure to particles and chemical components from ETS could therefore disrupt 

these normal developmental immune system patterns in prenatal and early life. There is 

evidence that disruption can manifest in the form of environmentally-influenced Th2 

polarization, in which T-cells become induced to proliferate cytokines towards an adaptive 

T-cell inflammatory phenotype of T-helper 2 (Th2), coinciding with suppression of the Th1 

phenotype and IFN-γ cytokine secretion via promoter hyper-methylation (Miller and Ho, 

2008; Singh et al., 2011). Further, suppression of IFN-γ production (contributing to a 

prevailing Th2 phenotype) may be associated with the progression of pulmonary fibrosis 

(Wynn, 2004; Borthwick et al., 2013). A human study reported that ETS exposure is a high-

risk factor in sustained early-life Th2 polarization in children (van der Velden et al., 2001).

Gene promoter hypermethylation of IFN-γ, a Th1 cytokine, has been implicated in Th2 

polarization associated with allergic asthma (Miller and Ho, 2008). Altered IFN-γ promoter 

methylation has been experimentally associated with differences in gene expression (Yano et 

al., 2003; de Araujo-Souza et al., 2015). In a primate study, altered IFN-γ expression in 

offspring lung tissue was associated with perinatal ETS exposure (Wang et al., 2007). We 

previously confirmed that hypermethylation of the IFN-γ promoter is associated with a 

corresponding decrease in IFN-γ cytokine production in BALF (Lee et al., 2015). Here, we 

observed continued IFN-γ hypermethylation in both adult-aged ETS exposed offspring—an 

effect that was not observed in their FA-only counterparts. Taken together with our 6-week 

old offspring observations (Lee et al., 2015), we suggest that prenatal and early-life ETS 

exposure-associated IFN-γ hypermethylation contributes to Th2 polarized respiratory 

disease.

A persistently skewed Th2 inflammatory profile is known to increase the risk of developing 

pulmonary fibrosis (Stampfli and Anderson, 2009). Thy-1 promoter hypermethylation has 

been proposed as a mechanism involved in development of the fibrotic phenotype (Sanders 

et al., 2008; Sanders et al., 2012). In our study, Thy-1 was significantly hypermethylated in 

both 10- to 12- and 20-week old offspring of prenatal and early-life ETS-exposed dams. We 

previously confirmed that Thy-1 hypermethylation in murine lung tissue corresponds to 

decreased mRNA expression (Brown et al., 2015). Given that Thy-1 was persistently 

hypermethylated and preceded the apparent onset of adult lung disease (concluded from 

collagen deposition and histopathology data), we suggest that prenatal and early-life ETS 

exposure induces latent fibrotic lung disease and that altered Thy-1 expression via promoter 

hypermethylation is involved in this adult disease process.
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Our observations are consistent with the DOHaD hypothesis, since the sustained methylation 

patterns associated with prenatal and early-life ETS exposure preceded the indicators of 

disease in adulthood. Since epigenetic regulation is a complex, multi-factorial process, 

future studies are warranted to determine causality between IFN-γ and Thy-1 promoter 

methylation patterns and onset of adult respiratory disease. Furthermore, the association 

between DNA methylation changes in IFN-γ and Thy-1 and mRNA expression levels was 

not directly confirmed and relied upon our previous publications; therefore, this is a 

limitation of this study.

In this study, we found lower level/small changes in the percent of methylation between 

ETS- and FA-exposed mice, but they were statistically significant. These results agree with 

other previous studies measuring LINE-1 methylation and T-cell–relevant genes, including 

IL-13 (Guerrero-Preston et al., 2010; Lee et al., 2013). Given that the DNA samples were 

collected from whole lung tissue and comprised multi-cellular populations, the methylation 

profiles reported in this study represent a diverse heterogeneity of cells. Therefore, even 

relatively small differences in percent methylation can denote important methylation profiles 

in which future directions should be explored at the single-cell level. Furthermore, our 

findings here support the emerging paradigm that even small environmentally-cued 

differences in methylation percentages can be associated with significant phenotypic 

changes, particularly in the context of development, which is observable in human studies 

(Leenen et al., 2016).

Additionally, there are limitations in using a murine model to acquire information relevant to 

human respiratory health that should be considered. Though lung development spans pre- 

and postnatal life in both humans and mice, the timing of these stages of growth are 

distinctly different (Wang and Pinkerton, 2008). Therefore, a study in which the methylation 

pattern changes can be correlated to precise timing of developmental ETS exposures 

(distinguishing between the contributions of combined prenatal and early life exposure and 

early life exposure alone, as well as direct inhalation and indirect prenatal exposure) could 

yield further insight into disease susceptibility. Furthermore, since alterations in methylation 

patterns can be biomarkers of human respiratory disease susceptibility and diagnostics, 

future studies could determine whether these observations can be translated into potential 

biomarkers for adult onset respiratory disease in humans for early interventions to improve 

health outcomes.

Conclusions

Significant and stable alterations in methylation patterns of IFN-γ and Thy-1 promoters 

were observed in 10- to 12-week and 20-week old offspring mice after perinatal ETS 

exposure. Our histopathological findings together with our methylation data suggest that 

combined prenatal and early-life ETS exposures lead to adult onset fibrotic lung disease 

through epigenetic mechanisms. Our results identify potential epigenetic biomarkers of 

perinatal ETS exposure and support the importance of interventions to prevent prenatal and 

early childhood ETS for reducing the lifelong risk of developing asthma and other chronic 

respiratory diseases.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Timeline of experiment. Upon confirmation of a vaginal plug, female mice were exposed to 

either FA only or 1.0 mg/m3 ETS 6h/day, 7 days/week for the duration of pregnancy. Dams 

and pups were exposed to FA only (pups born from FA and Pre ETS) or continued to receive 

ETS exposure (Pre/Post ETS) for three weeks post-birth. In equal sex-ratio, mice lungs were 

harvested at 10–12 weeks of age and again at 18–20 weeks of age.
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Figure 2. 
Representative pictures of interstitial collagen deposition of 20 week aged offspring for each 

group. Collagen (arrowed) was stained in light blue. (A) FA, (B) Pre ETS, and (C) Pre/Post 

ETS
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Figure 3. 
Lung collagen deposition and pathology scores. (A) Lung interstitium collagen deposition 

percentage from 18- to 20-week old offspring, n = 3 mice per group, presented as means ± 

SEM. (B) Lung pathology scoring from 18–20 week old offspring, n = 3 mice per group, 

presented as medians ± interquartile range for all scores, *p < 0.05.
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Figure 4. 
(A) Global and promoter methylation of each group in 10- to 12-week old offspring. Data 

shown as means ± SEM percent methylation, n = 3–6 per group, ***p < 0.001, **p < 0.01, 

*p < 0.05. (B) Global and promoter methylation of each group in 20-week old offspring. 

Data shown as means ± SEM percent methylation, n = 3 per group, **p < 0.01, *p < 0.05.
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