
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Strategies for sharing a floating point unit between SPEs

Permalink
https://escholarship.org/uc/item/2v248020

Author
Lugo Martinez, Jose E.

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2v248020
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Strategies for sharing a Floating Point Unit between SPEs

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in

Computer Science

by

Jose E. Lugo Martinez

Committee in charge:

Professor Steven Swanson, Chair

Professor Michael B. Taylor

Professor Chung- Kuan Cheng

2010

Copyright

Jose E. Lugo Martinez , 2010

All rights reserved.

The Thesis of Jose E. Lugo Martinez is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

This thesis is dedicated to my mother, who supported me unconditionally throughout

my academic career. Thank you.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Abstract of the Thesis . xi

Chapter 1 Introduction . 1

Chapter 2 Background . 4

2.1. Arsenal system overview . 4

2.2. Arsenal’s SPE architecture . 6

2.3. Motivation . 10

Chapter 3 Related Work . 11

Chapter 4 Floating Point Infrastructure . 13

4.1. Floating Point Unit . 13

4.1.1. Overview . 13

4.1.2. Design and Implementation 14

4.2. Floating Point Hardware Sharing Strategies 21

4.2.1. Overview . 21

4.2.2. Shared FPU per SPE complex 22

4.2.3. Private FPU per SPE . 23

4.2.4. Private nondivide FPU per SPE with shared FP divider . . 24

4.2.5. Private OnDemand FP Operator Logic per SPE 27

4.2.6. Private OnDemand nondivide FP Operator Logic per SPE

with shared FP divider 28

4.2.7. Private FP Gadgets per SPE 30

4.2.8. Private nondivide FP Gadgets per SPE with shared FP divider 31

Chapter 5 Evaluation Methodology . 34

5.1. Methodology . 34

5.1.1. Arsenal Toolchain . 35

5.1.2. Simulation Infrastructure 36

5.1.3. Synthesis . 37

v

5.1.4. Power measurements . 37

5.2. Benchmarks . 38

5.2.1. Lame . 38

5.2.2. EEMBC . 39

5.2.3. SPEC2000 FP and INT 40

5.2.4. Summary . 41

Chapter 6 Results . 43

6.1. Costs and benefits of FP hardware support for SPEs 43

6.2. Benchmarks results . 44

Chapter 7 Conclusion . 53

Bibliography . 55

vi

LIST OF FIGURES

Figure 2.1: An Arsenal Processor It shows a collection of complexes

comprising a SPE enabled system. Complexes communicate

through an intracomplex interconnect connected to a memory

system. Different complexes may contain different SPEs. . . . 5

Figure 2.2: A typical Arsenal SPEs complex It shows a prototypical

complex in an Arsenal system. Intracomplex SPEs communi-

cate over both a simple scanchain based interface and through

a coherent memory system. 6

Figure 2.3: An Arsenal SPE It illustrates a single SPE organization. . . . 7

Figure 2.4: C to SPE Translation Example An illustrative example that

shows the translation from C code to hardware. The hardware

schematic and state machine corresponds very closely to the

control/data flow graph of the C code. 9

Figure 4.1: Shared FPU in SPE Complex It shows an Arsenal complex

where a FPU is shared among all SPEs in the complex. 21

Figure 4.2: Private FPU per SPE It shows an Arsenal complex where

there is a private FPU for each SPE in the complex. 23

Figure 4.3: Private nondivide FPU per SPE with shared FP divider

per complex It shows an Arsenal complex where there is a

private nondivide FPU for each SPE in the complex and a FP

divider shared among all SPEs in the complex. 25

Figure 4.4: Private OnDemand FP Operator Logic per SPE It shows

an Arsenal complex where each particular FP Operator Logic

needed per SPE is privately and independently instantiated for

each SPE in the complex. 26

Figure 4.5: Private OnDemand nondivide FP Operator Logic per SPE

with shared FP divider per SPEs complex It shows an Ar-

senal complex where each particular nondivide FP Operator

Logic needed per SPE is privately and independently instan-

tiated for each SPE in the complex and a FP divider shared

among all SPEs in the complex. 28

Figure 4.6: Private FP Gadgets per SPE It shows an Arsenal complex

where for each FP operation the corresponding logic is pri-

vately and independently instantiated per SPE in the complex. 30

Figure 4.7: Private nondivide FP Gadgets per SPE with shared FP di-

vider per SPEs complex It shows an Arsenal complex where

for each nondivide FP operation the corresponding logic is

privately and independently instantiated per SPE in the com-

plex and a FP divider shared among all SPEs in the complex. . 32

vii

Figure 5.1: Arsenal C to Verilog Toolchain Flows for C to hardware,

simulation, and power measurement infrastructure. 35

Figure 6.1: Execution time for simple SPEs under each floating point

hardware configuration Results are normalized to running

entirely on software. 45

Figure 6.2: Energy breakdown for simple SPEs under each floating

point hardware configurationResults are normalized to run-

ning entirely on software. 46

Figure 6.3: Energy delay product for simple SPEs under each float-

ing point hardware configuration Results are normalized to

running entirely on software. 47

Figure 6.4: Application SPE area for all five benchmarks Each sub-

group of bars represents a specific floating point hardware

configuration. Results are normalized to running on a shared

FPU configuration. 49

Figure 6.5: Application execution time for all five benchmarks Each

subgroup of bars represents a specific floating point hardware

configuration. Results are normalized to shared FPU configu-

ration execution time. 50

Figure 6.6: Application energy breakdown for all five benchmarks Each

subgroup of bars represents a specific floating point hardware

configuration. Results are normalized to shared FPU configu-

ration execution time. 51

Figure 6.7: Application energy delay product for all five benchmarks

Each subgroup of bars represents a specific floating point hard-

ware configuration. Results are normalized to shared FPU

configuration execution time. 52

viii

LIST OF TABLES

Table 4.1: IEEE single precision representation. 14

Table 4.2: Floating Point Hardware Modules description. 16

Table 4.3: Floating Point Comparison Condition Codes. 17

Table 4.4: Area and latency numbers for the full FPU and each FP oper-

ation logic. 20

Table 5.1: Summary of SPEs execution coverage and Floating Point (FP)

operations breakdown by application. 41

Table 6.1: Area and frequency values for simple SPEs under each FPU

configuration design. 44

Table 6.2: Breakdown of area, frequency and SPE execution time cover-

age for the applications SPEs under each FP sharing strategy. 48

ix

ACKNOWLEDGMENTS

First, I would like to thank my mom, my sister and my brother for always sup-

porting my endeavors. I would like to thank my advisors, Steven Swanson and Michael

B. Taylor, for their support, guidance, patience, and encouragement throughout my grad-

uate years. It has been a great honor and privilege to work with them.

I would also like to thank the Arsenal students research group, Jack Sampson,

Nathan Goulding, Vladyslav Bryksin, Sat Garcia, and Ganesh Venkatesh for all their

support in the development of Arsenal’s Floating Point infrastructure; their work on

Arsenal is the foundation of this thesis. In particular, I thank Jack for his support and

guidance in developing and debugging Arsenal’s FP infrastructure, and Nathan for his

invaluable and uncountable help since the beginning, and without him, I cannot imagine

what I would do.

I further would like to thank Professor Chung- Kuan Cheng, my thesis com-

mittee member, for his precious time and guidance.

Last but not least, I would like to thank my UCSD family, Sebastián Becerra,

Ricardo Fagoaga, Rubén Lorenzo, Josué Pérez, Laura Pina, and Bárbara Zepeda for

their friendship and infinite support.

x

ABSTRACT OF THE THESIS

Strategies for sharing a Floating Point Unit between SPEs

by

Jose E. Lugo Martinez

Master of Science in Computer Science

University of California, San Diego, 2010

Professor Steven Swanson, Chair

Designing special purpose processors and ASICs to execute computer pro-

grams requires a methodology that varies greatly from traditional general purpose soft-

ware programming. The benefits of specialized processor designs and ASICs are: lower

power consumption, and greater efficiency, as opposed to general purpose processors.

Those benefits are the driven motivation in the Arsenal design that aims to incorporate

10s to 1000s of specialized processing elements (SPEs) into one system. Each one of

the SPEs performs a well defined functionality that represents the variety of hardware

designs, from general purpose processors to special purpose processors and ASICs.

xi

Among those specialized hardware units, the Floating Point hardware infras-

tructure (FP) presents an important and interesting challenge reflected by its significant

area and power requirements on the system. To one end, it makes the idea of having one

FP unit per SPE prohibitively expensive. On the other hand, reducing the number of FP

units could potentially create a bottleneck, and hence a negative impact on performance.

Therefore, there is a significant tradeoff between area, power, energy and performance

aspects for sharing the FP hardware among Arsenal’s SPEs.

This thesis focus is designing and analyzing different strategies for sharing

FP hardware for the SPEs across Arsenal. Therefore, the main goal is to find a proper

balance between area, energy and performance for a set of FP sharing strategies over

a sample set of FP applications. Our results show that a shared FP hardware per SPEs

complex reduces area, energy and energy delay with negligible performance degradation

amongst all designs.

xii

Chapter 1

Introduction

Recently, there has been a wide transition to multicore designs motivated by

power and microarchitectural scalability concerns. However, even though multicore

designs can deal with such power and scalability issues in the short term, the problem is

that utilization of the whole chip at full frequency (i.e. utilization wall) will resurfaced

in a few generations of process scaling. This is due to a decrease in the percentage

of transistors that can be switch at full frequency in a chip cause by threshold voltage

scaling. Therefore, a different approach that can overcome aforementioned issues while

still targeting general purpose computing is to be able to dictate the parts of the chip that

are active at one time.

The Arsenal design is an example of such technique, and it is accomplished by

combining an array of massively heterogeneous processors into one system. The Arse-

nal design aims to incorporate 10s to 1000s of specialized processing elements (SPEs)

into one system. Each one of these SPEs performs a well defined functionality that

represents the variety of hardware designs, from general purpose processors to special

purpose processors and ASICs. This diversification is the key to achieving significant

reductions in power consumption, increase performance, and increase efficiency be-

cause it allows targeting only specific applications and use a specific portion of the chip

at once. The power savings of executing on a SPE rely on its ability to eliminate the

overhead that microprocessor interpretation imposes on computation (e.g. register file

1

2

access, operand bypassing, etc) [1]. Also, SPEs can use significantly less clock power

by grouping multiple dependent operations into larger clock cycles and running at a

lower clock speed. The architecture of the Arsenal system is described in more detail in

Chapter 2.

Overall, the main goal of Arsenal is to provide a diverse set of wide range SPEs

and computing resources whose heterogeneity can be map to the wide range of applica-

tions that may be run on the system, while still increasing performance, efficiency and

energy savings. However, the challenge resides on the complexity of Arsenal systems

which success is bounded by finding a good alignment between the diversity of SPEs

and computing resources, and the diversity present in the underlying applications.

Therefore, to reduce complexity and design time, Arsenal systems will need

to aggressively reuse hardware components and computing resources throughout the

system. In particular, among those computing resources, the Floating Point (FP) hard-

ware infrastructure presents an interesting and important characteristic magnified by its

significant area and power requirements on the system.

This thesis explores and analyzes different strategies for sharing a FP accel-

erator infrastructure for the SPEs complexes in Arsenal. While the FP implementation

complexity varies across different sharing strategies, the more relevant characteristic is

that there is a tradeoff between area, energy and performance aspects for sharing (or

reusing) FP hardware between SPEs in Arsenal. To one end, it makes the idea of having

one FP unit per SPE prohibitively expensive. On the other hand, reducing the number

of FP units could potentially create a bottleneck, and significantly degrade performance.

Therefore, the contribution of this thesis is to provide a useful and comprehensive study

for finding the best balance among the tradeoff between area, energy and performance

aspects for the SPEs in the Arsenal design. In particular, we measure the area, energy

and performance tradeoffs among seven different FP infrastructure sharing strategies,

describe in more detail in Chapter 4. These FP sharing strategies are implemented as

part of the Arsenal toolchain, and we compare the results to a baseline sharing configu-

ration, presented in Chapter 6.

3

In order to present a meaningful analysis of our designs that reflect the broad

range of floating point applications that may be run in Arsenal, we choose a wide sample

set of floating point benchmarks which ranges from MP3 encoders, scientific applica-

tions to other applications that are amenable to hardware instantiations and spent a large

part of execution inside loop bodies. All these applications are either well understood

or are drawn from benchmark suites that include Lame MP3 Encoder [12], EEMBC’s

Basic Floating Point Automotive [4], and SPEC2000’s integer and floating point appli-

cations [22] such as: equake, mesa and vpr.

To quantify the tradeoff we measure the changes in area, energy, efficiency and

performance, according to each FP infrastructure sharing design. Therefore, the focus

of this thesis is designing, implementing and analyzing different strategies for sharing

a FP accelerator infrastructure for the SPEs across Arsenal. Based on the results, we

found that a shared FP hardware per SPEs complex in Arsenal reduces area requirements

between 3.6% and 435%, energy consumption between 1% and 102% and energy delay

product by up to 35% while decreasing performance between 0.5% and 14% among all

tested sharing designs.

In the remainder of this thesis, in Chapter 2, we provide more background on

the architecture and motivation of the Arsenal system. In Chapter 3, we describe related

work that have influenced our study of sharing hardware resources. In Chapter 4, we

present a description of the FP infrastructure, as well as, details on each FP sharing

configuration design and implementation. In Chapter 5, we describe the simulation

mehodology and set of benchmarks used to gather the results. We then in Chapter 6

describe the results of this thesis. Finally, in Chapter 7 we conclude by reflecting on

the area, energy, efficiency and performance tradeoff across the different FP sharing

designs.

Chapter 2

Background

Threshold voltage scaling problems cause a decrease in the percentage of tran-

sistors that can be switch at full frequency on a chip. This motivates computer archi-

tecture researchers to find alternate ways on which to design processors. One approach

is to design processors so that we can dynamically control the parts of the chip that are

active at once, while still maintaining general purpose computing.

The Arsenal design is an example of such technique, and it is accomplished

by combining an array of massively heterogeneous processors into one system. The

Arsenal system is comprised of 10s to 1000s of specialized processing elements (SPEs)

that are organized into complexes compose of a variable number of SPEs of different

sizes and specialization. These SPEs represent a variety of hardware designs, from gen-

eral purpose processors to specialized processors and ASICs that handle a well defined

functionality. This specialization is key to achieving significant reductions in power

consumption, increase performance, and increase efficiency because it allows targeting

only specific applications and use a specific portion of the chip at once.

2.1 Arsenal system overview

Figure 2.1 illustrates an Arsenal processor composed of twelve SPE com-

plexes that are connected to four banks of shared L2 cache through a grid based onchip

interconnect. This collection of complexes, interconnect and caches is similar to previ-

4

5

Figure 2.1: An Arsenal Processor It shows a collection of complexes comprising a

SPE enabled system. Complexes communicate through an intracomplex interconnect

connected to a memory system. Different complexes may contain different SPEs.

ously proposed tiled processors like Raw [27, 28], WaveScalar [24, 25], or TRIPS [19].

However, the fundamental difference is that instead of uniform complexes, each com-

plex in an Arsenal processor is comprised of a variant number of SPEs that have different

sizes and functionalities, where the size is defined by the architectural properties of the

SPE and the available area budget in the complex, while the SPEs grouping is defined by

the affinity in specialization, since SPEs that have related functionality are most likely

to be used together, which enables them to share the L1 cache.

An Arsenal processor combines one or more general purpose processors,

CPU, with 10s to 1000s SPEs that execute specific computations very efficiently. The

CPU executes the runtime system and serves as the default when portions of the appli-

cation cannot be mapped to any of the SPEs. The communication between the CPU and

SPEs occurs through a simple interconnect that gives the CPU complete access to all of

the SPEs internal state via a set of scan chains. These scan chains are used by the CPU

to set up the SPE and transfer initial arguments. However, most of the data is passed via

a coherent L1 cache. Figure 2.2 illustrates a zoom in of a typical Arsenal SPEs complex,

highlighting the CPU/SPE scan chain interface.

6

�������

��	

������

���

���

�
�
�

��

�
�
�
�
�
�
�
��
��
�
��
�
�

���

Figure 2.2: A typical Arsenal SPEs complex It shows a prototypical complex in an

Arsenal system. Intracomplex SPEs communicate over both a simple scanchain based

interface and through a coherent memory system.

The memory hierarchy is comprised of L1 caches allocated within each com-

plex, L2 caches allocated to a collection of complexes, main memory, and optional L0

caches that are local to each SPE. Coherency is achieved through a MESI based protocol

that ensures coherence between all L1 caches, L2 and main memory. The communica-

tion between processors through shared memory follows a release consistency model.

The intracomplex interconnect connects individual SPEs to the intercomplex

grid with the property that exactly one SPE within a complex can be active at once,

which saves a significant portion of area and power. However, this property is only

enforced for intracomplex scheduling, thus, SPEs from different complexes can execute

simultaneously, managed by the operating system.

2.2 Arsenal’s SPE architecture

SPE selection The preferred code regions to be design into SPEs are code portions

that execute frequently and are relatively stable. The former enables significant energy

7

savings, while the latter ensures that subsequent modifications to the source code are

infrequent and/or minor. In this thesis, we selected and designed SPEs for a diverse set

of floating point workloads that ranges from MP3 encoders, scientific applications to

other applications that satisfy aforementioned constraints. More details are provided in

Section 5.2.

SPE

Figure 2.3: An Arsenal SPE It illustrates a single SPE organization.

SPE architecture and organization Figure 2.3 shows the architecture of a typical

Arsenal SPE. The SPE is comprised of the datapath, the control unit (or control path),

the memory interface, and the scan chain interface. The datapath resembles the dataflow

graph of the computation and contains the functional units (e.g. adders, shifters, etc), the

muxes to implement control decisions, and the registers to hold program values across

clock cycles. Every functional unit is always ”on”, and specific components must be

8

enabled and/or disabled with special enable and select lines. These enable and select

lines are set by the control path that dictates which parts of the circuit are active at any

given time. In particular, the control path implements a finite state machine (FSM) that

mimics the control flow graph (CFG) of the underlying code. It tracks branch outcomes

that come from the datapath to determine which state to enter on each cycle. The values

for the enable and select lines are chosen based on the current state of the FSM and set

on the registers and muxes such that the correct basic block is active each cycle.

In Arsenal multicycle instructions (e.g. memory ops, floating point ops, etc)

are handled by adding a selfloop to the basic block that contains each operation and

exporting a valid line to the control path. When a multicycle instruction is completed, it

asserts the valid signal and control exits the loop and proceeds with the next basic block.

The use of the valid signal mirrors the memory ordering token used in systems such as

Tartan [14] and WaveScalar [25].

Memory ordering constraints are enforced by only permitting exactly one

memory operation per basic block, thus, the SPE only enables one basic block at a

time, guaranteeing that memory operations execute in the correct order. The load/store

units connect to a coherent data cache that ensures that all loads and stores are visible to

the rest of the system. Fortunately, the memory ordering enforced through the control

path’s FSM maps the memory order provided by program counters in general purpose

processors. Therefore, to maintain this mapping and to decrease the amount of registers

required in the datapath, the registers in the SPE datapaths are in SSA form, (i.e. each

static SSA variable has a corresponding register and the registers value only changes

when the corresponding static variable comes into scope). This invariant enforces that

exactly one register value changes per new value that the program generates, hence,

minimizing the number of register updates.

Figure 2.4 shows an example of the translation from C code to the SPE’s

datapath and control path. The phi operators for the variables i and sum in the CFG

are turned into muxes. The datapath has a load unit to access the memory hierarchy for

reading array a. The SPE’s datapath and control path maps closely to the CFG of the

9

computeArraySum

sum=0

for(i=0;i<n;i++)

{

 sum += a[i]

}

return(sum);

Source

Code

isum a

+

ld unit

addr

valid

e
n

v
a

lu
e+

0 0

+
1

muxSel

muxSel

ldEn

ldValid

<

n

comp

Data Path

sInit

s1

s2

s3 ldValid==0

sRet
comp==0

Control

Path

Memory

Interface

Scan chain

Interface

Scan Chain 1

CFG

i=0

sum
=0

phi(i)

phi(
sum)

i<n

sum
+=a[i]

i++

ret
(sum)

F

Figure 2.4: C to SPE Translation Example An illustrative example that shows the

translation from C code to hardware. The hardware schematic and state machine corre-

sponds very closely to the control/data flow graph of the C code.

source code. Even further, the FSM of the SPE is almost identical to the CFG with the

distinction of the multicycle operations selfloop.

SPEs execution model The execution model for the SPEs in an Arsenal processors

is driven by the runtime which maps the application’s code regions to be run on the

available SPEs, and schedules them dynamically by evaluating the physical location

and contention for a given SPE, and runtime behavior. In Arsenal a control register

determines which SPE the CPU communicates with. Arsenal SPEs include 43 scan

chains broken into two groups: 11 control scan chains and 32 datapath scan chains.

The CPU uses control scan chains to pass arguments to the SPE. The scan chains for

arguments are only 64 bits to make invocation fast.

A SPE initiates execution when the system loads an application that contains

a code region that maps to a particular SPE in the system, then it replaces the CPU

implementations of the code region with a stub that invokes the SPE. Subsequently,

when the application calls the code region, the stub checks for an available SPE. If it

finds one, it uses the scan chain interface to pass the arguments to the SPE. At this point,

10

the SPE starts running and when the executing SPE completes, it raises an exception and

transfers control back to the stub, which extracts the return value and passes it back to

the caller. In the extreme case that no SPE is available, the CPU can run the application’s

code region such that it does not blocks.

In general, an application executing on Arsenal migrates between SPEs as its

behavior changes [20]. Even further, the mapping of applications to SPEs can change at

runtime to account for detected changes in the underlying application behavior.

2.3 Motivation

One of the biggest challenges in Arsenal is that the design space of an Ar-

senal processor is larger than conventional multiprocessors. Therefore, in order to ex-

plore the design space in a more efficient way, our research group ongoing focus is the

development of a toolchain for SPE generation, where special purpose processors are

synthesized automatically from high level constructs such as C, while SPEs for gen-

eral purpose processors and established designs can be synthesized from already known

solutions. This automatic synthesis approach is based on transformation of the appli-

cations into program dependence graph form and merging isomorphic components of

the graph. Hence, the common applications are analyzed and semantically similar re-

gions are merged to produce more robust SPEs given the area and power budget, while

still reducing the overall amount of hardware for the Arsenal processor. The overall

methodology is described in more detail in Section 5.1.

To reduce even further the complexity and design time, Arsenal systems will

need to aggressively share and reuse hardware components throughout the system, es-

pecially at the SPEs complex level. This is the motivation of this thesis, which focuses

on strategies for sharing a very specific hardware component, the Floating Point infras-

tructure. We believe that our work will provide a useful and comprehensive study for

finding the best balance in the tradeoff between area, energy, and performance aspects

for the SPEs in the Arsenal design.

Chapter 3

Related Work

Sharing (or reusing) hardware resources is studied in various works, however,

the emphasis of such works ranges from sharing I caches and D caches, or sparsely and

rarely used functional units to sharing the actual FP operators hardware logic among

other FP or integer operators (e.g. sharing the FP adder and multiplier with the FP

divider and/or square root, etc). In C.A.S.H. [3] the authors propose a way to selectively

share some of the hardware resources on a single chip parallel processor in two ways:

a la SMT when the sharing can be made noncritical for the implementation, or a la

CMP whenever resource sharing leads to a superlinear increase of the implementation

hardware complexity. In particular, they believe that branch predictors, I caches, D

caches and long latency functional units (e.g. integer multipliers and dividers) can be

shared among several ”processor” cores while keeping other major parts of the execution

cores separated. Their work shows that there exists an intermediate design point between

CMP and SMT by presenting a hybrid sharing design. In contrast, our motivation is

focused on exploring multiple designs and implementations for sharing the FP hardware

among SPEs in Arsenal.

In [21], Soderquist and Leeser provide an analysis of the area and perfor-

mance tradeoff associated with different implementations of FP divide and square root

that ranges from sharing the FP multiplier and adder logic to independent implemen-

tations. The main contribution of their work is a comprehensive analysis to help FP

11

12

unit designers identify the FP divide and square root implementations that most effec-

tively meet their area constraints and performance goals. Even further, instead of rec-

ommending novel methods, they focus on exploring the tradeoff inherent to established

techniques used in commercial processors. Our work differs significantly from their ap-

proach since we are concerned with area, energy and performance tradeoff with sharing

the FP hardware between the SPEs on an Arsenal chip and we do not explore sharing

the FP logic neither inside the FP unit nor with any integer operator.

The authors of [9] present the design and implementation of a modular and

portable FP unit, especially suitable for use in small ASIPs implemented in Architecture

Description Language (ADL) [7]. Also, in their paper, they present a summary of area

cost, and energy and speed estimates for different FP configurations. While they do

explore area, energy and performance tradeoff their FP unit is quite limited (e.g. no

hardware support for FP division, etc). Additionally, they target embedded systems

while our work is oriented towards the general purpose computing capabilities of the

Arsenal system.

Chapter 4

Floating Point Infrastructure

As previously stated, our overall approach consists of exploring and analyz-

ing different sharing strategies for the FP infrastructure in Arsenal by measuring area,

energy and performance, and finding the design that best balances the tradeoff among

them. In this section, we describe, in detail, each step in the FP infrastructure develop-

ment, from the actual FP unit logic to the distinct FP sharing configurations designed.

4.1 Floating Point Unit

4.1.1 Overview

One of Arsenal’s goal is to provide support for general purpose computing,

which frequently includes the need to represent very large and very small values as those

observed in scientific applications. This is hard to accomplish using fixed point formats,

because maintaining the desired levels of precision and range grows the bitwidth larger.

Therefore, in those cases FP formats are used to represent real numbers [5]. The most

widely known and used format for FP arithmetic is the IEEE 754 Standard for Binary

Floating point Arithmetic [8].

This standard specifies two precision bitwidths formats: single precision (32

bit) and double precision (64 bit), to which floating point numbers are to be represented,

as well as how basic arithmetic operations should be performed on them. Even further,

13

14

Table 4.1: IEEE single precision representation.

s e . . . e f . . . f

0 1 . . . 8 9 . . . 31

each format has representations for NaNs (Not a Number) and ±∞ (Infinity).

For simplicity, in this thesis we only focus on the IEEE 754 single precision

FP standard. This standard requires a 32 bit word, usually represented as numbered from

0 to 31, left to right. The first bit represents the sign, s, the next 8 bits are the exponent,

e, and the last 23 bits are the fraction, f, as shown in Table 4.1. Therefore, it is possible

to represent any FP number using the following equation:

(−1)s × 1.f × 2e−127 (4.1)

4.1.2 Design and Implementation

In this section we describe the design and implementation of the IEEE 754 sin-

gle precision FP format and the corresponding modules to support the basic arithmetic

operators.

A system can emulate FP logic with a software implementation, if it is desired,

however, FP arithmetic is highly complex which makes this approach undesirable. To

complicate things even further if the FP logic implementation does not complies with

the IEEE 754 standard, then the behavior of the FP environment becomes significantly

unstable. In contrast, another solution is to implement the FP logic in hardware, namely

the floating point unit (FPU). This approach greatly accelerates the FP arithmetic and

calculations, mainly because a hardware implementation requires a small fraction of

the time that a software implementation would require (usually between 50 and 300

times slower than the hardware). Even further, implementing the FP logic in hardware

enables sharing this resource across the system at the expense of the initial design and

implementation difficulty cost.

Arsenal’s FPU design is based on the FP logic designed and implemented

in Raw [27]. Even though, the original idea was to have a FPU that fully supported

15

IEEE 754 standard some goals were omitted. In particular, we only support single

precision FP operations and we relaxed the compliance of the IEEE 754 standard by

not implementing gradual underflow.

The FPU functionality is divided into 7 modules. In Table 4.2 we show the

names, functionality and latencies for all the implemented arithmetic operators modules

that include absolute value and negation, addition and subtraction, comparisons, divi-

sion, format conversions (between FP and fixed point representations and vice versa),

and multiplication. Each module is implemented in Verilog, a hardware description lan-

guage [18]. Together these modules compose the internals of the FPU top level module,

which encapsulates all behavior in one location and provides one central interface for

calculation of floating point operations. Additionally, after each arithmetic operation the

resulting FP value, is renormalized and rounded in the FPU’s top level by conditionally

adding 1 unit in the last place, as required by IEEE 754.

The FPU top level wraps around all the FP operators, where all basic FP arith-

metic operators are fully pipelined, except for the FP divide. The FPU interface is very

similar to a memory LOAD instruction, where the FPU receives the FP operation request

and data in a pipeline fashion, process it, and has it stream out, along with a ”valid” sig-

nal. All subsequent FP operations request and data must wait until the active request is

finalized. The ready and valid signals capabilities in each module, enables them to be

easily assembled into larger or smaller designs. IEEE’s specification for handling and

raising flags (inexact, underflow, overflow, division by zero and invalid) is supported,

and any detected flag is propagated to the end of the pipeline and merge into the stream

out result value. An additional unimplemented flag is added to IEEE’s exceptions flags

for signaling when the compliance with the IEEE 754 standard is not met.

In detail, at the hardware level, the FPU’s input data consist of one or two

FP values and an operator selector opcode to determine the calculation to be performed

by the FPU. The output consists of the result value of the specified calculation plus the

corresponding exception flags (set to 0 if no exceptions are raised).

The next paragraphs describe the particular details for each FP arithmetic op-

16

erator module.

Table 4.2: Floating Point Hardware Modules description.

Module Name Functionality Latency (cycles)

fp absneg Absolute Value/Negation 4

fp add Addition/Subtraction 4

fp cmp Comparison 4

fp div Division 12

fp f2i Conversion from FP format to integer 4

fp i2f Conversion from integer to FP format 4

fp mult Multiplication 4

FP Absolute value/Negation Absolute value and negation are pretty straightforward.

The inputs to this module are the FP value and the corresponding operator selector op-

code indicating either abs or neg. The output of the module is the input’s value exponent

and mantissa concatenated with the corresponding manipulation of the sign bit, plus the

invalid exception flag.

The internal implementation is composed of one always block that sets the per

stage invalid register such that both operations take the desired number of cycles.

FP Addition/Subtraction Addition and subtraction are one of the most computation-

ally complex arithmetic FP operations. The inputs to this module are two FP values

and the corresponding operator selector opcode indicating either add or sub. The out-

put of the module is the normalized form of the result value, in addition to the inexact,

invalid, underflow and unimplemented exception flags. The algorithm for the addi-

tion/subtraction operation is performed in a three steps pipeline as follows:

1. Select the larger and smaller operands in magnitude

2. 26- bit logical right shift to normalize the smaller operand, and perform the addi-

tion/subtraction on the normalized operands

3. 28- bit logical left shift to normalize result

17

The internal implementation is comprised of a series of always blocks, each

of which corresponds to a step in the above algorithm.

FP Compare FP compare is implemented exactly like MIPS with the distinction that

the result value is returned, as opposed to set on a flags register. The module takes two

FP values and the corresponding operator selector opcode that contains a 4 bit compar-

ison condition code, as describe in Table 4.3, which indicates the desired comparison.

The output of the module is the result value of the relation given the selected compar-

ison. Table 4.3 shows all the possible outputs for each relation, along with the invalid

exception flag.

The module is implemented internally with one always block that sets the

per stage invalid flag and result value registers such that it takes the desired number of

cycles. The compare module also checks for corner cases such as NaN, zero, and ±∞.

Table 4.3: Floating Point Comparison Condition Codes.

Predicate Relations(Results)
Invalid flag if unordered

Cond Definition Greater Than Less Than Equal Unordered

0 False F F F F No

1 Unordered F F F T No

2 Equal F F T F No

3 Unordered or Equal F F T T No

4 Ordered Less Than F T F F No

5 Unordered or Less Than F T F T No

6 Ordered Less Than or Equal F T T F No

7 Unordered or Less Than or Equal F T T T No

8 Signaling False F F F F Yes

9 Not Greater Than or Less Than or Equal F F F T Yes

10 Signaling Equal F F T F Yes

11 Not Greater Than or Less Than F F T T Yes

12 Less Than F T F F Yes

13 Not Greater Than or Equal F T F T Yes

14 Less Than or Equal F T T F Yes

15 Not Greater Than F T T T Yes

FP Division FP division is implemented as a non pipelined 11 cycle operation that

uses MIPS like decoupled HI/LO interface. The fp div module inputs are two FP val-

ues and the output is the normalized and rounded approximation of the quotient value,

in addition to the division by zero, inexact, invalid, overflow, underflow and unimple-

mented exception flags. The division algorithm implemented is functional iteration (also

18

known as multiplication based or multiplicative division algorithm) [16], which rely on

the fact that division can be written as the product of the dividend and the reciprocal

of the divisor. This approach tries to take advantage of highspeed multipliers combine

with the accuracy of the initial reciprocal approximation. However, one disadvantage of

functional iteration is the lack of a remainder.

In particular, the fp divmodule uses a 8 bit ROM lookup table for initial recip-

rocal approximation and the Synopsys Module Compiler (Y2006.06SP5) [26] for gen-

erating technology specific custom functional unit for multiplication that is optimized

for speed and power usage.

Format Conversion (FP→ Int/Int→ FP) Our FPU design would not be complete

without modules for converting between the floating point and integer (i.e. fixed point)

representations. The module fp f2i implements the conversion from the IEEE’s FP rep-

resentation to its integer representation. The module takes a FP value and the corre-

sponding operator selector opcode indicating if the output should be rounded or not.

The output is the integer representation of the FP representation, plus the inexact and

invalid exception flags.

Module fp i2f, on the other hand, implements the inverse function of the fp f2i

module. It converts from an integer representation to its IEEE’s FP representation. This

module input is the operand’s value, either signed or unsigned, integer representation.

The output of the module is the FP representation of the value along with the inexact

exception flag.

FP Multiplication The FP multiplication implementation is fairly straightforward

(i.e. significantly easier than addition), mainly due to the nature of the IEEE754 FP

format. The inputs to this module are two FP values and the output of the module is the

normalized form of the result value plus the inexact, invalid, overflow, underflow and

unimplemented exception flags. The multiplication algorithm is described as follows:

• the sign of the product is the XOR of the operands signs

19

• the exponent of the product is the sum of the operands exponents

• the mantissa of the product is the product of the operands mantissas

The multiplier internally contains a set of stages which implement the multi-

plication algorithm presented above. Like FP division, we also make use of the Synop-

sys Module Compiler, in order to generate technology specific custom functional unit

for multiplication that is also optimized for speed and power usage.

FP arithmetic logic extensions In this thesis, in order to allow for a more compre-

hensive and broad study of FP designs and configurations, we expand the FPU design

by implementing each one of the FPU’s supported operators as an independent Verilog

module. Therefore, instead of having an entire FPU in the presence of one or more FP

operations, we allow the ability to only have an independent and isolated instantiation

of the FP logic for each particular FP operator that would be needed in the SPE. We

accomplish this extension of the FP logic by replacing the FPU top level with a per

operation ”top level” that only wraps the corresponding FP operator logic, where the

interface is exactly the same as before: The active FP operator logic receives the FP op-

eration request and data, executes it, and has it stream out, along with the ”valid” signal.

All subsequent FP operations that require the same operator must wait until the active

request is finalized. This smaller per operation FP logic design enables design flexibility

and a decrease in area and power requirements, as well as permits more efficient inde-

pendent FP arithmetic logic implementations that could have smaller cycle latencies for

some FP operations. In particular, by having independent FP operator logic, we are able

to redesign some FP operators to have a lower latency than the one achieved in the full

FPU design as shown in Table 4.4.

Area, energy and performance measurements for the FP logic in hardware The

ability of having the FP logic in hardware comes at a cost in area, energy and perfor-

mance(depending on the selected design). Area and performance costs for the different

FP logic designs are shown in Table 4.4, this table does not accounts for energy costs,

20

Table 4.4: Area and latency numbers for the full FPU and each FP operation logic.

FP Logic Configuration Area (mm
2) Latency (cycles)

FPU 0.11 see Table 4.2

FP ABS/NEG 0.0068 1

FP ADD/SUB 0.017 3

FP CMP 0.00071 1

FP DIV 0.048 11

FP F2I 0.0093 3

FP I2F 0.012 3

FP MULT 0.036 3

since our simulation tool is not yet calibrated to measure per operation energy. The

area cost of a FP operation vary from just 0.00071mm
2 for the ”smallest” per operator

FP logic design (i.e. FP CMP) to 0.11mm
2 for a full FPU. Similarly, our different FP

logic configurations can have an impact in performance as shown in Table 4.4, where

performance benefits could come from the ability to improve the cycle latencies of the

FP logic for most FP operators when designed in isolation.

Testing and Validation Testing and validation of all FP arithmetic operations in the

FPU are performed at three levels [15]. At the first level, we develop a Verilog testbench

that drives each one of the modules for testing. Each test module consists of a series

of operand values and an expected result. The module simply simulates certain signals

(such as the ”clock”, ”request” and ”reset” signals) that would otherwise come from the

active SPE, and then executes each FP arithmetic operation, reporting errors (if any)

and successes using the ”display” function. This very simple strategy worked extremely

well for testing.

The second testing level is performed using Softfloat [6], a high quality soft-

ware implementation of the IEEE Standard for Binary Floating point Arithmetic, to

generate a file with FP traces from a set of applications to be used as input to feed our

FPU testbench.

Finally, as part of our simulation infrastructure, we generate a cycle accurate

system simulator for the SPEs which generates traces that we use to validate and drive

the synthesized SPEs, describe in detail in Section 5.1.

21

4.2 Floating Point Hardware Sharing Strategies

4.2.1 Overview

In Section 4.1, we described the underlying logic for each FP arithmetic oper-

ation in the FPU. In this section, we describe the design and implementation details for

each sharing strategy of the FPU between the SPEs in an Arsenal system. In the thesis,

we explore the area, power and performance tradeoff for seven FP logic sharing strate-

gies: a shared FPU between all SPEs in a complex, a private FPU per SPE, a private FPU

per SPE but with a shared FP divider across the SPEs complex, a private OnDemand FP

logic per SPE, a private OnDemand nondivide FP logic per SPE along with a complex

wide shared FP divider, private FP gadgets per SPE, and private non divide FP gadgets

per SPE sharing the FP divider between the SPEs complex. In the next subsections we

describe each one of them.

���

���

���

�
�
�

���

���

Figure 4.1: Shared FPU in SPE Complex It shows an Arsenal complex where a FPU

is shared among all SPEs in the complex.

22

4.2.2 Shared FPU per SPE complex

Design The first FPU sharing strategy considered is a FPU shared between exactly one

complex of SPEs, as shown in Figure 4.1. This sharing configuration is also used as the

baseline design for area, energy and performance comparisons in Chapter 6. Sharing

the FPU across only one SPEs complex becomes prohibitively expensive as the number

of SPEs in the complex grows due to potential FPU contention and arbitration among

the active SPEs in the complex. Even though, this contention scenario limitation is not

currently a concern in Arsenal because only one SPE in the complex is active at once.

However, it could significantly degrade performance in subsequent Arsenal designs that

may relax the constraint of exactly one active SPE per complex. Additionally, the wire

delay’s negative impact on performance increases as the number of SPEs sharing a FPU

increases, thus exceeding the sharing benefits. We claim that sharing a FPU between

more than two SPEs complexes will cause such effect.

The interface between the executing SPE and the FPU is as follows, when

the SPE finds a FP operation, it sends the request and data to the FPU which, if not

busy, performs the multicycle operation and sends the result back to the SPE to continue

execution. Otherwise the SPE request must wait. One of the caveats of such SPE/FPU

interface is that it incurs in small performance overhead due to the latency of transferring

control and data between the SPE and FPU.

Implementation In section 4.1, we already described the FPU design and implemen-

tation details which leaves only the implementation details of what occurs when the SPE

encounters a FP operation during the C to Verilog translation stage. In section 5.1.1, we

describe Arsenal’s toolchain which creates SPEs from an input application source code

written in C. As part of the toolchain’s C to Verilog compilation stage, a shared FPU

is instantiated for the entire SPE’s complex where for each FP operation found in the

underlying SPE a fp local unit that connects and transfers control and data to the shared

FPU is instantiated. Therefore, when the FP operation is enable the request and input

data are sent to the shared FPU by the corresponding fp local unit. Later on, when the

23

FPU is done, it sends a valid signal, as well as, the result value back to the active SPE

so that execution can resume.

���

���

���

�
�
�

���

���

���

���

���

Figure 4.2: Private FPU per SPE It shows an Arsenal complex where there is a private

FPU for each SPE in the complex.

4.2.3 Private FPU per SPE

Design The second proposed FPU sharing strategy is having a FPU per SPE in the

complex, as shown in Figure 4.2. In this sharing design the FPU is private to each

SPE in the complex which overcomes the FPU contention limitation of the previous

sharing model. However, having a private FPU per SPE requires a larger area per SPE

(0.11mm
2 as shown in Table 4.4) and increase power requirements and energy con-

sumption, hence, limiting the chip’s area and power budget for SPEs, ultimately reduc-

ing the number of SPEs in an Arsenal processor.

The interface between the running SPE and the FPU is very similar to the pre-

vious one, with the sole distinction that the FPU is private to the SPE, thus, when the SPE

24

finds a FP operation, it transfers the request and data to its private FPU which performs

the operation and sends the result back to the SPE to continue execution. As opposed to

the baseline, this SPE/FPU interface incurs in a smaller performance overhead because

the FPU is actually private to that SPE, and therefore the transferring latency between

the SPE and FPU should be less than the overhead of communicating outside the SPE,

especially when FPU contention and arbitration are introduced.

Implementation The SPE/FPU interface implementation for this design is exactly the

same as before. The difference is that when the SPE encounters a FP operation it first

instantiates one private FPU for the SPE such that for each FP operation encountered

in the SPE a fp local unit connecting and transferring control and data with the private

FPU is instantiated. Later on, when a particular FP operation is enable the request

and input data are transferred to the private FPU by the corresponding FP operation’s

fp local unit. Finally, when the FPU is done, it sends a valid signal to the SPE along

with the result value to continue execution.

4.2.4 Private nondivide FPU per SPE with shared FP divider

Design The third FPU sharing strategy is based on a well documented observation

about instruction mix which stipulates that FP division is one of the two least frequently

occurring operations in an application [16]. Therefore, in this design, we consider a

nondivide FPU per SPE, where the FP divider logic is separated and shared across the

SPEs in the complex, as shown in Figure 4.3. In this sharing design the ”partial” FPU

(or nondivide FPU) is still private to each SPE, but without all the FP divider logic,

that is usually infrequently used. The FP divider is still accessible to all the SPEs in

the complex. This sharing mechanism reduces per SPE area and power requirements,

and energy consumption on the chip by eliminating the FP divider logic per SPE which

may enable an increase in the number of SPEs that could not be allocated by having a

completely private FPU per SPE in the complex.

In this case, the interface between the active SPE in the complex and the FPU

25

���

���

���

�
�
�

���

���	
��

���

���	
��

���

���	
��

���

���	
��

���

��
���

Figure 4.3: Private nondivide FPU per SPE with shared FP divider per complex It

shows an Arsenal complex where there is a private nondivide FPU for each SPE in the

complex and a FP divider shared among all SPEs in the complex.

differs from the previous ones. When the SPE finds a nondivide FP operation, it transfers

the request and data to its private FPU which performs the operation and sends the result

value back to the SPE to continue execution. However, when the SPE finds a FP divide

operation, it transfers the request and data to the shared FP divider logic for the SPEs

complex which performs the operation and sends the result back to the SPE to continue

execution.

This sharing design differs from the shared and private SPE/FPU interfaces

since a very small performance overhead is tradeoff to the control and data transfer

between the shared FP divider outside the SPE, whereas the fully private partial FPU

stills maintains a reduced transfer overhead between the SPE and internal nondivide

FPU for the most frequently occurring operations in an application, and thus enabling

an area, power and energy savings.

26

Implementation The implementation for the SPE/FPU interface for this design is

very similar to the ones defined before. For nondivide operations one nondivide pri-

vate FPU is instantiated and for each nondivide FP operation encountered in the SPE

a nondiv fp local unit connecting and transferring control and data with the nondi-

vide FPU is instantiated. Similarly, for each FP divide operation in the SPE a simi-

lar fp div local unit connecting and communicating with the shared FP divider is in-

stantiated. Later on, when a FP operation is enable, if it is a nondivide FP operation

the request and input values are transferred to the nondivide FPU by the matching

FP operation’s nondiv fp local unit. Otherwise, if it is a FP divide operation the re-

quest and operand values are transferred to the shared FP divider by the operation’s

fp div local unit. When either, the nondivide FPU and FP divider, are done they send a

valid signal and the respective result value back to the SPE to continue execution.

���

���

���

�
�
�

���

����	

�������

����
���

�������

�������

����
���

�������

����
���

����	

�������

�������

Figure 4.4: Private OnDemand FP Operator Logic per SPE It shows an Arsenal

complex where each particular FP Operator Logic needed per SPE is privately and in-

dependently instantiated for each SPE in the complex.

27

4.2.5 Private OnDemand FP Operator Logic per SPE

Design The fourth studied FP logic sharing strategy goes one step further than the

second FP logic sharing configuration, in this case, it is based on previous work that

reports that FP addition and FP multiplication are the two most frequently occurring op-

erations in an application [16]. Therefore, the proposed FP logic configuration strategy

proposes that instead of instantiating one full FPU if there are one or more FP opera-

tions, we could only independently instantiate the logic for each particular FP operator

that is needed in the SPE as shown in Figure 4.4. In this FP configuration design some

parts of the FPU are partially dissolved as only the required logic is created and instan-

tiated on an ondemand basis. This sharing mechanism enables a reduction in per SPE

area, power and energy demands, as well as, allows for more efficient independent FP

arithmetic logic implementations that could have smaller cycle latencies for some FP

operations as previously shown in Table 4.4.

The interface between the running SPE and the separate FP operators logic

is very similar to the second FP sharing design. In this case, however, each FP oper-

ator logic is not only private but independent of other FP operators in the SPE, hence,

when the SPE finds a FP operation, it transfers the control and data to its private and

”stand alone” instantiation of the logic for that FP operation. After the FP operation is

performed, the result value is send back to the SPE to continue execution. This config-

uration allows for parallelization of different FP operations. Like the SPE/private FPU

interface there is a small performance overhead due to transferring control and data

between the SPE and the independent FP operators logic.

Implementation The SPE/FP logic interface implementation for this design mirrors

the private FPU one. When the SPE encounters a FP operation it first instantiates one

private and independent FP operator logic for that particular operator in the SPE so that

for each similar FP operation encountered in the SPE a fpop local unit connecting and

communicating with that private FP operator logic gets instantiated. After a particular

FP operation is enable, the request and input data are transferred to the independent FP

28

operator logic by the corresponding FP operation’s fpop local unit. Finally, when the FP

operator logic is done, it sends a valid signal to the SPE along with the result value to

continue execution.

���

���

�
�
�

����	

�������

����
���

�������

���

�����������
���

�������

�������

��� �������

����
���

Figure 4.5: Private OnDemand nondivide FP Operator Logic per SPE with shared

FP divider per SPEs complex It shows an Arsenal complex where each particular

nondivide FP Operator Logic needed per SPE is privately and independently instantiated

for each SPE in the complex and a FP divider shared among all SPEs in the complex.

4.2.6 Private OnDemand nondivide FP Operator Logic per SPE with shared FP

divider

Design The fifth sharing strategy combines the previous FP configuration design with

a SPEs complex shared FP divider, as shown in Figure 4.5. In this FP configuration

design the FP divider logic is completely removed as a possible private and independent

FP operator in a SPE, while the other operators are created and instantiated on an onde-

mand basis as the SPE requires them. This sharing mechanism enables a reduction in

per SPE area, power and energy that comes from removing the FP divider logic.

29

The interface between the running SPE and the separate FP operators logic is

very similar to the ones describe before. If the SPE finds a nondivide FP operation it

transfers the request and data to its private and stand alone instantiation of the nondivide

FP logic for that FP operation. After the nondivide FP operation is performed, the result

value is send back to the SPE to continue execution. On the other hand, if the SPE finds

a FP division operation, it transfers the request and data to the shared FP divider logic

for the SPEs complex which performs the operation and sends the result back to the SPE

to continue execution.

Like the SPE/private FPU with shared divider interface, this sharing config-

uration tries to balance the tradeoff between area, power, energy and performance. To

one end, it plays with the increase in the performance overhead of transferring con-

trol and data with an outside shared FP divider for each FP divide operation, and, at

the other end, balancing it with a more efficient and area conscious but power hungry

configuration for each nondivide FP operation.

Implementation The SPE/FP logic interface implementation for this design resem-

bles the ones defined before. When the SPE encounters a nondivide FP operation it

first instantiates one private and independent FP operator logic for that particular op-

erator in the SPE so that for each similar nondivide FP operation encountered in the

SPE a nondiv fpop local unit connecting and communicating with the private FP opera-

tor logic gets instantiated. Similarly, for each FP divide operation in the SPE a similar

fp div local unit connecting and communicating with the shared FP divider is instan-

tiated. Later on, when a FP operation is enable, if it is a nondivide FP operation the

request and input data are transferred to the independent FP operator logic by the corre-

sponding FP operation’s nondiv fpop local unit. Otherwise, if it is a FP divide operation

the request and operand values are transferred to the shared FP divider by the operation’s

fp div local unit. Finally, when either the FP operator logic or the shared FP divider is

done, a valid signal and the result value are sent back to the SPE to continue execution.

30

���

���

���

���

�
�
�

�����		

������
�

�������

�����		
�

������
�
�

�������
�

������

������
�

�����		

������
�

�����		
�

������
�
�

�������

������
�

������

�����		

�������

Figure 4.6: Private FP Gadgets per SPE It shows an Arsenal complex where for each

FP operation the corresponding logic is privately and independently instantiated per SPE

in the complex.

4.2.7 Private FP Gadgets per SPE

Design The sixth proposed FPU sharing strategy builds upon and extends the private

OnDemand FP operator Logic configuration by taking it to the extreme case. It aug-

ments the SPE with private FP gadgets such that the SPE does not have transfer control

and data, at all, with the FPU. A FP gadget is the replacement of the need for an FPU

by inserting the corresponding logic for each one of the FP operators in the basic blocks

of the SPE, hence, enabling the underlying SPE to instantiate the FP gadget at runtime

without the overhead of switching or transferring the data to and from the FPU. In this

configuration the FPU is completely dissolved and only private FP gadgets are created

as the SPE requires them, as show in Figure 4.6. This sharing mechanism reduces

even further the performance overhead of communication and arbitration with the FPU.

Nevertheless, FP gadgets on the critical path of the execution may increase cycle time.

31

Also, the FP gadgets significantly increase the SPE area and power requirements, since

for each FP operation in the basic blocks of the SPE we have to insert the actual FP gad-

get operator logic, as well as instantiate it. This sharing approach stresses the available

SPE area and power budget to a point which could easily become impractical.

The interface between the running SPE and the FPU is completely removed,

since at runtime when the SPE finds a FP operation, it can instantiate its private FP

gadget for it and continue execution.

Implementation The implementation of FP gadgets requires that during the C to Ver-

ilog compilation phase, when a SPE FP operation is found the corresponding FP gadget

operator logic must be inserted and instantiated. In this case, the interface completely

differs with previous ones because the active SPE never transfers control to the FPU.

Therefore, the SPE can execute a FP operation using the corresponding gadget without

interrupting execution.

4.2.8 Private nondivide FP Gadgets per SPE with shared FP divider

The seventh and final FPU sharing strategy builds upon trying to reduce the

area and power demands that FP gadgets have on the SPE area and power requirements.

Hence, it combines FP gadgets with a SPEs complex shared FP divider. In this case, we

are still augmenting the SPE with private FP gadgets but since FP divide operations do

not occur very often, instead of having a FP divide gadget for each FP divide operation,

we have a shared FP divider across the complex, as illustrated in Figure 4.7. In this

sharing design the FPU is almost completely removed except for the FP divider. As

explained before, the private nondivide FP gadgets are created as the SPE requires them.

This sharing mechanism reduces the performance overhead of transferring control to and

from the FPU for all but the FP divide unit, that even though usually infrequent, incurs

in a larger performance overhead. As explained before, the FP divider is accessible to

all the SPEs in the complex. This sharing configurations goal is to slightly relax the SPE

area and power requirements of gadgets, and increase the available SPE area and power

32

���

���

����	

�
�
�

�������

��������

�������

�������
�

��������
�

�������
�

���

�������

��������

�������

�������

���
�������

��������

�������
�

��������
�

Figure 4.7: Private nondivide FP Gadgets per SPE with shared FP divider per

SPEs complex It shows an Arsenal complex where for each nondivide FP operation the

corresponding logic is privately and independently instantiated per SPE in the complex

and a FP divider shared among all SPEs in the complex.

budget such that FP gadgets do not become impractical.

The interface between the running SPE and the FPU is remove for all nondi-

vide FP operations. When the SPE finds a nondivide FP operation, it can instantiate its

corresponding private FP gadget logic and continue execution. However, if a divide op-

eration is encountered in the SPE, the request and data are transferred to the shared FP

divider for the SPEs complex which performs the operation and sends the result value

back to the SPE to continue execution.

Implementation Like the sixth sharing design the implementation requires that during

the C to Verilog compilation, when a SPE nondivide FP operation is found the particular

FP gadget must be inserted and instantiated. This enables the SPE to execute nondivide

FP operations without interrupting execution. On the other hand, when, for each FP

33

divide operation in the SPE a fp div local unit connecting and communicating with the

shared FP divider is instantiated. Later on, when a FP division operation is enable, the

request and operand values are transferred to the shared FP divider by the operation’s

fp div local unit. Finally, when the shared FP divider is done, a valid signal and the

result value are sent back to the SPE to continue execution.

Chapter 5

Evaluation Methodology

This thesis goal is to explore and analyze the tradeoff between area, energy

and performance of distinct designs for sharing FP accelerators under a sample set of

FP applications that use a different number of SPEs. Although, specialized processors

and ASICs are known to accelerate and be well suited for certain types of applications

(e.g. signal processing, multimedia), the SPEs design space for other, more irregular,

FP applications is not well understood. Thus, our motivation is to explore the design

of SPEs in Arsenal for several FP applications, and, more importantly, measure the

suitability of our proposed FP accelerator sharing models between the applications.

The next two sections describe in detail Arsenal’s system modeling infrastruc-

ture, as well as, measurement tools, and the benchmarks set studied.

5.1 Methodology

Our SPE synthesis toolchain takes C programs as input, splits them into dat-

apath and control path segments, and then uses a state of the art electronic design au-

tomation (EDA) tool flow to generate a circuit fully realizable in silicon. In addition to

that it concurrently and automatically generates a cycle accurate system simulator for

the new hardware. This simulator is used to generate traces that drive the placed and

routed netlist in Synopsys VCS and PrimeTime for power measurement.

34

35

C source code

SPE identification

SPE Code

C to Verilog

VCS + PrimeTime

CAD Tools BTL Simulator

Verilog HW Spec in C

Placed and
Routed Circuit

Memory Trace

Figure 5.1: Arsenal C to Verilog Toolchain Flows for C to hardware, simulation, and

power measurement infrastructure.

5.1.1 Arsenal Toolchain

Figure 5.1 summarizes the toolchain we developed to generate SPEs. Ar-

senal’s toolchain is based on mature research and commercial infrastructures such as

OpenImpact(1.0rc4) [17], LLVM (2.4) [13] and CodeSurfer(2.1p1) [23]. The toolchain

takes a subset of C applications that includes arbitrary pointer references, switch state-

ments, and loops with complex conditions. It does not supports function pointers.

At the SPE identification phase we use profile information to identify code

regions that can be turn into SPEs (or SPEized). Converting the underlying code region

36

usually involves a series of steps. First, outlining is used to separate the code region we

are interested in. Later, during a second step, function calls are removed using inlining.

Finally, global variables are added as additional input arguments and pass by reference.

The C to Verilog phase translates the modified input C code (labeled SPE

code) into a set of synthesizable Verilog modules using the generated control and

dataflow graphs for each identified code region in SSA form [2] to be SPEized. This

phase also adds basic blocks and control states for each memory operation and multicy-

cle instruction, as described in 2.2. The final product of the toolchain is synthesizable

Verilog code for the SPE which requires converting operators into muxes, inserting reg-

isters at the definition of each value, and adding self loops to the CFG for the multicycle

operations. After completing these passes, the toolchain generates Verilog to instantiate

each of the necessary operators, registers, and wires to create the dataflow graph in sili-

con. Then, it generates the control unit with a FSM that resembles the input’s CFG. This

phase of the toolchain also generates a C++ cycle accurate module for our architectural

simulator describe next.

5.1.2 Simulation Infrastructure

The simulation infrastructure is based on btl, the Raw simulator [28]. Btl is

modified so that it can model cache coherent memory among the multiple SPEs com-

plexes, include a scanchain interface between the complex CPU and SPEs (described in

detail in Section 5.2), and to simulate the generated SPEs. The SPEs operate at lower

clock frequencies than the core complex clock, and even further at different frequen-

cies from each other. The ratio of processor clock to SPE clocks is restricted to integer

multiples.

The CPU is an 660MHz, 8 stage, single issue RISC pipeline that implements

a MIPS like instruction set that is based on the Raw [28] ISA. It has a 32KB L1 cache

and 16KB I/D cache.

37

5.1.3 Synthesis

The Synopsys Design Compiler (Y2006.06SP6) [26] and Astro

(Z2007.03SP10) CAD flow tools are used for SPEs synthesis where we target a

TSMC 90nm G process technology. As part of our toolchain, the generated synthesiz-

able Verilog design for each one of the SPEs is then automatically pass and process

into the Synopsys CAD tool flow, starting with netlist generation and continuing

through placement, clock tree synthesis, and routing, before performing post route

optimizations (oriented towards speed and power, not area). This tools measure area

and frequency for each one of the SPEs and their associated hardware resources, if

any. The Synopsys Module Compiler is use to generate technology specific custom

functional units for some basic arithmetic (e.g. addition) and bit shifting. Our target

ratio between processor frequency and SPE frequency is 2:1 (i.e. 330:660 MHz).

However, the circuits for most SPEs designs are currently synthesizing to between 8:1

and 4:1 ratios. We believe that the 330 MHz frequency for SPEs would be met with

some additional tuning and retiming, thus, performance and energy values in Chapter 6

are presented assuming a 2:1 ratio is achieved for all SPEs.

5.1.4 Power measurements

Power measurements for each SPE come from periodical execution samples

that the simulator stores in traces of all offchip activity. Each sample starts with a

snapshot recording the entire register state of the SPE and continues for 10,000 cycles.

In thesis, the sampling policy is to sample 10,000 out of every 50,000 cycles, and in

order to capture typical periods of execution, we only process the middle 30 samples.

Each sample is the feed from btl into the Synopsys VCS (B2008.12) [26] logic

simulator. The Arsenal toolchain also automatically generates a Verilog testbench mod-

ule, which initiates the simulation of each sample by scanning in the register values from

each btl snapshot. The VCS simulation generates a VCD activity file, which we pipe

as input into Synopsys PrimeTime (B2008.12SP2) [26]. PrimeTime computes both the

static and dynamic power for each sampling period. Since the majority of the registers

38

and logic in our SPE are inactive at any given time, we reduce the reported internal

power by the average activity factor, which we measure during btl simulation. It is

assume that when registers are inactive, they consume 10% of their normal operating

power.

The power numbers for the I cache and D cache, and derive processor are

measure with Cacti 5.3 [29]. Additionally, power numbers for clock power values are

model using specs for a 660MHz MIPS 24KE processor in TSMC 90nm G. Finally, for

component ratios for Raw the power model uses power numbers reported in [10].

5.2 Benchmarks

To characterize and validate our FP sharing designs study such that they reflect

the wide range of FP applications that may be run in Arsenal, we choose a sample set of

FP applications that ranges from encoding and decoding, scientific applications to other

applications that are amenable to hardware designs. These applications are either well

known or are drawn from benchmarks, and their respective source code is written in C.

The set of applications includes Lame MP3 Encoder [12], EMBC’s Basic Floating Point

Automotive [4], and SPEC2000’s floating point applications [22] equake and mesa and

integer application vpr.

For each FP application, we target and transform code regions from the most

intensively executed functions such that the SPEs can be easily and automatically cre-

ated from Arsenal’s toolchain, as described in Section 5.1.1. Those SPEs are later syn-

thesized, enabling substantial benefits in an Arsenal system. The following subsections,

describe in detail each one of the applications studied and the underlying SPEs for each

application.

5.2.1 Lame

Lame is an application used for MP3 encoding. In this thesis, version 3.95

of Lame is used with the default parameters. We compiled Lame with profiling en-

39

abled to identify the set of code regions that comprise a large portion of execution time;

from that set we choose the most intensively executed function in Lame 3.95, namely,

AnalyzeSamples to be design and synthesize into a SPE.

After outlining a large region of AnalyzeSamples the resulting region is

rename to AnalyzeSamples Outlined which accounts for 24.62% of execution

time on native execution and is called 10,473 times for a relatively large .wav input

file. Then a SPE is created and synthesized using the Arsenal toolchain, the underlying

SPE accelerates a large region of the function that analyzes all samples to calculate the

recommended decibels (dB) level change. AnalyzeSamples Outlined contains

156 FP operations, which breakdown is: 20 Abs/Neg, 66 Add/Sub and 70 Mult.

5.2.2 EEMBC

The second application comes from the AutoBench suite of the Embedded

Microprocessor Benchmark Consortium (EEMBC). These benchmarks help predict the

performance of embedded processors in automotive, industrial, and general purpose ap-

plications. In this thesis we are only interested on the Basic Floating Point Automotive

Algorithm. It was compiled and profile using the default parameters for multiple con-

secutive iterations, and we identified the set of functions that comprise the largest region

of execution time.

In this case, we SPEized the most intensively executed function in Basic

Floating Point Automotive, named t run test. As part of Arsenal’s toolchain the

desire SPE is converted from an outlined code region of t run test, rename to

t run test Outlined which accounts for 99% of execution time on native exe-

cution and is called exactly once. The synthesized SPE accelerates the actual main

algorithm, and contains 48 FP operations distributed as: 9 Add/Sub, 18 Cmp, 6 Div, and

15 Mult.

40

5.2.3 SPEC2000 FP and INT

183.equake The first SPEC floating point benchmark is equake which simulates the

propagation of seismic waves in large, highly heterogeneous valleys. In particular, we

use the equake version in SPEC2000 along with the default parameters. Functions that

dominate execution time are determined via profiling, and of those, we selected smvp

which is the most heavily executed function in equake to be designed into a SPE.

We SPEized the entire smvp function which accounts for 37.51% of execution

time and is called 34 times for the test input test.in. The generated SPE has 93 FP

operations divided as: 33 Add/Sub, 18 Cmp and 42 Mult.

177.mesa In this thesis, we use SPEC2000’s version of the 3D graphics library

mesa under the MinneSPEC [11] recommended parameters. This benchmark is

an OpenGL like library. Like the previously describe benchmarks, we compiled

mesa with profiling enabled to identify the set of functions that accounts for the

largest piece of execution time and selected gl depth test span less and

gl color shade vertices fast subroutines as the targets to be design and syn-

thesize into SPEs.

Both target subroutines were entirely SPEized and together they comprise

7.48% of execution time and gl depth test span less is called 126,287 times

and gl color shade vertices fast is called 100 times when run with the input

test file mesa.in. There are 45 total FP operations between both SPEs that break down

as follows: 13 Add/Sub, 7 Cmp, 8 F2I and 17 Mult.

175.vpr (place) The vpr SPEC integer benchmark is a FPGA circuit place and route

application. SPEC2000’s version of vpr is used with the default parameters. Execution

of vpr (place) almost entirely comprises repeated calls within try place to the sub-

routine try swap. Therefore the subroutine try swap is our target code region to be

turned into a SPE.

In try swap, we outline and rename a large portion to

41

try swap Outlined to be SPEized. try swap Outlined accounts for

69.23% of execution time and is called 499,999 times for the test .arch and .net input

files. The resulting SPE contains only 12 FP operations separated as: 4 Add/Sub, 3 I2F

and 5 Mult.

Table 5.1: Summary of SPEs execution coverage and Floating Point (FP) operations

breakdown by application.

Application SPE Execution Coverage (%) Breakdown of FP Operations in SPE

Lame MP3 Encoder 24.62

20 Abs/Neg

66 Ad/Sub

70 Mult

156 Total FP Ops

Basic FP Automotive 99.0

9 Add/Sub

18 Cmp

6 Div

15 Mult

48 Total FP Ops

Equake 37.51

33 Add/Sub

18 Cmp

42 Mult

93 Total FP Ops

Mesa 7.48

13 Add/Sub

7 Cmp

8 F2I

17 Mult

45 Total FP Ops

Vpr 69.23

4 ADD/SUB

3 I2F

5 Mult

12 Total FP Ops

5.2.4 Summary

In Table 5.1 we summarize the set of applications along with their respec-

tive SPE execution coverage and breakdown of the number of FP operations per SPE.

The percentage of SPE coverage ranges from 7.48% for mesa to 99% for basic FP Au-

tomotive, while the number of FP operations varies from 12 operations in vpr to 156

operations in lame. It is noteworthy that the FP instruction mix for our sample set of

applications adheres and is consistent with previous work reports that claim that FP

Add/Sub and FP Mult are the most frequently occurring operations in an application

while FP Div is one of the least frequently occurring operations in an application. In

the next chapter we present the area, energy and performance simulation results for our

42

proposed FP hardware sharing designs.

Chapter 6

Results

This chapter presents the area, energy and performance of the Arsenal system

under the seven described FP hardware sharing mechanisms. First, a characterization of

the area, energy, performance and efficiency measurements for simple SPEs exhibiting

each FP hardware designs is shown. Then, we explore the area, energy, performance

and efficiency of the proposed FP hardware sharing configurations on a set of floating

point applications.

6.1 Costs and benefits of FP hardware support for SPEs

In Section 4.1.2 we described the area costs of the FP logic, in this section we

evaluate the area, energy, performance and efficiency tradeoff of FP hardware support

on a simple SPE for each proposed FP sharing configuration. To quantify these measure-

ments, we synthesized a simple SPE that executed a subset of supported FP operations

(ADD, MULT, DIV), and then extracted the area, frequency, energy, performance and

efficiency numbers of each design. It is possible that in larger SPE designs performance

overhead could come by potential increases on the critical path length of an SPE which

ultimately may increase the achievable clock speed. Table 6.1 summarizes the area and

frequency of each simple SPE under each FPU configuration design (i.e. shared FPU,

private FPU, etc). The data shows that SPE area increases between 0.016 mm
2 to 0.11

mm
2 when compared to running on a shared FPU configuration. However, this table

43

44

could be misleading since the FP gadgets area increases as a function of the number of

FP operations.

Table 6.1: Area and frequency values for simple SPEs under each FPU configuration

design.

SPE Design Area (mm
2) Frequency (MHz)

Shared FPU 0.023 192

Private FPU 0.134 206

Private FPU w/ shared FP divider 0.087 195

Private OnDemand FPU 0.076 283

Private OnDemandFPU w/Shared Divider 0.039 279

Private FP Gadgets 0.076 280

Private FP Gadgets w/Shared Divider 0.039 277

Additionally, Figure 6.1 presents the performance gains of these simple SPEs

under each FP hardware designs when compared to running on software. As expected,

the proposed FP hardware configurations reduced execution time by 5%, however, the

individual benefits of each configuration cannot be separated among these simple SPEs,

but will become clear as the number of FP operations in the SPE increases.

Figure 6.2 explores the energy breakdown for each one of the simple SPEs

under each of the FP configurations compared to running entirely on software. The

graph shows energy savings of 4% for each configuration. As with Figure 6.1, energy

impact per configuration would become distinguishable as the number of FP operations

in the SPE increases.

Figure 6.3 summarizes the impact of the FP hardware designs on energy delay

product. Again, each FP configuration reduced the energy delay product by 8% for the

simple SPE, but the change variation between configurations cannot be appreciated.

6.2 Benchmarks results

The overall goal of this thesis is to present a comprehensive study of the trade

off between area, energy, performance and efficiency, as well as find a proper balance

point between them. Table 6.2 summarizes the area, frequency and execution time

coverage numbers of each FP hardware sharing design in Arsenal for a set of real world

45

Figure 6.1: Execution time for simple SPEs under each floating point hardware

configuration Results are normalized to running entirely on software.

floating point applications.

Figure 6.4 shows the area for all the proposed FP hardware configurations for

the floating point applications. The data shows that the proposed FP designs increase

SPE overall area between 3.6% and 435% when compared to the shared FPU design.

As expected, the FP gadgets configuration becomes impractical as the number of FP

operations increases. The private FPU and private FPU w/shared divider increase area

per SPE between 6.5% and 13.5%. Additionally, the OnDemand FPU w/shared divider

configuration delivers minimal increases in SPE area for private FP hardware support. In

general, these area results are of particular interest to our group because we are propos-

ing SPEs with facilities that allow them to be patched so they can adapt to new versions

of software that become available [30].

Figure 6.5 presents the impact of the FP hardware designs on runtime. The

46

Figure 6.2: Energy breakdown for simple SPEs under each floating point hardware

configuration Results are normalized to running entirely on software.

graph shows that SPEs under the FP gadgets configuration provides the largest perfor-

mance gains between 0.5% and 14% when compared to a shared FPU configuration.

However, this configuration strategy was shown to be impractical earlier. The OnDe-

mand FPU delivers performance gains that range from 0.5% to 7% when compared to a

shared FPU configuration while still managing to keep low area requirements. Observe

that private FPU and shared FPU configuration provide same performance, this is a di-

rect result from our assumption that only one SPE could be active per SPEs complex,

and, hence, no FPU contention was modeled in the shared configuration. Therefore, one

should expect the shared FPU performance to degrade when contention is introduced.

Finally, mesa’s SPEs only provide between 0.1% and 0.5% performance gains due to

the small execution time coverage of the SPE.

Figure 6.6 explores the energy breakdown for each one of the SPEs under each

47

Figure 6.3: Energy delay product for simple SPEs under each floating point hard-

ware configuration Results are normalized to running entirely on software.

of the FP configurations running the applications normalized to the energy breakdown of

the application running on a shared FPU configuration. The data shows that SPEs energy

consumption can increase between 0.5% and 6% for the OnDemand FPU configuration,

and up to 1% and 102% for the FP gadgets configuration when compared to running on

a shared FPU configuration. This dramatic increase in energy consumption for the FP

gadgets relies on the fact that it depends on the number of FP operations, therefore, as

the number of FP operations increases so does the energy consumption.

Finally, Figure 6.7 summarizes the impact of the FP hardware designs on the

applications energy delay product. The results show that only the Ondemand FPU and

OnDemand FPU w/shared divider deliver maximum energy delay product reductions of

4% when compared to the shared FPU configuration. Additionally, the impracticality of

FP gadgets is reaffirmed with an energy delay product ranging from 2% to 35%.

48

Table 6.2: Breakdown of area, frequency and SPE execution time coverage for the ap-

plications SPEs under each FP sharing strategy.

Benchmark SPEized Application FP Sharing Strategy Area (mm
2) Freq. (MHz) % SPE Cycles

MP3 Encoder

lame version 3.95

Shared FPU 1.53 135 18

Private FPU 1.72 151 18

Private FPU w/Shared Divider 1.68 144 18

Private OnDemand FPU 1.58 159 16

Private OnDemandFPU w/Shared Divider 1.58 153 16

Private FP Gadgets 5.36 159 13

Private FP Gadgets w/Shared Divider 5.36 157 13

EEMBC

basic fp automotive

Shared FPU 0.82 164 99

Private FPU 0.94 191 99

Private FPU w/Shared Divider 0.88 168 99

Private OnDemand FPU 0.92 225 99

Private OnDemandFPU w/Shared Divider 0.88 203 99

Private FP Gadgets 1.81 223 99

Private FP Gadgets w/Shared Divider 1.48 205 99

SPEC2000

equake

Shared FPU 0.63 163 42

Private FPU 0.75 178 42

Private FPU w/Shared Divider 0.70 168 42

Private OnDemand FPU 0.69 217 39

Private OnDemandFPU w/Shared Divider 0.69 209 39

Private FP Gadgets 2.77 191 36

Private FP Gadgets w/Shared Divider 2.77 185 36

mesa

Shared FPU 0.47 143 4

Private FPU 0.58 162 4

Private FPU w/Shared Divider 0.53 153 4

Private OnDemand FPU 0.54 171 4

Private OnDemandFPU w/Shared Divider 0.54 166 4

Private FP Gadgets 1.36 174 4

Private FP Gadgets w/Shared Divider 1.36 170 4

vpr

Shared FPU 1.63 121 61

Private FPU 1.74 134 61

Private FPU w/Shared Divider 1.69 124 61

Private OnDemand FPU 1.71 136 60

Private OnDemandFPU w/Shared Divider 1.71 133 60

Private FP Gadgets 1.91 137 59

Private FP Gadgets w/Shared Divider 1.91 133 59

49

Figure 6.4: Application SPE area for all five benchmarks Each subgroup of bars

represents a specific floating point hardware configuration. Results are normalized to

running on a shared FPU configuration.

50

Figure 6.5: Application execution time for all five benchmarks Each subgroup of

bars represents a specific floating point hardware configuration. Results are normalized

to shared FPU configuration execution time.

51

Figure 6.6: Application energy breakdown for all five benchmarks Each subgroup of

bars represents a specific floating point hardware configuration. Results are normalized

to shared FPU configuration execution time.

52

Figure 6.7: Application energy delay product for all five benchmarks Each subgroup

of bars represents a specific floating point hardware configuration. Results are normal-

ized to shared FPU configuration execution time.

Chapter 7

Conclusion

In this thesis, we have described the design and implementation of seven dif-

ferent FP hardware sharing designs between SPEs in an Arsenal system. Even more,

we have explored the tradeoff between area, energy, performance and efficiency across

those seven FP hardware sharing configurations. Our data for five fully placed and

routed SPEs shows that sharing the FPU between the SPEs in a complex can reduce

area requirements between 3.6% and 435%, energy consumption between 1% and 102%

and energy delay by up to 35% while imposing minor performance degradation be-

tween 0.5% and 14% when compared to others designs. The results also show that even

though, private FP hardware support configurations can improve applications perfor-

mance such benefit comes at significant and, in some cases, impractical area and energy

requirements.

More importantly, we show a comprehensive study of the tradeoff among area,

energy, performance and efficiency of several FP hardware configurations that provide

various degrees of flexibility when designing SPEs for Arsenal processors. In particular

our study provided insights for the feasibility that sharing a FPU per SPEs complex

in Arsenal would allow floating point intensive SPEs to be patched such that they can

adapt to new versions of software that become available without significant impacts on

performance.

Further improvements to our toolchain simulation capabilities, like more than

53

54

one active SPE in an Arsenal complex and having concurrently active SPEs across dis-

tinct complexes, would provide additional insights into an optimal sharing scenario of a

FPU across SPEs complexes such that we can reduce area and power requirements even

further with minor performance degradation and wire delay effects.

Bibliography

[1] J. Babb. ”High level compilation for gate reconfigurable architectures”. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001.

[2] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. ”An

efficient method of computing static single assignment form”. In POPL ’89: Pro-

ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 25–35, New York, NY, USA, 1989. ACM.

[3] R. Dolbeau and A. Seznec. CASH: Revisiting hardware sharing in single- chip

parallel processor. Research Report RR-4660, INRIA, 2002.

[4] EEMBC Benchmark. http://www.eembc.org.

[5] D. Goldberg. ”What every computer scientist should know about floating point

arithmetic”. ACM Comput. Surv., 23(1):5–48, 1991.

[6] J. Hauser. SoftFloat. http://www.jhauser.us/arithmetic/SoftFloat.html.

[7] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr. A

methodology for the design of application specific instruction set processors (asip)

using the machine description language lisa. In ICCAD ’01: Proceedings of the

2001 IEEE/ACM international conference on Computer-aided design, pages 625–

630, Piscataway, NJ, USA, 2001. IEEE Press.

[8] IEEE Standards Board. ”IEEE standard for binary floating point arithmetic”, 1985.

[9] K. Karuri, R. Leupers, G. Ascheid, H. Meyr, and M. Kedia. ”Design and imple-

mentation of a modular and portable IEEE 754 compliant floating point unit”. In

DATE ’06: Proceedings of the conference on Design, automation and test in Eu-

rope, pages 221–226, 3001 Leuven, Belgium, Belgium, 2006. European Design

and Automation Association.

[10] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. ”Energy characterization of a

tiled architecture processor with on- chip networks”. In ISLPED ’03: Proceedings

of the 2003 international symposium on Low power electronics and design, pages

424–427, New York, NY, USA, 2003. ACM.

55

56

[11] A. J. Kleinosowski and D. J. Lilja. ”MinneSPEC: A New SPEC Benchmark Work-

load for Simulation Based Computer Architecture Research”. Computer Architec-

ture Letters, 1(1):7, 2002.

[12] LAME MP3 Encoder. http://lame.sourceforge.net.

[13] C. Lattner and V. Adve. ”LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation”. In CGO ’04: Proceedings of the international sym-

posium on Code generation and optimization, page 75, Washington, DC, USA,

2004. IEEE Computer Society.

[14] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Goldstein, and

M. Budiu. ”Tartan: evaluating spatial computation for whole program execution”.

In ASPLOS-XII: Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems, pages 163–174, New

York, NY, USA, 2006. ACM.

[15] D. Monniaux. ”The pitfalls of verifying floating point computations”. ACM Trans.

Program. Lang. Syst., 30(3):1–41, 2008.

[16] S. Oberman and M. Flynn. ”Design issues in division and other floating point

operations”. Computers, IEEE Transactions on, 46(2):154–161, Feb 1997.

[17] OpenImpact Website. http://gelato.uiuc.edu/.

[18] S. Palnitkar. ”Verilog HDL: a guide to digital design and synthesis”. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[19] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. Ranganathan,

D. Burger, S. W. Keckler, R. G. McDonald, and C. R. Moore. ”TRIPS: A polymor-

phous architecture for exploiting ILP, TLP, and DLP”. ACM Trans. Archit. Code

Optim., 1(1):62–93, 2004.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. ”Automatically charac-

terizing large scale program behavior. In ASPLOS-X: Proceedings of the 10th in-

ternational conference on Architectural support for programming languages and

operating systems”, pages 45–57, New York, NY, USA, 2002. ACM.

[21] P. Soderquist and M. Leeser. ”Area and performance tradeoffs in floating point

divide and square root implementations”. ACM Comput. Surv., 28(3):518–564,

1996.

[22] SPEC2000 Benchmark. http://www.spec.org/cpu2000.

[23] CodeSurfer by GrammaTech, Inc. http://www.grammatech.com/products/codesurfer/.

[24] S. Swanson. ”The WaveScalar Architecture”. PhD thesis, University of Washing-

ton, Seattle, WA, USA, June 2006.

57

[25] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson,

M. Oskin, and S. J. Eggers. ”TheWave Scalar Architecture”. ACM Trans. Comput.

Syst., 25(2):4, 2007.

[26] Synopsys Inc. http://www.synopsys.com.

[27] M. Taylor. ”Tiled Microprocessors”. PhD thesis, Massachusetts Institute of Tech-

nology, Cambridge, MA, USA, February 2007.

[28] M. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Ama-

rasinghe, A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,

H. Hoffmann, P. Johnson, and J. Kim. ”Evaluation of the Raw microprocessor: an

exposed wire delay architecture for ILP and streams”. In Computer Architecture,

2004. Proceedings. 31st Annual International Symposium on, pages 2–13, June

2004.

[29] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. ”Cacti 5.1”. Tech.

Rep. HPL-2008-20, HP Labs, Palo Alto, 2008.

[30] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, S. Bryksin, J. Lugo Martinez,

S. Swanson, and M. Taylor. ”Conservation Cores: Reducing the Energy of Mature

Computations”. ASPLOS (accepted for publication), 2010.

