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Biopsy-free in vivo virtual histology of skin using
deep learning
Jingxi Li 1,2,3, Jason Garfinkel4, Xiaoran Zhang1, Di Wu5, Yijie Zhang1,2,3, Kevin de Haan 1,2,3, Hongda Wang 1,2,3,
Tairan Liu1,2,3, Bijie Bai1,2,3, Yair Rivenson1,2,3, Gennady Rubinstein4✉, Philip O. Scumpia6,7✉ and
Aydogan Ozcan 1,2,3,8✉

Abstract
An invasive biopsy followed by histological staining is the benchmark for pathological diagnosis of skin tumors. The
process is cumbersome and time-consuming, often leading to unnecessary biopsies and scars. Emerging noninvasive
optical technologies such as reflectance confocal microscopy (RCM) can provide label-free, cellular-level resolution,
in vivo images of skin without performing a biopsy. Although RCM is a useful diagnostic tool, it requires specialized
training because the acquired images are grayscale, lack nuclear features, and are difficult to correlate with tissue
pathology. Here, we present a deep learning-based framework that uses a convolutional neural network to rapidly
transform in vivo RCM images of unstained skin into virtually-stained hematoxylin and eosin-like images with
microscopic resolution, enabling visualization of the epidermis, dermal-epidermal junction, and superficial dermis
layers. The network was trained under an adversarial learning scheme, which takes ex vivo RCM images of excised
unstained/label-free tissue as inputs and uses the microscopic images of the same tissue labeled with acetic acid
nuclear contrast staining as the ground truth. We show that this trained neural network can be used to rapidly perform
virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma, and melanocytic nevi
with pigmented melanocytes, demonstrating similar histological features to traditional histology from the same
excised tissue. This application of deep learning-based virtual staining to noninvasive imaging technologies may
permit more rapid diagnoses of malignant skin neoplasms and reduce invasive skin biopsies.

Introduction
Microscopic evaluation of histologically processed and

chemically stained tissue is the gold standard for the
diagnosis of a wide variety of medical diseases. Advances
in medical imaging techniques, including magnetic reso-
nance imaging, computed tomography, and ultrasound,
have transformed medical practice over the past several
decades, decreasing the need for invasive biopsies and

exploratory surgeries. Similar advances in imaging tech-
nologies to aid in the diagnosis of skin disease non-
invasively have been slower to progress.
Skin cancers represent the most common type of cancer

diagnosed in the world. Basal cell carcinoma (BCC)
comprises 80% of the 5.4 million skin cancers seen in the
United States annually1. Melanoma represents a small
percentage of overall skin cancers but represents the
leading cause of death from skin cancer and is among the
deadliest cancers when identified at advanced stages2.
Invasive biopsies to differentiate BCC from benign skin
neoplasms and melanoma from benign melanocytic nevi
represent a large percentage of the biopsies performed
globally. Over 8.2 million skin biopsies are performed
to diagnose over 2 million skin cancers annually in
the Medicare population alone1, resulting in countless
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unnecessary biopsies and scars at a high financial burden.
In addition, the process of biopsy, histological tissue
processing, delivery to pathologists, and diagnostic
assessment requires one day to several weeks for a patient
to receive a final diagnosis, resulting in lag time between
the initial assessment and definitive treatment. Thus,
noninvasive imaging presents an opportunity to prevent
unnecessary skin biopsies while improving the early
detection of skin cancer3.
The most used ancillary optical imaging tool used by

dermatologists are dermatoscopes, which magnify skin
lesions and use polarized light to assess superficial fea-
tures of skin disease and triage lesions with ambiguous
features for tissue biopsy4. While dermatoscopes can
reduce biopsies in dermatology, their use requires proper
training to improve the sensitivity of detecting skin can-
cers over clinical inspection alone5. More advanced
optical technologies have been developed for noninvasive
imaging of skin cancers, including reflectance confocal
microscopy (RCM), optical coherence tomography
(OCT), multiphoton microscopy (MPM), and Raman
spectroscopy, among others6,7. Of these optical imaging
technologies, only RCM and MPM technologies provide
cellular-level resolution similar to tissue histology and
allow for better correlation of image outputs to histology
due to their ability to discern cellular-level details.
RCM imaging detects backscattered photons that pro-

duce a grayscale image of tissue based on the contrast of
relative variations in refractive indices and sizes of orga-
nelles and microstructures8,9. Currently, RCM can be
considered as the most clinically-validated optical imaging
technology with strong evidence supporting its use by
dermatologists to discriminate benign from malignant
lesions with high sensitivity and specificity10,11. Impor-
tantly, several obstacles remain for accurate interpretation
of RCM images, which requires extensive training for
novice readers12. While the black and white contrast
images can be used to distinguish types of cells and
microstructural detail, in vivo RCM does not show
nuclear features of skin cells in a similar fashion to the
traditional microscopic evaluation of tissue histology.
Multimodal ex vivo fluorescence and RCM can produce
digitally-colorized images with nuclear morphology using
fluorescent contrast agents13,14. However, these agents are
not used in vivo with a reflectance-based confocal
microscopy system. Without nuclear contrast agents,
nuclear features critical for assessing cytologic atypia are
not discernable. Further, the grayscale image outputs and
horizontal imaging axis of confocal technologies pose
additional challenges for diagnosticians who are accus-
tomed to interpreting tissue pathology with nuclear
morphology in the vertical plane. Combined, these
visualization-based limitations, in comparison to

standard-of-care biopsy and histopathology, pose barriers
to the wide adoption of RCM.
On the other hand, hematoxylin and eosin (H&E)

staining of tissue sections on microscopy slides represents
the most common visualization format used by derma-
tologists and pathologists to evaluate skin pathology.
Thus, conversion of images obtained by noninvasive skin
imaging and diagnostic devices to an H&E-like format
may improve the ability to diagnose pathological skin
conditions by providing a virtual “optical biopsy” with
cellular resolution and in an easy-to-interpret visualiza-
tion format.
Deep learning represents a promising approach for

computationally-assisted diagnosis using images of skin.
Deep neural networks trained to classify skin photographs
and/or dermoscopy images, successfully discriminated
benign from malignant neoplasms at a similar accuracy to
trained dermatologists15,16. Algorithms based on deep
neural networks can help pathologists identify important
regions of disease, including microscopic tumor nodules,
neoplasms, fibrosis, inflammation, and even allow pre-
diction of molecular pathways and mutations based on
histopathological features17–22. Researchers also used
deep neural networks to perform semantic segmentation
of different textual patterns in RCM mosaic images of
melanocytic skin lesions as a potential diagnostic aid for
clinicians23,24. Apart from these histopathology-based
dermatology applications, deep learning has also been
used in other biomedical microscopic imaging applica-
tions, such as super-resolution25, digital refocusing26,
nuclei segmentation27, quantitative phase imaging with
computational interference microscopy28, and label-free
virtual histopathology enabled by multiphoton micro-
scopy29, among others. Deep learning-based approaches
have also enabled the development of algorithms to learn
image transformations between different microscopy
modalities to digitally enhance pathological interpreta-
tion. For instance, using unstained, autofluorescence
images of label-free tissue sections, a deep neural network
can virtually stain images of the slides, digitally matching
the brightfield microscopy images of the same samples
stained with standard histochemical stains such as H&E,
Jones, Masson’s Trichrome, and periodic acid Schiff (PAS)
without the need for histochemical processing of tissue30–32.
These virtually-stained images were found to be statisti-
cally indiscernible to pathologists when compared in a
blinded fashion to the images of the chemically stained
slides30. Deep learning-enabled virtual staining of
unstained tissue has been successfully applied to other
types of label-free microscopic imaging modalities
including e.g., quantitative phase imaging33 and two-
photon excitation with fluorescence lifetime imaging34,
but has not been used to obtain in vivo virtual histology.
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Here, we describe a novel, deep learning-based tissue
staining framework to rapidly perform in vivo virtual
histology of unstained skin. In the training phase of this
framework, we used RCM images of excised skin tissue
with and without acetic acid nuclear contrast staining to
train a deep convolutional neural network (CNN) using
structurally-conditioned generative adversarial networks
(GAN)35,36, together with attention gate modules that
process three-dimensional (3D) spatial structure of tissue
using 3D convolutions. First, we acquired time-lapse
RCM image stacks of ex vivo skin tissue specimens during
the acetic acid staining process to label cell nuclei. Using
this 3D data, label-free, unstained image stacks were
accurately registered to the corresponding acetic acid-
stained 3D image stacks, which provided a high degree of
spatial supervision for the neural network to map 3D
features in label-free RCM images to their histological
counterparts. Once trained, this virtual staining frame-
work was able to rapidly transform in vivo RCM images
into virtually stained, 3D microscopic images of normal
skin, BCC, and pigmented melanocytic nevi with H&E-
like color contrast. When compared to traditional
histochemically-processed and stained tissue sections, our
digital technique demonstrates similar morphological
features that are observed in H&E histology. In vivo vir-
tual staining of unprocessed skin through noninvasive

imaging technologies such as RCM would be transfor-
mative for rapid and accurate diagnosis of malignant skin
neoplasms, also reducing unnecessary skin biopsies.

Results
Training of virtual staining networks for in vivo histology
of unstained skin
A traditional biopsy requires cleansing and local anes-

thesia of the skin, followed by surgical removal, histolo-
gical processing, and examination by a trained physician
in histopathological assessment, typically using H&E
staining, as depicted in Fig. 1a. Through the combination
of two subcomponents, i.e., hematoxylin and eosin, this
staining method is able to stain cell nuclei blue and the
extracellular matrix and cytoplasm pink, so that clear
nuclear contrast can be achieved to reveal the distribution
of cells, providing the foundation for the evaluation of the
general layout of the skin tissue structure. In our Results,
we demonstrate a new approach using deep learning-
enabled transformation of label-free RCM images into
H&E-like output images, without the removal of tissue or
a biopsy, as illustrated in Fig. 1b. Current standard for-
mats of RCM imaging of skin include obtaining stacks of
images through different layers of the skin and obtaining a
mosaic image through one of the layers of skin. We
believe that the combination of these two formats could

Microscope imaging

Reflectance confocal 
microscope (RCM) imaging

Bright-field microscopic 
histological imagesHistological stainingSkin biopsy

Conventional 
histology of skin 

with biopsy

Biopsy-free 
virtual histology 

of intact skin

Pseudo-H&E virtually stained
tissue images (N-6 images)

……

Acetic acid virtually stained 
tissue images (N-6 images)

Pseudo-H&E 
virtual staining 
network VSHE

…

RCM image stacks 
(N images)

Acetic acid
virtual staining 
network VSAA
(generating 1 

image from each 
7 input images)

… …

a

b

Fig. 1 The schematic diagram demonstrating the conventional (top) and biopsy-free virtual (bottom) histological staining procedures for
skin pathology. (a) Standard tissue biopsy, followed by tissue fixation, processing, and staining results in microscopy slides for pathological
interpretation. (b) By employing the trained deep neural network that takes a stack of RCM images of unstained intact skin as input and instantly
generates corresponding virtually stained tissue images, the reported deep learning-based virtual histology of skin may provide a unique avenue to
biopsy-free, label-free clinical dermatological diagnosis. Each time, a stack of seven axially adjacent RCM images is fed into a trained deep neural
network VSAA and transformed into an acetic acid virtually stained tissue image that is corresponding to the central image of the input stack, so that a
stack of N images can be used to generate N-6 virtually stained 3D output images that are axially adjacent. Following this acetic acid virtual staining, a
pseudo-H&E virtual staining step is further performed by a trained deep neural network (VSHE).
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provide abundant information input for 3D skin virtual
histology. However, obtaining H&E images of the same
skin tissue to establish the ground truth for network
training is a major challenge. Directly using the brightfield
microscopy images of the histochemically-stained (H&E)
tissue slides after the biopsy as our ground truth is simply
not feasible, because H&E staining requires a series of
operations, including biopsy, sectioning, and chemical
processing, all of which bring severe deformations to the
tissue structure and create major difficulties in aligning
the H&E-stained tissue images with the in vivo RCM
images of the unstained skin. Furthermore, direct in vivo
RCM imaging of unstained skin is unable to provide the
demanded nuclear contrast at the input of the network.
Inspired by the fact that acetic acid was used to provide

nuclear contrast in RCM imaging of cervical tissue37 and
Mohs surgical skin excisions38,39, we reasoned that the
same reagent can also be used to quickly stain the ex vivo
skin tissue in RCM imaging, bringing nuclear contrast to
serve as our ground truth. We performed the training
experiments accordingly and took time-lapsed RCM
videos in the process of acetic acid staining, through
which we obtained the 3D image sequences with feature
positions traceable before and after the acetic acid stain-
ing. According to these sequences, we initially performed
a rough registration of the images before and after
staining, which was followed by two more rounds of deep
learning-based fine image registration processes to obtain
accurately registered image stacks, as shown in Fig. 2.
These registered image stacks were then used for the
training of the acetic acid virtual staining network named
VSAA, where attention gate modules and 3D convolutions
are employed to enable the network to better process the
3D spatial structure of tissue; see Fig. 3. For generating the
in vivo image stack with acetic acid virtual staining, for
each inference, VSAA takes a stack of seven axially-
adjacent RCM images of horizontal cross-sections of
unstained skin tissue and outputs the virtually stained
tissue image that is corresponding to the central image of
the input stack, which forms a “7-to-1” image transfor-
mation; see Fig. 1b. Based on this scheme, by processing
all the N input RCM images in the input stack, the net-
work VSAA generates a virtually stained 3D image stack
that is composed of N-6 output images. We trained VSAA
using the aforementioned registered image stacks with a
training set composed of 1185 input/output image pairs
and also transformed the acetic acid virtual staining
results into H&E-like images using another, trained deep
neural network, named pseudo-H&E virtual staining
network: VSHE, as illustrated in Fig. 1b. More details
about the image registration process, network structure,
and the training details of acetic acid and pseudo-H&E
virtual staining networks (i.e., VSAA and VSHE, respec-
tively) can be found in the Materials and Methods section.

Virtual staining of RCM image stacks of normal skin
samples ex vivo
Staining of skin blocks with acetic acid allowed the

visualization of nuclei from excised tissue at the dermal-
epidermal junction and superficial dermis in normal skin
samples. Using these images as our ground truth (only for
comparison), we first tested whether the RCM images of
unstained tissue can be transformed into H&E-like ima-
ges using the deep learning-based virtual histology
method. Our data, summarized in Fig. 4, demonstrate
that cross-sections of RCM image stacks taken at various
depths around the dermal-epidermal junction of a skin
lesion could be transformed into virtually stained tissue
images with inferred nuclei, showing good correspon-
dence with the actual acetic acid-stained RCM images
used for ground truth comparison. Furthermore, we
performed pseudo-H&E virtual staining using these
acetic acid-stained image results, as shown in Fig. 4. An
example of traditionally processed skin histology through
the dermal-epidermal junction in the horizontal plane is
also shown in Fig. S1a to illustrate the visual similarity of
the virtually stained tissue image shown in Fig. 4. The
acetic acid virtual staining network VSAA performed
similarly well when ex vivo image stacks of the spinous
layer of the epidermis were utilized as input, as shown in
Fig. S2.
Next, we evaluated the prediction performance of our

model through a series of quantitative analyses. To do so,
first, we generated the acetic acid virtual staining results
of the entire ex vivo testing set that contains 199 ex vivo
RCM images collected from six different unstained skin
samples from six patients. We performed segmentation
on both the virtual histology images of normal skin
samples and their ground truth images to identify the
individual nuclei on these images. Using the overlap
between the segmented nuclear features of acetic acid
virtual staining images and those in the actual acetic acid-
stained ground truth images as a criterion, we classified
each nucleus in these images into the categories of true
positive (TP), false positive (FP), and false negative (FN)
and quantified the sensitivity and precision values of our
prediction results (see Materials and Methods for details).
We found that our virtual staining results achieved ~80%
sensitivity and ~70% precision for nuclei prediction on the
ex vivo testing image set. Then, using the same segmen-
tation results, we further assessed the nuclear morpho-
logical features in the acetic acid virtual staining and
ground truth images. Five morphological metrics,
including nuclear size, eccentricity, compactness, con-
trast, and concentration, were measured for this analysis
(see Materials and Methods for details). As shown in
Fig. 5a–e, these analyses demonstrate that the statistical
distributions of these nuclear morphological parameters
calculated using the acetic acid virtual staining results
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presented a very good match with those of the actual
acetic acid-stained ground truth images, regardless of the
metrics used. In order to further demonstrate the efficacy
of our virtual staining results for three-dimensional ima-
ging, in Fig. S3 we also report the results of the same type
of analysis for the image stack used and shown in Fig. 4,
but this time focusing on different depth ranges within the
tissue block: once again, a strong match between the
acetic acid virtually stained skin tissue images and their
actual acetic acid-stained ground truth is observed for all
the quantitative metrics used, regardless of the depth
range selected. In addition, to evaluate our results from
the perspective of overall image similarity, we also cal-
culated the Pearson correlation coefficient (PCC) and the
structural similarity index (SSIM)40 of each image pair
composed of acetic acid virtual staining results and the
ground truth in the ex vivo testing image set. The results
of these PCC and SSIM analyses are reported in Fig. 5f–g,

where the median PCC and SSIM values are found to be
0.561 and 0.548, respectively.

Virtual staining of RCM image stacks of melanocytic nevi
and basal cell carcinoma ex vivo
To determine whether the presented method can be

used to assess skin pathology, we imaged features seen in
common skin neoplasms. Melanocytes are found at the
dermal-epidermal junction in normal skin and increase in
number and location in both benign and malignant mel-
anocytic neoplasms. For our approach to be successful, it
needs to incorporate pigmented melanocytes in order to
be useful for the interpretation of benign and malignant
melanocytic neoplasms (nevi and melanoma, respec-
tively). Melanin provides strong endogenous contrast in
melanocytes during RCM imaging without acetic acid
staining8. This allows melanocytes to appear as bright
cells in standard RCM images due to the high refractive

RCM imaging
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Fig. 2 Image registration process for generating input-target image pairs for the training phase. (a–d) illustrate the details of the image
registration workflow. See the “Image preprocessing and registration” section in Materials and Methods for further details.
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index of melanin8. We compared specimens with normal
proportions of melanocytes, shown in Fig. 6, the first row,
to specimens containing abundant melanocytes, such as
benign melanocytic nevi shown in Fig. 6, second row. Our
pseudo-H&E virtual staining algorithm was able to suc-
cessfully stain melanocytes and provide pigment colora-
tion similar to the brown pigment seen on histologically-
stained specimens. An example of a histologically-stained
skin tissue section image with brown pigment is provided
in Fig. S1b.
Unlike melanocytes, basaloid cells that comprise tumor

islands in BCC appear as dark areas in RCM images41.
This appearance is due to the high nuclear to cytoplasmic
ratio seen in malignant cells and the fact that nuclei do
not demonstrate contrast on RCM imaging. Further,
mucin present within and surrounding basaloid islands in
BCC further limits the visualization of tumor islands due
to a low reflectance signal. Since many skin biopsies are
performed to rule out BCC, we next determined whether
acetic acid staining can provide ground truth for skin
samples containing BCC. 50% acetic acid concentration
allowed sufficient penetration through the mucin layer
to stain nuclei of BCC. We used discarded, ~2 mm
thick, Mohs surgical specimens diagnosed as BCC and

performed RCM imaging without and with acetic acid
staining (the latter formed the ground truth). As illu-
strated in the third row of Fig. 6, our virtual staining
results showed strong concordance of features of BCC
when compared to these acetic acid-stained ground truth
images; common histological features of BCC, including
islands of basaloid cells with small, peripherally palisaded
nuclei and dark silhouettes42,43, a material resembling
mucin within the basaloid islands, and separation
(retraction) of basaloid islands from the surrounding
stroma were visible in the virtually stained RCM images
containing BCC as shown in Fig. 6, third row.

Virtual staining of mosaic RCM images ex vivo
Mosaic images are formed by multiple individual RCM

images scanned over a large area at the same depth to
provide a larger field of view of the tissue to be examined
for interpretation and diagnosis. To demonstrate virtual
staining of mosaic RCM images, ex vivo RCM images of
BCC in a tissue specimen obtained from a Mohs surgery
procedure were converted to virtual histology. Through
visual inspection, the virtual histology image shown in Fig.
S4 demonstrated similar features observed in a repre-
sentative histological section (not in the same plane as the
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RCM images) obtained from the actual frozen section his-
tology of the processed tissue. Of note, this specimen used
for Fig. S4 displayed both nodular and infiltrative islands of
BCC. Since our algorithm was primarily trained on nodular
and superficial types of BCC, it is not surprising that it
performed much better at revealing the nodular islands of

BCC (marked with yellow asterisks in Fig. S4c, d) within the
specimen, rather than the thin anastomosing cords of
infiltrative BCC displaying keratinization (pink/eosinophilic
appearance in the light blue dotted regions in Fig. S4c, d),
although both nodules and individual thin cords are still
visible in the virtually stained image shown in Figure S4c.
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Virtual staining of in vivo image stacks and mosaic RCM
images
Next, we tested whether RCM images of unstained skin

obtained in vivo can give accurate histological informa-
tion using our trained neural network. We compared
in vivo RCM images of lesions that are suspicious for BCC
to (1) histology from the same lesion obtained following
biopsy or Mohs section histology and (2) images obtained
ex vivo with acetic acid staining (ground truth). As
summarized in Fig. 7, virtual staining of in vivo RCM
images shown in Fig. 7g–i again demonstrated features
compatible with BCC tumor islands commonly seen on
histologically processed and stained tissue; see Fig. 7j, k.
These results were further confirmed with the ex vivo
RCM image of the actual acetic acid-stained tissue of the
same lesion, as shown in Fig. 7o, p. The virtual histology
output from the trained algorithm using the in vivo
images of the skin lesion displayed similar basaloid tumor
islands as those seen in the actual acetic acid-stained
ex vivo RCM images and the actual histology. We also
present other examples of in vivo stacks of RCM images
of normal skin, a junctional nevus, and another BCC
sample in Fig. S5. The junctional nevus showed expansion
of melanocytic cells at the dermal-epidermal junction in a
benign ringed pattern. One plane of the image stack is
shown for these samples. Another sample, reported in Fig.
S6, shows various planes of a confocal stack of a junc-
tional nevus through all of the skin layers including the
granular layer (first row), spinous layer (second row),
basal layer (third row), and dermal-epidermal junction
(fourth row).
We also examined whether our virtual staining method

can be applied to mosaic in vivo RCM images, despite the
fact that the network was not trained on a full set of
mosaic images. These mosaic RCM images are important
because they are often used in clinical settings to extend
the field of view for interpretation and are required for the

reimbursement of the RCM imaging procedure. Our
results reported in Fig. 8 reveal that in vivo mosaic images
of unstained skin tissue, through the spinous layer of the
epidermis and the dermal-epidermal junction, were suc-
cessfully transformed into H&E-like images without acetic
acid staining. These results confirm that the virtual
staining network trained on confocal image stacks was
able to perform virtual in vivo histology of RCM image
stacks of common skin lesions, including BCC and nevus,
as well as large mosaic RCM images of normal skin
without the need for further training.
Finally, we tested the inference speed of our trained

deep network models using RCM image stacks and
demonstrated the feasibility of real-time virtual staining
operation (see Materials and Methods for details). For
example, using eight Tesla A100 GPUs to perform virtual
staining through VSAA and VSHE networks, the inference
time for an image size of 896 × 896-pixels was reduced to
~0.0173 and ~0.0046 s, respectively. Considering the fact
that the frame rate of the RCM device we used is ~9
frames per second (~0.111 sec/image), this demonstrated
virtual staining speed is sufficient for real-time operation
in clinical settings.

Discussion
Previous studies have used machine learning and deep

neural networks to differentiate benign from malignant
lesions of the skin from e.g., clinical photographs, der-
matoscopic images, and multispectral imaging, to provide
a computer-assisted diagnosis. In this study, we applied a
deep neural network-based approach to perform virtual
staining in RCM images of label-free normal skin, BCC,
and melanocytic nevi. We also transformed grayscale
RCM images into pseudo-H&E virtually stained images
that resembled H&E staining, the visualization format
most commonly used by pathologists to assess biopsies of
histochemically-stained tissue on microscopy slides.

(see figure on previous page)
Fig. 4 3D ex vivo virtual staining results of a skin tissue area around the dermal-epidermal junction and their comparison with ground
truth, actual acetic acid staining. a–d Label-free RCM images showing an ex vivo skin tissue area at different depths around dermal-epidermal
junction without any staining, served as the network inputs. The depth of (b), (c), and (d) were 12.16, 24.32, and 36.48 μm below a into the skin,
respectively. e Cross-section of the RCM image stack of the tissue area including (a–d). Lines in different colors are used to indicate the depth
positions of (a–d). f–i Acetic acid virtual staining results of the same tissue area and depth as (a–d) generated by the deep neural network VSAA. j is
the image stack cross-section of the acetic acid virtual staining results including (f–i) generated using the acetic acid virtually stained tissue images.
k–n Pseudo-H&E virtual staining results generated using the acetic acid virtually stained tissue images (f–i). These H&E-like images were generated by
the pseudo-H&E virtual staining network VSHE that took both the RCM images of the unstained tissue (a–d) and acetic acid virtually stained tissue
images (f–i) as input (see solid arrows below the upper panel). o Cross-section of the pseudo-H&E virtually stained tissue image stack including (k–n).
u–x RCM images of the same tissue area and depth as (a–d) after the actual acetic acid staining process, served as ground truth for (f–i). y shows
the cross-section of the image stack of the tissue stained with acetic acid including (u–x). p–s Pseudo-H&E virtual staining results generated using the
actual acetic acid-stained images (u–x). These H&E-like images were generated by the same pseudo-H&E virtual staining network VSHE that took the
RCM images of the unstained tissue (a–c) and actual acetic acid-stained images (q–s) as input (see dashed arrows below the upper panel and
see Materials and Methods for more details). t shows the cross-section of the pseudo-H&E virtually stained tissue image stack including (p–s)
generated using the actual acetic acid-stained images. Zoomed-in views of some portions of the images are provided at the bottom for a better
visual comparison of details.

Li et al. Light: Science & Applications          (2021) 10:233 Page 8 of 22



Network output

500

400

300

200

100

Ground truth

a b c

d e

f g

PCC SSIM

Concentration Compactness

20000

17500

15000

12500

10000

7500

5000

2500

0

1.0

0.8

0.6

0.4

0.2

0.0

400

350

300

250

200

150

100

50

0

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Nuclei Size Contrast Eccentricity

Fig. 5 Quantitative analysis of the acetic acid virtual staining results on ex vivo skin tissue samples. a–e Violin plots show quantitative
comparisons of the statistical distribution of the measured nuclear morphological parameters between the acetic acid virtually stained skin tissue
images (blue) and their corresponding ground truth images obtained using actual acetic acid staining (orange). Five metrics are used for the
comparison: a nuclear size, b contrast, c eccentricity, d concentration, and f compactness (see Materials and Methods for details). The statistical results
cover a total number of 96,731 nuclei, detected in 176 ex vivo tissue images of normal skin. f, g Violin plot shows the statistical distribution of the PCC
and SSIM values measured through comparing the virtually stained (acetic acid) tissue images against their corresponding actual acetic acid-stained
ground truth images. In all the violin plots presented above, the dashed lines from top to bottom represent the 75, 50 (median), and 25 quartiles,
respectively.
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Fig. 6 Virtual staining results for different types of ex vivo skin tissue areas and their comparison with ground truth, actual acetic acid
staining. a–c Label-free RCM images of three different types of ex vivo skin tissue areas, including a normal skin, b a melanocytic nevus, and c skin
containing BCC, which are used as input of the virtual staining neural networks. d–f Acetic acid virtual staining results of the same tissue areas in (a–c)
generated by the deep neural network VSAA. g–i Pseudo-H&E virtual staining results generated using the acetic acid virtually stained tissue images
(d–f). These H&E-like images were generated by the pseudo-H&E virtual staining network VSHE that took both the RCM images of the unstained tissue
(a–c) and the acetic acid virtually stained tissue images (e–g) as input (see solid arrows below the upper panel).m–o RCM images of the same tissue
area and depth as (a–c) after the actual acetic acid staining process, which served as ground truth for (d–f). j–l Pseudo-H&E virtual staining results
generated using the actual acetic acid-stained images (m–o). These H&E-like images were generated by the same pseudo-H&E virtual staining
network VSHE that took the RCM images of the unstained tissue (a–c) and the actual acetic acid-stained images (m–o) as input (see the dashed
arrows below the upper panel and the Materials and Methods section for details). Zoomed-in views of some portions of the images are provided at
the bottom for a better visual comparison of details.
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In our virtual staining inference, we used a 3D image
stack as the input of the GAN model. We conducted an
ablation study to demonstrate that using 3D RCM image
stacks, composed of seven adjacent images, is indeed

necessary for preserving the quality of the acetic acid
virtual staining results. For this comparative analysis, we
changed the input of our network VSAA to only one RCM
image of unstained skin tissue that was located at the
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Fig. 7 (See legend on next page.)
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(see figure on previous page)
Fig. 7 Virtual staining results of in vivo RCM images of skin tissue areas that contain BCC. a–i are in vivo RCM images of unstained skin, while j,
k and l–p are H&E histology and ex vivo RCM images used for comparison, respectively. Our trained network VSAA transformed label-free in vivo RCM
images of unstained tissue areas with BCC (a–c) as input into their acetic acid virtual staining results (d–f). Pseudo-H&E virtual staining was further
performed by the trained network VSHE to generate the H&E versions of (d–f) by taking both the RCM images of the unstained tissue (a–c) and the
acetic acid virtually stained tissue images (d–f) as input (see arrows at the bottom of the blue panel). For comparison with these in vivo virtual
staining results, in (j) and (k) we show bright-field images of visually similar BCC regions taken from the same specimen after H&E histochemical
staining. Note that these BCC regions (g–i) are not necessarily the same BCC tumor nodule as shown in H&E histology (j–k), but are from the same
specimen, and may be subject to structural deformations due to the standard histochemical staining and related sample processing. As the gray
dashed arrows indicate, j is the H&E histology of a vertical section biopsy taken from the same specimen used for (g, h), and k is the H&E histology of
a frozen section from Mohs surgery taken from the same specimen used for in vivo (i) and ex vivo (o). As another comparison, we also show ex vivo
acetic acid virtually stained and actual acetic acid-stained results for the same specimen used for (i). We used the same trained network VSAA to
transform label-free ex vivo RCM images of unstained tissue areas with BCC (l) into ex vivo acetic acid virtually stained tissue images shown in (m),
forming a comparison with the ground truth images of the same tissue area actually stained with acetic acid (p). The same pseudo-H&E virtual
staining was also applied to (m, p) using the network VSHE to generate their pseudo-H&E virtually stained counterparts (n, o) (see the arrows at the
bottom of the orange panel and see Materials and Methods for details). Zoomed-in views of some portions of the ex vivo RCM images are provided
at the bottom of the orange panel for a better visual comparison of details.
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Fig. 8 Pseudo-H&E virtual staining results of large field-of-view mosaic images of an in vivo skin tissue at two different depths. a, b Label-
free in vivo RCM image mosaic at two cross-sections corresponding to a upper epidermis and b dermal-epidermal junction. The axial gap between
the two cross-sections is around 50 μm. c, d, Pseudo-H&E virtual staining results of (a) and (b), respectively
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same depth as the actual acetic acid-stained target
(ground truth image). Then, we trained a new VSAA
without having a major change to its structure, except that
the first three 3D convolutions were changed to 2D (see
Fig. 3 for the original network structure). Compared to
acetic acid virtual staining results that we have got using
3D RCM image stacks as input, the results that used a
single 2D RCM image as input produced suboptimal
results that were significantly blurred (see Fig. S7). The
reason for this degradation is that, compared to a single
RCM image input, a 3D RCM image stack containing
multiple adjacent slices provides a more accurate basis for
learning and virtual staining inference due to the addi-
tional input information provided by the 3D spatial
structure.
Using the presented virtual staining framework, we

showed good concordance between virtual histology and
common histologic features in the stratum spinosum,
dermal-epidermal junction, and superficial dermis, areas
of skin most commonly involved in pathological condi-
tions. Virtually-stained RCM images of BCC show ana-
logous histological features including nodules of basaloid
cells with peripheral palisading, mucin, and retraction
artifact. These same features are used to diagnose BCC
from skin biopsies by pathologists using H&E histology.
In addition to these, we also demonstrated that the virtual
staining network successfully inferred pigmented mela-
nocytes in benign melanocytic nevi (see Fig. S6). The
success of our virtual staining results can be due to the
connection between certain histological structures and
the corresponding RCM signals, caused by e.g., the unique
reflectance/refraction properties of collagen. For example,
fibrotic collagen that is present in multiple types of skin
cancer is highly reflective, leading to bright RCM signals.
Therefore, the presence of fibrotic collagen creates a
bridge that enables the successful transformation of RCM
signals into virtual staining of histological features
of BCC.
While our results demonstrate the proof of concept in

obtaining histology quality images in vivo without the
need for invasive biopsies, several limitations remain for
future work. First, we had a limited volume of training
data which was primarily composed of nodular BCC,
which contained round nodules. When applied to another
type of BCC from the blind testing set containing infil-
trative, strand-like tumor islands of BCC with focal ker-
atinization, it resulted in a form of an artifact composed of
dark blue/purple streaks of basaloid cells similar to the
cords/strands seen in the microscopic image of frozen
section histology from this sample, but with lower reso-
lution (see Fig. S4). The bias of the training set towards
nodular BCC may have hampered the generalization
performance of the network. In order to address this
issue, additional data on different types of BCC would be

needed for training the network to recognize differences
in the nuclear structure of BCC subtypes.
Another limitation of our virtual histology framework is

that not all nuclei were placed with perfect fidelity in the
transformed, virtually stained images. In our quantitative
analysis for the prediction of nuclei, there remained a
positional misalignment between the network inputs and
the corresponding ground truth images. This resulted in
relatively imprecise learning of the image-to-image
transformation for virtual staining and therefore can be
thought of as “weakly paired” supervision44. To mitigate
this misalignment error in the training image acquisition
(time-lapsed RCM imaging process), one can reduce the
number of RCM images in a stack in order to decrease the
time interval between successive RCM stacks. This may
help capture more continuous 3D training image
sequences to improve the initial registration of the ground
truth images with respect to the input images. We can
also further improve our learning-based image registra-
tion algorithm, detailed in Fig. 2d, to be able to process
volumetric spatial information in 3D RCM image stacks,
helping to reduce axial misalignment errors due to e.g.,
sample deformation during the staining process, which
can cause translation and tilting of the target image plane.
Furthermore, distinct nuclei in virtually stained RCM

images of BCC tumor islands did not show exactly the
same placement, size, and patterns as with ex vivo ground
truth acetic acid staining and standard histology results;
see Fig. 6, third row, Fig. 7 and Fig. S4. There are a few
possible reasons for the disparate images in individual
basaloid keratinocytes of BCC on a cellular level. First,
individual cells of BCC are derived from the basal cell
layer (or progenitor layer) of the epidermis, thus cells of
BCC resemble “basaloid cells”. Specific histologic features
of basaloid cells (including BCC) have a small size, a high
nuclear to cytoplasmic ratio, a rounded appearance, with
less keratinization (resulting in a blue/purple appearance
of cells) when compared to keratinocytes of the spinous
and granular layer which are larger, flatter, with a lower
nuclear to cytoplasmic ratio, and more keratinization
(resulting in a pink appearance to cells) than basaloid
cells. Tumor islands in BCC are composed of these
smaller cells, making them more densely packed with cells
than those of normal skin45. Second, raw RCM images of
BCC tumor islands (both in vivo and ex vivo) lack clearly
defined cell borders inside BCC tumor islands. A likely
reason for this may be the presence of mucin, which
absorbs the penetrated light and reduces the reflectance of
peripheral spatial features that are used for neural net-
work inference. For instance, mucin is observed in Fig. 6i,
l, as well as Fig. S5i as indistinct white to pale-blue patches
without cellular features in the center of (or surrounding)
tumor islands. Coincidentally, this non-distinct pale blue
patch is how mucin appears in histochemically-stained
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H&E sections and often requires special staining with
Alcian Blue and Colloidal Iron staining to become
microscopically visible46. Third, as light from the RCM
penetrates deeper into the tissue, image resolution
decreases due to a lower signal-to-noise ratio (SNR). The
above-mentioned factors may affect the performance of
the neural network to appropriately assign individual cell
nuclei within BCC tumor islands.
Overall, the described virtual histology approach can

allow diagnosticians to see the overall histological fea-
tures, and obtain in vivo “gestalt diagnosis”, as patholo-
gists do when they examine histology slides at low
magnification47. We also collected ground truth histology
from the same specimen used for RCM imaging, as
reported in Fig. 7j, k and Fig. S1, and showed that virtual
and ground truth histology images share similar features.
Due to the series of complicated and destructive opera-
tions required for biopsy and H&E histochemical staining,
we were naturally unable to compare identical regions of
in vivo and ex vivo RCM processed H&E histology.
Overall, our results show that the virtual staining net-
works can reconstruct BCC nodules and melanocytes
within nevi appropriately with features and color contrast
commonly seen in histologically-stained microscopy
sections.
Further investigation is required to understand how

virtual histology affects diagnostic accuracy, sensitivity,
and specificity when compared to the grayscale contrast of
RCM images. Moreover, larger datasets and clinical stu-
dies are needed to further evaluate the utility of the virtual
histology algorithm. Our training dataset was pre-
dominantly normal skin samples and nodular and
superficial types of BCC. In future work, we will collect
more BCC and additional BCC-subtype data to assess the
network’s ability to detect cell nuclei inside basal cell
tumor islands. Since the presence of multiple types of
immune cell infiltration (i.e., tumor-infiltrating lympho-
cytes) and nonimmune changes to the stroma/extra-
cellular matrix (i.e., thick, fibrotic collagen) in the tumor
microenvironment is critical for diagnosis, prognosis, and
response to immunotherapy48–50, increasing the volume
and diversity of the training BCC data will be able to more
accurately represent these changes within the tumor
microenvironment, which will be critical for the use of
RCM-based virtual histology to diagnose skin cancers and
lend prognostic information. For this aim, future clinical
studies should address whether our approach improves
the diagnostic interpretation of skin conditions by expert
RCM users, and reduces the amount of advanced training
required for novice RCM users. Furthermore, the ability
to switch between the original grayscale and pseudo-H&E
virtual staining mode in real-time may further improve
the diagnostic capabilities of in vivo RCM. Finally, if
image stacks acquired at successive depths in the

horizontal plane are reconstructed to produce virtually
stained volumetric data, images can also be examined in
the vertical plane in a similar fashion to traditional skin
histology.
In addition to these, we can also collect training data

from other imaging modalities to further advance the
presented 3D virtual staining framework. For example,
multimodal ex vivo reflectance and fluorescence confocal
microscopy systems are compatible with conventional
nuclear stains, such as acridine orange, and other fluor-
escent stains to better illuminate different features of the
tumor microenvironment, including fibrotic collagen,
inflammatory cells, and mucin. Multiphoton microscopy
can also illuminate other endogenous structures, provid-
ing more detailed information regarding the organization
of the collagen fibrils. Recent studies have also used deep
learning to infer fluorescence and nonlinear contrast from
the texture and morphology of RCM images by using
multiphoton microscopy images as ground truth51,52.
Additional training data from these different microscopy
modalities and image contrast mechanisms can poten-
tially be used to further improve our 3D virtual staining
approach.
All in all, we reported deep learning-enabled in vivo

virtual histology to transform RCM images into
virtually-stained images for normal skin, BCC, and
melanocytic nevi. Future studies will evaluate the utility
of our approach across multiple types of skin neoplasms
and other noninvasive imaging modalities towards the
goal of optical biopsy enhancement for noninvasive skin
diagnosis.

Materials and methods
In vivo RCM image acquisition
Following informed consent (Advarra IRB,

Pro00037282), 8 patients had RCM images captured
during regularly scheduled visits. RCM images were
captured with the VivaScope 1500 System (Caliber I.D.,
Rochester, NY), by a board-certified dermatologist
trained in RCM imaging and analysis. RCM imaging
was performed through an objective lens-to-skin con-
tact device that consists of a disposable optically clear
window. The window was applied to the skin over a
drop of mineral oil and used throughout the imaging
procedure. The adhesive window was attached to the
skin with a medical-grade adhesive (3 M Inc., St. Paul,
MN). Ultrasound gel (Aquasonic 100, Parker Labora-
tories, Inc.) was used as an immersion fluid, between
the window and the objective lens. Approximately
three RCM mosaic scans and two z-stacks were cap-
tured stepwise at 1.52 or 4.56 µm increments of both
normal skin and skin lesions suspicious for BCC. Large
movements by the patient can cause changes in the
axial position of the sample while acquiring RCM
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images, resulting in misaligned and motion-blurred
mosaic and z-stack images. If this occurs, it is standard
practice for the medical personnel acquiring RCM
images to detect the anomaly and reacquire the image
set. Nevertheless, if the movements are relatively mild
and the sharpness of the RCM images is retained, these
images can still be interpreted and used for network
inference after successfully applying image stack
registration (see the “Image preprocessing and regis-
tration” subsection in Materials and Methods for more
details). Upon completion of RCM imaging, patients
were managed as per standard-of-care practices. In
several cases, skin lesions that were imaged in vivo
were subsequently biopsied or excised using standard
techniques and the excised tissue was subjected to
ex vivo RCM imaging and/or diagnostic tissue biopsy.
Tissue diagnosis was confirmed by a board-certified
dermatopathologist.
The final in vivo blind testing dataset that we used to

present the in vivo results reported in this paper was
composed of 979 896 × 896 RCM images collected in vivo
without any acetic acid-stained ground truth. Histo-
pathologic confirmation was obtained on all skin lesions/
tumors but was not provided on in vivo RCM images of
normal skin.

Skin tissue sample preparation for ex vivo RCM imaging
Discarded skin tissue specimens from Mohs surgery

tissue blocks (from 36 patients) with and without resi-
dual BCC tumor were retrieved for ex vivo RCM ima-
ging with IRB exemption determination (Quorum/
Advarra, QR#: 33993). Frozen blocks were thawed, and
the specimens were thoroughly rinsed in normal saline.
Small samples of intact skin stratum corneum, epi-
dermis and superficial dermis were trimmed from tissue
specimens. The skin sample length and width varied
depending on the size of the discarded Mohs specimen.
The adipose and subcutaneous tissue was trimmed
from the superficial skin layers, such that skin samples
from the stratum corneum to the superficial dermis
were ~2 mm thick. The trimmed skin samples were
placed flat onto an optically clear polycarbonate ima-
ging window with the stratum corneum side down and
placed in a tissue block made from 4% agarose (Agarose
LE, Benchmark Scientific). The agarose solution was
brought to a boiling point and ~0.1–0.3 mL was
pipetted over the trimmed skin sample and imaging
window until that the entire sample was covered by the
agarose solution. About 10 min was given for the
agarose solution to cool to room temperature, hard-
ening into a malleable mold that encapsulated the skin
tissue sample flat against the imaging window. A 2 mm
curette was used to channel a small opening in the
agarose mold to access the center of the skin tissue

sample while the perimeter of the sample remained
embedded in the agarose mold.

Ex vivo RCM image acquisition of tissue blocks
The imaging window with the agarose molded skin

tissue was attached to the RCM device (VivaScope
1500, Caliber I.D., Rochester, NY), which operates at a
frame rate of 9 frames/sec. Ultrasound gel (Aquasonic
100, Parker Laboratories, Inc.) was used as an immer-
sion fluid, between the window and the objective lens.
The optical head of the RCM device was inverted.
Image z-stacks containing 40 images each were cap-
tured stepwise with 1.52 µm increments to a total depth
of 60.8 µm. About 10–20 consecutive image stacks were
captured in a continuous time-lapse fashion over the
same tissue area. Areas with features of interest (e.g.,
epidermis, dermal-epidermal junction, superficial der-
mis, etc.) were selected before imaging. The first image
stack captured RCM images of label-free skin tissue.
After completion of the first image stack, 1–2 drops of
50% acetic acid solution (Fisher Scientific) were added
to a small opening in the agarose mold with access to
the center of the skin tissue sample. While 5% acetic
acid is sufficient to stain nuclei of normal skin tissue, a
higher concentration was required to penetrate mucin
that often surrounds islands of BCC tumor, and thus a
standard 50% solution was added to all tissue. RCM
time-lapse imaging continued until acetic acid pene-
trated the area of interest and stained cell nuclei
throughout the depth of the image stack. Before and
after time-lapse imaging, RCM mosaics (Vivablocks) of
the skin tissue sample were also captured at one or
several depths. After ex vivo RCM imaging, samples
were either fixed in 10% neutral buffered formalin
(Thermo Fisher Scientific, Waltham, MA) for histo-
pathology or safely discarded.
The final ex vivo training, validation, and testing

datasets that were used to train the deep network and
perform quantitative analysis of its blind inference
results were composed of 1185, 137, and 199 896 × 896-
pixel ex vivo RCM images of unstained skin lesions and
their corresponding acetic acid-stained ground truth,
which were obtained from 26, 4, and 6 patients,
respectively.

Image preprocessing and registration
Accurate alignment of the training image pairs is of

critical importance for the virtual staining deep neural
network to learn the correct structural feature mapping
from the unstained tissue images to their stained coun-
terparts. The principle of our image registration method
relies on the spatial and temporal consistency of the time-
lapse volumetric image stack captured using RCM during
the staining process of the ex vivo tissue samples. In other
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words, the raw data cover essentially 4-dimensional space,
where the three dimensions represent the volumetric
images of the tissue and the fourth dimension (time)
records the whole staining process of the tissue, i.e., from
the unstained state to the stained state, as a function
of time.
Figure 2a provides an overview of the image regis-

tration workflow. The first part of our registration
process starts with performing an “initial registration”
to achieve coarsely registered image pairs, which
includes two sub-steps as depicted in Fig. 2b. In sub-
step (1) of the initial registration, we manually selected
a certain depth of the time-lapse volumetric image stack
at hand, and iteratively applied a pyramid elastic
registration algorithm25,26,30,32,53 (see Supplementary
Note 1 for details) to each of the image pairs that are at
this depth, but captured at successive time points. For
this, we used an image sequence where all the images
are located at the same depth and aligned throughout
the staining process. In sub-step (2) of the initial
registration, we manually inspected the images in this
aligned image sequence and picked two images that
have 0 and 100% nuclei stained, i.e., referring to “before
staining” and “after staining” phases, respectively. We
found the corresponding z-stacks that these two picked
images belong to and performed a stack registration
based on the same elastic registration algorithm used in
sub-step (1). As a result of this initial registration
process, all the images in these two stacks were roughly
aligned with each other, by and large eliminating the
large-scale elastic deformations that occurred during
the imaging and staining process, forming the initially-
registered input-target image pairs.
At this stage, it is noteworthy that small shifts and

distortions between the two sets of initially-registered
images can still exist and lead to errors during the
learning process. To mitigate this, we further aligned
these image pairs at a sub-pixel level through the second
part of our registration process. In this part, the coarsely
registered image pairs were individually fed into a con-
volutional neural network A, whose structure is similar to
the generator network reported in Fig. 3 except that the
number of channels and downsampling operations are
fewer, and the first few 3D convolutions are replaced with
2D convolutions (see the “Network architecture and
training schedule” subsection in Materials and Methods
for details). Then, a soft training of network A using all
these images is utilized to transform the input images to
visually resemble the sought target. The aim of this
method is to build an initial bridge between the input and
target images to facilitate their accurate alignment. Using
the pyramid elastic registration method (see Supplemen-
tary Note 1 for details), we aligned the target images
against the output of network A, thus achieving more

accurate spatial correspondence between the unstained
input and the corresponding target images; we term this
step as the “first fine registration”. Note that all the elastic
registration algorithms mentioned till now perform spatial
transformation based on a displacement vector field
(DVF) of the image pair, which is calculated through the
multi-scale correlation between the two images that form
a pair; see Fig. 2c.
Despite its utility, the calculation of multi-scale cor-

relation can frequently produce abnormal values on
DVFs, which result in unsmooth distortions in the
registered images from time to time. To mitigate this
problem, we applied another round of soft training of a
separate network A′ (that is similar to A) and a second
fine registration step to further improve the registration
accuracy. Unlike the first fine registration, this second
fine registration step was performed based on the DVF
generated by a learning-based algorithm54, where a
deep convolutional neural network B is trained to learn
the smooth, accurate DVF between two input images.
The training details of this network B are reported in
Fig. 2d. In the training phase, the network B is fed with
the cropped patches of the output of network A′, i.e., If,
along with the roughly registered target image patches,
Im, and generates a predicted DVF ϕ that indicates the
pixel-wise transformation from Im to If, such that Im
serves as “moving” patches and If serves as “fixed”
patches. Then, Im is spatially deformed using ϕ so that
the predicted registered target patches, Ir, are produced.
To create the data with smooth and accurate spatial
transformations, serving as ground truth for training B,
we performed the previous pyramid elastic registration
(based on multi-scale correlation, see Supplementary
Note 1 for details) once again using only ~10% of our
roughly registered image pairs (i.e., output images of A′
and their roughly registered targets). During this pro-
cess, we fine-tuned the pyramid elastic registration
algorithm to obtain optimal spatial transformations so
that we achieved the accurately registered target pat-
ches Ir,gt and the corresponding DVFs ϕgt. Using these
Ir,gt and ϕgt with their corresponding Im and If, we
formed a training set and performed the supervised
training of the network B, where the loss function was
selected to minimize the difference of both (Ir-Ir,gt) and
(ϕ-ϕgt) using mean square error loss, and the total
variation (TV) of ϕ. Once the network B was success-
fully trained and used to perform inference across the
entire image dataset, the target images were much more
accurately aligned with the output of network A′,
eliminating various registration artifacts. Finally,
through this approach, we generated the registered
acetic acid-stained target images that are aligned
accurately against the unstained/label-free input RCM
images, making it ready for training the acetic acid
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virtual staining network (VSAA), which will be
detailed next.
Apart from these image preprocessing and registration

procedures for network training, we also applied the
same (pyramid elastic) stack registration algorithm to the
RCM image stacks used for inference, e.g., in vivo blind
testing images. This is necessary because even mild
motion of patients that might occur during the image
capture usually brings strong misalignment and defor-
mation to different layers of the image stack. If the image
stack registration is not performed here, this misalign-
ment will cause our network inference to fail. Our image
stack registration workflow is able to successfully correct
a lateral shift of up to ~20 μm within a given field of view
with sub-pixel accuracy. Supplementary Videos 1–4 are
provided to exemplify the success of our image stack
registration algorithm, correcting the shifts and defor-
mations caused by undesired motion.

Generative model and loss functions
In this work, we utilized a pix2pix GAN framework55

as our generative model of acetic acid virtual staining
network (VSAA), which includes the training of (1) a
generator network for learning the statistical transfor-
mation between the unstained input RCM image stacks
and the corresponding acetic acid-stained tissue images
and (2) a discriminator network for learning how to
discriminate between a true RCM image of an actual
acetic acid-stained skin tissue and the generator net-
work’s output, i.e., the corresponding virtually stained
(acetic acid) tissue image. The merit of using this
pix2pix GAN framework stems from two aspects. First,
it retains the structural distance penalty in a regular
deep convolutional network, so that the predicted vir-
tually stained tissue images can converge to be similar
with their corresponding ground truth in overall
structural features. Second, as a GAN framework, it
introduces the competence mechanism by training the
two aforementioned networks in parallel. Due to the
continuous enhancement of the discrimination ability
of the discriminator network during the training pro-
cess, the generator must also continuously generate
more realistic images to deceive the discriminator,
which gradually impels the feature distribution of the
high-frequency details of the generated images to
conform to the target image domain. Ultimately, the
desired result of this training process is a generator,
which transforms an unstained input RCM image stack
into an acetic acid virtually stained tissue image that is
indistinguishable from the actual acetic acid-stained
RCM image of the same sample at the corresponding
depth within the tissue. To achieve this, following the
GAN scheme introduced above, we devised the loss

functions of the generator and discriminator networks
as follows:

Lgenerator ¼ Lstructural Itarget;GðIinput stackÞ
� �

þ α ´TV GðIinput stackÞ
� �

þ λ ´ 1� D GðIinput stackÞ
� �� �2 ð1Þ

Ldiscriminator ¼ D GðIinput stackÞ
� �2 þ 1� D Itarget

� �� �2
ð2Þ

where Gð�Þ represents the output of the generator
network, Dð�Þ represents the output probabilistic score
of the discriminator network, Itarget denotes the image of
the actual acetic acid-stained tissue used as ground truth,
Iinput_stack denotes the input RCM image stack
(unstained). The generator loss function Eq. (1) aims to
balance the pixel-wise structural error of the generator
network output image with respect to its ground truth
target, the total variation (TV) of the output image, and
the discriminator network’s prediction of the generator
network’s output, using the regularization coefficients
(α, λ) that are empirically set as (0.02, 15). Specifically, the
structural error term Lstructural takes a form of the reversed
Huber (or “BerHu”) error, which blends the traditional
mean squared error and mean absolute error using a
certain threshold as the boundary. The reversed Huber
error between 2D images a and b is defined as:

LBerHu a; bf g ¼
X
m;n

jaðm;nÞ�bðm;nÞj�δ

a m; nð Þ � b m; nð Þj j

þ
X
m;n

jaðm;nÞ�bðm;nÞj>δ

a m; nð Þ � b m; nð Þj j2þδ2

2δ

ð3Þ

where m,n are the coordinates on the images, and δ is a
threshold hyperparameter that is empirically set as 20% of
the standard deviation of the normalized ground truth
image ztarget. The third term of Eq. (1) penalizes the
generator to produce outputs that are more realistic to the
discriminator by maximizing the discriminator’s response
to be 1 (real, like an actual acetic acid-stained tissue
image), which increase the authenticity of the generated
images. The discriminator loss function Eq. (2) attempts
to achieve the correct classification between the network’s
output and its ground truth by minimizing the score of
the generated image to be 0 (classified to be a virtually
stained tissue image) and maximizing the score of the
actual acetic acid-stained tissue image to be 1 (real,
classified to be actual/real acetic acid-stained tissue
image). Within this adversarial learning scheme56, we
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also applied spectral normalization57 in the implementa-
tion of the discriminator network to improve its training
stability.

Network architecture and training schedule
For the generator network, as shown in Fig. 3a, we

employed an attention U-Net structure (encoder-decoder
with skip connections and attention gates)58,59 to learn the
3D transformation from the label-free unstained RCM
image stack to the acetic acid virtually stained tissue image,
which was adapted to work on 3D input distributions,
matching our input RCM image stacks. For each sample, a
stack of 7 RCM images (unstained) adjacent in depth and
with an axial step size of 1.52 μm are used as the network
input and encoded in the depth dimension of the network,
and the U-Net generates a single virtually stained tissue
image that is corresponding to the central plane of
the image stack. In other words, the output image is at the
same level as the fourth image in the input stack. In the
U-Net structure, there is a downsampling path and a
symmetric upsampling path. In the downsampling path,
there are five convolution–downsampling blocks, each
consisting of (1) three 3 × 3 successive 2D convolutional
layers with batch normalization layers and leaky rectified
linear unit (leaky ReLU, with a slope of 0.2) in between to
extract and encode spatial features and (2) one 2 × 2 2D
average pooling layer with a stride of 2 × 2 to perform a 2x
downsampling. Note that rather than using 2D convolution,
the first block uses three 3D convolutional layers with a
kernel size of 3 × 3 × 3 and without padding in the depth
dimension, which shrinks (after three layers) the depth size
of the input tensor from 7 to 1, resulting in 2D outputs that
are consistent with the following convolutional operations
of the U-Net structure. Also, there is a residual connection
communicating the first and last tensor in each block with
an addition operation. Following the downsampling
path, the upsampling path has five corresponding
convolution–upsampling blocks. The input of each block is
a channel dimension concatenation of the output tensor of
the previous block in the upsampling path and the attention
gated output tensor at the corresponding level in the
downsampling path, which creates skip connections
between the upsampling path and downsampling path. It is
worth noting that to alleviate irrelevant spatial information
propagated in the simple skip connection of the U-Net, we
also employed soft attention gate blocks in each skip con-
nection, including a few convolutional layers and a sigmoid
operation to calculate the activation weight maps, such that
the feature maps from the downsampling encoder path are
pixel-wise multiplicatively weighted and propagated to the
upsampling decoder path. The structure of the upsampling
block is quite similar to the downsampling path, except that
(1) the pooling layers are replaced by 2x bilinear upsampling
layers and (2) there is no residual connection.

As depicted in Fig. 3b, the discriminator is a con-
volutional neural network that consists of five succes-
sive convolutional blocks. Each block is composed of
one 3 × 3 2D convolutional layer with a stride of 1 × 1,
one 2 × 2 2D convolutional layer with a stride of 2 × 2 to
perform 2× downsampling and leaky ReLU layers after
each convolutional layer. After the last convolutional
block, an average pooling layer flattens the output
tensor to 1 × 1 but keeps the channel dimension, sub-
sequently fed into a two-layer fully connected block of
size 1024 × 1024 and 1024 × 1. The final output repre-
sents the discriminator probabilistic score, which falls
within (0, 1), where 0 represents a false and 1 represents
a true label.
During the training of this GAN framework, we ran-

domly cropped the input image stacks and the regis-
tered target images to patch sizes of 256 × 256 × 7 and
256 × 256, respectively and used a batch size of 12.
Before feeding the input images we also applied data
augmentation, including random image rotation, flip-
ping, and mild elastic deformations60. The learnable
parameters were updated through the training stage of
the deep network using an Adam optimizer61 with a
learning rate of 1 × 10−4 for the generator network and
1 × 10−5 for the discriminator network. Also, at the
beginning of the training, for each iteration of the dis-
criminator, there are 12 iterations of the generator
network, to avoid the mode collapse, following poten-
tial overfitting of the discriminator network to the
targets. As the training evolves, the number of itera-
tions (tGperD) of the generator network for each iteration
of the discriminator network linearly decreases, which
is given by

tGperD ¼ max 3;

�
12� 0:25

�
tD

1000

�	
 �
ð4Þ

where tD denotes the total number of iterations of the
discriminator, �b c represents the ceiling functions.
Usually, the tD is expected to be ~40,000 iterations when
the generator network converges. A typical plot of the loss
functions during the GAN training is shown in Fig. S8.

H&E virtual staining
For the pseudo-H&E virtual staining of the actual and

virtual acetic acid-stained tissue images in this work, we
modified an earlier approach62, where epi-fluorescence
images were used to synthesize pseudo-color images
with H&E contrast. The principle of our pseudo-H&E
virtual staining relies on the characteristics of H&E
staining that the nucleus and cytoplasm are stained
with blue and pink, respectively. In our work, an
unstained input image collected by RCM (Iinput) and its
corresponding actual acetic acid-stained tissue image
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(Itarget) are subtracted in pixel intensities to extract the
foreground component Iforeground that mainly contains
the nuclear features:

Iforeground;target ¼ max 1:2 ´ Itarget � 0:8 ´ Iinput; 0
� �

ð5Þ

Note that Itarget and Iinput are initially normalized to (0,
1), and all the operations in Eq. (5) are pixel-wise per-
formed on the 2D images. The selection of the coefficients
1.2 and 0.8 here is empirical. The background component
that contains other spatial features including cytoplasm is
defined by simply using the unstained input images Iinput.
Following this separation of the foreground and back-
ground components, a pseudo-H&E acetic acid-stained
tissue image Ianalytical�HE;target is analytically computed by
colorizing and blending these two components based on a
rendering approach, which models transillumination
absorption using the Beer–Lambert law62:

Ianalytical�HE;target ¼ exp �βhematoxylin Iforeground;target
� 

exp �βeosin Iinput
� �

ð6Þ

where βhematoxykin and βeosin are the three-element
weight vector corresponding to R, G, and B channels
that helps to mimic the real color of hematoxylin and
eosin, respectively. In our work, the values of the elements
in βhematoxykin and βeosin are empirically chosen as [0.84,
1.2, 0.36]T and [0.2, 2, 0.8]T, respectively. Similarly, a
pseudo-H&E acetic acid virtually stained tissue image
Ianalytical�HE;output can also be computed by replacing
Itarget with an acetic acid virtually stained tissue image
Ioutput in Eq. (5).
This analytical approach (Eq. 6) works well on most of

the actual and virtual acetic acid-stained tissue images to
create H&E color contrast. However, when it comes to the
images that contain melanocytes, whose H&E stain pro-
duces dark brown, this algorithm fails to generate the
correct color at the position of these melanocytes. Con-
sidering that the brown color (representing melanin)
would not be possible to generate through a pixel-wise
linear combination of the images Iinput and Itarget or Ioutput,
we introduced a learning-based approach to perform the
correct pseudo-H&E virtual staining (VSHE), which can
incorporate inpainting of the missing brown features by
using the spatial information content of the images. For
training purposes, we performed manual labeling of
melanocytes to create training data for this learning-based
approach. In order to reduce the labor of this manual
labeling, we first estimated the initial distribution of
melanin in a certain field of view through an empirical

formula:

Imelanin ¼ Iinput; where Itarget � Iinput > Ith
0; otherwise

�
ð7Þ

where � denotes pixel-wise multiplication, and Ith
represents a threshold that is selected as 0.2 based on
empirical evidence. The constitution of this formula is
based on the observation that melanin has strong
reflectance in both the unstained/label-free and actual
acetic acid-stained tissue RCM images, namely Iinput and
Itarget, respectively. Then, these initial estimations are
further cleaned up through a manual labeling process
performed with the assistance of a board-certified
dermatopathologist, resulting in Imelanin;labeled. This man-
ual labeling process as part of our training forms the core
task that will be learned and executed by our learning-
based scheme. Similar to Eq. (6) but with one more term
added, the corrected pseudo-H&E virtual staining results
for the actual acetic acid-stained tissue images
~Ianalytical�HE;target can be computed as:

~Ianalytical�HE;target ¼ exp �βhematoxylin Iforeground;target
� 

exp �βeosin Iinput
� �

exp �βbrown Imelanin;labeled
� �

ð8Þ

where the value of βbrown is empirically chosen as
0:12; 0:24; 0:28½ �T in order to correctly render the brown
color of the melanin. Using Eq. (8), we obtained the
ground truth images for the learning-based virtual
staining approach to perform the corrected pseudo-H&E
virtual staining. Using the ex vivo training set, we trained
the pseudo-H&E virtual staining network VSHE to trans-
form the distribution of the input and actual acetic acid-
stained tissue images, i.e., Iinput and Itarget, into
~Ianalytical�HE;target. The architecture of the network VSHE

is identical to the ones used in our registration process,
except for that the input and output of the network VSHE

have two and three channels, respectively. Once the
training is finished, we used the resulting network VSHE to
perform pseudo-H&E virtual staining of our previously
generated acetic acid virtually stained tissue images Ioutput
in the testing set. The network VSHE took Ioutput along
with input images Iinput to generate pseudo-H&E virtually
stained tissue images ~IVS�HE;output with the correct color
for melanin:

~IVS�HE;output ¼ VSHE Ioutput; Iinput
� � ð9Þ

We used Eq. (9) to create all the pseudo-H&E virtually
stained tissue images reported in our main text. To
exemplify the effectiveness of this learning-based pseudo-
H&E virtual staining approach, in Fig. S9 we also present
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a comparison between the pseudo-H&E virtual staining
results against their counterparts generated by Eq. (8)
using a few examples on the testing test, which demon-
strates a decent correspondence between the two
approaches.

Quantitative morphological analysis of virtual staining
results
CellProfiler63 was used to conduct morphological

analysis of our results. After loading our actual acetic
acid-stained tissue images and virtually stained (acetic
acid) tissue images using CellProfiler, we performed cell
segmentation and profile measurement to quantitatively
evaluate the quality of our predicted images when
compared with the corresponding ground truth images.
In CellProfiler, the typical diameter of objects to detect
(i.e., nuclei) was set to 10–25 pixel units and objects that
were outside the diameter range or touching the border
of each image were discarded. We applied an adaptive
thresholding strategy using minimum cross-entropy
with a smoothing scale of 6 and a correction factor of
1.05. The size of the adaptive window was set to 50.
“Shape” and “Propagate” methods were selected to dis-
tinguish the clumped objects and draw dividing lines
between clumped objects, respectively. Following this
step, we then introduced the function module “Identi-
fyPrimaryObjects” to segment the nuclei in a slice-by-
slice manner. Accordingly, we achieved well-segmented
nuclei images containing positional and morphological
information associated with each detected nuclear
object.
For the analysis of nuclear prediction performance of

our model, we first employed the function module
“ExpandOrShrinkObjects” to slightly expand the detected
nuclei by e.g., 4 pixels (~2 µm), so that the image regis-
tration and nuclei tracking-related issues across different
sets of images can be mitigated. Then we used the func-
tion module “RelateObjects” to assign a relationship
between the objects of virtually stained nuclei and actual
acetic acid-stained ground truth, and used “FilterObjects”
to only retain the virtually stained nuclei objects that
present overlap with their acetic acid-stained ground
truth, which were marked as true positives (TP). Similarly,
false positives (FP) and false negatives (FN) were marked
based on the virtually stained nuclei objects that have no
overlapping with their ground truth, and the actual acetic
acid-stained nuclei objects that have no overlap with the
corresponding virtually stained nuclei objects, respec-
tively. Note that in this case, we do not have true negative
(TN) calculated since we cannot define a nuclear object
that does not exist in both the virtually-stained and
ground truth images. Next, we counted the numbers of
TP, FP, and FN events, which were denoted as nTP, nFP,
and nFN, respectively, and accordingly computed the

Sensitivity and Precision values, defined as:

Sensitivity ¼ nTP
nTP þ nFN ð10Þ

Precision ¼ nTP
nTP þ nFP ð11Þ

For the nuclear morphological analysis, we utilized the
function module “MeasureObjectSizeShape” to compute the
nuclei area (“AreaShape_Area”, the number of pixels in
one nucleus), compactness (“AreaShape_Compactness”, the
mean squared distance of the nucleus’s pixels from the
centroid divided by the area of the nucleus), and eccentricity
(“AreaShape_Eccentricity”, the ratio of the distance between
the foci of the effective ellipse that has the same second-
moments as the segmented region and its major axis length).
The “MeasureObjectIntensity” module was employed
afterward to compute the nuclei reflectance (“Intensi-
ty_IntegratedIntensity_Cell”, the sum of the pixel intensities
within a nucleus). We finally utilized the function module
“MeasureTexture” to compute the contrast of the field of
view (“Texture_Contrast_Cell”, a measure of local variation
in an image). For image similarity analysis, we calculated the
Pearson Correlation Coefficient (PCC) for each image pair
of the virtual histology results and the corresponding ground
truth image based on the following formula:

PCC ¼
P

ðIoutput � EðIoutputÞÞðItarget � EðItargetÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðIoutput � EðIoutputÞÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðItarget � EðItargetÞÞ2

p ð12Þ

where Ioutput and Itarget represent the predicted (virtually-
stained) and ground truth images, respectively, and Eð�Þ
denotes the mean value calculation. For all the violin plots
presented above, we used the violin plot function in the
Seaborn Python library64 to visualize the conformance
between the prediction and ground truth images.

Network implementation details
The deep neural networks used in this work were

implemented and trained using Python (v3.6.5) and
TensorFlow (v1.15.0, Google Inc.). All the image regis-
tration algorithms are implemented with MATLAB
r2019a. For the training of our models, we used a desktop
computer with a dual GTX 1080 Ti graphical processing
unit (GPU, Nvidia Inc.) and Intel® CoreTM i7-8700 central
processing unit (CPU, Intel Inc.) and 64 GB of RAM,
running Windows 10 operating system (Microsoft Inc.).
The typical training time of the convolutional neural
networks used in our registration process and the pseudo-
H&E virtual staining network (i.e., networks A, A′, B, and
VSHE) is ~24 h when using a single GPU. For our acetic
acid virtual staining network (i.e., VSAA), the typical
training time for using a single GPU is ~72 h. Once the
VSAA and VSHE networks are trained, using the same
computer with two GTX 1080 Ti GPUs we can execute
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the model inference at a speed of ~0.2632 and ~0.0818 s
for an image size of 896 × 896-pixels, respectively. Using a
more powerful machine with eight Tesla A100 GPUs, the
virtual staining speed can be substantially increased to
~0.0173 and ~0.0046 s per image (896 × 896-pixels), for
VSAA and VSHE networks, respectively.
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