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Enhancing glacier monitoring through adaptive smoothing of 
MODIS NDSI time series
Chen Xin and Yongwei Sheng

Department of Geography, University of California-Los Angeles (UCLA), Los Angeles, CA, USA

ABSTRACT
Observation of glacier surface characteristics through remotely 
sensed time-series data is essential for understanding glacier sea
sonality, mass balance, and long-term trends. Yet, the reliability of 
these observations depends significantly on the quality of the time- 
series data. This study presents a meticulous preprocessing scheme 
to improve the quality of Moderate Resolution Imaging 
Spectroradiometer (MODIS) Normalized Difference Snow Index 
(NDSI) time-series data for glacier monitoring. We propose a three- 
step algorithm specifically crafted to overcome the challenges 
associated with cloud contamination reduction, outlier removal 
and data gap handling. This innovative approach iteratively com
pares the median values of automatically adjusted asymmetrical 
moving windows to achieve convergence, removing outliers using 
minimal window size to keep the temporal resolution as high as 
possible. The methodology’s effectiveness is demonstrated through 
its application to two glaciers from the United States Geological 
Survey (USGS) Benchmark Project, showcasing significant improve
ments in the quality of smoothed MODIS NDSI time series. These 
results affirm the efficacy of the proposed scheme in rendering 
a more reliable evaluation of glacier surface condition and seasonal 
fluctuations. Consequently, this study contributes significant meth
odological advancements to the fields of remote sensing and gla
ciology, enhancing the accuracy of glacier monitoring techniques.
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1. Introduction

Satellite remote sensing is a proven method for monitoring glacier status, offering 
detailed mapping of individual glaciers and identification of long-term trends (Gao and 
Liu 2001; Guo et al. 2015; Kaab et al. 2005; Konig, Winther, and Isaksson 2001; Paul et al. 
2015). Typically, moderate-to-high spatial resolution products, such as the Landsat series 
and Sentinel-2, are utilized to capture snapshots of glacier properties. These snapshots 
facilitate the delineation of glacier boundaries (Pfeffer et al. 2014), monitoring of surface 
objects (Fahnestock et al. 2016; Paul et al. 2016), and classification of accumulation and 
ablation zones (Naegeli et al. 2017).
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Beyond capturing static glacier characteristics, valuable insights can be gained from 
analysing glacier time series, which document the annual timing of critical events (e.g., 
the start and end of the ablation season) and long-term trends in glacier characteristics (Di 
Mauro and Fugazza 2022). To obtain time series that accurately reflect changes in glacier 
status, satellites offering frequent observations are essential. Over the last two decades, 
the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments aboard the 
Aqua and Terra satellites have proven to be well-suited for this purpose, owing to their 
daily observational capabilities (Hall, Riggs, and Salomonson 1995). Consequently, MODIS 
daily time-series observations have become a cornerstone in the monitoring of seasonal 
snow cover and glacier seasonality (Di Mauro and Fugazza 2022; Muhammad and Thapa 
2021).

To monitor glacier surface conditions, snow mapping algorithms for MODIS usually 
involve the derivation of the Normalized Difference Snow Index (NDSI) using Band 4 
(0.545–0.565 µm) and Band 6 (1.628–1.652 µm), which effectively distinguish snow and ice 
signals (Hall et al. 2002). In addition to calculating NDSI, the generation of the MODIS 
Quality Assessment (QA) band flags the observation quality based on multiple spectral 
bands and observation geometry, thus facilitating the exclusion of cloud contaminations. 
While the QA band effectively masks clouds in most seasonal snow-related studies, using 
MODIS time-series data for alpine glacier research poses unique challenges, broadly 
falling into two categories: observation gaps and outliers. Extensive cloud masking 
often results in consecutive observation gaps due to prevalent cloud cover. 
Additionally, residual clouds, debris, and terrain shadows can significantly alter satellite 
observation, leading to outliers in the NDSI time series (Hall and Riggs 2007; Klein and 
Barnett 2003; Paul et al. 2016).

Preprocessing algorithms have been developed in response to these issues. To 
improve binary snow map accuracy, Gafurov and Bárdossy (2009) introduced 
a comprehensive six-step workflow to enhance binary snow map accuracy, with key 
strategies including the amalgamation of Aqua and Terra daily observations, leveraging 
adjacent day observations and neighbouring pixels and incorporating snow transition 
elevation data. Similarly, Dong and Menzel (2016) also merged Aqua and Terra data and 
applied neighbouring pixel analysis, integrating precipitation and temperature filters to 
reduce misclassification between snow and cloud. Di Mauro and Fugazza (2022) 
addressed gaps and outliers in time-series observation by excluding outliers deviating 
more than 2 standard deviations from the median within an 11-day kernel, filling gaps 
through linear interpolation and applying a Fast Fourier Transform (FFT) low-pass filter 
(99-day kernel) for smoothing. Nevertheless, these approaches present certain drawbacks. 
For instance, using linear interpolation to fill gaps could be rather erroneous, especially 
when outliers are not properly removed beforehand. Moreover, the moving window 
technique faces challenges in selecting a fixed window size. Small windows may fail to 
effectively eliminate outliers, while large windows risk over-smoothing the data. 
Additionally, adjusting window sizes demands a nuanced understanding of each study 
area’s distinct features, suggesting a need for a self-adaptive approach suitable for 
applications across more extensive regions.

To address these challenges, this study proposes an iterative moving median filter for 
MODIS NDSI time-series observations, which is a robust and adaptive processing strategy. 
The general workflow employs a variable moving window that automatically increases its 
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size asymmetrically to remove outliers and fill gaps simultaneously. This approach accounts 
for various sized gaps with the asymmetric moving window, offering a more reasonable 
moving median calculation. By gradually enlarging the moving window, we ensure that 
closer observations are prioritized, therefore minimizing temporal offsets. Furthermore, by 
iteratively applying this asymmetrical moving window until the median stabilizes, we 
eliminate the need for location-specific fixed window size, rendering our method self- 
adaptive to various locations and climatic conditions. The effectiveness of this workflow 
was demonstrated on selected USGS Benchmark glaciers, highlighting its potential for 
accurate seasonal glacier ice variation monitoring.

2. Study site and dataset used

This study validates the proposed processing strategy using glacier sites from the USGS 
Benchmark Glacier Project (henceforth, the Benchmark Project) (O’Neel et al. 2019). Two 
mid-latitude glaciers selected are South Cascade Glacier, in a maritime climate, and Sperry 
Glacier, in a continental climate. Table 1 shows the key characteristics of these glaciers as 
of the year 2000 according to Randolph Glacier Inventory (RGI) Version 6.0 (Pfeffer et al. 
2014). Due to space limitations, a map showing the location of these glaciers is included in 
the supplementary material.

In this study, the MODIS MOD10A1.061 product (Terra Snow Cover Daily Global 500 m) 
NDSI measurement is utilized to monitor snow and ice signals from 2001 to 2022 (Hall 
et al. 2002). Though previous studies have leveraged Terra MODIS, Aqua MODIS, or both 
to investigate snow and ice, the Aqua product is not used in this study due to its failure in 
Band 6 sensor. This sensor failure affects the shortwave infrared (SWIR) measurements, 
which are crucial for consistent NDSI calculation (Di Mauro and Fugazza 2022; Muhammad 
and Thapa 2021). The data retrieval process is expedited by utilizing the Google Earth 
Engine (GEE) platform (Gorelick et al. 2017), allowing efficient access to NDSI time series 
for our selected study sites. We extracted per-pixel NDSI values and binary cloud masks for 
each glacier. RGI 6.0 provides the glacier boundaries, reflecting their status in the year 
2000 (Pfeffer et al. 2014).

Figure 1 displays the original pixel-based NDSI time series of the study glaciers for 
the year 2013, climatically a normal year (NOAA/NCEI 2014). Both glaciers exhibit 
a scattered time series with substantial cloud contamination and outliers, with 
a noticeable dip in the summer season. Thus, it is essential to preprocess the time series 
by screening clouds and outliers before identifying any temporal patterns.

3. Method

The proposed time series processing workflow is structured into three steps. The first step 
employs the QA band to mitigate cloud contamination, which effectively reduces the 

Table 1. Two USGS Benchmark glaciers used in this study.
RGI ID Glacier Name Area (km2) Slope (°) Aspect (°) Longitude (°W) Latitude (°N)

RGI60-02.17023 Sperry Glacier 1.28 18.9 345 113.76 48.62
RGI60-02.18778 South Cascade Glacier 2.92 12.8 350 121.06 48.36
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presence of clouds but leaves behind observation gaps and outliers from other sources. 
To mitigate these issues, the second step employs an innovative moving median algo
rithm iteratively. This iterative moving median filter not only removes outliers using the 
smallest possible window but also fills in gaps with the calculated median. The final step 
involves the application of an FFT low-pass filter to the outlier-removed time series to 
capture the seasonal patterns within the NDSI time series by mitigating high-frequency 
natural variations. An overview of this workflow is shown as a flowchart in Figure 2.

3.1. Cloud screening

The first step begins by generating daily binary cloud masks using the MOD10A1 pro
duct’s QA band. These masks are applied to the NDSI images to facilitate the export of per- 
pixel daily time series. Per-pixel extraction excludes cloud-covered pixels from that day’s 
observation, ensuring only clear-sky observations contribute to the dataset, thus enhan
cing data utilization efficiency.

Figure 3 illustrates the cloud screening results for the two glaciers with substantial low 
observation points (grey dots) removed. Despite the strong screening capability, 
a significant portion of observations are cloud-covered—73.7% for Sperry Glacier and 

Figure 1. Raw 2013 MODIS NDSI time series for the South Cascade and Sperry glacier.

Figure 2. Flowchart of the smoothing algorithm workflow.
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71.2% for South Cascade Glacier – resulting in large gaps in the time series. Both glaciers 
have a comparable number of gaps and average gap sizes (Sperry Glacier: 49 gaps, 5.5  
days average; South Cascade Glacier: 51 gaps, 5.1 days average). However, Sperry Glacier 
has a larger maximum gap size of 38 days compared to South Cascade Glacier’s 23 days. In 
addition to the induced gaps, the remaining cloud-free observations are still scattered 
with significant variability, suggesting the presence of remaining outliers that will need to 
be addressed in subsequent processing steps.

3.2. Iterative asymmetrical moving median filtering

After screening out dense cloud contamination, the NDSI time series contains consecutive 
gaps and still exhibits remarkable outliers due to residual clouds and terrain influences. To 
tackle these challenges, we propose an Iterative Asymmetrical Moving Median Filter 
(IAMMF), inspired by Sheng et al. (1995) in their vegetation time series preprocessing 
work, which dynamically adjusts the moving window size until convergence is achieved. 
Our process starts with the smallest 3-day window, gradually expanding to include 
additional valid observations on either side, guided by a ‘valid observation threshold’ 
(notated as ‘n’). Additionally, the design of the asymmetrical window enables rapid 
enlargement towards the side with larger gaps, effectively minimizing the overall window 
size and reducing the over-smoothing issue.

Following the first iteration, which attains more than one valid observation per side, 
the algorithm calculates the median alongside the median absolute deviation (MAD) 
using the valid observations within the moving window. Further iterations continue, 
each designed to incorporate ’n + 1’ valid observations on both sides for a balanced 
valid data distribution in the window, until a stable median is achieved. Median stability 
is evaluated by comparing the change in median to a predefined threshold, e.g., half of 
the MAD from the preceding smaller window. To avoid excessive expansion, the algo
rithm restricts the larger window side to no more than twice the length of the shorter side, 
with the shorter side limited to a maximum of 30 days.

Figure 4 illustrates how the algorithm filters outliners and bridges a gap in the original 
time series at a certain day (i.e., Day 0). Starting with a 3-day window, the first iteration 
yields one valid observation on each side, producing a median of 58.5 and a MAD of 2.22. 

Figure 3. NDSI time series for the South Cascade and Sperry Glacier after QA cloud screening. Gray 
dots represent cloudy observations; red dots represent QA-screened observations.
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As the window extends and eventually includes four valid observations within Day −6 and 
Day +4, the recalculated median remains at 58.5. Given the median change is zero, 
confirming 58.5 as the smoothed value for that day.

3.3. Time series smoothing for seasonality extraction

After removing outliers and filling gaps, we apply a Fast Fourier Transform (FFT) low-pass 
filter to accentuate long-term seasonality. This method attenuates fluctuations with 
periods shorter than approximately 40 days by keeping only the lowest 5% frequency 
signals from a daily series over a year. Choosing this 5% threshold over a lower one allows 
us to track seasonality without overly smoothing the data. This choice is also advanta
geous because the preceding IAMMF effectively mitigates outliers, making it safer to 
maintain higher frequency signals, which in turn enhances the accuracy of the smoothed 
NDSI time series.

4. Results

The effectiveness of the proposed algorithm is showcased by analysing the 2013 annual 
NDSI time series for both Sperry Glacier and South Cascade Glacier. Figure 5 illustrates 
a comparison between Mauro and Fugazza’s method Figure 5(a) and the IAMMF algo
rithm Figure 5(b), highlighting the distinct approaches to managing outliers and gaps. 
Mauro and Fugazza’s method uses an 11-day moving median for outlier removal (red 
dots) followed by linear interpolation for gap filling (blue dots). In contrast, IAMMF 
combines outlier removal and gap filling with values from a stable moving median, 
ensuring a more consistent NDSI time series. Figure 5(a) shows scattered patterns with 
outlier contamination and variable zigzags due to linear interpolation. IAMMF Figure 5(b) 
produces a smoother time series, effectively removing outliers and filling gaps. The 
adaptability of IAMMF further enhances its capacity to accommodate characteristics of 
different glaciers. Notably, despite the time series at South Cascade Glacier is noisier 
compared to Sperry Glacier, particularly in August, IAMMF consistently delivers filtered 
values without a noticeable increase in local variance.

Moving window filtering theoretically improves time-series data quality by sacrificing 
temporal resolution. IAMMF uses the smallest possible window to minimize this sacrifice. 
We define ‘temporal offset’ as the positional difference between the median value and the 
window target point to quantify the sacrifice of temporal resolution, with a smaller value 

Figure 4. An example showing IAMMF filtering procedure.
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indicating minimal sacrifice in the smoothed time series. Consequently, we delve into 
analysing the temporal offset distributions produced by the IAMMF for both study 
glaciers, as depicted in Figure 6. Specifically, the average temporal offset is 9.7 days for 
Sperry Glacier and 7.5 days for South Cascade Glacier. A mere 9% of observations for 
Sperry Glacier and 6.5% for South Cascade Glacier exhibit a temporal offset exceeding 20  
days, primarily due to substantial gaps within the NDSI time series.

With the gaps filled and most outliers corrected in the preceding steps, the NDSI 
data refined by the IAMMF is then fed into a 5% threshold FFT low-pass filter to 
capture seasonal patterns. The 5% FFT threshold proficiently reduces variations in the 
NDSI time series with periods shorter than 40 days. Figure 7 compares the FFT 
performance on both Mauro and Fugazza’s and IAMMF filtered time series. The 
IAMMF, by creating a more smoothed time series compared to the method by 
Mauro and Fugazza, enables the FFT filter based on the IAMMF results to more 
accurately delineate NDSI seasonality. This accuracy is particularly noticeable in the 

Figure 5. NDSI time series for the South Cascade and Sperry Glacier after further filtering. Red dots 
represent outliers; blue dots represent filtered values by using Mauro and Fugazza approach (a) or 
IAMMF (b).

Figure 6. Histograms showing temporal offset distribution for the South Cascade and Sperry Glacier. 
Corresponding cumulative percentage is shown in red curve.
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analysis of Mauro and Fugazza’s results for Sperry Glacier from November to 
December, where their FFT smoothed time series erroneously reflects a zig-zag pat
tern. This pattern is an artefact of their linear interpolation method for gap filling, 
highlighting the advantages of the IAMMF approach in producing a more reliable 
seasonal representation.

To assess the effectiveness of the 5% FFT smoothing, we calculated the Root Mean 
Square Error (RMSE) between the FFT-smoothed NDSI series and the filtered, gap-free 
time-series data. The analysis reveals a notable decrease in RMSE for both study glaciers 
when applying the IAMMF compared to Mauro and Fugazza’s approach. Specifically, the 
RMSE for Sperry Glacier reduced from 0.064 to 0.043, and for South Cascade Glacier, it 
dropped from 0.06 to 0.036, roughly a > 30% drop in both cases. These reductions in RMSE 
demonstrate a closer alignment of the FFT smoothing with the IAMMF-filtered values, 
thus underscoring the IAMMF’s superior capability in enhancing the accuracy of FFT- 
smoothed NDSI time-series data.

5. Conclusion

In this research, we have developed and implemented an innovative processing scheme 
for MODIS NDSI time series glacier monitoring. This three-step workflow can efficiently 
remove outliers, fill data gaps, and smooth the data to accentuate NDSI seasonality. The 
proposed approach employs a variable moving window that automatically increases its 
size asymmetrically to remove outliers and fill gaps simultaneously. This approach 
accounts for various sized gaps with the asymmetric moving window, offering a more 
reasonable moving median calculation. By iteratively gradually enlarging the moving 
window, the innovative filter ensures that closer observations are prioritized, therefore 
minimizing temporal resolution sacrifice.

Figure 7. FFT smoothed NDSI time series for the South Cascade and Sperry Glacier. After filtering NDSI 
by Mauro and Fugazza approach (a) or IAMMF (b), blue dots are the primary FFT input. Orange curve is 
smoothed output of the FFT low-pass filter using 5% threshold.
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The algorithm’s efficacy was demonstrated through its application to two glaciers from 
the Benchmark Project. Our results validate the effectiveness of our processing strategy 
and demonstrate its advantages over conventional methods, underscoring its contribu
tion to advancing glacier monitoring practices. The proposed strategy improves the 
quality of NDSI time series for glacier monitoring and facilitates more reliable evaluations 
of glacier surface condition and seasonal changes.

To move forward, we plan to apply the proposed preprocessing techniques to refine 
albedo and fractional snow cover area (fSCA) time series and use good-quality time series 
to investigate glacier phenology. Moreover, the integration of high spatial and temporal 
resolution datasets from Landsat 8, Landsat 9 and Sentinel-2 presents the potential for 
more detailed glacier phenology analyses, leveraging the strengths of multiple remote 
sensing platforms for enhanced accuracy in glaciological studies.
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