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Excitation of the turbulence in the range of drift wave frequency and zonal flow in magnetized
plasmas is analyzed. Nonlinear stabilization effect on zonal flow drive is introduced, and the steady
state solution is obtained. The condition for the onset of turbulent transport is obtained and partition
ratio of fluctuation energy into turbulence and zonal flows is derived. The turbulent transport
coefficient, which includes the effect of zonal flow, is also obtained. Analytic result and direct
numerical simulation show a good agreement. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1922788g

I. INTRODUCTION

Turbulent transport in high temperature plasmas is one
of the main issues in modern plasma physics. Microscopic
fluctuations are induced owing to the gradients of plasma
pressure and magnetic field so as to enhance the cross-field
transport of energy far beyond the level that is determined by
the binary collision of charged particles. In the development
of theory and direct nonlinear simulationsDNSd of turbulent
transport in toroidal plasmas, it has been clarified that the
plasma turbulence in the range of drift wave frequency,
which we abbreviate “drift waves” in this article, plays key
roles.1,2 What is fascinating is that the zonal flow,3 which is
constant on magnetic surface but changes rapidly across
magnetic surfaces, is induced by turbulent fluctuations and,
at the same time, suppresses the turbulent transport. The gen-
eration of zonal flow has been confirmed by DNSssee, e.g.,
Refs. 4 and 5 and the review in Ref. 6 for a full descriptiond.
Zonal flow in the core plasma has been observed in experi-
ment very recently.7 The problem of zonal flow generation
by pressure gradient has a wide and deep impact on the
plasma physics. The zonal flow is associated with the vortic-
ity which is almost constant on magnetic field. That is, a
global axial vector field is generated. The problems of the
generation of global axial vector field from the gradient of
scalar field include the geodynamo solar magnetic field gen-
eration or astronomical jet formation.8,9 The turbulence and
zonal flow in toroidal plasmas provide an opportunity to in-
vestigate this class of problems with theory, DNS, and ex-
perimental observation, simultaneously. Intensive studies of
the system of zonal flow and drift wave turbulence have been
performed. The achievements so far have been summarized
in the review in Ref. 6.

One of the key issues is the mechanism that regulates the

structure of the induced zonal flows. The saturation mecha-
nisms of zonal flow have been discussed in the literature;
while the turbulence is often completely quenched for
weakly unstable cases at the collisionless limit,10–13 station-
ary states with finite amplitudes of both the zonal flow and
turbulent fluctuations are realized when the plasmas are in
highly unstable states. The possibility of secondary instabili-
ties has been pointed out,14–18 and the condensation of mi-
cromodes into global modes has been studied by direct non-
linear simulations sDNSd.19 Regarding the theoretical
formulation of nonlinear processes, nonlinearity in the self-
interaction of zonal flows has also been investigated. Re-
search has included the pursuit of the possibility that the
zonal flows evolve into a kink-soliton-like structure,20 the
parametric evolution of a plane drift wave,21 and the theory
for the BGK sBernstein–Greene–Kruskald solution has also
been developed.22–24The importance of random noise to tur-
bulence has been studiedse.g., Refs. 25 and 26d, and influ-
ences of turbulent noise on zonal flow has also been
studied.3,24,27Drift wave spectrum was analyzed in the pres-
ence of zonal flow,28 and dynamical evolution has also been
studied.29 Although these models provide useful understand-
ing, they are not free from limitations. For instance, the ac-
cessibility to the kink-soliton-like solution from a small ini-
tial perturbation in Ref. 20 is not clear; the drift waves often
develop into strong turbulence so that the assumption that the
plane drift wave will be coherent may be violated, and the
decorrelation time of the drift wave packet is often shorter
than the circumnavigation time of the packet in the zonal
flow trough. Theoretical efforts are still required for the
study of zonal flow structure in cases where drift waves have
short correlation times. In addition, it is known that the tor-
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oidal geometry is crucial in determining the structure of tur-
bulence and flow.13,30–33

In this article, we analyze the nonlinear state of zonal
flow which is driven by fluctuations in the drift-wave-
frequency range in toroidal plasmas, in the case that the au-
tocorrelation times of drift waves are much shorter than that
of the zonal flow.sThe study of such a case is motivated by
the DNS of core plasmas for highly unstable cases. It is
clearly shown in Ref. 34 that the half width at half maximum
of the spectral intensity of the zonal flow is much narrower
than that of turbulence.d It was shown, for given fluctuation
amplitude in toroidal plasmas, thatpur sthe transport of per-
pendicular momentum in the radial directiond shows a non-
linear saturation with respect to the zonal flow shear, while
pir sthe transport of parallel momentum in the radial direc-
tiond does not.32 That is, the drive of the zonal flow starts to
decrease at high velocity, but the damping due to the turbu-
lent viscosity of parallel flow does not. Therefore, the zonal
flow evolves into a nonlinear stationary state, and the stable
coherent structure is obtained. In this article, the higher-order
corrections by zonal flow on the zonal flow drive is renor-
malized, and the driving term at an arbitrary magnitude of
zonal flow vorticity is derived. Based on the nonlinear form
of the zonal flow growth rate, the steady state solution is
obtained. In the collisionless limit, the turbulence level is
shown to vanish while the zonal flow remains at finite am-
plitude, when instability is weak. The critical condition for
the onset of drift wave turbulence in the presence of zonal
flow is derived. This gives a theoretical explanation for the
Dimits shift phenomena. The turbulent transport, including
the zonal flow effects, is obtained. The partition ratio of fluc-
tuating field energy among the drift wave turbulence and
zonal flow is also obtained. A comparison with DNS is also
made.

II. THE MODEL

A. Formulation based on drift wave action

We study the system of the drift-wavesDWd turbulence
and zonal flow sZFd in inhomogeneous and magnetized
plasma. The model dynamical system for the drift wave ac-
tion Nk and the zonal flow velocityVZ has been studied.20

The drift wave actionNk has been introduced as

Nk = s1 + k'
2 rs

2d2uf̃ku2, s1d

wheref̃k is thek-Fourier component of electrostatic pertur-
bation of drift waves,k' is the wavenumber of drift waves
perpendicular to the main magnetic field andrs is the ion
gyroradius at electron temperature. In this article, the analy-
sis is developed following the framework which utilizes the
coupled equations forNk andVZ. sFor the survey of methods
of analysis for zonal flows, see Ref. 6.d

The growth of the zonal flow in the presence of the
drift-wave turbulence has been discussed by use of the time
scale separation. The autocorrelation times of the drift wave
fluctuations are assumed to be much faster than the evolution
time of the zonal flow. In the slow time scale, the evolution
of the zonal flow and the drift wave action is governed by20

]

]t
U =

]2

]r2

c2

B2 E d2k
kukr

s1 + k'
2 rs

2d2N̂k − gdampU, s2d

and by the eikonal equation

]

]t
Nk +

]vk

]k
·
]Nk

]x
−

]vk

]x
·
]Nk

]k
= 0, s3d

whereU is the vorticity of the zonal flow

U = ]VZ/]r , s4d

r is the minor radius,N̂k is a slow modulation ofNk, which is
induced byVZ, andgdamp denotes the damping rate of zonal
flow by other processes.

We study the case that the zonal flow retains the coher-
ent structure in a time much longer than the decorrelation
time of the drift wave fluctuations. This “coherent regime” is
one of the characteristic situations of the DW-ZF system,6

and is observed in various simulation conditions.13 Equation
s3d is solved by expansion with respect to the vorticity of the
zonal flow as

N̂k = N̂k
s1d + N̂k

s2d + N̂k
s3d

¯ , s5d

whereN̂k
s jd is the j th order term ofU. sAn explicit form of

expansion parameter is explained later.d Substitution of Eq.
s5d into Eq. s2d provides

]

]t
U = o

m

`

Gsmd − gdampU, s6ad

where themth order term with respect toU in the Reynolds
stress is expressed as

Gsmd =
]2

]r2

c2

B2 E d2k
kukr

s1 + k'
2 rs

2d2N̂k
smd. s6bd

A linear response has been obtained from Eq.s3d as20

N̂k
s1d = kuU Rsqr,Vd

]Nk

]kr
. s7d

Here

Rsqr,Vd =
i

V − qrvgr + iDvk
s8d

is the response function,Dvk is the nonlinear broadening of
drift waves,

vgr = ]v/]kr s9d

is the group velocity, and the zonal flow has a slow depen-
dence as

expsiqrr − iVtd s10d

sqr is the radial modenumber of zonal flowd.
The higher order responses with respect toU, N̂k

s2d, N̂k
s3d,

..., can be calculated from
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N̂k
sndsqr + qr8d = U Rsqr + qr8,Vdku

]

]kr
N̂k

sn−1dsqr8d, s11d

where N̂k
sn−1dsqr8d represents theqr8-Fourier component. The

group velocityvgr is an antisymmetric function ofkr for drift
waves in this article. Therefore,Rsqr ,Vd has a symmetry
with respect tokr. The contributions from the even order

termsN̂k
s2md sm=1, 2, 3, ...d are small from the consideration

of symmetry, and the drive of ZF comes from the odd order

termsN̂k
s2m+1d sm=0, 1, 2, ...d. In addition, whenqr is chosen

in the regime where the zonal flow has maximum growth
rate, the higher-harmonics components withnqr sn=3, 4, ...d
have large damping rates.6,35 Therefore we keep
2qr-component and have a relation

N̂k
snd = U2ku

2R*sqr,Vd
]

]kr
SRs2qr,V8d

]N̂k
sn−2d

]kr
D , s12d

whereN̂k
snd is the abbreviation ofN̂k

sndsqrd.

B. Linear response

The first-order term gives the diffusion-like form

gZ = Drrqr
2 = − Drr]

2/]r2 s13d

in Eq. s2d with

Drr = −
c2

B2 E d2k
Rsqr,Vdku

2kr

s1 + k'
2 rs

2d2

]Nk

]kr
, s14d

i.e., the zonal flow growth.3 In a case that the decorrelation
rate of zonal flow is large,Dvk@qrvgr,

Rsqr,Vd . 1/Dvk. s15d

The partial integral of Eq.s14d gives an evaluation

Drr =
c2

B2 E d2k
ku

2

s1 + k'
2 rs

2d2Dvk

Nk. s16d

Next, the most unstable wavenumber of the zonal flow is
considered. The zonal flow growth rategZ does not continue
to increase at largerqr when the dispersion effect of the beat
drift waves on the zonal flow is introduced. A finite-qr cor-
rection to Rsqr ,Vd is evaluated in the largeDvk limit by
expandingRsqr ,Vd to

Rsqr,Vd =
1

Dvk
S1 −Sqrvgr

Dvk
D2

+ ¯D , s17d

andgZ is written as

gZ = Drrqr
2s1 − qr

2/K0
2d, s18d

where

K0
2 = Dvk

2svgrd−2 s19d

represents the characteristic scale where the Doppler-shift of
drift waves suppresses the zonal flow instability. An explicit
form of K0

2 for the case of tokamak plasmas is given in Ref.
21. It should also be noted that expressions2d is drawn with
the condition thatqr ,kr. The analysis in the case ofqr ,kr

was reported based on a modulational instability, showing

that the zonal mode drive vanishes ifqr .kr.
35 We have

K0 = minskr,Dvk/vgrd. s20d

The damping termgdampU includes the collisional damp-
ing term ndampU. An additional damping mechanism exists.
The E3B flow in toroidal plasma is associated with the
secondary flow. As is shown in Refs. 30–32, the viscous
damping of the secondary flow due to toroidicity governs the
damping rate of the zonal flow, in addition to the conven-
tional collisional damping. The damping rate by this process
is rewritten as31

gdamp= mis1 + 2q2dqr
2, s21d

wheremi is the turbulent shear viscosity for the flow along
the field line andq is the safety factor.sThe coefficient 1
+2q2 is replaced by 1+1.6q2/Î« in the collisionless limit.36

This dependence on the collisionality is not considered for
simplicity.d Combining this damping associated with parallel
flow, the damping rate is expressed as

gdamp= ndamp+ mis1 + 2q2dK2. s22d

And an explicit form ofndamp is given in, e.g., Ref. 6,

ndamp.
nii

«
s23d

in the banana regime.
Combining these results, the linear terms in Eq.s2d are

rewritten as

]

]t
U + DrrS ]2

]r2U + K0
−2 ]4

]r4UD − mis1 + 2q2d
]2

]r2U

+ ndampU = 0. s24d

This equation predicts a necessary condition for the zonal
flow growth with the wavenumberqr at which the linear
growth rate of zonal flow takes the maximum value. The
zonal flow has a maximum growth rate at

qr = qr* =Î1 − m

2
K0, s25d

where

m ; mis1 + 2q2dDrr
−1. s26d

The condition that the zonal flow has positive linear growth
rate is given as

1 − m . 2Î ndamp

DrrK0
2 . s27d

Both the zonal-flow driving coefficientDrr and the shear
viscositymi are given by drift wave spectrumNk. The ratio
m;mis1+2q2dDrr

−1 is a function of the spectral shape of drift
wave turbulence and geometrical factor such asq, the in-
verse aspect ratio«, etc.
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C. Third-order correction

The third-order term of the deformed action is given as

N̂k
s3d = U2ku

2R*sqr,Vd
]

]kr
SRs2qr,Vd

]N̂k
s1d

]kr
D . s28d

Substituting Eq.s28d into Eq. s6bd, one obtains the third-
order term on the right-hand sidesRHSd of Eq. s2d as

Gs3d =
]2

]r2

c2

B2 E U2d2k
ku

3kr

s1 + k'
2 rs

2d2R*sqr,Vd
]

]kr

3SRs2qr,V8d
]N̂k

s1d

]kr
D . s29d

In a strong turbulence limit,Dvk@qrvgr, which gives an es-
timate Eq.s16d through partial integral, the RHS of Eq.s29d
is evaluated as

Gs3d = −
]2

]r2

c2

B2 E U2d2k
ku

3

s1 + k'
2 rs

2d2R*sqr,VdRs2qr,V8d

3
]N̂k

s1d

]kr
. s30d

The partial integral is performed once again. Noting the re-
lation

]

]kr
SR*sqr,VdRs2qr,V8d

s1 + k'
2 rs

2d2 D . −
H

Dvk
2

krrs
2

s1 + k'
2 rs

2d2 s31ad

with a coefficient

H =
2

1 + k'
2 rs

2 +
6qr

2

Dv2rs
2

]vg
2

]kr
2 , s31bd

fwhere the second term on the RHS of Eq.s31bd is a finite
wavenumber correctiong, we have an estimate of the third-
order term as

Gs3d = −
]2

]r2

c2

B2 E d2kSHku
2rs

2U2

Dvk
2 D kukr

s1 + k'
2 rs

2d2N̂k
s1d

=
]2

]r2D3U
3, s32d

where the diffusion coefficient in the third-order term is
given as

D3 = −
c2

B2 E d2kSHku
2rs

2

Dvk
2 D kukr

s1 + k'
2 rs

2d2N̂k
s1d. s33d

Comparing Eq.s33d with Eq. s16d, we finally have an esti-
mate of the diffusion coefficient of the third-order term as

D3 .
Hku

2rs
2

Dvk
2 Drr . s34d

The sign in the definition ofD3 is chosen such thatD3 is
positive whenDrr is positive.

Taking into account Eqs.s24d ands32d, Eq.s2d is written
in an explicit form as

]

]t
U + DrrS ]2

]r2U + K0
−2 ]4

]r4UD − D3
]2

]r2U3

− mis1 + 2q2d
]2

]r2U + ndampU = 0 s35d

up to the third order with respect toU. The expansion pa-
rameter isHku

2rs
2U2/Dvk

2 in deriving Eq.s35d.

D. Renormalization of higher order corrections

Equations35d allows one to study the radial structure of
the nonlinear solution. The truncation at the third order may
not be appropriate if

Hku
2rs

2U2 . Dvk
2 s36d

holds. Therefore, the third-order formula is not relevant for
the study of the Dimits shift, where the fluctuation level is
very low so thatDvk

2 is small. In order to study the case of an
arbitrary ratio ofHku

2rs
2U2/Dvk

2, we must keep all order ofU.
In this section, we discuss the renormalization of the driving
term om=0

` Gs2m+1d. By the renormalization method, the sum-
mation provides a screened form of the Reynolds stress
which is extended to the parameters like Eq.s36d. sSee, e.g.,
Ref. 38 for details.d

The radial wavelength of the zonal flow is taken as
2p /qr* , and is treated as a parameter in this section. By
employing this simplification, we derive a recurrence for-
mula betweenGs2m+1d and Gs2m−1d in the following. The
s2m+1dth order term of Eq.s6bd is written as

Gs2m+1d = − qr
2 c2

B2 E d2k
kukr

s1 + k'
2 rs

2d2N̂k
s2m+1d s37d

and is rewritten as

Gs2m+1d = − qr
2 c2

B2 E d2k
ku

3kr

s1 + k'
2 rs

2d2U2R*sqr,Vd
]

]kr

3SRs2qr,V8d
]N̂k

s2m−1d

]kr
D . s38d

In the case of the strong turbulence, Eq.s15d, a similar
argument to Eq.s16d is employed for Eq.s38d. Thus, per-
forming a partial integration twice, one has

Gs2m+1d = qr
2 c2

B2 E d2kSHku
2rs

2U2

Dvk
2 D kukr

s1 + k'
2 rs

2d2N̂k
s2m−1d.

s39d

That is, one obtains a relation betweenGs2m+1d andGs2m−1d as

Gs2m+1d . −
Hku

2rs
2U2

Dvk
2 Gs2m−1d. s40d

The result Eq. s40d indicates that the ratio
uGs2m+1d /Gs2m−1du diverges asDvk→0 for a fixed value ofU.
However, such singular behavior does not occur. This is be-
cause the decorrelation between the drift wave packet and
the zonal flow is not given byDvk but by other processes,
whenDvk approaches zero. Therefore we put
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Gs2m+1d . −
Hku

2rs
2U2

G2 Gs2m−1d as Dvk → 0, s41d

where G is the decorrelation rate between zonal flow and
waves in the smallDvk limit. One decorrelation process is
the Doppler shift, andqrvgr plays a role that limits the reso-
nance between zonal flow and drift waves. The other relevant
frequency is the bounce frequencyvb of the drift wave
packet in the trough of the zonal flow,22

vb
2 =

2rs
2kuqr

1 + rs
2ku

2vkU. s42d

That is,G scales with maxsvb,qrvgrd. The quantitative deter-
mination of the proportionality constant betweenG and
maxsvb,qrvgrd requires the detailed analysis of the turbulent
trapping regime, such as the granulation formalism.37 Thus
we choose here

G = maxsvb,qrvgrd. s43d

It should be noticed that Eq.s40d does not meanGs2m+1d

remains finite as Dvk→0. It means that the ratio
uGs2m+1d /Gs2m−1du remains finite. In the limit whereDvk=0
holds and the trapping of wavepacket occurs, the net driving
force of the zonal flow can vanish and the solution can be
given by BGKsBernstein–Greene–Kruskald solution. Within
the framework of the model of this article, Eq.s14d indicates
that Gs1d vanishessso doesGs2m+1dd as Dvk→0. Thus this
model provides renormalization in the case of finiteDvk and
partly recovers the property in the limit of wave trapping.
Taking a Padé approximation, one has an interpolation for-
mula as

Gs2m+1d . −
Hku

2rs
2U2

Dvk
2 + G2Gs2m−1d. s44d

That is,

Gs2m+1d . s− 1dm1 U2

Dvk
2 + G2

Hku
2rs

2 2
m

Gs1d. s45d

By use of the formulas44d, the summationom=0
` Gs2m+1d can

be calculated. We have the renormalized driving term for the
zonal flow as

o
m=0

`

Gs2m+1d =
Gs1d

1 +
Hku

2rs
2U2

Dvk
2 + G2

. s46d

In Eq. s46d, the nonlinear correction up to all orders are
included. The evolution equation for the zonal flow Eq.s6ad
is then written as

]

]t
U =

qr
2Drr

1 +
Hku

2rs
2U2

Dvk
2 + G2

U − smis1 + 2q2dqr
2 + ndampdU. s47d

III. NONLINEAR RADIAL EIGENMODE
IN COLLISIONLESS LIMIT

In this section, we study the nonlinear eigenmode of
zonal flow for given drift wave fluctuations by keeping the
third-order nonlinear term. We take a limit of

ndamp→ 0, s48d

because the role of the nonlinear stabilization term in Eq.
s35d is studied. We use normalized variables

x = r/L, t = t/tZ, u = U/U0, s49d

where

L−2 = K0
2s1 − md, tZ = Drr

−1K0
−2s1 − md−2, s50d

U0
2 = DrrD3

−1s1 − md.

Equations35d is rewritten assndamp→0d

]

]t
u +

]2

]x2u −
]2

]x2u3 +
]4

]x4u = 0. s51d

The short wavelength components withqr
2L2.1 are stabi-

lized by the higher-order derivative term. The flow is gener-
ated in the long wavelength region of

qr
2 , K0

2s1 − md, s52d

and the zonal flow energy is saturated by the nonlinearity and
by the dissipation through higher-order derivatives.

We investigate a case that the flow is generated from the
state with small noise level where no net flow exists,

E dxu= 0. s53d

Conservation of total momentum holds for the periodic
boundary condition and the flow evolves satisfying the con-
dition edxu=0. Stationary solution of Eq.s51d in the domain
0,x,d, for the periodic boundary condition, is given by an
elliptic integral as

E s1 − 2u2 + u4 − k2d−1/2du= ±
x
Î2

, s54d

wherek is an integral constants satisfying 0øk,1 and is
determined from the periodicity

E
−uc

uc

s1 − 2u2 + u4 − k2d−1/2du=
d

2Î2n
, s55ad

where

uc = Î1 − k, s55bd

andn=1,2,3,….
The temporal evolution of Eq.s51d is solved numeri-

cally. Starting from an initial condition with small random
values, a stable steady state is reached. It is shown that the
growth is dominated by the component which has the largest
linear growth rate. That is, the integern is given by the one
which is closest to
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d/n = 4Î2p. s56d

Figure 1 illustrates the stable stationary state. The peak value
of usxd is given asuc.0.95. Compared to a simple sinu-
soidal functionseigenfunction of linear operatord, the result
in Fig. 1 has much weaker curvature at the peak and is closer
to a piecewise constant function. The result Eq.s56d shows
that the characteristic wavelength of the zonal flow is con-
trolled by K0, the parameter dependence of which is ex-
pressed in Eq.s20d.

The stationary state is realized by the balance between
the drive of zonal flow through dPur /dr and the damping
through dPir /dr. sP is the Reynolds stress.d The dPur /dr
term is composed of the second and third terms on the left-
hand sidesLHSd of Eq. s35d shaving coefficientsDrr andD3d.
ThedPir /dr term corresponds to the fourth term on the LHS
of Eq. s35d, having coefficientsmi. When the zonal flow
amplitude is small and Eq.s27d holds, the drive bydPur /dr
exceeds the damping bydPir /dr so that the zonal flow
grows. When the ZF amplitude increases, the nonlinear term
in dPir /dr becomes effective, anddPur /dr starts to de-
crease. At the amplitude of zonal flow wheredPur /dr
+dPir /dr=0 holds, the zonal flow reaches the stationary
state.

IV. SELF-CONSISTENT STATE

Based on the analysis of the stationary coherent structure
of zonal flow, we study the self-consistent state for the
DW-ZF system. The condition for the excitation of drift
waves in the presence of zonal flow and the energy partition
of between the drift wave and zonal flow is discussed. Then
the transport coefficient by drift wave turbulence, where the
effect of zonal flow is included, is derived.

A. Model of coupled equations

1. Low-degree-of-freedom model

The self-consistent state of zonal flow and drift wave has
been studied theoretically by solving the evolution of the
spectrum of drift waves.28 The studies have shown that a
low-degree-of-freedom model, such as predator-pray model,
is useful in giving a qualitative understanding of the self-
consistent state. In addition, the study of the nonlinear radial

wave form in Sec. III gives us the result that the structure is
well represented by a few parameters like amplitude and pe-
riodicity length.

Based on the results in Sec. III, we choose the periodic
length 2pqr

−1 of the zonal flow as

qrri .
Î1 − m

2
K0ri , s57d

and employ the dynamical equation in whichqr is treated as
a parameter. Under this circumstance, the equation for the
amplitude of the zonal flow is then given as Eq.s47d. By use
of this simplification, both the collisionless case and the
weakly collisional case are studied here.

The back interaction of the zonal flow on drift wave
turbulence has been discussed in detail. In order to show the
argument with analytic transparency, we choose a simplest
model for the evolution of drift wave amplitude after Refs. 3
and 39 as

]

]t
f̂2 = gLf̂2 − af̂2Ŵ− Dvf̂2, s58d

wheregL is the growth rate of the turbulence energy andf̂ is
the normalized fluctuation amplitude

f̂2 = Sk'
2 Ln

ku
D2Uef̃

T
U2

, s59d

and uf̃u is an amplitude of drift wave fluctuations,gL is the
linear growth rate, the nonlinear damping rateDv shows the
effect of the nonlinear interactions within drift wave turbu-
lence, the ratea that satisfies

2Drrqr
2 = af̂2 s60d

is used according to the convention of Ref. 3, and

Ŵ= sU/v*d2 s61d

is the normalized square amplitude of the zonal flow vortic-
ity.

With a similar procedure, Eq.s47d is rewritten as

]

]t
Ŵ=

af̂2

1 +
Hku

2rs
2v*

2

Dvk
2 + G2Ŵ

Ŵ− smaf̂2 + 2ndampdŴ, s62d

wheremis1+2q2dqr
2 term is rewritten asmaf̂2 by use of Eqs.

s26d and s60d.
Equationss58d ands62d form a set of coupled dynamical

equations for the DW-ZF system in a reduced model.

2. Evaluation of the nonlinear damping term

We here estimateDvk in various cases. In the strong
turbulence limit of drift wave fluctuations,Dvk is estimated
as1

Dvk . B−1k'
2 uf̃u. s63d

It is rewritten as

FIG. 1. Stationary state of the normalized solutionusxd for the case ofd
=8p. Radial lengthx and vorticityu are normalized values.
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Dvk . v*f̂ s64d

by use of the normalized drift wave amplitude. In a weak
turbulence limit, one has

Dvk . v*f̂2. s65d

3. Coupled dynamical equations

The relation between the fluctuation level and nonlinear
decorrelation rate, Eq.s64d or Eq. s65d, closes the set of
equations. The nonlinear damping rate by drift wave turbu-
lence is chosen here as Eq.s64d for the strong turbulence.
This choice is motivated by the fact that an explicit formula
is obtained in the presence of collisional damping and renor-
malized nonlinear damping for zonal flows.sOf course, the
strong turbulence limit may not be valid near the Dimits shift
boundary in the absence of collisional damping of zonal
flow. The limit of ndamp→0 is explained in Sec. IV B 3.d By
this simple model, Eqs.s58d and s62d take form as

]

]t
f̂2 = gLf̂2 − af̂2Ŵ− v*f̂3, s66d

and

]

]t
Ŵ=

af̂2

1 +
Hku

2rs
2v*

2

v*
2f̂2 + G2

Ŵ

Ŵ− smaf̂2 + 2ndampdŴ, s67d

respectively. The set of equationss66d ands67d describes the
partition of fluctuation energy into drift waves and zonal
flows.

B. Solution and energy partition

1. Domain of solutions
Equations67d gives the condition for the stationary state

for the zonal flow. Putting] /]t=0 in Eq. s67d, one has

Hku
2rs

2v*
2

v*
2f̂2 + G2

Ŵ=
af̂2

maf̂2 + 2ndamp

− 1, s68d

or

Ŵ= 0. s69d

From Eq.s68d, one sees that the nontrivial solutionŴÞ0 is
allowed for

f̂2 = f̂th
2 , s70d

where

f̂th
2 =

2ndampa
−1 − g + mw + Îs2ndampa

−1 − g + mwd2 + 8sg + s1 − mdwdndampa
−1

2s1 − md
, s71d

and abbreviations are

g = s1 − mdG2v*
−2, w = Hku

2rs
2v*

2Ŵ. s72d

The zonal flow grows asf̂2.f̂th
2 , and damps forf̂2,f̂th

2 .
Figure 2 illustratesf̂th

2 as a function of the zonal flow vor-
ticity for various values of collisional damping.

Equations71d provides various limiting results. In a limit

of small zonal flow vorticity,Ŵ→0, Eq. s71d takes a form

f̂th
2 =

2ndamp

s1 − mda
, s73d

which shows that the fluctuation level is regulated by the
damping rate of the zonal flow. This recovers the previous
result, although a screening factor by the return flow is in-
cluded in Eq.s73d.

The other limit of interest is the collisionless limit,
ndamp/a→0. In this case, the stationary state of Eq.s62d
provides

Dvk
2

v*
2 =

mHku
2rs

2

s1 − md
Ŵ−

G2

v*
2 . s74d

This result has two specific features. First,Dvk vanishes
si.e., f̂ vanishesd at a critical vorticity of zonal flow,

U = Uc, s75ad

where

Uc
2 =

s1 − md
mHku

2rs
2G2, s75bd

i.e.,

FIG. 2. The diagram for the zonal flow growth onsÛ ,f̂d plane. Solid line
indicates the neutral condition for the weakly collisional case, and the
dashed line is for the collisionless case.
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Uc = maxS2s1 − md
mH

,Î2s1 − md
mH

krrsDqrVd, s75cd

where use was made of Eqs.s42d and s43d. sVd is the dia-
magnetic velocity.d On the RHS of Eq.s75cd, the first term in
parentheses is given whenG is evaluated byvb and the sec-
ond one is given whenG is evaluated byqrvgr. Equation
s75ad means that the growth of zonal flow remains marginal
at this critical vorticity even in the limit of small drift wave
fluctuation level. This nonlinear balance at the limit of weak
drift wave fluctuations is related to the Dimits shift problem,
and is discussed in later sections. Note that Eqs.s74d and
s75ad–s75cd hold without depending on the assumption of
strong or weak turbulence limit.

Next, Eq.s74d provides a law of power partition between
zonal flow and drift waves. In a limit of strong fluctuations
and flow,U@Uc, Eq. s74d gives a relation

Dvk
2

v*
2 =

mHku
2rs

2

s1 − md
Ŵ. s76ad

This relation is rewritten in the limit of strong turbulence in
a dimensional form as

U =
k'

2 cs

ÎmHku

ef̃

T
. s76bd

2. Stationary solutions

We next consider the balance between the drift wave
amplitude and that of the zonal flow. The stationary state of
drift wave turbulence is given from Eq.s66d

f̂ =
gL

v*
−

a

v*
Ŵ, s77d

or

f̂2 = 0. s78d

Combining Eq.s71d with Eq. s77d, the self-consistent
solution is obtained. Figure 3 illustrates the self-consistent

solution schematically. Owing to the kink of the boundary of
Eq. s71d at U.Uc, there arise three regions.

In the region of small growth rate of drift waves,

gL

v*
,Î 2ndamp

s1 − mda
sregion Id s79d

there is no crossing of liness71d and s77d. Therefore, only
the solution Eq.s69d is allowed, and one has the solution

f̂ =
gL

v*
sregion Id s80ad

with

Ŵ= 0. s80bd

The zonal flow is not excited, and the turbulence level is not
influenced by the zonal flow.

In an intermediate region,

Î 2ndamp

s1 − mda
,

gL

v*
,Î 2ndamp

s1 − mda
+

a

v*
Uc

2 sregion IId,

s81d

the boundary for the stationary zonal flow is given by Eq.
s73d. The collisional damping controls the steady state solu-
tion. In region II, analytic forms of fluctuation level and
zonal flow amplitude are

f̂ =Î 2ndamp

s1 − mda
sregion IId s82ad

and

Ŵ=
gL

a
−

v*

a
Î 2ndamp

s1 − mda
, s82bd

respectively. In this region, the zonal flow amplitude in-
creases asgL increases, but the turbulence level is un-
changed. The fluctuation levelf̂2 is proportional to the col-
lisional damping rate of the zonal flow. This reproduces the
preceding result of theory and DNS observations.10,21,29

When the growth rate becomes larger,

FIG. 4. Domains in control parameters.sIn this diagram, the time ratea is
treated as a constant parameter.d

FIG. 3. Three cases for the solutions. Solid line indicates the marginal
condition for the zonal flow growth. Dotted lines denote those for the drift
waves for various values of linear growth rate. Dots indicate steady-state
solutions. If the drive of drift wave is weakfcase Ig, the steady state solution
is given by zero zonal flow. The intermediate casefII g and strong drive case
fIII g are also shown.
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gL

v*
.Î 2ndamp

s1 − mda
+

a

v*
Uc

2 sregion IIId. s83d

Equationss76ad ands76bd describes the balance of the zonal
flow. The self-nonlinear damping of the zonal flow domi-
nates the steady state. In a strongly unstable limit,

gL

v*
@Î 2ndamp

s1 − mda
, U @ Uc s84d

one has

f̂ =ÎgL

a

mHku
2rs

2

s1 − md
sregion IIId s85ad

and

Ŵ=
gL

a
. s85bd

When the growth rate becomes larger, the zonal flow velocity
and the fluctuation level increase asgL increases.

Figure 4 summarizes the characteristic domains in the
parameter space. Figure 5 illustrates the wave amplitudef̂ or
Dvk/v* and the zonal flow vorticityU /v* as a function of
the growth rate. Figure 5sad illustrates the case in the pres-
ence of the collisional damping of the zonal flow. Three re-
gions appear.

3. Collisionless limit and upshift of excitation
boundary

Here, the problem of the upshift of the critical condition
in terms of the linear growth rate is discussed.fHere, the
assumption of the strong turbulence limit, Eq.s64d is not
employed.g In the collisionless limit,

ndamp→ 0, s86d

Eqs.s58d and s62d provide a steady-state solution as

Dvk

v*
=

−
mHku

2rs
2v*

s1 − mda
+ÎSmHku

2rs
2v*

s1 − mda D2

+ 4SmHku
2rs

2

s1 − md
gL

a
−

G2

v*
2D

2
, s87d

if the growth rate exceeds a critical value

gL . gL,c ;
s1 − mda
mHku

2rs
2

G2

v*
2 . s88d

Below this critical growth rate,gL,gL,c, we have

f̂ = 0. s89d

In the vicinity of the critical condition,gL,gL,c, Eq.
s87d provides

Dvk

v*
=

1

v*
sgL − gL,cd. s90d

The fluctuation amplitude is calculated from the formula of
Dvk, Eq. s87d, by use of Eq.s64d or s65d, depending on
whether it is in the weak turbulence regime or in the strong
turbulence regime.

From Eq.s90d, one sees that the drift wave fluctuations
are, in the limit of vanishing collisional damping of the zonal
flow, sustained at finite levels when the growth rate of modes
gL exceeds a finite threshold valuegL,c. This is a theoretical
explanation for the Dimits shift, which has been observed in

FIG. 5. The dependence of the amplitude of drift wave fluctuationsf̂ ssolid

lined zonal flow Ŵ schained lined vs gL in the collisional casesad. sHere,
n /v* anda /v* are kept constant.d Three regions appear. The decorrelation

rate of drift waveDvk/v* ssolid lined and zonal flow vorticityÎŴ sthick
broken line and thick dashed lined in the collisionless casen=0 are given in
sbd. Thin dotted line showsDvk/v* when zonal flows are not taken into
account.sa /v* is kept constant.d The drift wave amplitudef̂ is related to
Dvk/v* as is shown in Eq.s64d or s65d. Region I disappears, and the drift
waves are excited in region III.
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numerical simulations. Note that, in the limit of large growth
rate,gL@gL,c, Eq. s85ad is reproduced from Eq.s87d. Figure
5sbd shows the collisionless limit. In this case, region I dis-
appears, and transition between regions II and III is seen.

4. Partition of energy between DW and ZF

Combining Eqs.s71d and s77d, the amplitudes of the
zonal flow and drift waves are determined simultaneously.
Thus the partition of energy between the zonal flow and
wave turbulence is given. The partition of energy is evalu-

ated by the ratioVZF
2 / ṼDW

2 whereVZF is the velocity of zonal

flow, kuqr
−1Vd

ÎŴ, andṼDW is the fluctuatingE3B velocity
of drift wave fluctuations,kuk'

−1Vdf̂. This ratio is given as

VZF
2

ṼDW
2

=
k'

2

qr
2

Ŵ

f̂2
=

4

1 − m

k'
2

K0
2

Ŵ

f̂2
. s91d

In the strong turbulence limit in region III, one has a
relation from Eqs.s76ad and s76bd, and the energy partition
is given as

VZF
2

ṼDW
2

=
4

mHku
2rs

2

k'
2

K0
2 . s92d

The flow energy and wave energy are proportional to each
other. In the strong turbulence limit, the energy can be con-
verted into flow energy more than to the wave fluctuation
energy ifku

2rs
2,4/mH holds.

C. Turbulent transport coefficient

The analysis in Sec. IV B gives an insight into the tur-
bulence and turbulent transport. The ion thermal conductivity
is deduced for the drift wave turbulence which is dressed by
zonal flows. The ion thermal conductivity is evaluated as1

xi = Dvkkr
−2. s93d

By use of the dependence ofDvk on the amplitude of drift
wave fluctuations, Eq.s64d, xi is evaluated, for the strong
turbulence limit, as

xi =
ku

kr
2ri

Svthiri
2

Ln
Df̂. s94d

The quantitysku /kr
2ridvthiri

2Ln
−1 is the so-called gyro-Bohm

diffusion coefficient. Equationss80ad, s82ad, ands85ad show
the fluctuation amplitude as a function of the growth rate in
various regions, showing the effects of zonal flow.

The thermal conductivity in the case of the weak growth
rate of drift waves and strong damping of zonal flowfregion
Ig is given from Eqs.s80ad and s94d as

xi =
gL

kr
2 sregion Id. s95d

In this case, there is no zonal flow in the steady state, and
this agrees with the case of “bare” drift waves. When growth
rate of drift wave becomes largersand yet the collisional
damping dictates the zonal flowd fregion IIg, the conductivity
is given as

xi =Î 2ndamp

s1 − mda
v*

kr
2 sregion IId. s96d

In region III, the saturation level of the zonal flow is
determined by the nonlinear process of zonal flow, not by the
collisional damping. Therefore the formula for the collision-
less limit is useful. In the collisionless limit, Eqs.s87d and
s93d provide the formula of thermal conductivity as

xIII =
mHku

2rs
2v*

s1 − mda
1− 1 +Î1 +

4s1 − mda
mHku

2rs
2v*

2sgL − gL.cd

2
2v*

kr
2

sregion IIId. s97d

This form ofxIII becomes finite,xIII ù02, for gLùgL,c. fNote
again that Eq.s97d does not depend on the limitss64d or
s65d.g In this collisionless case, in the vicinity of the nonlin-
ear onset conditiongL.gL,c, Eq. s97d provides a simplified
expression of the transport coefficient as

xi =
gL − gL,c

kr
2 . s98d

One might be interested in more specific case studies. In
the framework that the wavelength is much longer thanrs

and krrs!1, in small Dvk-limit, the decorrelation between
drift wave and zonal flow is determined by the wave-bounce
frequency. We have

G2 =
2rs

2ku
2qr

s1 + rs
2ku

2d2VdU, sU . Ucd s99d

from Eq. s42d, and the critical vorticity is given from Eq.
s75cd as

Uc = s2s1 − md/mHdqrVd. s100d

At this critical vorticity, vb andG are evaluated as

G =Î4s1 − md
mH

rsqr

1 + rs
2ku

2v* . s101d

Substituting Eq.s101d into Eq. s88d, the critical growth rate
is evaluated as

gL,c =
4s1 − md2

m2H2

qr
2

ku
2a. s102d

The boundary for the onset of turbulence has a dependence
asgL,c~qr

2ku
−2a with a numerical factor.

For practical usage, it is useful to have an interpolation
formula of xi in these three regions. In regions I and II,xi

may be fitted as

xi = xI+II ;
gLÎ 2ndamp

s1 − mda

gL +Î 2ndamp

s1 − mda
v*

v*

kr
2 . s103d

This type of interpolation formula has been derived in, e.g.,
Ref. 40. A possible fitting formula for all three regions is
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xi = ÎxI+II
2 + xIII

2 QsgL − gL,cd, s104d

where QsgL−gL,cd is a Heaviside function,QsgL−gL,cd=1
for gL.gL,c and QsgL−gL,cd=0 for gL,gL,c. This formula
covers both the collisional regimesregions I and IId and the
self-nonlinearity regimesregion IIId, including the property
like Dimits shift.

The thermal conductivity in the presence of zonal flow
in regions II and III, Eqs.s96d ands97d, is much reduced, in
comparison with the case of “bare” drift wavessi.e., ZF ne-
glectedd, for which Eq.s95d is given. The reduction factor, in
regions II and III,R, can be defined accordingly.41 An ex-
ample of transport coefficient in explicit form is discussed in
the appendix.

D. Comparison with nonlinear simulation

1. Global parameter dependence

It is worthwhile to compare these theoretical results with
DNS. The result is tested to the result of a three-dimensional
nonlinear simulation of the ion-temperature-gradientsITGd
mode turbulence based on two fluid models.13 In this simu-
lation, the dynamics of the electrostatic potential, ion tem-
perature, and ion parallel velocity are followed in toroidal
geometry with an assumption of adiabatic response for elec-
trons. Radial width of simulation domain is 120ri and a re-
alistic ITG dynamic was obtained by switching off the unre-
alistically high parallel fluid heat conduction. Parameters are
en;2Ln/R=0.9, Ln/LTi=3.1, q=1.4 sq=0.7 for zonal flow
component in order to reduce the damping of zonal flowd,
ands=0.8. sLn andLTi are gradient scale lengths of density
and temperature, respectively ands: magnetic sheard. Details
are explained in Ref. 13.

In the analytic theory, the ITG mode is characterized by
the modenumber

kuri , 1
3 , s105ad

and

ku , kr . s105bd

This set of parameters, Eqs.s105ad ands105bd, are chosen as
an input to this theory, and the level of zonal flow is analyti-
cally estimated, and is compared with the result of DNS.

In this section, we derive the relation betweenU andxi

by employing Eq.s93d, because these values of parameters
are reported in DNS results.13 It should be noted that this
comparison is possible in the collisionless limit, even if one
does not assume the strong turbulence limit or weak turbu-
lence limit, Eqs.s64d or s65d. sThe investigation42 has shown
that the relation betweenxi and f̂ is in between the strong
turbulence limitsEq. s64d, xi ~f̂d and the weak turbulence
limit sEq. s65d, xi ~f̂2d. Reference 42 reports that the case
there is closer to the weak turbulence limit.d In units of
Vdri

−1, the zonal flow vorticity is given byU=kuri
ÎWVdri

−1

where Vd is the diamagnetic drift velocity. By use of Eq.
s105ad, we have

U =
1

3
ÎWVdri

−1, s106ad

and the relation

xi = 3
Dvk

v*
svthiri

2Ln
−1d s106bd

is deduced from Eq.s93d by use of Eq.s105bd.
For the case when the parallel flow damping has consid-

erable influence in modifying the quasilinear growth rate of
the zonal flowssuch as the DNS parameter in Ref. 13d, we
choose a representative value ofm,1/2. For the parameters
Eqs.s105ad ands105bd, one hasH,2.5. With the help of the
relation forK0 in Refs. 21, 35 ofK0,sku, one has

qr . 0.1 rs
−1 s107d

for the wavenumber of the zonal flow. By use of these pa-
rameters, Eq.s100d provides an estimate

Uc , 0.085Vdri
−1, s108d

at the boundary for the onset of turbulence, and the steady
state condition Eq.s74d is written as

Dvk

v*
=

Î2.5rs

Vd

ÎU2 − UcU =
Î2.5rs

Vd

ÎU2 − 0.085Vdrs
−1U

s109d

in the collisionless limit. Combining Eqs.s106bd and s109d,
the relation betweenxi andU, xisUd, is derived as

xi

vthiri
2Ln

−1 = 4.7
ri

Vd

ÎU2 −
0.085Vd

ri
U. s110d

It is emphasized again that the estimate ofm,1/2 and Eq.
s105ad and s105bd are the input parameters, which are used
to derive the theoretical prediction Eq.s110d.

Equations110d is compared with DNS in Fig. 6. Solid
line shows the theoryfEq. s110dg and dots denote the result
of DNS. A fairly good agreement between them is observed,
and theoretical results, e.g., Eq.s110d, are not rejected. We
should note here that the fact that the cut-off frequencyG is
introduced based on an order-of-magnitude estimate, and the
relation of the thermal transport coefficientfe.g., Eq.s93dg
has an ambiguity of numerical factor. Thus, one should not
expect an exact agreement of the DNS data and the theoret-
ical result Eq.s110d, but should focus on the qualitative fea-
ture, such that the appearance of the cut-off at small drift
wave amplitude or an asymptotic relationxi ~U in the limit
of large turbulent transport. It should be noted that, strictly
speaking, Eq.s93d is not tested by Ref. 13.sIn the series of
simulations in Fig. 6, the larger thermal conductivity is real-
ized for more strongly unstable cases. This suggests the in-
crement of the turbulence decorrelation rate of waves in con-
junction with the increment of thermal conductivity.d The
final conclusion, whether this theory explains the DNS or
not, must be drawn after the test of Eq.s93d is made in DNS
under the condition of Fig. 6.
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2. Radial profile of nonlinear eigenmode

Before closing the analysis, the radial profile of the in-
duced zonal flow is also compared with the DNS. For the
parameters of interest, the model theory provides the radial
periodicity length asl,60 ri from Eq. s107d. Figure 7 il-
lustrates the radial distribution of the vorticity associated
with the zonal flow,dknyl /dr, wherek¯l denotes the aver-
age over the magnetic surface andr and y coordinates are
taken in the radial and poloidal directions, respectively. The
simulation result confirms this theoretical modelling. First,
the radial distribution of the vorticity shows the flattened
quasi-periodic form. This is an extreme case of relatively low
dispersion and high linear drive in the analytic result. Sec-
ond, the periodic length is about

l , 30 ri s111d

and is in the range of theoretical prediction. Third, the mag-
nitude of the vorticity isdkvyl /dr,0.6Vdri

−1. This value is
also in the range of theoretical prediction,U0,0.45Vdri

−1 at

Dv,v* . The agreement of the magnitude of zonal flow be-
tween theory and DNS is already explained in Sec. IV D 1.

V. SUMMARY AND DISCUSSION

In summary, we have developed a theory of nonlinear
evolution of the drift wave-zonal flow system. In the regime
where coherent structure of zonal flow survives much longer
than the decorrelation time of drift waves, the coherent struc-
ture of the zonal flow was analyzed. The self-nonlinear effect
of zonal flow realizes the stationary state. The coherent struc-
ture of zonal flow was studied by the perturbative expansion
with respect to the zonal flow amplitude. The nonlinear ra-
dial eigenmode was expressed in terms of elliptic integral.
This determines the characteristic scale length of the zonal
flow in nonlinear saturated stage. By treating the radial
wavelength of the zonal flow as a parameter, the renormal-
ization of the higher-order nonlinear effects was performed.
The driving force of the zonal flow was derived, in which
contributions of zonal flow vorticity at all orders were in-
cluded. By use of this renormalized dynamical equation for
the zonal flow, we studied the steady state system with both
the drift wave fluctuations and zonal flows. The energy par-
tition between them, the thermal conductivity, and the con-
dition for the onset of drift wave turbulence were analyzed.
The partition between the drift wave energy and zonal flow
energy was obtained as a function of the growth rate of drift
wave and the collisional damping of the zonal flow. A theo-
retical formula of the turbulent transport coefficient is de-
rived, which covers the weakly unstable regimesno zonal
flowd, the moderately unstable regimeswhere the collisional
damping of the zonal flow dictates the transport coefficientd,
and the strongly unstable case. The obtained formula extends
the previously derived formula to wider circumstances. The
condition for the onset of turbulence and turbulent transport
in the collisionless limit was also derived. This explains what
has been empirically known as Dimits shift in DNS. Formula
of the turbulent transport coefficient was also derived, in
which the screening effect by zonal flows is self-consistently
included. The theoretical result was compared with the DNS.
The energy partition between drift wave and zonal flow is
tested for the relationxisUd. For a wide range of plasma
parameters that control the growth rate of ITG mode insta-
bility, good agreement is also observed. Thus, this analysis
captures some essential elements in the physics of the
DW-ZF system. This theory also gives a prototypical ex-
ample to understanding the mutual interaction between the
turbulent energy transport and generation of axial vector field
owing to the global gradient of plasma pressure.

Although this theory has shown some success in under-
standing of the nonlinear dynamics of DW-ZF system, fur-
ther research is necessary. One issue is the parameter range
of validity for the existence of the coherent structure of the
zonal flow. The coherent time is finite in reality, and must be
self-consistently determined by use of the statistical
theory.3,24–27,43Systematic continuation of this model and the
BGK solution still needs further study. The decorrelation of
drift wave at the low level of drift wave turbulence, Eq.s41d,
remains a very crude estimate in this article, and improve-

FIG. 6. Comparison of the relationsxisUd for the steady state of ITG mode.
Zonal flow vorticity is measured in units ofVdri

−1 and thermal conductivity
is in vthiri

2Ln
−1. Theoryssolid lined and DNS datasdotsd are quoted from Ref.

13.

FIG. 7. Radial distribution of vorticity of zonal flowU in the DNS. Snap-
shot in the stationary state is shown. Origin of radiusr0 is chosen at the
center of simulation box.
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ment is necessary. The other issue is the application of meth-
odology to various turbulence problems in actual experimen-
tal conditions. In both issues, future evolution of
understanding is expected.
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APPENDIX: A FORMULA OF TRANSPORT
COEFFICIENT

In this appendix, explicit forms of the transport coeffi-
cient and the Dimits shift are discussed for a practical use.

An analytic estimate forDrr has been given

Drr .
1

B2

ku
2

gL
uf̃u2 sA1d

in the vicinity of the marginal conditionDvk.gL sSee, e.g.,
Sec. 3.2.2 of Ref. 6d. It is given, in terms of the normalized
fluctuation amplitude, asDrr .sku

2k'
−4dv*

2gL
−1f̂2. The growth

rate of the zonal flow energy has been introduced by the
definition 2Drrqr

2=af̂2. That is, the time ratea is given as

a .
v*

gL

2 ku
2qr

2

k'
4 v* . sA2d

The Dimits shift is given by the critical condition that
satisfies Eq.s102d, i.e.,

gL,c =
4s1 − md2

m2H2

qr
2

ku
2a. sA3d

Eliminating a from Eqs.sA2d andsA3d, at gL=gL,c, one has
an equation of the critical growth rategL,c as

gL,c =
2Î2s1 − md

m H

qr
2

k'
2 v* . sA4d

For the least stable mode,qr is estimated by Eq.s57d,

qr .
Î1 − m

2
K0,

this relation gives an estimate ofgL,c,

gL,c =
s1 − md2

Î2m H

K0
2

k'
2 v* . sA5d

One estimate forK0=kr:

gL,c =
s1 − md2

Î2m H

kr
2

k'
2 v* . sA6d

For parametersm.1/2, gL,c is of the order of one-tenth of
v* .

Explicit forms are also derived for domains discussed in
Sec. IV B 2. One has the following expressions.

sad Small growth rate limit:
In the case of weak instability, i.e.,

gL ,
1

s1 − md
k'

4

ku
2qr

2ndamp sregion Id, sA7d

the fluctuation level is given by

f̂ =
gL

v*
; f̂I . sA8d

sbd Intermediate growth rate limit:
For the case of

1

s1 − md
k'

4

ku
2qr

2ndamp, gL , gL,c sregion IId sA9d

the fluctuation level is given by

f̂ =
1

Î1 − m

k'
2

kuqr
Îndamp

v*

gL

v*
; f̂II . sA10d

scd Large growth rate limit
The transition from the collisional-damping-dominated

regionfregion IIg to the nonlinearity-dominated region is ex-
pected to occur at

1

mHrs
2ku

2ndamp+ gL,c , gL sregion IIId. sA11d

One has, from Eq.s87d,

Dvk

v*
.

mHrs
2k'

4

4s1 − mdqr
2S− 1

+Î1 +
8s1 − mdqr

2

mHrs
2k'

4 SgL − gL,c

gL
DD

3
gL

v*
; f̂III . sA12d

The asymptotically-linear dependence ongL in this model is
recovered, and a suppression factor appears. The suppression
factor, which is induced by the co-existence of the zonal
flow, is approximately evaluated asÎmH /2s1−mdrsk'

2 qr
−1

,k'rs.
A similar argument is possible for the thermal conduc-

tivity. In regions I and II, a fitting formula is given as

xI+II =
gL

În

ÎgL
+În

1

kr
2 , sA13d

where
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n =
1

s1 − md
k'

4

ku
2qr

2ndamp sA14d

denotes the impact of collisional damping of the zonal flow.
In region III, Eq. s93d and Eq.sA12d provide

xIII =
mHrs

2k'
4

4s1 − mdqr
2S− 1 +Î1 +

8s1 − mdqr
2

mHrs
2k'

4 SgL − gL,c

gL
DDgL

kr
2 .

sA15d

A fitting in regions I, II, and III is

xi = xfit ; ÎxI+II
2 + xIII

2 QsgL − gL,cd, sA16d

whereQsgL−gL,cd is a Heaviside function.
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