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Evolution of enhanced innate immune 
evasion by SARS-CoV-2

Lucy G. Thorne1,19, Mehdi Bouhaddou2,3,4,5,19, Ann-Kathrin Reuschl1,19, Lorena Zuliani-Alvar
ez2,3,4,5,19, Ben Polacco2,3,4,5, Adrian Pelin2,3,4,5, Jyoti Batra2,3,4,5, Matthew V. X. Whelan1, 
Myra Hosmillo6, Andrea Fossati2,3,4,5, Roberta Ragazzini7, Irwin Jungreis8,9, 
Manisha Ummadi2,3,4,5, Ajda Rojc2,3,4,5, Jane Turner1, Marie L. Bischof1, Kirsten Obernier2,3,4,5, 
Hannes Braberg2,3,4,5, Margaret Soucheray2,3,4,5, Alicia Richards2,3,4,5, Kuei-Ho Chen2,3,4,5, 
Bhavya Harjai2,3,4,5, Danish Memon10, Joseph Hiatt2,3,4,5, Romel Rosales11,12, Briana L. McGovern11,12, 
Aminu Jahun6, Jacqueline M. Fabius2,3,4,5, Kris White11,12, Ian G. Goodfellow6, Yasu Takeuchi1, 
Paola Bonfanti7, Kevan Shokat2,3,4,5,13, Natalia Jura2,3,5,14,15, Klim Verba2,3,5, Mahdad Noursadeghi1, 
Pedro Beltrao2,10, Manolis Kellis8,9, Danielle L. Swaney2,3,4,5, Adolfo García-Sastre11,12,16,17,18, 
Clare Jolly1 ✉, Greg J. Towers1 ✉ & Nevan J. Krogan2,3,4,5 ✉

The emergence of SARS-CoV-2 variants of concern suggests viral adaptation to 
enhance human-to-human transmission1,2. Although much effort has focused on the 
characterization of changes in the spike protein in variants of concern, mutations 
outside of spike are likely to contribute to adaptation. Here, using unbiased 
abundance proteomics, phosphoproteomics, RNA sequencing and viral replication 
assays, we show that isolates of the Alpha (B.1.1.7) variant3 suppress innate immune 
responses in airway epithelial cells more effectively than first-wave isolates. We found 
that the Alpha variant has markedly increased subgenomic RNA and protein levels of 
the nucleocapsid protein (N), Orf9b and Orf6—all known innate immune antagonists. 
Expression of Orf9b alone suppressed the innate immune response through 
interaction with TOM70, a mitochondrial protein that is required for activation of the 
RNA-sensing adaptor MAVS. Moreover, the activity of Orf9b and its association with 
TOM70 was regulated by phosphorylation. We propose that more effective innate 
immune suppression, through enhanced expression of specific viral antagonist 
proteins, increases the likelihood of successful transmission of the Alpha variant, and 
may increase in vivo replication and duration of infection4. The importance of 
mutations outside the spike coding region in the adaptation of SARS-CoV-2 to humans 
is underscored by the observation that similar mutations exist in the N and Orf9b 
regulatory regions of the Delta and Omicron variants.

Innate immunity exerts strong selective pressure during viral transmis-
sion5–7 and affects COVID-19 outcomes8–10. We hypothesized that the 
Alpha variant evolved enhanced innate immune escape through adap-
tations outside the spike proteins. Naturally permissive Calu-3 human 
lung epithelial cells infected with first-wave (early-lineage) SARS-CoV-2 
induce a delayed innate response, which is driven by the activation 
of the RNA sensors RIG-I and MDA5 (ref. 11). Delayed responses, com-
pared to rapid viral RNA replication, suggest effective early innate 
immune antagonism and evasion12,13. Here, we evaluated differences 
in replication and host responses to Alpha and first-wave isolates: 
B lineage BetaCoV/Australia/VIC01/2020 (VIC) and B.1.13 hCoV-19/
England/IC19/2020 (IC19) (Fig. 1a). Input dose was normalized using 
viral genomic and subgenomic copies of envelope (E) RNA (quantita-
tive PCR with reverse transcription; RT–qPCR). Dose normalization 
is critical because input viral genome levels correspond with innate 
immune activation at 24 hours post-infection (hpi) in Calu-3 cells11. 
Equalizing input genomes also allows assessment of infectivity per 

genome, which may vary between variants. We therefore confirmed that 
measurements of E copies and infectious virions in inocula correlate, 
and that the infectivity (infectious units per E copy), is comparable 
between Alpha and first-wave isolates, supporting our dosing approach 
(Extended Data Fig. 1a).

Alpha shows reduced interferon induction
We found that the replication of Alpha and first-wave isolates was com-
parable at a high and a low multiplicity of infection (MOI), measuring 
intracellular E copies, N positivity and infectious virion production 
(Fig. 1b–d, Extended Data Fig. 1b–d). We observed a small but signifi-
cant increase in N positivity after Alpha infection (Fig. 1c, Extended 
Data Fig. 1c), which we explain later. As double-stranded RNA (dsRNA) 
intermediates are important pathogen-associated molecular pat-
terns (PAMPs) sensed by the cell11,14, we also confirmed equivalent 
negative-sense RNA synthesis for Alpha and first-wave isolates (Fig. 1e, 
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Extended Data Fig. 1f), using strand-specific RT–qPCR (Extended Data 
Fig. 1e). All isolates reached comparable levels of dsRNA-positive cells 
from 8 hpi (Extended Data Fig. 1g, h). However, Alpha isolates exhib-
ited a reduction in the total area of dsRNA per cell from 6 hpi, despite 
replication being otherwise comparable (Fig. 1f). One possibility is 
that increased levels of the Alpha N protein (Fig. 1c, Extended Data 
Fig. 1c, Fig. 3) contribute to innate immune evasion by sequestering 
dsRNA, causing epitope masking. Alternatively, Alpha may induce less 

endogenous dsRNA production from the expression of transposable 
elements that can contribute PAMPs to innate immune sensing15–17.

Identical levels of replication of each isolate enabled direct comparison 
of innate immune responses without confounding differences in the 
amount of virus. We found that Alpha infection led to lower expression 
and secretion of interferon-β (IFNβ) (Fig. 1g, Extended Data Fig. 2a), 
a result that was confirmed with three independent Alpha isolates 
(Fig. 1h). Differences in innate immune activation between variants did 
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lineage VIC (blue) are indicated in comparison to the Wuhan-Hu-1 reference 
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not translate to differences in viral replication in Calu-3 cells (Fig. 1).  
We therefore compared replication and innate immune activation in pri-
mary human airway epithelial (HAE) cells differentiated at an air–liquid 
interface. Alpha showed enhanced replication in HAE cells (Fig. 1i, j); the 
replication of VIC was particularly limited (Extended Data Fig. 2b), prob-
ably owing to the absence of the D614G mutation in the spike protein, 
which confers a replication advantage in HAE cells and animal models18–20.

Thus, we compared innate replication and immune activation between 
Alpha and IC19 and found that innate activation was similar at 72 hpi 
(Fig. 1k), despite substantially enhanced Alpha replication (Fig. 1i, j). Viral 
replication was not increased beyond input levels at early time points 
(24 hpi; Fig. 1i), therefore interferon-stimulated genes (ISGs) were not 
induced (data not shown). However, when innate immune activation was 
normalized for viral replication at 72 hpi, with the caveat that E copies 
may not fully represent the amount of viral dsRNA PAMPs, we found that 
Alpha induced less expression of IFNβ and ISGs than did IC19 per E copy 
(Extended Data Fig. 2d). This is consistent both with enhanced innate 
immune antagonism by Alpha and with similar innate immune activa-
tion in Fig. 1k, as Alpha replicates more efficiently in primary HAE cells.

As IFN sensitivity correlates with the transmission of other pandemic 
viruses5,6, we measured IFNβ sensitivity. Alpha was consistently less 
sensitive to IFNβ over a wide range of doses compared to VIC (Extended 
Data Fig. 2c). Notably, IC19 showed a similar reduction in IFNβ sensi-
tivity to Alpha (Extended Data Fig. 2c), perhaps owing to the D614G 
change in the spike protein, which is shared between IC19 and Alpha; 
this mutation is associated with IFN resistance and enhanced entry 
efficiency18,21–23. Thus Alpha not only induces less IFNβ (Fig. 1g, h, k, 
Extended Data Fig. 2a), but is also less sensitive to inhibition.

Enhanced innate antagonism by Alpha
To compare global host responses to SARS-CoV-2 variants, we per-
formed mass spectrometry protein abundance and phosphorylation 
profiling and total RNA sequencing (RNA-seq) in Calu-3 cells at 10 and 
24 hpi (Fig. 2a, Supplementary Table 1). We observed infection-driven 
changes in RNA abundance and protein phosphorylation, with fewer 
differences in protein abundance (Extended Data Fig. 3a). We also 
observed poor correlation between protein phosphorylation and pro-
tein or mRNA abundance, suggesting that phosphorylation is driven 
independently from changes in protein abundance (Extended Data 
Fig. 3h).

Gene set enrichment analysis24 (GSEA) comparing Alpha to first-wave 
isolates highlighted pathways that relate to the innate immune system 
among the top five terms for RNA, protein abundance and phospho-
rylation (Fig. 2b, Extended Data Fig. 4a–c, Supplementary Table 2). 
The highest-scoring terms were related to IFNα, IFNβ, cytokine and 
chemokine signalling, and were most enriched for the RNA and protein 
phosphorylation datasets (Fig. 2b). In addition to lower production of 
IFNβ (Fig. 1g, h, Extended Data Fig. 2a, d), infection with Alpha resulted 
in reduced expression of ISGs in RNA-seq data (10 and 24 hpi) and pro-
tein abundance data (24 hpi) using an ISG set25 (Methods, Supplemen-
tary Table 3, Fig. 2c, d, Extended Data Fig. 4d–f). For a subset of genes 
(CXCL10, IFIT2, MX1, IFIT1 and RSAD2) (Fig. 2e), as well as type III IFNλ1 
and IFNλ3 (Extended Data Fig. 5a), we confirmed reduced induction 
by multiple Alpha isolates (RT–qPCR).

We observed lower overall changes in protein phosphorylation early 
in infection for Alpha (Fig. 2f). Accordingly, GSEA revealed that pathways 
with reduced phosphorylation at 10 hpi—that is, decreased activation—
are related to innate immune responses (Extended Data Fig. 4c), consist-
ent with enhanced antagonism by Alpha. Notably, this was reversed at 
24 hpi as Alpha caused enhanced phosphorylation later in infection 
(Extended Data Fig. 4c). This led us to investigate the differential regu-
lation of kinase signalling cascades, especially with respect to innate 
immune signalling. We used the phosphoproteomics data to estimate 
kinase activities for 191 kinases on the basis of regulation of their known 

substrates26,27 (Supplementary Table 4), and grouped kinases according 
to their temporal dynamics (Extended Data Fig. 6a). Of note, we did not 
observe any correlation between kinase activity and abundance in pro-
tein and RNA datasets (Extended Data Fig. 6b), suggesting that changes in 
kinase activity are not driven by corresponding changes in kinase abun-
dance. We identified 24 kinases from the top enriched term (‘Reactome 
innate immune system’; Fig. 2b), which we clustered by similar pathway 
membership (Fig. 2g, Methods). At 10 hpi, we observed decreased activity 
of TBK1, as well as protein kinase A, PRKDC, RET, AKT–mTOR, ERK and 
JNK pathways. Given the central role of TBK1 in nucleic acid sensing, we 
evaluated known TBK1 substrates in greater detail to support the kinase 
analysis (Fig. 2g), and confirmed the lower levels of phosphorylation of 
known TBK1 substrates, including OPTN (ref. 28) and Ser72 in RAB7A (ref. 
29), for Alpha compared to first-wave isolates at 10 hpi (Extended Data 
Fig. 6c). At 24 hpi, the activity of TBK1 and PRKDC kinases, as well as that 
of JNK, ERK and PKA pathway kinases, was increased for Alpha com-
pared to VIC (Fig. 2g), consistent with the increased phosphorylation in 
innate-immune-system-enriched pathway terms (Extended Data Fig. 4c). 
Persistently lower induction of IFN by Alpha at 24 and 48 hpi (Figs. 1, 2, 
Extended Data Fig. 1), despite higher activation of TBK1 at 24 hpi, suggests 
antagonism downstream of TBK1; for example, by increased expression 
of SARS-CoV-2 Orf6 (Fig. 3), which suppresses the nuclear transport of 
inflammatory transcription factors13. Concordantly, pro-inflammatory 
mRNA induction (IL6, IL8, CCL2 and TNF) and cytokine release (CXCL10, 
IL6 and CCL5) were significantly lower after infection with Alpha, com-
pared to first-wave isolates (Extended Data Fig. 5b–d). This is consistent 
with a sustained reduction in cellular activation driven by inhibition 
of pathways upstream and downstream of TBK1 by Alpha. We did not 
observe differences in CCL3 induction, suggesting that not all inflam-
matory pathways are differentially regulated between viruses (Extended 
Data Fig. 5c, d). Thus, Alpha-enhanced innate immune antagonism, as 
judged by decreased protein phosphorylation, is only observed at early 
time points after infection, suggesting a delayed activation of signalling 
pathways involved in viral recognition compared to early-lineage viruses.

Higher expression of innate antagonists by Alpha
We next examined the viral RNA-seq and proteomic data, seeking to 
understand the differences between Alpha and first-wave isolates that 
underlie the contrasting host responses (Fig. 3a, Extended Data Fig. 7a, b,  
Supplementary Tables 6, 7). As RNA replication, measured by the levels 
of genomic and subgenomic (sgRNA) E, was similar between variants 
(Fig. 1, Extended Data Fig. 1), we determined the levels of each sgRNA 
by selecting transcripts with the 5′ leader sequence, derived from the 
5′ genomic RNA during sgRNA synthesis (Fig. 3a, Extended Data Fig. 7). 
We observed similar levels of Nsp1, Nsp2 and Nsp3 proteins (Orf1ab) 
translated from genomic RNA (Fig. 3a), which is again consistent with 
comparable levels of infection, and thus enables effective comparisons 
of transcription and protein expression between variants.

Notably, we found a large increase in the innate immune antagonist 
Orf9b (97-amino-acid version30, encoded by an alternative reading 
frame within N) in Alpha compared to first-wave isolates (Fig. 3a, b 
Extended Data Fig. 7b), with a corresponding increase in Orf9b sgRNA31 
(an increase of more than 80-fold for Alpha sgRNA compared to VIC, 
and 64.5-fold for Alpha compared to IC19, at 24 hpi; Fig. 3a, b, Extended 
Data Fig. 7a). The increase in Orf9b transcription in Alpha is likely to 
be influenced by nucleotide changes 28,280 GAT>CTA (conferring the 
D3L substitution in the N protein), which introduces an enhanced tran-
scriptional regulatory sequence (TRS) upstream of Orf9b31 (Extended 
Data Fig. 8a–c). However, the overall amount of Alpha Orf9b sgRNA 
remains low (Fig. 3g). Thus, it is possible that increased expression of 
the Orf9b protein also derives from enhanced leaky scanning of the N 
sgRNA owing to a single-nucleotide deletion that weakens the Alpha 
N Kozak translation initiation context (position 28,271 in VIC and IC19; 
Fig. 6). The three-nucleotide mutation leading to N(D3L) also modifies 
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Innate immune system terms are shown in bold. ECM, extracellular matrix;  
AMI, acute myocardial infarction. c, Heat map depicting the log2-transformed 
fold change (log2FC; colour) of ISGs25 (by RNA-seq) comparing Alpha to VIC or 
IC19. Black outlines indicate P < 0.01. d, Box plots show log2FC of ISGs between 

Alpha/VIC, Alpha/IC19 or IC19/VIC. Dots indicate different ISGs. Boxes indicate 
median (middle line) and interquartile range (upper and lower lines). Blue 
indicates comparisons with Alpha; black indicates comparisons between 
early-lineage viruses (IC19 and VIC). e, RT–qPCR analysis of bolded ISGs from  
c in cells infected with 2,000 E copies per cell. Mean ± s.e.m. f, Number of 
phosphorylation sites significantly dysregulated for Alpha, VIC or IC19 versus 
mock at an absolute log2FC > 1 and adjusted P < 0.05. g, Kinase activities for the 
top enriched terms for the phosphoproteomics dataset ‘Reactome innate 
immune system’ (b, right). Two-tailed student’s t-test (d) or two-way ANOVA 
with Tukey’s multiple comparisons post-hoc test (e). Blue asterisks, Alpha 
versus VIC (blue bars); grey stars, Alpha versus IC19 (grey bars). *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001, or exact P value (d); NS, not significant.
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the Alpha Orf9b Kozak context, which could influence Orf9b translation 
efficiency32. We predict a complex interplay between mutations that 
results in the enhancement of both Orf9b and N expression.

We also found that Alpha had a significant increase in sgRNA and 
protein expression (24 hpi) for a second innate immune regulator, 
Orf612,13 (Fig. 3a, c, Extended Data Fig. 7a, Supplementary Table 6).  
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The specific mutations that influence Orf6 expression remain unclear. 
In addition, we detected increased sgRNA and protein levels in Alpha of 
N, a third innate immune regulator33 (Fig. 3a, d). This is consistent 
with the increase in N-positive cells measured during Calu-3 infec-
tion (Fig. 1c, Extended Data Fig. 1c). We also observed enhancement 
of Orf3a, membrane (M) and Orf7b proteins at 24 hpi for Alpha, with 
only very modest changes observed at the RNA level (Fig. 3a, Extended 
Data Fig. 7a, c, d). We confirmed the upregulation of Alpha Orf9b, N 
and Orf6 sgRNA using RT–qPCR (Fig. 3e) and the increased expres-
sion of Alpha Orf6 and N proteins by immunoblot (Fig. 3f). These 
findings are consistent with the reported enhanced expression of 
Alpha Orf9b, Orf6 and N sgRNA in clinical samples31. The proportion 
of each sgRNA of the total sgRNA reads is summarized for each variant 
in Fig. 3g and Extended Data Fig. 7g. Of note, we observed an addi-
tional sgRNA in Alpha, called N* (ref. 31), with an in-frame start codon 
at N M210 encoding the C terminus of the N protein (Fig. 3h, Supple-
mentary Table 7). N* synthesis is likely driven by the triple nucleotide 
mutations (encoding the R203K/G204R substitutions in the Alpha N 
protein) just upstream of the N* start codon, which create a new TRS 
for N* transcription, as previously suggested31. Accordingly, we did 
not detect N* sgRNA in VIC or IC19 above background levels, while 

it accounted for 0.9% of the total sgRNA in Alpha (Fig. 3g) . Indeed, 
measurements of sgRNA abundance were consistent with Orf9b and 
N* being the most differentially expressed sgRNA between Alpha and 
first-wave isolates (Fig. 3i, Extended Data Fig. 7c). We note that Alpha 
sgRNA synthesis is not universally increased (Fig. 3a), because M and 
spike sgRNAs are not enhanced.

Phosphorylation regulates Orf9b activity
To further understand differences in host responses to Alpha, we 
used the RNA-seq dataset to estimate transcription factor activities 
by mapping target genes to corresponding transcriptional regula-
tors (Extended Data Fig. 6d, Supplementary Table 5). We extracted 
significantly regulated transcription factors within the top five most 
enriched terms from the unbiased RNA-seq pathway enrichment 
analysis (Fig. 2b). This revealed that IRF and STAT transcription factor 
families are significantly less activated by Alpha than by first-wave 
viruses (Fig. 4a). Consistently, measuring IRF3 nuclear translocation 
by single-cell immunofluorescence showed reduced activation of IRF3 
after infection with Alpha compared to infection with VIC (Fig. 4b). 
STAT1, STAT2 and IRF9 lie downstream of the type I IFN receptor, and 
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potent inhibition by Alpha is consistent with increased levels of Orf6, 
which is known to inhibit the nuclear translocation of STAT1 and IRF3 
(refs. 12,13).

Decreased activation of TBK1 by Alpha (Fig. 2g) also suggests 
antagonism upstream of IRF3 by additional mechanisms. The N pro-
tein is reported to antagonize the activation of RNA sensors33. Alpha 
N has four coding changes as compared to first-wave viruses (Fig. 1a). 
However, the antagonism of poly I:C activation of an ISG56-luciferase 
reporter by Alpha N was comparable to antagonism by the N protein 
of first-wave viruses, suggesting that these coding changes do not 
enhance the potency of innate antagonism for Alpha N (Fig. 4h). None-
theless, increased levels of Alpha N during infection may facilitate 
innate antagonism and evasion through enhanced sequestration of 
viral and host-derived PAMPs34 (Fig. 1f).

We have previously reported that SARS-CoV-2 Orf9b, which is 
expressed to significantly higher levels by Alpha (Fig. 3), interacts with 
human TOM7035, a mitochondrial import receptor that is required for 
the MAVS activation of TBK1 and IRF3 and subsequent RNA-sensing 
responses36,37. We previously found that two serine residues buried 
within the Orf9b–TOM70-binding pocket, Orf9b Ser50 and Ser53, 
are phosphorylated during SARS-CoV-2 infection38–40 (Fig. 4c). Here 
we discovered that mutating Ser53 alone or both Ser50 and Ser53 in 

Orf9b to the phosphomimetic glutamic acid residue disrupted the 
co-immunoprecipitation of Orf9b and TOM70 (Fig 4d) and abolished 
Orf9b antagonism of ISG56-luciferase reporter gene activation by 
poly I:C (Fig. 4e), presumably by preventing interaction with TOM70 
(Fig. 4c). In addition, although the S53A mutation compromised protein 
stability (evidenced by immunoblot density, Extended Data Fig. 9), 
it confirmed the contribution of Ser53 to TOM70 binding, because 
S53A immunoprecipitated less TOM70 when normalized for Orf9b 
protein levels (Fig. 4d, Extended Data Fig. 9). Although it is unclear 
which kinases are responsible for Orf9b phosphorylation, our data are 
consistent with Orf9b suppressing signalling downstream of MAVS, by 
targeting TOM70, and also the regulation of Orf9b by host-mediated 
phosphorylation (Fig. 4f). Notably, we detected lower levels of Alpha 
Orf9b Ser53 phosphorylation at 10 hpi, but higher levels at 24 hpi, 
compared to first-wave isolates (Fig. 4g). This suggests that not only 
does Alpha express more Orf9b early in infection, but it may also be 
regulated more effectively by unknown host kinases to manipulate host 
innate immunity, consistent with enhanced host adaptation by Alpha.

Discussion
Our data reveal that changes outside the spike protein—including non-
coding changes—are important in SARS-CoV-2 adaptation through 
influencing sgRNA and protein expression. For Alpha, we discovered 
an upregulation of key viral innate antagonists, Orf9b, Orf6 and N, 
leading to enhanced innate immune evasion (Fig. 5). We propose that 
in vivo, enhanced innate immune antagonism by Alpha contributes to 
its transmission advantage, by enhancing replication through reduc-
ing or delaying early host innate responses, which otherwise protect 
airway cells from infection and limit viral dissemination. This is also 
consistent with reports of prolonged viral shedding of Alpha41,42, sug-
gesting less effective control of replication. Enhanced innate evasion 
has also been linked to transmission of HIV5,6.

The SARS-CoV-2 Delta (B.1.617.2) variant of concern (VOC) contains 
the same noncoding deletion in the N Kozak sequence as Alpha, and the 
recently identified Omicron (B.1.1.529) VOC has a nucleotide substitu-
tion (28271A>T) at the same position, which would be predicted to con-
fer a similar effect on the N Kozak context and on translation initiation 
(Fig. 6). Therefore, we suggest that these changes could represent key 
human adaptations that influence Orf9b levels, which, in turn, would 
dampen the immune response. Of note, the three-nucleotide change 
(28881–28883 GGG->AAC) that confers N* sgRNA synthesis is also pre-
sent in both the Gamma (P.1/B.1.1.28.1) and the Omicron VOCs (Fig. 6). 
However, more work is needed to determine whether N* is involved 
in dsRNA sequestration or innate antagonism. Our data do not rule 
out coding changes in other innate antagonists being important for 
Alpha adaptation to humans, but highlight the need for quantitative 
sequencing of sgRNAs with future VOCs.

It is noteworthy that host phosphorylation regulates Orf9b activity. 
We hypothesize that unphosphorylated Orf9b is maximally active 
early after infection to permit effective innate antagonism and viral 
production, but that as host innate activation begins, Orf9b becomes 
phosphorylated and switched off, which drives subsequent innate 
immune activation. Such an inflammatory switch may have evolved to 
enhance transmission by increasing inflammation at the site of infec-
tion once virus production is high. This switch is enhanced in Alpha, as 
evidenced by a greater differential in Orf9b phosphorylation between 
early and late time points, consistent with a delayed onset of symptoms 
for Alpha, and enhanced inflammatory disease43,44. Understanding 
Orf9b phosphorylation mechanisms will be key to understanding this 
switch. We previously identified MARK1, MARK2 and MARK3 kinases 
as interaction partners of Orf9b35 and ongoing studies will reveal their 
role in infection and the innate response.

The importance of Alpha adaptation to avoid innate immunity 
is also underlined by identification of the first recombinant VOC45.  
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This variant has recombined around the Orf6–Orf7 junction, com-
bining the spike protein adaptations of enhanced entry, furin cleav-
age and antibody escape of the Delta variant46–49 with the enhanced 
innate immune antagonism of the Alpha variant, mediated by increased 
expression of N, N* and Orf9b proteins. Inter-VOC recombination is a 
key development in the pandemic, consistent with the known impor-
tance of recombination in the generation of coronavirus diversity50—in 
this instance linking Alpha and Delta adaptations. Our findings high-
light the importance of studying changes outside the spike protein 
to predict the behaviour of current and future VOCs, and emphasize 
the importance of innate immune evasion in the ongoing process of 
SARS-CoV-2 adaptation to humans.
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Fig. 6 | VOCs present similar nucleotide mutations in N and Orf9b. 
 a, b, Genomic alignment of first-wave isolates and five VOCs showing sections 
of N and its 5′ region, codonized by CodAlignView in the reading frames of N  
(a) and Orf9b (b). The alignment includes TRS for N sgRNA present in all 
genomes; partial TRS for Orf9b sgRNA only in Alpha; TRS for N* sgRNA in 
Gamma and partial TRS in Alpha and Omicron. All mutations in Orf9b are 

colour-coded to indicate conservative (dark green) and radical (red) amino acid 
changes in Orf9b protein. We also highlighted a one-base deletion at 5′ of the N 
start codon in Alpha and Delta and an A to T substitution in Omicron, which 
change their adequate (A in −3, T in +4) Kozak initiation context to the weak  
(T in −3, T in +4) context, and could lead to more leaky scanning translation of 
Orf9b from the N sgRNA.
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Methods

Cell culture
Calu-3 cells were purchased from ATCC (HTB-55) and Caco-2 cells were 
a gift from D. Bailey. Hela-ACE2 cells were a gift from J. E Voss51. HEK293T 
cells were a gift from J. Luban. Cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% heat-inactivated FBS 
(Labtech) and 100 U ml−1 penicillin–streptomycin, with the addition of 
1% sodium pyruvate (Gibco) and 1% Glutamax. All cells were passaged at 
80% confluence and they were frequently monitored for mycoplasma 
contamination. For infections, adherent cells were trypsinized, washed 
once in fresh medium and passed through a 70-µm cell strainer before 
seeding at 0.2 × 106 cells per ml into tissue-culture plates. Calu-3 cells 
were grown to 60–80% confluence before infection as described previ-
ously52. Primary normal human bronchial/tracheal epithelial cells (ATCC 
PCS-300-010) were expanded at the density of 6,000 cells per cm2 on 
a layer of lethally irradiated mouse 3T3-J2 cells53 with keratinocyte cul-
ture medium cFAD (3:1 DMEM (Gibco) to F-12 Nut Mix (Ham) (Gibco)), 
10% FBS (Sigma), 1% penicillin–streptomycin (100×, Sigma), 0.4 µg ml−1 
hydrocortisone (Calbiochem), 5 µg ml−1 insulin, 10 × 10−10 M cholera toxin 
(Sigma) and 2 × 10−9 M triodothyronine (Sigma). Cells were stimulated 
with 10 ng ml−1 hEGF (PeproTech) at day 3 and 5 of culture. Sub-confluent 
cultures were trypsinized with 0.25% Trypsin-EDTA (Sigma) and seeded at 
0.05 × 106 cells into 0.4-µm transparent 12-well transwell inserts (Greiner) 
in CFAD. When cells reached confluence, basal medium was replaced with 
complete PneumaCult-ALI medium (StemCell) and apical medium was 
removed completely. Cells were cultured at the air–liquid interface for 
21–24 days and basal medium was replaced every 2–3 days.

Viruses
SARS-CoV-2 isolate VIC was provided by NISBC, and IC19, Alpha, Alpha (B) 
and Alpha (C) have been described previously54; full isolate names and 
GISAID references are listed below. Viruses were propagated by infecting 
Caco-2 cells at MOI 0.01 TCID50 per cell, in culture medium at 37 °C. Virus 
was collected at 72 hpi and clarified by centrifugation at 4,000 rpm for 
15 min at 4 °C to remove any cellular debris. We have previously shown that 
infection of Caco-2 cells in these conditions does not result in activation of 
the innate response or cytokine carryover52. Virus stocks were aliquoted 
and stored at −80 °C. Virus stocks were quantified by extracting RNA from 
100 µl of supernatant with 1 µg carrier RNA using Qiagen RNeasy clean-up 
RNA protocol, before measuring viral E RNA copies per ml by RT–qPCR as 
described below. VIC virus refers to isolate BetaCoV/Australia/VIC01/2020 
and PANGO lineage B. IC19 virus refers to isolate hCoV-19/England/
IC19/2020, PANGO lineage B.1.13 and GISAID accession ID EPI_ISL_475572. 
Alpha virus refers to isolate hCoV-19/England/204690005/2020, PANGO 
lineage Alpha and GISAID accession ID EPI_ISL_693401. Alpha (B) virus 
refers to isolate hCoV-19/England/205090256/2020, PANGO lineage 
Alpha and GISAID accession ID EPI_ISL_747517. Alpha (C) refers to isolate 
hCoV-19/England/205080610/2020, PANGO lineage Alpha and GISAID 
accession ID EPI_ISL_723001.

Viral sequencing and assembly
Viral stocks were sequenced to confirm each stock was the same at 
consensus level to the original isolate. Sequencing was performed using 
a multiplex PCR-based approach using the ARTIC LoCost protocol and 
v3 primer set as described55,56. Amplicon libraries were sequenced using 
MinION flow cells v.9.4.1 (Oxford Nanopore Technologies). Genomes 
were assembled using reference-based assembly to the MN908947.3 
sequence and the ARTIC bioinformatic pipeline using 20× minimum 
coverage cut-off for any region of the genome and 50.1% cut-off for 
calling single-nucleotide polymorphisms.

Infection of human cells
For infections, MOIs were calculated using E copies per cell quanti-
fied by RT–qPCR. Cells were inoculated with diluted virus stocks for 

2 h at 37 °C, subsequently washed once with PBS and fresh culture 
medium was added. At the indicated time points, cells were col-
lected for analysis. For primary HAE infections, virus was added to 
the apical side for 2 h at 37 °C. Supernatant was then removed and 
cells were washed twice with PBS. All liquid was removed from the 
apical side and basal medium was replaced with fresh Pneumacult 
ALI medium for the duration of the experiment. Virus release was 
measured at the indicated time points by extracting viral RNA from 
apical PBS washes.

Virus quantification by TCID50
Virus titres were determined by TCID50 in Hela-ACE2 cells. In brief, 
96-well plates were seeded at 5 × 103 cells per well in 100 µl. Eight 10-fold 
serial dilutions of each virus stock or supernatant were prepared and 
50 µl added to four replicate wells. Cytopathic effect (CPE) was scored at 
2–3 days after infection. TCID50 per ml was calculated using the Reed & 
Muench method, and an Excel spreadsheet created by B. D. Lindenbach 
was used for calculating TCID50 per ml values57.

RT–qPCR of viral proteins in infected cells
RNA was extracted using RNeasy Micro Kits (Qiagen) and residual 
genomic DNA was removed from RNA samples by on-column DNAse I 
treatment (Qiagen). Both steps were performed according to the manu-
facturer’s instructions. cDNA was synthesized using SuperScript III with 
random hexamer primers (Invitrogen). RT–qPCR was performed using 
Fast SYBR Green Master Mix (Thermo Fisher Scientific) for host gene 
expression and subgenomic RNA expression or TaqMan Master mix 
(Thermo Fisher Scientific) for viral RNA quantification, and reactions 
were performed on the QuantStudio 5 Real-Time PCR systems (Thermo 
Fisher Scientific). Viral E RNA copies were determined by a standard 
curve, using primers and a Taqman probe specific for E, as described 
elsewhere58 and below. The primers used for quantification of viral 
subgenomic RNA are listed below; the same forward primer against 
the leader sequence was used for all reactions, and is as described by 
the Artic Network31,55. Using the 2−ΔΔCt method, sgRNA levels were nor-
malized to GAPDH to account for differences in RNA loading and then 
normalized to the level of Orf1a gRNA quantified in the same way for 
each variant to account for differences in the level of infection. Host 
gene expression was determined using the 2−ΔΔCt method and normal-
ized to GAPDH expression using the primers listed below.

The following primers and probes were used:
SARS-CoV-2 E_Sarbeco_Fwd: 5′-ACAGGTACGTTAATAGTTAATAGCGT

-3′; SARS-CoV-2 E_Sarbeco_Probe1: 5′-FAM-ACACTAGCCATCCTTAC 
TGCGCTTCG-TAMRA-3′; SARS-CoV-2 E_Sarbeco_Rev: 5′-ATATTGCAGC 
AGTACGCACACA-3′; 5′_Leader_Fwd: ACCAACCAACTTTCGATCTC 
TTGT; Orf1a_Rev: CCTCCACGGAGTCTCCAAAG; Orf6_sg_Rev: 
GAGGTTTATGATGTAATCAAGATTC; Orf9b_N_sgRNA_Rev: CACTG 
CGTTCTCCATTCTGG; S_sgRNA_Rev: GTCAGGGTAATAAACACCACGTG; 
 Orf3a_sgRNA_Rev: GCAGTAGCGCGAACAAAATCTG; CCL2: Fwd 5′-CAGC 
CAGATGCAATCAATGCC-3′; Rev 5′-TGGAATCCTGAACCCACTTCT-3′; 
CCL3: Fwd 5′-CAGCCAGATGCAATCAATGCC-3′; Rev 5′-TGGAAT 
CCTGAACCCACTTCT-3′; CXCL10: Fwd 5′-TGGCATTCAAGGAGT 
ACCTC-3′; Rev 5′-TTGTAGCAATGATCTCAACACG-3′; GAPDH: Fwd 
5′-GGGAAACTGTGGCGTGAT-3′; Rev 5′-GGAGGAGTGGGTGTCG 
CTGTT-3′; IFIT1: Fwd 5′-CCTCCTTGGGTTCGTCTACA-3′; Rev 5′-GGCTGA 
TATCTGGGTGCCTA-3′; IFIT2: Fwd 5′-CAGCTGAGAATTGCACTGCAA-3′; 
Rev 5′-CGTAGGCTGCTCTCCAAGGA-3′; IFNB1: Fwd 5′-AGGACAGGAT 
GAACTTTGAC-3′; Rev 5′-TGATAGACATTGCCAGGAG-3′; IFNL1: Fwd 5′- 
CACAT TGGCAGGT TCA A ATCTCT-3′;  Rev 5′-CCAGCGGAC 
TCCTTTTTGG-3′; IFNL3: Fwd 5′-TAAGAGGGCCAAAGATGCCTT-3′; 
Rev 5′-CTGGTCCAAGACATCCCCC-3′; IL-6: Fwd 5′-AAATTCGGT 
ACATCCTCGACG-3′; Rev 5′-GGAAGGTTCAGGTTGTTTTCT-3′; IL-8: 
Fwd 5′-ATGACTTCCAAGCTGGCCGTGGCT-3′; Rev 5′-TCTCAGC 
CCTCTTCAAAAACTTCTC-3′; MX1: Fwd 5′-ATCCTGGGATTT 
TGGGGCTT-3′; Rev 5′-CCGCTTGTCGCTGGTGTCG-3′; RSAD2: Fwd 



5′-CTGTCCGCTGGAAAGTG-3′; Rev 5′-GCTTCTTCTACACCAACATCC-3′; 
TNF: Fwd 5′-AGCCTCTTCTCCTTCCTGATCGTG-3′; Rev 5′-GGCTGA 
TTAGAGAGAGGTCCCTGG-3′.

Negative-sense-specific RT–qPCR
A negative-sense-strand-specific assay for the SARS-CoV-2 E gene was 
designed and established. A standard reference for the E gene was gener-
ated using fragment 11 (genome positions 25,595–28,779)59 provided by V.  
Thiel. The strand-specific RNA standards were synthesized by in vitro 
transcription using T7 RNA polymerase, in which each RNA template is 
flanked with a specific non-viral sequence tag. Reverse transcription was 
performed using 1010 copies of either positive- or negative-strand RNA 
with or without addition of excess copies (107) of the opposite strand to 
test the assay specificity. Negative-sense-specific qPCR reactions were 
performed using cDNA templates of the negative-strand templates 
serially diluted by 10-fold from 107 to 102. The qPCR reactions were 
conducted as follows: 95 °C for 2 min, followed by 45 cycles of 95 °C for 
10 s and 60 °C for 60 s on a ViiA 7 real time PCR machine (Applied Bio-
systems). Results were analysed using the ViiA 7 software v.1.1 (Applied 
Biosystems). To evaluate the specificity of the assay, the qPCR was 
performed using the primers of the opposite strand side-by-side or in 
the presence of excess copies of the opposite strand.

Western blot for viral proteins in infected cells
For detection of N, Orf6, spike and tubulin expression, whole-cell protein 
lysates were extracted with RIPA buffer, and then separated by SDS–PAGE, 
transferred onto nitrocellulose and blocked in PBS with 0.05% Tween 20 
and 5% skimmed milk. Membranes were probed with rabbit-anti-SARS 
spike (Invitrogen, PA1-411-1165, 0.5 µg ml−1), rabbit-anti-Orf6 (Abnova, 
PAB31757, 4 µg ml−1), Cr3009 SARS-CoV-2 cross-reactive human-anti-N 
antibody (1 µg ml−1) (a gift from L. McCoy) and mouse-anti-α-tubulin 
(SIGMA, clone DM1A), followed by IRDye 800CW or 680RD second-
ary antibodies (Abcam, goat anti-rabbit, goat anti-mouse or goat 
anti-human). Blots were imaged using an Odyssey Infrared Imager 
(LI-COR Biosciences) and analysed with Image Studio Lite software.

Flow cytometry of infected cells
For flow cytometry analysis, adherent cells were recovered by trypsiniza-
tion and washed in PBS with 2 mM EDTA (PBS/EDTA). Cells were stained 
with fixable Zombie UV Live/Dead dye (BioLegend) for 6 min at room 
temperature. Excess stain was quenched with FBS-complemented DMEM. 
Unbound antibody was washed off thoroughly and cells were fixed in 4% 
PFA before intracellular staining. For intracellular detection of SARS-CoV-2 
nucleoprotein, cells were permeabilized for 15 min with intracellular stain-
ing perm wash buffer (BioLegend). Cells were then incubated with 1 µg ml−1 
CR3009 SARS-CoV-2 cross-reactive antibody (a gift from L. McCoy) in 
permeabilization buffer for 30 min at room temperature, washed once 
and incubated with secondary Alexa Fluor 488-donkey-anti-human IgG 
( Jackson Labs). All samples were acquired on a BD Fortessa X20 using 
BD FACSDiva software. Data were analysed using FlowJo v.10 (Tree Star).

Innate immune sensing assay
HEK293T cells were seeded in 48-well plates (5 × 104 cells per well) the day 
before transfection. For viral protein expression, cells were transfected 
with 100 ng of empty vector or vector encoding Orf9b, Orf9b(S50E/S53E),  
VIC N or Alpha N (pLVX-EF1alpha-IRES-Puro backbone), alongside 10 ng 
of ISG56-firefly luciferase reporter plasmid (provided by A. Bowie) and 
2.5 ng of a Renilla luciferase under control of a thymidine kinase pro-
moter (Promega), as a control for transfection. Transfections were per-
formed with 0.75 µl fugene (Promega) and 25 µl Optimem (Gibco) per 
well. Cells were stimulated 24 h after plasmid transfection with the poly I: 
C (Invivogen), concentrations stated in the figures (final 250 µl volume 
per well), using Lipofectamine 2000 (Invitrogen) at a 3:1 ratio and 25 µl 
optimem. Cells were lysed with 100 µl passive lysis buffer (Promega) 24 h 
after stimulation, 30 µl of cell lysis was transferred to a white 96-well 

assay plate and firefly and renilla activities were measured using the 
Dual-Glo Luciferase Assay System (Promega), reading luminescence 
on a GloMax -Multi Detection System (Promega). For each condition, 
data were normalized by dividing the firefly luciferase activity by renilla 
luciferase activity and then compared to the empty-vector-transfected 
mock-treated control to generate a fold induction.

Immunofluorescence staining and microscopy imaging
Cells were fixed using 4% PFA-PBS for 1h and subsequently washed with 
PBS. A blocking step was carried out for 1 h at room temperature with 
10% goat serum/1% BSA in PBS. N protein detection was performed by 
primary incubation with human anti-N antibody (Cr3009, 1 µg ml−1) 
for 18 h, and washing thoroughly in PBS. Where appropriate, N protein 
staining was followed by incubation with mouse anti-IRF3 (sc-33641, 
Santa Cruz) for 1 h. dsRNA was detected by primary incubation with 
mouse anti-dsRNA (MABE1134, Millipore) for 18 h. Primary antibodies 
were detected by labelling with secondary anti-human AlexaFluor-568 
and anti-mouse AlexaFluor 488 conjugates ( Jackson Immuno Research) 
for 1 h. All cells were then labelled with either HCS CellMask Deep-
Red (H32721, Thermo Fisher Scientific) or Phalloidin-AlexaFluor 
568 (Thermo Fisher Scientific) and Hoechst33342 (H3570, Thermo 
Fisher Scientific). Images were acquired using the WiScan Hermes 
High-Content Imaging System (IDEA Bio-Medical) at magnification 
10×/0.4NA or 40×/0.75NA. Four-channel automated acquisition was 
carried out sequentially (DAPI/TRITC, GFP/Cy5). For the nuclear trans-
location assay, images were acquired at 40× magnification, 35% density 
and 30% well area, resulting in 102 fields of view (FOVs) per well.  
For dsRNA quantification, images were acquired at 10× magnification, 
100% density and 80% well area, resulting in 47 FOVs per well.

Image analysis of immunofluorescence experiments
All image channels were pre-processed using a batch rolling ball back-
ground correction in the Fiji ImageJ software package60 before 514 quan-
tification. For nuclear translocation analysis, automated image analysis 
was carried out using CellProfiler61. First, nuclei were identified as pri-
mary objects by segmentation of the Hoechst33342 channel. Cells were 
identified as secondary objects by nucleus-dependent segmentation 
of the CellMask channel. Cell cytoplasm was segmented by subtracting 
the nuclear objects mask from the cell masks. Nucleocapsid-positive 
cells were identified by identifying the nucleocapsid signal as primary 
objects followed by generation of a nucleocapsid mask that was then 
applied to filter the segmented cell population. Intensity properties 
were calculated for the nuclei, cytoplasm and cell object populations. 
Nuclear:cytoplasmic ratio was calculated as part of the pipeline by 
dividing the integrated intensity of the nuclei object by the integrated 
intensity of corresponding cytoplasm object. Plotted are 1,000 ran-
domly sampled cells selected for each condition using the ‘Pandas’ 
data processing package in Python 3 with a filter of 0.1> = <5. dsRNA 
was quantified using the Athena software (IDEA Bio-Medical) using 
the ‘Intracellular Granules’ module. In short, dsRNA granules within 
segmented cells were thresholded on the basis of the background inten-
sity of the mock-infected population. Infected cell populations were 
identified as having a minimum of two segmented dsRNA objects. For 
dsRNA-positive cells, intensity and area properties were calculated.

Co-immunoprecipitation of TOM70 with Orf9b
HEK293T cells were transfected with the indicated mammalian expres-
sion plasmids using Lipofectamine 2000 (Invitrogen). Twenty-four 
hours after transfection, cells were collected and lysed in NP-40 lysis 
buffer (0.5% Nonidet P 40 Substitute (NP-40; Fluka Analytical), 50 mM 
Tris-HCl, pH 7.4 at 4 °C, 150 mM NaCl and 1 mM EDTA) supplemented 
with cOmplete mini EDTA-free protease and PhosSTOP phosphatase 
inhibitor cocktails (Roche). Clarified cell lysates were incubated with 
streptactin sepharose beads (IBA) for 2 h at 4 °C, followed by five washes 
with NP-40 lysis buffer. Protein complexes were eluted in the SDS 
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loading buffer and were analysed by western blotting with the indicated 
antibodies. Antibodies: rabbit anti–Strep-tag II (Abcam ab232586); rab-
bit anti-β-actin (Cell Signaling Technology 4967); monoclonal mouse 
anti-Flag M2 antibody (Sigma Aldrich, F1804); and polyclonal rabbit 
anti-Flag antibody (Sigma Aldrich, F7425).

Cell lysis and digestion for proteomics
Following the infection time course, cells in six-well plates were washed 
quickly three times in ice cold 1× PBS. Next, cells were lysed in 250 µl per 
well of 6M guanidine hydrochloride (Sigma) in 100 mM Tris-HCl (pH 8.0) 
and scraped with a cell spatula for complete collection of the sample. 
Samples were then boiled for 5 min at 95 °C to inactivate proteases, 
phosphatases and virus. Samples were frozen at −80 °C and shipped to 
UCSF on dry ice. On arrival, samples were thawed, an additional 250 µl 
per sample of 6M guanidine hydrochloride buffer was added, and sam-
ples were sonicated for 3× for 10 s at 20% amplitude. Insoluble material 
was pelleted by spinning samples at maximum speed for 10 min. Super-
natant was transferred to a new protein lo-bind tube and protein was 
quantified using a Bradford assay. The entire sample (approximately 
600 µg of total protein) was subsequently processed for reduction and 
alkylation using a 1:10 sample volume of tris-(2-carboxyethyl) (TCEP) 
(10 mM final) and 2-chloroacetamide (4.4 mM final) for 5 min at 45 °C 
with shaking. Before protein digestion, the 6M guanidine hydrochlo-
ride was diluted 1:6 with 100 mM Tris-HCl pH8 to enable the activity of 
trypsin and LysC proteolytic enzymes, which were subsequently added 
at a 1:75 (wt/wt) enzyme/substrate ratio and placed in a 37 °C water bath 
for 16–20 h. After digestion, 10% trifluoroacetic acid (TFA) was added 
to each sample to a final pH of around 2. Samples were desalted under 
vacuum using 50 mg Sep Pak tC18 cartridges (Waters). Each cartridge 
was activated with 1 ml 80% acetonitrile (ACN)/0.1% TFA, then equili-
brated with 3 × 1 ml of 0.1% TFA. After sample loading, cartridges were 
washed with 4 × 1 ml of 0.1% TFA, and samples were eluted with 2 × 0.4 ml 
50% ACN/0.25% formic acid (FA). Sixty micrograms of each sample was 
kept for protein abundance measurements, and the remainder was 
used for phosphopeptide enrichment. Samples were dried by vacuum 
centrifugation. The same sample was used for abundance proteomics 
and phosphoproteomics analysis.

Phosphopeptide enrichment for proteomics
IMAC beads (Ni-NTA from Qiagen) were prepared by washing 3× with 
HPLC water, incubating for 30 min with 50 mM EDTA pH 8.0 to strip 
the Ni, washing 3× with HPLC water, incubating with 50 mM FeCl3 dis-
solved in 10% TFA for 30 min at room temperature with shaking, wash-
ing 3× with and resuspending in 0.1% TFA in 80% ACN. Peptides were 
enriched for phosphorylated peptides using a King Flisher Flex. For a 
detailed protocol, please contact the authors. Phosphorylated peptides 
were found to make up more than 90% of every sample, indicating 
high-quality enrichment.

Mass spectrometry data acquisition for proteomics
Digested samples were analysed on an Orbitrap Exploris 480 mass 
spectrometry system (Thermo Fisher Scientific) equipped with an Easy 
nLC 1200 ultra-high pressure liquid chromatography system (Thermo 
Fisher Scientific) interfaced via a Nanospray Flex nanoelectrospray 
source. For all analyses, samples were injected on a C18 reverse phase 
column (25 cm × 75 µm packed with ReprosilPur 1.9-µm particles). 
Mobile phase A consisted of 0.1% FA, and mobile phase B consisted 
of 0.1% FA/80% ACN. Peptides were separated by an organic gradient 
from 5% to 30% mobile phase B over 112 min followed by an increase to 
58% B over 12 min, then held at 90% B for 16 min at a flow rate of 350 nl 
min−1. Analytical columns were equilibrated with 6 µl of mobile phase A.  
To build a spectral library, one sample from each set of biological rep-
licates was acquired in a data-dependent manner. Data-dependent 
analysis (DDA) was performed by acquiring a full scan over a m/z range 
of 400–1,000 in the Orbitrap at 60,000 resolving power (200 m/z) 

with a normalized AGC target of 300%, an RF lens setting of 40% and 
a maximum ion injection time of 60 ms. Dynamic exclusion was set 
to 60 s, with a 10-ppm exclusion width setting. Peptides with charge 
states 2–6 were selected for MS/MS interrogation using higher-energy 
collisional dissociation (HCD), with 20 MS/MS scans per cycle. For 
phosphopeptide-enriched samples, MS/MS scans were analysed in 
the Orbitrap using isolation width of 1.3 m/z, normalized HCD colli-
sion energy of 30% and normalized AGC of 200% at a resolving power 
of 30,000 with a 54-ms maximum ion injection time. Similar settings 
were used for DDA of samples used to determine protein abundance, 
with an MS/MS resolving power of 15,000 and a 22-ms maximum ion 
injection time. Data-independent analysis (DIA) was performed on all 
samples. An MS scan at 60,000 resolving power over a scan range of 
390–1010 m/z, a normalized AGC target of 300%, an RF lens setting of 
40% and a maximum injection time of 60 ms was acquired, followed 
by DIA scans using 8 m/z isolation windows over 400–1,000 m/z at a 
normalized HCD collision energy of 27%. Loop control was set to All. 
For phosphopeptide-enriched samples, data were collected using a 
resolving power of 30,000 and a maximum ion injection time of 54 ms. 
Protein abundance samples were collected using a resolving power of 
15,000 and a maximum ion injection time of 22 ms.

Spectral library generation and raw data processing for 
proteomics
Raw mass spectrometry data from each DDA dataset were used to build 
separate libraries for DIA searches using the Pulsar search engine inte-
grated into Spectronaut v. 14.10.201222.47784 by searching against a 
database of Uniprot Homo sapiens sequences (downloaded 28 February 
2020) and 29 SARS-CoV-2 protein sequences translated from genomic 
sequence downloaded from GISAID (accession EPI_ISL_406596, 
downloaded 5 March 2020) including mutated tryptic peptides cor-
responding to the variants assessed in this study. For protein abundance 
samples, data were searched using the default Biognosys (BGS) settings, 
variable modification of methionine oxidation, static modification of 
carbamidomethyl cysteine, and filtering to a final 1% false discovery rate 
(FDR) at the peptide, peptide spectrum match (PSM) and protein level. 
For phosphopeptide-enriched samples, BGS settings were modified 
to include phosphorylation of S, T and Y as a variable modification. 
The generated search libraries were used to search the DIA data. For 
protein abundance samples, default BGS settings were used, with no 
data normalization performed. For phosphopeptide-enriched samples, 
the significant post-translational modification (PTM) default settings 
were used, with no data normalization performed, and the DIA-specific 
PTM site localization score in Spectronaut was applied.

Mass spectrometry data pre-processing
Quantitative analysis was performed in the R statistical programming 
language (v.3.6.1, 2019-07-05). Initial quality control analyses, including 
inter-run clusterings, correlations, principal component analysis (PCA), 
peptide and protein counts and intensities were completed with the R 
package artMS (v. 1.8.1). On the basis of obvious outliers in intensities, 
correlations and clusterings in PCA analysis, one run was discarded from 
the protein phosphorylation dataset (IC19 24 h replicate 2). Statistical 
analysis of phosphorylation and protein abundance changes between 
mock and infected runs, as well as between infected runs from different 
variants (for example, Kent versus VIC) were computed using peptide 
ion fragment data output from Spectronaut and processed using artMS. 
Specifically, quantifications of phosphorylation based on peptide ions 
were processed using artMS as a wrapper around MSstats, via functions 
artMS::doSiteConversion and artMS::artmsQuantification with default 
settings. All peptides containing the same set of phosphorylated sites 
were grouped and quantified together into phosphorylation site groups. 
For both phosphopeptide and protein abundance MSstats pipelines, 
MSstats performs normalization by median equalization, imputation 
of missing values and median smoothing to combine intensities for 



multiple peptide ions or fragments into a single intensity for their pro-
tein or phosphorylation site group, and statistical tests of differences in 
intensity between infected and control time points. When not explicitly 
indicated, we used defaults for MSstats for adjusted P values, even in 
cases of n = 2. By default, MSstats uses the Student’s t-test for P value 
calculation and the Benjamini–Hochberg method of FDR estimation to 
adjust P values. After quality control data filtering, PCA (Extended Data 
Fig. 3b) and Pearson’s correlation (Extended Data Fig. 3c) confirmed 
strong correlation between biological replicates, time points and condi-
tions. On average, we quantified 33,000–40,000 peptides mapping to 
3,600–4,000 proteins for protein abundance (Extended Data Fig. 3e), 
and 22,000–30,000 phosphorylated peptides mapping to 3,200–3,800 
proteins (Extended Data Fig. 3f). On average we find that biological rep-
licates had 61%–82% peptide detection overlap for protein abundance 
and 62%–93% phosphorylation site overlap (Extended Data Fig. 3g).

Refining and filtering phosphorylation and abundance data
MSstats phosphorylation results had to be further simplified to effects 
at single sites. The results of artMS and MSstats are fold changes of 
specific phosphorylation site groups detected within peptides, so 
one phosphorylation site can have multiple measurements if it occurs 
in different phosphorylation site groups. This complex dataset was 
reduced to a single fold change per site by choosing the fold change 
with the lowest P value, favouring those detected in both conditions 
being compared (that is, non-infinite log2-transformed fold change 
values). This single-site dataset was used as the input for kinase activ-
ity analysis and enrichment analysis. Protein abundance data were 
similarly simplified when a single peptide was mapped to multiple 
proteins; that is, by choosing the fold change with the lowest P value, 
favouring those detected in both conditions being compared (see Sup-
plementary Table 1 for final refined data).

Targeted proteomics for Orf9b phosphorylation
A spectral library was constructed from the DIA data to obtain 
Orf9b-specific transitions. We used four proteotypic Orf9b peptides 
to unbiasedly assess Orf9 abundance, and for Orf9b phosphorylation 
we included both Ser50 (LGS(+80)PLSLNMAR) and Ser53 (LGSPLS(+80)
LNMAR) and two phosphosites from heat shock proteins as internal 
controls for normalization and to remove any bias due to the IMAC 
enrichment. All samples were acquired on a Orbitrap Tribrid Lumos 
(Thermo Fisher Scientific) connected to a nanoLC easy 1200 (Thermo 
Fisher Scientific). For the whole-cell lysate samples, the peptides were 
separated in 50 min at 0.3 µl min−1 with the following gradient: 2% B 
(0.1% FA in MeCN) to 33% B for 40 min, followed by another linear gradi-
ent from 33% to 90% of B (1 min) and an isocratic wash at 90% was per-
formed for kept for 10 min. Peptides were injected through self-packed 
columns (25 cm) packed with 1.9-µm beads (ReproSil, Waters).  
The column tip was kept at 2 kV and 275 °C. The mass spectrometer was 
operated in positive mode (OT/OT) and each MS1 scan was performed 
with a resolution of 120,000 at 400 m/z between 350 and 1,100 m/z. 
Peptide ions were accumulated for 50 ms or until the ion population 
reached an AGC of 5 × 105. Orf9b peptides (n = 4) within the inclusion 
list were fragmented using stepped HCD with a normalized energy of 
33 and a spread of ±3%. For precursor ion selection an isolation win-
dow of 1.4 Da was used and the fragments after HCD were analysed in 
the Orbitrap at 60,000 resolution (400 m/z). For targeted analysis of 
Orf9b phosphorylation we used the enriched samples with identical LC, 
source and MS configuration. The samples were separated in 40 min at 
0.3 µl min−1 to concentrate the analytes in narrower peaks and increase 
the signal. The gradient used was from 2% B to 25% in 30 min, then B 
was increased to 90% in 10 min and the column was washed for 10 min.  
The mass spectrometer was operated in positive mode and targeted acqui-
sition (PRM). Specifically, one MS1 scan (120,000 resolution at 400 m/z, 
1 × 106 AGC, 256 ms IT and mass range 500–800 m/z) was followed by 
four unscheduled targeted scans per cycle. An isolation width of 1.6 Da 

was used per precursor and isolated peptides were fragmented using 
stepped HCD (33% ±3%). Each MS2 was acquired with a resolution of 
60,000 and ions were accumulated for 118 ms or until reaching an AGC 
of 5 × 105. After acquisition, each experiment was analysed separately 
in Skyline. Under transition settings the MS1 filter was set to count and 
three precursors were used (10 ppm mass error). The MS2 filtering was 
set to Orbitrap and the resolution was set to 60,000 (400 m/z). For the 
phosphorylation site experiments both b/y and a/z ions were used, 
whereas for the abundance experiments only y ions were included. 
Peaks were manually inspected for integration and boundaries refined 
if necessary. For Orf9b Ser50/Ser53 the presence of the proline in the 
peptide sequence resulted in a split chromatographic peak between 
the two isomers and the second peak was used for integration for all 
samples. For both phosphoisomers, only phophosite-specific ions 
were used for quantification (that is, y5-y9/b6-b10 for Ser53 and y9-y5/
b2-b6 for Ser50). After export of the transition-level intensities, frag-
ments having an S/N < 10 (for the abundance data) and an S/N < 2 (for 
the phosphorylation data) were removed.

RNA quality control
Thirty total RNA samples were submitted for RNA quality control. Total 
RNA samples were run on the Agilent Bioanalyzer, using the Agilent RNA 
6000 Nano Kit. Three samples were excluded from library prepara-
tion owing to severe degradation and/or low amounts of RNA present.

Library preparation for RNA-seq
Twenty-seven total RNA samples were processed using the Illumina 
Stranded Total RNA w/Ribo-Zero Plus assay. One-hundred nanograms 
of each total RNA sample (quantitated on the Invitrogen Qubit 2.0 Fluo-
rometer using the Qubit RNA HS Assay Kit) was subjected to ribosomal 
RNA (rRNA) depletion through an enzymatic process, which includes 
reduction of human mitochondrial and cytoplasmic rRNAs. After rRNA 
depletion and purification, RNA was primed with random hexamers for 
first-strand cDNA synthesis, then second-strand cDNA synthesis. Dur-
ing second-strand cDNA synthesis, deoxyuridine triphosphate (dUTP) 
was incorporated in place of deoxythymidine triphosphate (dTTP) to 
achieve strand specificity in a subsequent amplification step. Next, 
adenine (A) nucleotide was added to the 3′ ends of the blunt fragments 
to prevent ends from ligating to each other. The A-tail also provides a 
complementary overhang to the thymine (T) nucleotide on the 3′ end 
of the adapter. During adapter ligation and amplification, indexes and 
adapters were added to both ends of the fragments, resulting in 10-bp, 
dual-indexed libraries, ready for cluster generation and sequencing. 
The second strand was quenched during amplification owing to the 
incorporation of dUTP during second-strand cDNA synthesis, allowing 
for only the antisense strand to be sequenced in read 1. Thirteen cycles 
of amplification were performed.

Library quality control and quantification for RNA-seq
Each library was run on the Agilent Bioanalyzer, using the Agilent High 
Sensitivity DNA Kit, to assess the size distribution of the libraries. They 
were quantitated by qPCR using a Roche KAPA Library Quantification 
Complete Kit (ABI Prism), and run on the Applied Biosystems Quant-
Studio 5 Real-Time PCR System.

Sequencing for RNA-seq
Each library was normalized to 10 nM, then pooled equimolarly for a 
final concentration of 10 nM. Pooled libraries were submitted to the 
University of California San Francisco Center for Advanced Technology 
(UCSF CAT) for one lane of sequencing on the Illumina NovaSeq 6000 
S4 flow cell. The run parameter was 100×10×10×100 bp.

Viral RNA quantification from the RNA-seq dataset
Viral RNA was characterized by the junction of the leader with the down-
stream subgenomic sequence. Reads containing possible junctions 
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were extracted by filtering for exact matches to the 3′ end of the leader 
sequence ‘CTTTCGATCTCTTGTAGATCTGTTCTC’ using the bbduk 
program in the BBTools package (BBTools - Bushnell B. - sourceforge.
net/projects/bbmap/). This subset of leader-containing reads was 
left-trimmed to remove the leader, also using bbduk. The filtered and 
trimmed reads were matched against SARS2 genomic sequence with 
the bbmap program from BBtools with settings (maxindel = 100, strict-
maxindel = t, local = t). The leftmost mapped position in the reference 
was used as the junction site. All strains were mapped against a refer-
ence SARS-Cov-2 sequence (accession NC_045512.2), except Alpha was 
mapped against an Alpha-specific sequence (GISAID: EPI_ISL_693401) 
and the resultant positions adjusted to the reference on the basis of a 
global alignment. Junction sites were labelled on the basis of locations 
of TRS sequences, or other known sites with a ± 5 base pair window as 
follows (genomic = 67, S = 21,553, orf3 = 25,382, E = 26,237, M = 26,470, 
orf6 = 27,041, orf7 = 27,385, orf8 = 27,885, N = 28,257, orf9b = 28,280, 
N* = 28,878). Junction reads were counted per position, a pseudocount 
of 0.5 was added at all positions, counts between replicates and strains 
were normalized to have equal ‘genomic’ reads and counts were aver-
aged across replicate samples. Means and standard errors of counts 
averaged across replicates were subsequently calculated. To calculate 
the ratios between Alpha and VIC, counts averaged across replicates 
from Alpha were divided in a condition and time-point-matched man-
ner by values from VIC or IC19. The standard error (s.e.) of the ratios 
was calculated as (A/B) × sqrt((s.e.A/A)² + (s.e.B/B)²).

Host RNA analysis
All reads were mapped to the human host genome (ensembl 101) using 
HISAT2 aligner62. Host transcript abundances were estimated using human 
annotations (ensembl 101) using StringTie63. Differential gene expression 
was calculated on the basis of read counts extracted for each protein-coding 
gene using featureCount and significance was determined by the DESeq2 
R package64. On average, we quantified 15,000–16,000 mRNA transcripts 
above background levels (Extended Data Fig. 3d).

Viral protein quantification
Median normalized peptide feature (peptides with unique charge states 
and elution times) intensities (on a linear scale) were refined to the sub-
set that mapped to SARS-CoV-2 protein sequences using Spectronaut 
(see Methods). Peptide features found in the same biological replicate 
(that is, owing to different elution times, for example) were averaged. 
Next, for each time point separately, we selected the subset of peptides 
that were consistently detected in all biological replicates across all 
conditions (no missing values), isolating the set of peptides with the 
best comparative potential. We then summed all peptides mapping to 
each viral protein for each time point separately, which resulted in our 
final protein intensity per viral protein per time point per biological 
replicate. Resulting protein intensities were averaged across biologi-
cal replicates and standard errors were calculated for each condition.  
To calculate the ratios between Alpha and VIC, averaged intensities for 
Alpha were divided in a condition and time-point-matched manner 
by values from VIC or IC19. The standard error (s.e.) of the ratios was 
calculated as (A/B) × sqrt((s.e.A/A)² + (s.e.B/B)²).

Kinase activity analysis of phosphoproteomics data
Kinase activities were estimated using known kinase–substrate 
relationships in the literature65. The resource comprises a compre-
hensive collection of phosphosite annotations of direct substrates 
of kinases obtained from six databases—PhosphoSitePlus, SIGNOR, 
HPRD, NCI-PID, Reactome and the BEL Large Corpus—and using three 
text-mining tools: REACH, Sparser and RLIMS-P. Kinase activities were 
inferred as a z-score calculated using the mean log2FC of phosphoryl-
ated substrates for each kinase in terms of standard error (z = (M − u)/
s.e.), comparing fold changes in phosphosite measurements of the 
known substrates against the overall distribution of fold changes across 

the sample. A P value was also calculated using this approach using a 
two-tailed z-test method. This statistical approach has been previously 
shown to perform well at estimating kinase activities27,66. We collected 
substrate annotations for 400 kinases with available data. Kinase activi-
ties for kinases with 3 or more measured substrates were considered, 
leaving us with 191 kinases with activity estimates in at least 1 or more 
infection time points. Kinases were clustered on the basis of pathway 
similarity by constructing a kinase tree based on co-membership in 
pathway terms (from the CP (‘Canonical Pathways’) category of the 
Molecular Signature Database (MSigDBv7.1)).

Pathway enrichment analysis
The pathway gene sets were obtained from the CP (that is, ‘Canonical 
Pathways’) category of MSigDBv7.1 (ref. 24). We used the same approach 
for this pathway enrichment analysis as we used for the kinase activity  
analysis. Namely, we inferred pathway regulation as z-score and an 
FDR-corrected (0.05) P value calculated from a z-test (two-tailed) comparing  
fold changes in phosphosite, protein abundance or RNA abundance 
measurements of genes designated for a particular pathway against the 
overall distribution of fold changes in the sample. All resulting terms 
were further refined to select non-redundant terms by first constructing 
a pathway term tree based on distances (1-Jaccard similarity coefficients 
of shared genes in MSigDB) between the terms. The pathway term tree 
was cut at a specific level (h = 0.8) to identify clusters of non-redundant 
gene sets. For results with multiple significant terms belonging to the 
same cluster, we selected the most significant term (that is, lowest 
adjusted P value). Next, we filtered out terms that were not significant 
(FDR-corrected P value < 0.05) for at least one contrast. Terms were 
ranked according to either the absolute value z-score across contrasts 
that included Alpha (see Extended Data Fig. 4a–c) or by average −log10 
(P values) across time-matched contrasts involving Alpha (see Fig. 2b).

Transcription factor activity analysis
Transcription factor activities were estimated from RNA-seq data using 
DoRothEA67 which provides a comprehensive resource of transcription 
factor–target gene interactions and annotations indicating confidence 
level for each interaction on the basis of the amount of supporting 
evidence. We restricted our analysis to A, B and C levels that comprise 
the most reliable interactions. For the transcription factor activity 
enrichment analysis, VIPER68 was executed with the t-statistic derived 
from the differential gene expression analysis between variant infected 
and controls (wild-type) infected cells. Transcription factor activity is 
defined as the normalized enrichment scores (NES) derived from the 
VIPER algorithm. VIPER algorithm was run with default parameters 
except for the eset.filter parameter, which was set to FALSE and con-
sidered regulons with at least five targets.

Selection of ISGs
ISGs were taken from a previous study25 and annotated as ISGs. To this 
list of 38 genes, we added the following based on manual curation from 
the literature: IFI16, IFI35, IFIT5, LGALS9, OASL, CCL2, CCL7, IL6, IFNB1, 
CXCL10 and ADAR.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Abundance proteomics and phosphoproteomics datasets have been 
deposited to the ProteomeXchange Consortium through the PRIDE 
partner repository with the dataset identifier PXD026302. Raw RNA-seq 
data files are available under the accession number E-MTAB-11275. Pro-
cessed proteomics and RNA-seq data are available as Supplementary 
Information.

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD026302
http://www.ebi.ac.uk/microarray-as/aer/result?queryFor=Experiment&eAccession=E-MTAB-11275


Code availability
No new algorithms were developed for this project and previous algo-
rithms used are cited in the methods.
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Extended Data Fig. 1 | The SARS-CoV-2 Alpha variant replicates similarly to 
early-lineage isolates in Calu-3 cells. a, E copies/ml (left), TCID50/ml (centre) 
and infectious units per genome (TCID50/E copies) (right) were measured in 
viral stocks. b–d, Calu-3 cell infection with 5 E copies/cell. Viral replication (b), 
% infection (c), and infectious virion production (d) are shown. e, Quantification 
of E gene negative sense standard RNA in the presence and absence of 107 positive 
sense E RNA copies. Positive sense E primer set run with negative sense 
standards, observed at the limit of detection. f. Negative sense E copies in cells 
from (b). g, h, dsRNA detection by single cell immunofluorescence in cells 
infected with 2,000 E copies/cell. Representative images at 24 hpi (g) and 

quantification of dsRNA-positive cells (h) are shown. Shown are mean ± s.e.m. 
of one of three representative experiments performed in triplicate. For (g) 
representative images from two independent experiments, quantified in (h), 
are shown. Scale bars are 50 µm. Two Way ANOVA (b,c,d,f) or One Way ANOVA 
with a Tukey post-hoc test were used. Blue stars indicate comparison between 
Alpha and VIC (blue lines and symbols), grey stars indicate comparison 
between Alpha and IC19 (grey lines and symbols). * (p < 0.05), ** (p < 0.01),  
*** (p < 0.001), **** (p < 0.0001). ns: non-significant. E: viral envelope gene.  
LOD, limit of detection.



Extended Data Fig. 2 | The SARS-CoV-2 Alpha variant antagonizes innate 
immune activation more efficiently than early-lineage isolates. a, IFNβ 
gene expression (left) and protein secretion (right) from cells in Extended Data 
Fig 1b. b, HAE cells were infected with 2,000 E copies/cell of VIC. E copies were 
measured in apical washes of infected cultures. c, Calu-3 infection at 2,000 E 
copies/cell after 8h pre-treatment with IFNβ. Infection levels are shown 
normalized to untreated controls at 24 hpi. d, IFNβ and ISGs expression in HAE 
cells infected with 2,000 E copies/cell of IC19 or Alpha variant normalized to 

intracellular E copies for each sample. Shown are mean ± s.e.m. of one of three 
representative experiments performed in triplicate. For d, n = 6, two 
independent donors. Two Way ANOVA (a,c) or One Way ANOVA (d) with 
Wilcoxon matched-pairs signed rank test were used. Blue stars indicate 
comparison between Alpha and VIC (blue lines and symbols), grey stars 
indicate comparison between Alpha and IC19 (grey lines and symbols).  
* (p < 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). ns: non-significant.  
E: viral envelope gene.
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Extended Data Fig. 3 | Omics data quality control and pathway 
enrichments. a, Significantly changing genes for RNA, proteins for  
protein abundance, and phosphorylation sites for phosphoproteomics data. 
Significance was defined as abs(log2FC)>1 and adjusted p-value < 0.05.  
Red depicts positive log2 fold changes whereas blue depicts negative log2 fold 
changes. b, Principal components analysis (PCA) on normalized RNA 
transcripts per million (TPM), protein intensities, or phosphorylation site 
intensities. Non-finite values were removed and detections (transcripts, 
proteins, or phosphorylation sites) not shared (non-finite) between all 
conditions were discarded prior to analysis. Coloured numbers indicate 
biological replicates. c, Pairwise Pearson’s correlation between RNA, protein, 

or phosphorylation site abundance among replicates within the same 
condition (red) or between distinct conditions (black). d, Number of genes 
expressed above baseline in RNA-seq dataset per replicate. e, Number of 
peptides and proteins detected per replicate in the abundance proteomics 
dataset. f, Number of phosphorylated peptides and corresponding proteins 
from the phosphoproteomics dataset. g, Fraction of peptides from protein 
abundance (left) or phosphoproteomics (right; phosphorylated peptides)  
that overlap between two replicates. h, Correlation between Log2 fold-change 
(log2FC) phosphorylation sites and log2FC abundance of the corresponding 
protein. Dots are coloured according to the comparison between conditions.



Extended Data Fig. 4 | Omics data highlight the recruitment of innate 
immune signalling. a, Gene set enrichment analysis based on log2FC method 
using RNA dataset (as in Fig. 2b). Ranking is based on the average of the 
absolute value z-scores across the indicated contrasts involving Alpha  
(per row). Black borders indicate an adjusted p-value < 0.05. b, Same as in a, but 
for abundance proteomics dataset. c, Same as in a, but for phosphoproteomics 
dataset. If a protein possessed multiple phosphorylation sites, the maximum 
absolute value log2FC was used as the representative value for the protein. 

Finite values (non-infinite) were prioritized over quantitative values.  
d, Expression of interferon-stimulated genes from Lui et al (2018)25  
(see Methods) using the RNA-seq dataset. Significant fold changes with an 
adjusted p-value < 0.05 are indicated with black borders. e, Same as in (a) using 
the abundance proteomics dataset. N.D. indicates proteins either not detected 
in one condition (thus, Inf or -Inf) or not detected in both conditions. f, RNA 
expression per biological replicate of interferon-stimulated genes (ISGs) for 
each virus versus mock.
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Extended Data Fig. 5 | Infection with the SARS-CoV-2 Alpha variant results 
in lower IFN III and pro-inflammatory responses than first wave isolates.  
a, Calu-3 cells were infected with 250 E copies/cell and IFNL1 and IFNL3 
expression measured at 24 hpi. b, Secretion of CXCL10, IL6 and CCL5 by infected 
cells at 48 hpi. c, d, Calu-3 cells were infected with (c) 5,000 E copies/cell or  
(d) 5 E copies/cell. Expression of TNF, CCL2, IL6, IL8 and CCL3 were measured. 

Data shown are mean ± s.e.m. of one of three representative experiments 
performed in triplicate. One Way ANOVA with a Tukey post-comparison test  
(a, b) or two Way ANOVA (c,d) were used. Blue stars indicate comparison 
between Alpha and VIC (blue lines and symbols), grey stars indicate comparison 
between Alpha and IC19 (grey lines and symbols). * (p < 0.05), ** (p < 0.01),  
*** (p < 0.001), **** (p < 0.0001). ns: non-significant. E: viral envelope gene.



Extended Data Fig. 6 | Kinase and transcription factor activity analysis.  
a, Full kinase activity analysis of indicated contrasts with z-score>2. Kinases were 
separated using k-means clustering, which naturally reveals groups depicting 
kinases downregulated for the entire time course (“Down”), downregulated 
early and upregulated late (“Down-Up”), upregulated early and downregulated 
late (“Up-Down”), or upregulated or constant throughout the time course 
(“Up”). Panel on the right depicts the average Z-score for each distinct cluster 
per time point, collapsing across Alpha/VIC and Alpha/IC19 comparisons.  
b, Correlation between the calculated kinase activity Z-score and protein (left) 

or RNA (right) abundance log2FC for kinases with estimated activities in our 
dataset. Vertical dashed lines indicate kinase activity of ±2, horizontal dashed 
lines indicate protein log2FC of ±1. Colours represent comparisons between 
viruses and time points as indicated. c, Detected substrates known to be 
phosphorylated by TBK1. Log2FC of each phosphorylation site is depicted. 
Those not detected are indicated in grey. d, Transcription factor (TF) activities 
were estimated from the RNA-seq dataset using known TF-target gene 
interactions. Included are TFs with a NES>2.5. TF are clustered using ward 
hierarchical clustering based on similar activity patterns across time.
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Extended Data Fig. 7 | Expression of viral RNA and protein for SARS-CoV-2 
variants. a, Log2 ratio of Alpha to IC19 subgenomic RNA (sgRNA) abundance as 
determined from the RNA-seq dataset. b, Log2 ratio of Alpha to IC19 viral proteins. 
Peptide intensities are summed per viral protein (n = 3). c, Quantification of 
sgRNAs for M, S, Orf8, Orf7a, Orf3a, E and N* from the RNA-seq dataset. Counts 
are normalized to genomic RNA abundance at each time point and virus.  
d, Quantification of Orf3a (left) or S (right) sgRNA abundance via RT–qPCR.  

e, Summed peptides per viral protein for M, S, Nsp1, Orf7b, and Orf3b.  
f, Western blot quantification of Orf6 and N protein in infected cells at 24 hpi 
(n = 3). g, Pie chart depicting proportion of total sgRNA mapping to each viral 
sgRNA for IC19. h, Mean ± s.e.m. are shown. Comparison of percentages of total 
sgRNA mapping to each viral sgRNA across Alpha, VIC, and IC19. * (p < 0.05),  
** (p < 0.01), *** (p < 0.001), **** (p < 0.0001). ns: non-significant, ND, not 
detected.



Extended Data Fig. 8 | Examples of leader-containing reads for Orf9b and  
N from the RNA-seq dataset. a–c, Representative sequence for Orf9b (top) 
and N (bottom) sgRNA from Alpha (a), VIC (b) and IC19 (c). Leader sequences to 
identify sgRNAs are highlighted in yellow. The following sequence is used to 
differentiate Orf9b versus N sgRNAs. Orf9b and N start codons shown in 

maroon. The site of the N-protein D3L mutation is indicated in green, resulting 
in increased similarity to the transcriptional regulatory sequence (TRS) for 
Alpha. Read counts of Orf9b and N are indicated to the right. Counts are 
normalized to mean genomic reads per replicate.
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Extended Data Fig. 9 | Western blot densitometry quantification for Orf9b 
immunoprecipitation with TOM70. Densitometry quantification of two 
western blot experimental repeats of Orf9b immunoprecipitation with TOM70 
(as in Fig. 4d).
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Data collection All MS data was acquired on a Thermo Fisher Scientific Q-Exactive Plus mass spectrometer using the Thermo software Xcalibur (4.2.47) and 
Tune (2.11 QF1 Build 3006). RNA samples were run on an Illumina NovaSeq 6000 S4 flow cell. The run parameter was 100x10x10x100bp.
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each condition (virus and time point).
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(peptide and charge) between replicates. We used standard artMS procedures. First, LC-MS features were identified and quantified by 
MaxQuant in each LC-MS run. Next, the strength of effect was measured as a correlation coefficient (Pearson’s r) between each pair of LC-MS 
runs, pairing individual feature intensities between runs by their peptide and charge identifications. Correlation patterns between LC-MS runs 
from biological replicates are clustered along the x and y axes, showing both high correlation coefficients (near 1.0) as well as a trend for most 
same-bait replicates to cluster by similarity with each other, indicating consistent and bait-specific results. 
For virus assays, all findings were replicated in a minimum of 2 distinct experiments. In addition, multiple viral isolates of Alpha were assessed 
to ascertain the reproducibility of results.

Randomization The order of sample processing was randomly determined while biological replicates were run one after the other. All samples were 
processed and collected on the same instruments in a short time frame (roughly 3 weeks time).  Therefore instrument performance did not 
have time to drift.  QCloud was used to control instrument longitudinal performance during the project. The same procedures were applied 
for the RNA sequencing studies.

Blinding Blinding is not relevant to the data because our data are acquired and processed systematically with established computational pipelines, 
excluding human bias. Blinding was not performed for the follow up viral infectivity experiments because blinding was not needed to remove 
bias.
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Methods
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ChIP-seq
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Antibodies
Antibodies used For detection of N, Orf6, spike and tubulin expression:  rabbit-anti-SARS spike (Invitrogen, PA1-411-1165, 0.5ug/ml), rabbit-anti-Orf6 

(Abnova, PAB31757, 4ug/ml), Cr3009 SARS-CoV-2 cross-reactive human-anti-N antibody (1ug/ml) (a kind gift from Dr. Laura McCoy, 
UCL) , mouse-anti-alpha-tubulin  (SIGMA, clone DM1A) followed by IRDye 800CW or 680RD secondary antibodies (Abcam, goat anti-
rabbit, goat anti-mouse or goat anti-human). 
For Co-IP: Monoclonal mouse anti-FLAG M2 antibody (Sigma Aldrich, F1804), Polyclonal rabbit anti-FLAG antibody (Sigma Aldrich, 
F7425).

Validation A negative control with no infection or overexpression of tagged protein was included in each experiment to ensure low non-specific 
binding of the antibodies.
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Cell line source(s) Calu-3 cells were purchased from ATCC (HTB-55) and Caco-2 cells were a kind gift from Dr. Dalan Bailey (Pirbright Institute, 
USA). Hela-ACE2 cells were a kind gift from Dr. James E Voss (TSRI, USA). HEK293T cells were a kind gift from Jeremy Luban.

Authentication All cell lines were originally purchased from ATCC. ATCC possesses rigorous standards for cell line authentication using short-
tandem repeat profiling. This confirms the identify of cells and detects misidentified, cross-contaminated, or genetically 
drifted cells. 

Mycoplasma contamination All cell lines are tested for mycoplasma contamination regularly, every 6 months.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.
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