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ORIGINAL RESEARCH

Accuracy and precision of estimation equations to
predict net endogenous acid excretion using the
Australian food database

Benjamin H. PARMENTER,1 Gary J. SLATER1 and Lynda A. FRASSETTO2

1Faculty of Health, Science and Engineering, University of the Sunshine Coast, Queensland, Australia and 2School of
Medicine, University of California San Francisco (UCSF), California, USA

Abstract
Aim: The gold standard of measurement for net endogenous acid production (NEAP) is net acid excretion (NAE), a
test that is not readily available, and consequently, estimative equations by Remer and Manz and Frassetto et al. are
often used. These equations rely on nutrient databases and it is recommended that their validity be assessed using a
country’s database before their application in research in that country. We sought to delineate the accuracy and
precision of these estimation equations using the Australian food database.
Methods: In a double blind, randomised, cross-over fashion, healthy participants (n = 13) residing in regional
Australia were exposed to varying net acid loads while they collected weighted food diaries and 24-hour urine
samples for measurement of NAE.
Results: In comparison to the Frassetto et al. equations (equation one bias = −57.1 mEq/day, equation two bias =
−32.8 mEq/day), only the Remer and Manz equation was accurate (bias = −5.4 mEq/day); however, all equations
were imprecise.
Conclusions: Using the Australian database, the performance of these equations to predict NEAP appears equal to
other databases; however, caveats apply in their application. For future research, the equation by Remer and Manz is
preferential for group estimates. None of the equations are recommended for individual estimates.
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Introduction

The homeostatic regulation of acid–base status is essential
for physiological functioning, and the clinical consequences
of acid–base disorders are well known. Another factor
known to influence physiological acid–base systems is the
dietary acid load.1 The ratio of diet-derived fixed acid to
base is estimated by the potential renal acid load (PRAL),
and when endogenously produced organic acid is factored,
cumulatively, this determines the net endogenous acid pro-
duction (NEAP) for an individual.1 When diet chronically
releases fixed acid in excess of fixed base, the surplus acid
has been hypothesised to be a contributing factor to chronic
disease.2,3 While an elevated (acid) NEAP does not result in

clinical metabolic acidosis,4 research is being conducted to
determine its relationship to sarcopenia,5,6 gout,7,8 renal
stones,9,10 metabolic syndrome,11 chronic renal
insufficiency,12 late metabolic acidosis in preterm infants,13

hypertension,14,15 insulin resistance,16,17 non-alcoholic fatty
liver disease,18 impaired sports performance19,20 and
osteoporosis,21,22 while the involvement of NEAP in obe-
sity23 and cancer4 has been theorised.

For the research-focused investigation of NEAP, its accu-
rate quantification is essential. To directly measure NEAP, 24-
hour urinary net acid excretion (NAE) is the criterion
method.24,25 However, measurement of NAE is a labour- and
laboratory-intensive technique and is not readily available.26

As such, estimative equations from dietary intake were devel-
oped. Remer and Manz’s equation (NEAPR) factors for endog-
enously produced organic acid plus the PRAL, that is, the
ratio of dietary conjugate bases of potassium, magnesium and
calcium to conjugate acids of phosphorus- and sulphate-
containing protein.27 Conversely, the Frassetto et al. equa-
tions (NEAPF) were developed to allow faster calculations and
utilise the more easily obtained inputs of dietary protein and
potassium intake.28 However, world experts have recom-
mended that before these equations are applied within a
country, their accuracy is assessed with that country’s food
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database.24,29 To date, this has only been investigated using
German29 and American28 databases. Consequently, for
future research investigating NEAP within Australia, we
sought to delineate the accuracy and precision of estimate
NEAPR and NEAPF using the Australian food database. We
hypothesise that estimate NEAPR and NEAPF would predict
NAE to a similar degree when using the Australian food data-
base as they do when using other databases.

Methods

The design of the trial is described in detail in our compan-
ion paper.30 In summary, in a double blind, randomised,
cross-over fashion, healthy participants (n = 13) residing in
regional Australia were exposed to varying NEAP loads
while they collected weighted food diaries and 24-hour
urine samples. To vary the NEAP loads, the participants
consumed a fruit and vegetable concentrate or placebo for
three days each, with diet standardised throughout. The
urine samples were collected under thymol and paraffin oil
in portable cooler boxes with ice packs for the subsequent
analysis of NAE, pH and creatinine. Compliance to 24-hour
urine collections was measured by creatinine index; those
with a daily excretion <0.1 mmol/kg body weight were
excluded.31 Diet compositions were determined using
Foodworks Professional (Xyris, Brisbane, Australia) using
the Australian food database (NUTTAB 2010 Australian
Government Nutrient Database, Canberra, Australia).
When food items were missing, nutrients were entered
according to nutrient information on the food label before
proceeding to estimate NEAPR and two NEAPF equations
(Table 1). The methods were approved by the University
of the Sunshine Coast’s Human Ethics Committee (refer-
ence number: S/14/70), and all participants signed
informed consent. The trial was designed to adhere to the
Consolidated Standards of Reporting Trials (CONSORT)
guidelines, and the trial protocol was registered with the
Australian New Zealand Clinical Trials Registry
(ACTRN12616000417482).

For the assessment of physique, in the week prior to com-
mencing the study, volunteers presented to the laboratory in

a rested state after an overnight fast. After bladder evacua-
tion, participants had their stretch stature measured to the
nearest 0.1 cm using a technique previously described,32

with a Harpenden stadiometer (Holtain Limited, Crymych,
UK) and undertook air-displacement plethysmography for
assessment of body composition (BODPOD®; COSMED
USA, Inc., Concord, CA, USA). The manufacturer’s recom-
mended procedure was followed,33 and a predicted thoracic
lung volume was used.34 During the procedure, the partici-
pants wore skin-tight clothing, a silicone cap and removed
all metal objects. Following the procedure, body mass index
(BMI) was calculated conventionally, while the system’s soft-
ware (Version 5.3.2; COSMED USA, Inc., Concord, CA,
USA) estimated fat mass and fat-free mass using the model
defined by the Siri equation.35

The 24-hour urine samples were analysed on the day of
their return for urine pH, creatinine and NAE. For the
determination of pH, samples were analysed by a calibrated
labChem pH meter (TPS Pty Ltd, Melbourne, Australia) at
ambient temperature and 36.5 � 0.5 �C. Creatinine was
measured spectrophotometrically by a colorimetric detec-
tion kit Cat no. 09151410 (Enzo Life Sciences, Farmingdale
NY, USA) using a multi-scan GO plate reader
(Thermofisher Scientific, Waltham, MA, USA). Ammonium
was measured using methods of Rice et al.36 by flow injec-
tion analysis using a Lachat QuikChem 8000 (Lachat
Instruments, Milwaukee, WI, USA). Titratable acids and
bicarbonate were measured in duplicate by using the meth-
ods of Litkowski and Wilson37 with the following modifica-
tions. Briefly, after addition of 0.05 M hydrogen chloride to
20 mL of urine samples, simmering occurred for 20 min-
utes at 90 �C. Concurrently, a blank was run in the same
manner using MilliQ water (Milliport Corp., Bedford, MA,
USA). After samples cooled, bicarbonate was determined as
the amount of 0.05 M sodium hydroxide necessary to
titrate back to the initial pH at ambient temperature less the
corresponding value for the blank. Thereafter, titratable acid
was determined as the amount of 0.05 M sodium hydrox-
ide necessary to titrate to pH 7.4 from the bicarbonate end-
point. The mean of the duplicates was used for the calcula-
tion of NAE (Table 1), and the intra-assay CV was 8.0%.

Table 1 Equations to estimate the potential renal acid load, the net endogenous acid production and to calculate net acid
excretion

Equation Formula

NEAPF (mEq/day) Equation 1 = (0.91 × protein (g/day)) − (0.57 × potassium (mEq/day)) + 21
Equation 2 = (54.5 × protein (g/day)/potassium (mEq/day)) − 10.2

NEAPR (mEq/day) =PRAL (mEq/day) + organic acidsanthro
PRAL (mEq) =0.488 × protein (g/day) + 0.0366 × phosphorus (mg/day) − 0.0205 × potassium

(mg/day) − 0.0263 × magnesium (mg/day) − 0.0125 × calcium (mg/day)
Organic acidsanthro,

(mEq/day)
=body surface area × 41/1.73

Body surface area (m2) =0.007184 − height (cm)0.725 − weight (kg)0.425

NAE (mEq) =titratable acids (mEq) + ammonium (mEq) − bicarbonate (mEq)

Anthro, anthropometrical; NAE, net acid excretion; NEAP, estimate net endogenous acid production where subscript R pertains to the equa-
tion by Remer and Manz27 and subscript F pertains to the equations by Frassetto et al.28; PRAL, potential renal acid load.
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To statistically assess the agreement between estimated
and analysed NEAP, the Bland–Altman method for repeat
non-constant observations was used (i.e. one observation
during the placebo period and one observation during
the supplement period on the same participant).38

Equations were computed using dietary data from the con-
current 24-hour urine collection periods. The distribution
of the differences was checked and outliers (�>3.0 SD of
the difference) excluded.39 Those with missing data were
excluded.38 A priori limits of agreement were set at �15
mEq/day as this would permit a reasonable estimation of
NEAP in individuals and also account for imprecision in
the criterion method. All statistical analyses were completed

using MedCalc (MedCalc Software; MedCalc, Mariakerke,
Belgium).

Results

Of the 16 enrolled individuals, 13 completed the study;
their characteristics are described in Table 2. Conversely,
their dietary intake and a CONSORT diagram are presented
in our companion paper.30 During phase two, one partici-
pant returned an incomplete 24-hour urine sample, while
another failed to replicate their food and fluid from phase
one; both were excluded from analysis. One outlier was
identified in the dataset of NEAPR, while none where iden-
tified in either NEAPF. The mean � SD of NAE, NEAPR
and NEAPF during the placebo period, supplement period
and for all observations is presented in Table 3, while
Table 4 presents the Bland–Altman bias and limits of agree-
ment for all observations. NEAPR showed the best agree-
ment with an acceptable accuracy; however, all equations
were beyond the a priori limits of agreement to predict
NAE in individuals.

Discussion

To our knowledge, this is the first time the estimate NEAP
equations have been assessed using the Australian food
database. This is important because it impacts the choice of
equation potentially used in future research conducted in
Australia. Using the Australian database, the performance of
these estimate NEAP equations appears similar to their per-
formance reported using other databases. However, known
imprecisions within the equations themselves are apparent,
which precludes their application to individuals. Of the
equations investigated, NEAPR appears more accurate for
group estimates, and its use is, therefore, preferentially
encouraged.

Using the Australian food database, the performance of
the estimate NEAP equations appears similar to their perfor-
mance reported using other databases. Similar to the Ger-
man database, our results show a reasonable group estimate
using NEAPR, evident by the small bias (−5.4 mEq).29

Compared to the American database, investigations were
completed under steady-state conditions, which are known
to increase the magnitude of accuracy.28,40 Taken together,
there is no reason to suggest that the equations perfor-
mance is altered when using the Australian database.

Table 2 Characteristics of participants completing the
study

All
participants Males Females

n 13 6 7
Age (years) 35 � 13 30 � 9 39 � 16
Height (cm) 172 � 7 177 � 6 166 � 3
Weight (kg) 73 � 10 77 � 7 69 � 11
Fat mass (kg) 19 � 10 12 � 7 25 � 9
Fat-free mass (kg) 54 � 11 65 � 4 44 � 4
BMI (kg/m2) 25 � 3 24 � 1 25 � 5

Values are means � SD.

Table 3 Net acid excretion and estimation of the net
endogenous acid production using the Australian food data-
base during the placebo period, supplement period and for
all observations

n Placebo Supplement

Combined
placebo and
supplement

NAE (mEq/day) 10 40 � 19 7 � 25 23 � 27
NEAPR (mEq/day) 10 48 � 26 8 � 26 28 � 33
NAE (mEq/day) 11 38 � 18 12 � 30 25 � 27
NEAPF1 (mEq/day) 11 85 � 55 79 � 55 82 � 53
NEAPF2 (mEq/day) 11 63 � 34 53 � 28 57 � 30

Values are means � SD.
NAE, net acid excretion; NEAP, estimate net endogenous acid pro-
duction where subscript R pertains to the equation by Remer and
Manz27 and subscripts F1 and F2 pertain to equations one and two
by Frassetto et al.28.

Table 4 Bland-Altman agreement between measured 24-hour net acid excretion and net endogenous acid estimation equa-
tions in repeat non-constant observations in participants consuming non-steady-state diets using the Australian food database

n Bias
95% CI for
the bias

Limits of
agreement

95% CI for the upper
limit of agreement

95% CI for the lower
limit of agreement

NEAPR (mEq/day) 10 −5.4 −19.8, 9.0 −54.2, 43.3 18.3, 68.3 −79.1, −29.2
NEAPF1 (mEq/day) 11 −57.1 −82.0, −32.2 −146.6, 32.4 10.7, 75.5 −189.7, −103.5
NEAPF2 (mEq/day) 11 −32.8 −48.6, −16.9 −90.7, 25.1 −2.3, 52.5 −118.1, −63.3

NEAP, estimate net endogenous acid production where subscript R pertains to the equation by Remer and Manz27 and subscripts F1 and F2

pertain to equations one and two by Frassetto et al.28

Estimating the dietary acid load in Australia
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However, NEAPR was imprecise, which precludes its appli-
cation to individuals. This may be because of known errors
within the equation surrounding dietary protein and exoge-
nous organic acids.29 To account for this, Sebastian et al.41

developed another equation that incorporates dietary cys-
tine and methionine intake. Yet, as the Australian database
has limited amino acid records, this equation was not com-
puted. That said, no equations currently factor for exoge-
nous organic acids. As such, researchers may wish to revise
the equations by factoring for the variability in protein com-
position as well as exogenous organic acids, perhaps based
on food groups.29

The inaccuracy of the NEAFF equations may have been
caused by the experimental conditions. That is, the pre-
dominance of the supplements base was delivered by a
large calcium dose (1.7 g/day); however, both NEAPF equa-
tions do not factor for calcium. Consequently, it appears
that these equations are less robust under such circum-
stances, and NEAPF is not universally applicable. Moreover,
negative-feedback control of endogenous acid production
may have influenced NAE in some individuals, further con-
tributing to the equations’ imprecision.42 To this end, it
may be most beneficial for future investigations to collect
not only urinary PRAL (electrolytes measured in 24-hour
urines) but also total urinary organic acids alongside dietary
data so as to aid in the elucidation of the issues associated
with endogenous and exogenous organic acids and NAE
prediction. This may be pivotal in the interpretation of
investigations delineating the relationship between NAE
and various chronic degenerative diseases as NAE includes
both organic acid components, wherein the exogenous
component may provide an acid-forming yet health-
supporting effect in vivo.43

The limitations of the present study include measure-
ment error within the NAE technique, the use of weighted
food diaries and small sample size. However, our CV
(8.0%) for NAE was below all other studies that reported a
CV (10.1–10.9%).44,45 Consequently, this appears to be a
common limitation. The use of free-living weighted food
diaries may have introduced error (e.g. under-reporting);
however, it may also provide re-assurance that the NEAPR
equation has a reasonable capacity to perform group esti-
mates under free-living conditions. Finally, the small sam-
ple size impacts the analysis by the creation of large
confidence intervals around the upper and lower limits of
agreement. Yet, given that estimations of NEAP are not
utilised in a critical clinical setting, the data adequately
serves to illustrate which method is preferential for
research purposes in Australia. In conclusion, the estimate
NEAP equations studied should not be applied to indivi-
duals, and NEAPR is preferential for group estimates.
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