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AN EMPIRICAL POLYCHORIC CORRELATION COEFFICIENT

JOAKIM EKSTRÖM

Abstract. A new measure of association for ordinal variables is proposed. The new

measure of association, named the empirical polychoric correlation coefficient, builds

upon the theoretical framework of the polychoric correlation coefficient, but relaxes its

fundamental assumption so that an underlying continuous joint distribution is only as-

sumed to exist, not to be of any specific distributional family. The empirical polychoric

correlation has good properties in terms of statistical robustness and asymptotics, and

is easy to compute by hand. Moreover, a simulation study indicates that the new mea-

sure of association is more stable, in terms of standard deviation, than conventional

polychoric correlation coefficients.

Key words and phrases. Contingency Table, Measure of Association, Ordinal Variable, Polychoric

Correlation Coefficient.
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1. Introduction

The polychoric correlation coefficient is a measure of association for ordinal variables.

Originally proposed by Karl Pearson (1900), the measure of association rests upon an as-

sumption of an underlying continuous joint distribution. Consequently, the contingency

table of the two ordinal variables is assumed to be the result of a double discretization

of the continuous joint distribution. Under a joint normal distribution assumption, the

case studied in Pearson (1900), the polychoric correlation coefficient corresponds to the

linear correlation of the postulated joint normal distribution.

According to Pearson’s colleague Burton H. Camp (1933), Pearson considered the

polychoric correlation coefficient as being one of his most important contributions to the

theory of statistics. However, the polychoric correlation coefficient suffered in popularity

because of the difficulty in its computation. Throughout his career, Pearson published

statistical tables aimed at reducing that difficulty (Camp, 1933), reflecting an interest in

promoting a wider adoption of the polychoric correlation coefficient among practitioners.

Besides the difficulties in its computation, which have been substantially reduced

with the availability of modern computers, the polychoric correlation coefficient has by

some been regarded with scepticism because of its elaborate and restrictive fundamental

assumptions, notably by Yule (1912). Of course not all bivariate distributions are normal,

but Pearson & Heron (1913) claimed that: “[for the purpose of the polychoric correlation

coefficient,] divergence between the actual joint distribution and the normal distribution

is hardly ever of practical importance.”

It is not clear how Pearson & Heron (1913) arrived at this conclusion, but a generaliza-

tion of the definition to all families of continuous bivariate distributions (Ekström, 2008),

and subsequent analysis of statistical robustness properties, provides ample evidence that

the measure of association is not robust to changes of the underlying distributional as-

sumption. In fact, the conclusions of the association analysis can change profoundly as

a consequence of a change of the distributional assumption. Moreover, the polychoric

correlation coefficient in general needs to be fitted to a contingency table with respect

to a loss function, and the coefficient is not robust to a change of loss function either.

The present article proposes a new measure of association for ordinal variables, named

the empirical polychoric correlation coefficient, which is designed to enhance statistical

robustness. By utilizing the joint empirical distribution of the ordinal variables, it builds

upon the theoretical construction of the polychoric correlation coefficient while at the

same time removing the need to specify the underlying continuous joint distribution up

to its distributional family.

Theoretical results on the new measure of association is provided; that it is well

defined, takes values between −1 and 1, and that it converges almost surely to the theo-

retical population value of the polychoric correlation in a certain sense. As a consequence

of the latter, in particular, the empirical polychoric correlation coefficient has better the-

oretical properties than the polychoric correlation coefficient. The rate of convergence

is studied in a simulation study, and the results indicate that the empirical polychoric
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correlation coefficient is better than the polychoric correlation coefficient in terms of

statistical robustness and is, in terms of standard deviation, more stable. Another ad-

vantage is, moreover, that the empirical polychoric correlation coefficient requires neither

fitting nor optimization. In fact it is easily computed by hand, thereby mitigating the

difficulties in the polychoric correlation coefficient’s computation.

In Section 2, the conventional polychoric correlation coefficient is presented with its

implicit assumptions. In Section 3, the empirical polychoric correlation coefficient is

defined and properties are derived. Section 4 contains the results of a simulation study

and a discussion of the fixed sample size properties of the empirical polychoric correlation

coefficient in comparison to conventional polychoric correlation coefficients computed

under five distributional assumptions. And lastly, the article is concluded with Section 5.

2. The polychoric correlation coefficient

The fundamental idea of the polychoric correlation coefficient is to assume that the

two ordinal variables are, into r and s ordered categories respectively, discretized ran-

dom variables with a continuous joint distribution belonging to some family of bivariate

distributions. The discretization cuts the domain of the bivariate density function into

rectangles corresponding to the cells of the contingency table, see Figure 1 for an illus-

tration. Ideally, the hypothesized probability masses of the rectangles, i.e. the volumes

of the rectangles, should equal the corresponding joint probabilities of the two ordinal

variables. The fundamental assumption is formalized below.

Assumption A1. The two ordinal variables are, into r and s ordered categories respec-

tively, discretized random variables with a continuous joint distribution belonging to the

family of bivariate distributions {Hθ}θ∈Θ.

Pearson (1900) studied the case assuming a bivariate standard normal distribution.

Under a standard normal distribution assumption, the polychoric correlation coefficient

is precisely the parameter value for which the volumes of the rectangles equal the joint

probabilities of the two ordinal variables. For the bivariate standard normal distribution,

that parameter also corresponds to the linear correlation of the two such distributed

random variables.

For a bivariate probability distribution H and a rectangle A = [a, b] × [c, d], the

volume of the rectangle equals H(A) = H(b, d) − H(b, c) − H(a, d) + H(a, c). If the

distribution function is absolutely continuous, i.e. has a density function, then the volume

H(A) equals the integral of the density function over the rectangle A. This illustrates

the fact that if Z is a bivariate random variable with distribution function H, then

P (Z ∈ A) = H(A).

Let F and G be the marginal distribution functions of H and denote by F (−1) the

quasi-inverse of a continuous distribution function, F (−1)(0) = max{x : F (x) = 0},
and F (−1)(y) = min{x : F (x) = y} for y > 0. If the set {x : F (x) = 0} is empty

then F (−1)(0) is set to −∞, and if {x : F (x) = 1} is empty then F (−1)(1) is set
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Figure 1. Illustration of the domain of the standard normal density

function being discretized by the dotted lines into a 4 × 4 contingency

table.

to ∞. Furthermore, let u0, . . . , ur and v0, . . . , vs be the cumulative marginal proba-

bilities of the two ordinal variables, respectively, i.e. u0 and v0 are zero and ui and

vj are the probabilities of observing values with order less than or equal to i and j,

respectively, of each ordinal variable. For all i = 1, . . . , r and j = 1, . . . , s, create rect-

angles [F (−1)(ui−1), F
(−1)(ui)] × [G(−1)(vj−1), G

(−1)(vj)], enumerate them and denote

them A1, . . . , Ars. The rectangles A1, . . . , Ars are interpreted as the result of the dis-

cretization of the domain of the bivariate distribution function, cf. Figure 1. Moreover,

let p1, . . . , prs denote the joint probabilities of the ordinal variables corresponding to

rectangles A1, . . . , Ars, respectively.

Under Assumption A1, it should, ideally, hold that the volumes of the rectangles equal

the joint probabilities of the two ordinal variables. Hence it should hold that

(Hθ(A1), . . . ,Hθ(Ars)) = (p1, . . . , prs) . (1)

For the solution θ to the above equation, the polychoric correlation coefficient is defined

as

rpc = 2sin(ρS(Hθ)π/6),

where ρS denotes the Spearman grade correlation. If all points of cumulative marginal

probabilities (ui, vj) are elements of the boundary of the unit square, ∂I2, then any pa-

rameter θ will satisfy Equation (1), but in this case the polychoric correlation coefficient

is defined to be zero, in part because of a reasoning of presuming independence until

evidence of association is found. Moreover, note that if the family of bivariate stan-

dard normal distributions, with correlation parameter ρ, is assumed then the function

ρ 7→ 2sin(ρS(Φρ)π/6) equals identity, see Pearson (1907), and thus the definition above

agrees with the definition in Pearson (1900). A detailed proof can be found in Ekström

(2008).
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If the numbers of categories, r and s, both equal 2 then a unique polychoric correla-

tion coefficient exists for each contingency table under some general conditions on the

bivariate family. If one of r and s is greater than 2 and the other is greater than or equal

to 2, then a solution to Equation (1) does in general not exist. Given Assumption A1, a

solution may not exist due to, e.g., fixed sample sizes and/or noisy observations. In that

case it is standard statistical procedure to look for a best fit of the parameter θ with re-

spect to some loss function. Any distance function between the two vectors of Equation

(1) works, and the usual ℓp-norm, ||x||p = (
∑

|xi|p)1/p, is in many ways natural.

Denote the left hand side of Equation (1) by H⃗θ and the right hand side by p⃗. The poly-

choric correlation coefficient fitted with respect to the ℓp-norm is r
(p)
pc = 2sin(ρS(Hθ̂(p))π/6),

where θ̂(p) is given by

θ̂(p) = argmin
θ∈Θ

||H⃗θ − p⃗||p. (2)

The loss function is zero if and only if θ is a solution to Equation (1). The ℓ2-norm, in

particular, can be interpreted as the Euclidean distance and the minimum also corre-

sponds to the method of least squares.

Martinson & Hamdan (1971) suggested

θ̂(MH ) = argmin
θ∈Θ

−
rs∏
k=1

(Hθ(Ak))
pk , (3)

based on a likelihood argument. The Martinson-Hamdan loss function does not nec-

essarily have a unique global minimum, but it is bounded from below and continuous.

However, examples in Ekström (2008) show that the Martinson-Hamdan loss function

is inherently unstable and fails under a variety of circumstances. For additional loss

function suggestions, see, e.g., Martinson & Hamdan (1971). The minimum of a loss

function can be found by method of numerical optimization.

It is both mathematically and practically convenient to use the copula corresponding

to a bivariate distribution instead of the bivariate distribution function itself. As a

consequence of Sklar’s theorem, for each continuous bivariate distribution function H

with (continuous) marginal distribution functions F andG and each rectangle of the form

A = [F (−1)(a), F (−1)(b)]× [G(−1)(c), G(−1)(d)], there exists a unique copula C such that

H(A) = C(B), where B = [a, b]× [c, d]. Hence, the use of copulas eliminates the need for

computing quasi-inverses of the marginal distribution functions. In the standardization

to copulas all moments of the marginal distributions are lost, but since the Spearman

grade correlation is invariant under strictly increasing transformations of the marginal

distribution functions it comes at no cost in this setting.

If X and Y are continuous random variables with copula C, then the Spearman grade

correlation can be expressed as

ρS = 12

∫
I2
Cdλ − 3 , (4)
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where I is the unit interval, [0, 1], and λ is the Lebesgue measure (Nelsen, 2006). Con-

sequently, the polychoric correlation coefficient can be expressed as a function of the

copula, C, something which will be exploited in the following section.

3. An empirical version

The aim of this section is to develop a new measure of association for ordinal variables,

named the empirical polychoric correlation coefficient and denoted repc, which is based

on the empirical distribution of the contingency table. The need for the new measure of

association arises out of the following set of problems.

Because of Assumption A1, it is for the polychoric correlation coefficient necessary to

specify a specific family of distributions, {Hθ}θ∈Θ. In most applications, however, there

is no natural candidate for a choice of distributional family. A distributional family

could be chosen by random, or by habit, but an unsubstantiated assumption would

open up to criticism, and rightfully so because the polychoric correlation coefficient is

not statistically robust to changes of the distributional assumption. The analysis could

be performed under a number of distributional assumptions, and a distribution then

chosen based on performance in a goodness-of-fit test. However, it could be that no

tested distribution fits the contingency table. Moreover, in general a loss function must

be chosen for the fitting process, and the polychoric correlation coefficient is not robust

to changes of loss function either.

Pearson’s idea of an underlying distribution is in many ways attractive, but Assump-

tion A1 is too restrictive in that the underlying distribution must be specified up to its

distributional family. With the empirical polychoric correlation coefficient, on the other

hand, the fundamental assumption is relaxed so that the distributional family does not

need to be specified; it only needs to be assumed that an underlying continuous dis-

tribution exists. In the statistical sense, therefore, the empirical polychoric correlation

coefficient is non-parametric. The assumption is formalized as follows.

Assumption A2. The two ordinal variables are, into r and s ordered categories respec-

tively, discretized random variables with a continuous joint distribution.

The assumption of a continuous distribution function is mostly a matter of conve-

nience. Every distribution function can be arbitrarily well approximated by a continuous

distribution function. But also, the idea of continuous underlying marginal distributions

was central to Karl Pearson’s idea for the measure of association. Because Assump-

tion A2 is necessary but not sufficient for Assumption A1, Assumption A2 is strictly

weaker than Assumption A1. Therefore, the empirical polychoric correlation coefficient

is theoretically more statistically robust than the polychoric correlation coefficient.

3.1. Construction and definition. Let the two ordinal variables be denoted X and Y ,

respectively, and assume Assumption A2. Moreover, let the theoretical non-discretized

random variables be denoted X̃ and Ỹ . By Sklar’s theorem, X̃ and Ỹ have a copula

which is denoted C. For convenience, it is assumed throughout this section that X̃ and
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Ỹ have standard uniform marginal distributions, i.e. that C is the bivariate distribution

function of X̃ and Ỹ . Consequently, X and Y are without loss of generality assumed

to be discretized numerical random variables with support on the unit interval. The

aim is to find an estimate of C, and use it to define the empirical polychoric correlation

coefficient.

Let u0, . . . , ur and v0, . . . , vs be the cumulative marginal probabilities of X and Y

respectively, u0 = v0 = 0 and ur = vs = 1, and create rectangles A1, . . . , Ars as in

Section 2. In accordance with Assumption A2, X and Y can be expressed as functions

of the non-discretized random variables X̃ and Ỹ by X =
∑r

i=1 ui1(ui−1,ui](X̃) and

Y =
∑s

j=1 vj1(vj−1,vj ](Ỹ ), where 1A(x) is the indicator function of the set A. Let

(xk, yk)
n
k=1 and (x̃k, ỹk)

n
k=1 be the observations of (X,Y ) and (X̃, Ỹ ), respectively. The

observations (xk, yk) can be expressed as discretizations of the theoretical non-discretized

observations (x̃k, ỹk) in the same way as (X,Y ) can be expressed as discretizations of

(X̃, Ỹ ).

The empirical polychoric correlation coefficient uses the empirical copula, which is

defined

Ĉn(ui, vj) =
1

n

n∑
k=1

1[0,ui]×[0,vj ](xk, yk).

The empirical copula is only defined on the points of cumulative marginal probabilities

(ui, vj), i = 0, . . . , r and j = 0, . . . , s. Where it is defined, the empirical copula is an

unbiased estimator of C, and converges almost surely to C by the strong law of large

numbers. For the use of Expression (4), however, the estimate of C must be defined on

all of I2.

The empirical measure of C is

D̂n(u, v) =
1

n

n∑
k=1

1[0,u]×[0,v](x̃k, ỹk).

The empirical measure is an unbiased estimator of C which converges almost surely to

C for all (u, v) ∈ I2. Consequently, the empirical measure has good properties which

a measure of association ideally could leverage. However, because D̂n is a function of

the theoretical non-discretized sample (x̃k, ỹk)
n
k=1, it is not available in practice but only

as a theoretical construct. From the expression of (xk, yk) as discretizations of (x̃k, ỹk),

though, it follows that the empirical measure is identical to the empirical copula where

the latter is defined.

The empirical measure D̂n is approximated by a simple function on A1, . . . , Ars, i.e.

a function of type f =
∑rs

k=1 ak1Ak
. If the values ak are chosen to be the empirical

copula values of the lower vertices of the rectangles Ak, i.e. Ak = [ui−1, ui) × [vj−1, vj)

yielding ak = Ĉn(ui−1, vj−1), then the simple function is less than or equal to D̂n on

every rectangle, and is hence an underestimation of D̂n. If the values ak are chosen

to be the empirical copula values of the upper vertices of the rectangles Ak, then the

simple function is greater than or equal to D̂n, and hence an overestimation of the same.
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Because all D̂n values of Ak lie between these two mentioned choices of ak-values, a

better approximation is yielded for a middle choice.

By choosing the ak values to be the means of the empirical copula values of all four

vertices of the rectangles Ak, a simple function which is neither an underestimation nor

an overestimation, in the sense that the resulting measure of association is unbiased for

independent ordinal variables, is yielded. The such obtained simple function is denoted

Ên. Consequently,

Ên(u, v) =

rs∑
k=1

ak1Ak
(u, v),

where if Ak = [ui−1, ui)× [vj−1, vj),

ak =
1

4

(
Ĉn(ui, vj) + Ĉn(ui, vj−1) + Ĉn(ui−1, vj) + Ĉn(ui−1, vj−1)

)
.

The empirical polychoric correlation coefficient is then, in analogy with the conventional

polychoric correlation coefficient, defined as repc = 2sin(ρS(Ên)π/6).

Because Ên is a simple function, ρS(Ên), given by Expression (4), is easy to compute

by hand. More precisely, the expression reduces to

ρS(Ên) = 12
rs∑
k=1

akλ(Ak)− 3.

Therefore the empirical polychoric correlation coefficient is easily computed by hand,

in contrast with the conventional polychoric correlation coefficient which in practice de-

mands computer assisted numerical optimization. The transformation f(x) = 2sin(xπ/6),

while insignificant from the practical perspective, is kept for the purpose of theoretical

aspects such as asymptotic properties.

3.2. Properties. If all points of cumulative marginal probabilities (ui, vj) are elements

of the boundary of the unit square, ∂I2, then it follows that Ên ≡ 0.25 and hence that

repc = 0. As a consequence, a special definition for this case is not needed, unlike for the

polychoric correlation coefficient. In fact, for all contingency tables there exists a unique

empirical polychoric correlation coefficient. If a unique correlation coefficient exists for

every contingency table, then the coefficient is said to be well defined.

Theorem 1. The empirical polychoric correlation coefficient is well defined and takes

values on the interval [−1, 1].

Proof. The simple function Ên exists and is uniquely determined for every contingency

table. Because 2sin(ρS(Ên)π/6) is a well defined function, the empirical polychoric

correlation coefficient, repc, exists and is unique.

To show that −1 ≤ repc ≤ 1, it is first noted that everywhere on I2, W ≤ Ĉn ≤ M ,

where W (u, v) = max(u + v − 1, 0) is the minimum copula and M(u, v) = min(u, v) is

the maximum copula. Let δM (t) = M(t, t) and δW (t) = W (t, 1 − t) be the diagonal

sections of M and W respectively. Assume first that Ĉn = W . For all rectangles A that
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do not contain any segment of the diagonal δW , the graph (u, v,W (u, v)) is a plane, and

it is easily seen that
∫
A Êndλ =

∫
AWdλ. For rectangles A that contain a segment of the

diagonal, assume that the diagonal passes through two vertices of A. If the diagonal does

not pass through two vertices of A, then it is possible to subdivide the rectangle into one

rectangle for which the diagonal passes though two vertices and other rectangles that do

not contain any segment of the diagonal. It is easily verified using simple geometry that

the integrals over the rectangle are
∫
AWdλ = λ(A)3/2/6 and

∫
A Êndλ = λ(A)3/2/4. So

for all rectangles A ⊂ I2,
∫
A Êndλ ≥

∫
AWdλ, and thus ρS(Ên) ≥ ρS(W ) = −1.

For the other extreme case, when Ĉn = M , the integrals are also equal whenever the

rectangle does not contain any segment of the diagonal δM . For rectangles A such that

the diagonal passes through two vertices of A the integrals are
∫
AMdλ = λ(A)3/2/3+ c

and
∫
A Êndλ = λ(A)3/2/4 + c, where c is a constant dependent on the position of A. So

for all rectangles A ⊂ I2,
∫
A Êndλ ≤

∫
AMdλ, which implies ρS(Ên) ≤ ρS(M) = 1. And

because the function 2sin(xπ/6) maps [−1, 1] to [−1, 1] it follows that −1 ≤ repc ≤ 1. �

It is also easy to check that if Ĉn = Π, where Π(u, v) = uv is the product copula,

then for all rectangles A1, . . . , Ars,
∫
A Êndλ =

∫
AΠdλ. Hence, the empirical polychoric

correlation coefficient is unbiased whenever the ordinal variables are statistically inde-

pendent.

The next theorem is an asymptotic result by which the empirical polychoric correlation

coefficient under general conditions converges almost surely to the theoretical population

analogue, ρpc = 2sin(ρS(C)π/6).

Theorem 2. For a given underlying joint distribution, if the numbers of categories, r

and s, increase such that the maximal difference of cumulative marginal probabilities

goes to zero as r, s → ∞, then

lim
n→∞

lim
r,s→∞

repc = ρpc almost surely .

For the proof of Theorem 2, the following two results are needed. Note that the

following lemma is based on a standard argument, and the lack of bibliographical citation

should not be taken as a claim of originality.

Lemma 3. Let f : X × Ω → R be a random variable and g : X → R a measurable

function. If f and g are both λ-almost everywhere continuous in x ∈ X, and agree

almost surely on each element of a countable dense subset of X, then
∫
fdλ =

∫
gdλ

almost surely.

Proof. Denote the countable dense subset D ⊂ X and let {qn}∞n=1 be an enumeration

of D. For a fixed ω ∈ Ω, the notation fω(x) = f(x, ω) is used; fω : X → R. Because

continuous functions are completely determined by their values on dense subsets, it fol-

lows that if two functions f and g are both continuous λ-almost everywhere then they

agree on a dense subset if and only if they agree λ-almost everywhere. Thus, it follows
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that P
(
{ω :

∫
fωdλ ̸=

∫
gdλ}

)
≤ P (∪∞

n=1{ω : fω(qn) ̸= g(qn)}) which by countable sub-

additivity is less than or equal to
∑∞

n=1 P ({ω : fω(qn) ̸= g(qn)}) = 0. This proves the

lemma. �

Theorem 4. Let C : I2 → I be a copula, X1, X2, X3, . . . independent random vec-

tors with distribution function C, and let D̂n(u, v) = n−1
∑n

k=1 1[0,u]×[0,v](Xk). Then∫
limn→∞ D̂ndλ =

∫
Cdλ almost surely.

Proof. It is clear that D̂n is λ-almost everywhere continuous for all n ∈ N, and ev-

ery copula is continuous. By the strong law of large numbers, for all (u, v) ∈ I2,

limn→∞ D̂n(u, v) = C(u, v) almost surely. The statement then follows by Lemma 3. �

Proof of Theorem 2. Note first that limn limr,s repc = 2sin(π/6 limn limr,s ρS(Ên)) since

the sine function is continuous, and by the Lebesgue dominated convergence theorem,

limn limr,s ρS(Ên) = 12
∫
I2 limn limr,s Êndλ− 3.

Since r and s increase such that the maximal difference of cumulative marginal prob-

abilities goes to zero as r, s → ∞, the maximal side length of the rectangles A1, A2, . . .

goes to zero as r, s → ∞. Note also that where Ĉn is defined, Ĉn = D̂n. Thus, Ên can be

expressed as a function of D̂n. It is clear that as the maximal side length of A1, A2, . . .

goes to zero, Ên converges to D̂n at every point where D̂n is continuous. And since D̂n

is λ-almost everywhere continuous for all n ∈ N, limr,s Ên = D̂n λ-almost everywhere.

The identity
∫
I2 limn D̂ndλ =

∫
I2 Cdλ almost surely then follows by Theorem 4. Thus,

limn limr,s repc = 2sin(ρS(C)π/6) = ρpc almost surely. �

A result corresponding to Theorem 2 does not hold for the conventional polychoric

correlation coefficient under Assumption A2. Thus, the empirical polychoric correlation

coefficient is theoretically more robust to changes of the distributional assumption than

the polychoric correlation coefficient. The rate of convergence is studied by means of

simulation in Section 4.

Clearly, because the empirical polychoric correlation coefficient is based on the em-

pirical distribution, a goodness-of-fit test is not relevant. The empirical polychoric cor-

relation coefficient fits every contingency table perfectly every time; for the empirical

distribution, Equation (1) always holds. A solution to Equation (1) need not be found

because the empirical distribution is a guaranteed solution to Equation (1).

A confidence interval for the empirical polychoric correlation coefficient can be found

by means of simulation under the null hypothesis, i.e. under the empirical distribution.

The simulated critical values converge almost surely to the correct theoretical critical

values by the strong law of large numbers. Simulation under the empirical distribution

is sometimes referred to as non-parametric bootstrap. Do note, however, that there are

many good tests for independence that do not require even Assumption A2, such as,

e.g., the Pearson chi-square test.
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4. Simulation setup and results

To gain an understanding of the size of the approximation error under fixed sample

sizes and numbers of categories, a simulation study was conducted. The numbers of

categories were chosen to both equal 3, 5 and 7 respectively, yielding square tables, and

the sample sizes were chosen to 100 and 500. These numbers can be considered relevant

for, e.g., survey applications. The marginal probabilities were set to uniform over the

categories throughout.

Contingency tables were simulated from the volumes of five families of bivariate dis-

tributions, with five parameter values each. So in all, contingency tables were simulated

from 25 bivariate distributions. The parameter values for the different distributional

families were chosen so that the theoretical population polychoric correlations equal

−0.67, −0.33, 0, 0.33 and 0.67, respectively, covering with equal spacing a range of

common values in many applications.

The families of bivariate distributions were chosen such that all have the minimum

and the maximum copulas as limits, corresponding to perfect positive and negative

association between the random variables, respectively, are continuous in the parameter

and ordered. The Gaussian, Frank, Clayton, Nelsen-(2) and the Genest-Ghoudi families,

are quite common and have a mix of dependency structures suitable for the simulation

study. The Gaussian and Frank families have monotonic dependency structures. The

Clayton family has an asymmetric left tail dependency structure, while the Nelsen-(2)

and Genest-Ghoudi families have asymmetric right tail dependency structures.

For every simulated contingency table, six measures of association were computed.

Five of them are polychoric correlation coefficients computed under the five distribu-

tional assumptions discussed in the preceding paragraph. All polychoric correlation

coefficients were fitted with respect to the ℓ2-norm, because this loss function worked

best in Ekström (2008). The sixth measure of association is the empirical polychoric

correlation coefficient. The simulation was replicated 1000 times, generating for each

set of numbers of categories, each distribution and each measure of association 1000

computed coefficients.

In Tables 1 to 6, the results of the simulation are presented. Under the different num-

bers of categories and sample sizes the broad patterns of the simulation are consistent,

and therefore the results will be not discussed table by table.

In the tables, it is seen that the empirical polychoric correlation coefficient is the

winner in terms of stability as measured by the standard deviation. The empirical

polychoric correlation coefficient has a consistently low standard deviation of less than

or equal to 0.06 at sample size 500, and less than or equal to 0.12 at sample size 100. The

other measures of association have higher standard deviations in general, with several

occurrences of standard deviations of 0.20 and higher. Moreover, for the conventional

polychoric correlation coefficients the standard deviations seem to be increasing with

higher numbers of categories, while the standard deviation of the empirical polychoric

correlation coefficient seems to be constant over the numbers of categories 3, 5 and 7.
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Based on this simulation, the empirical polychoric correlation coefficient can be deemed

statistically robust under different distributional families. For 5× 5 contingency tables,

for example, the maximum difference in the empirical polychoric correlation coefficient

under different distributional families is 0.03, compared to 0.20 and higher for the other

polychoric correlation coefficients. Moreover, for the empirical polychoric correlation

coefficient this lack-of-robustness error is decreasing with an increasing number of cat-

egories, while it is not for the other polychoric correlation coefficients. So in terms of

statistical robustness the empirical polychoric correlation coefficient seems to be decid-

edly better than the conventional polychoric correlation coefficients.

The empirical polychoric correlation coefficient is biased so that its absolute value is

smaller than that of the theoretical polychoric correlation. When the ordinal variables

are independent, however, the empirical polychoric correlation coefficient is unbiased,

as was shown in Section 3.2. Based on this simulation, for 3 × 3 contingency tables

the empirical polychoric correlation coefficient is consistently 20% too small. For 5 × 5

contingency tables, the empirical polychoric correlation coefficient is 8% too small, and

for 7 × 7 contingency tables the empirical polychoric correlation coefficient is 4% too

small. The bias seems to be stable under different sample sizes. The reason for the bias

was hinted at in the proof of Theorem 1.

It is not hard to think of a bias correction for the empirical polychoric correlation

coefficient. Based on this simulation, each coefficient could simply be multiplied with a

bias correcting factor. However, the bias is likely dependent on more parameters than

the numbers of categories, so for an extensive bias correction simulation could be used

with the actual numbers of categories and the marginal probabilities of the contingency

table at hand.

However, in many applications it is of minor importance whether the correlation co-

efficient is, say, 0.61 or 0.67. The general conclusion is the same, that there is a strong

positive association between the two ordinal variables. A more problematic error would

be if the correlation coefficient would be for example 0.2 instead of −0.1, because then

the conclusion of the association analysis would change appreciably. The empirical poly-

choric correlation coefficient is unbiased at zero, and it is the measure of association with

least standard deviation, also at zero. If the analyst is aware of the fact that the empirical

polychoric correlation coefficient is a conservative estimate of the theoretical population

polychoric correlation, then a bias correction is for most purposes not necessary. Based

on this simulation, for 5 × 5 contingency tables the empirical polychoric correlation

coefficient is 8% too small, a difference which is for most applications negligible.

5. Conclusions

The empirical polychoric correlation coefficient is a statistically robust and, in terms

of standard deviation, stable measure of association for ordinal variables. While un-

biased at zero, the absolute value of the empirical polychoric correlation coefficient,
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based on a simulation study, is some 4 to 20 percent too small, depending on the num-

ber of categories. The empirical polychoric correlation coefficient can in that sense be

therefore be considered a conservative estimate of the theoretical population polychoric

correlation. The empirical polychoric correlation coefficient also has good asymptotic

properties. As a consequence of Theorem 2, studies of association of ordinal variables

should be designed to have the largest number of categories feasible.

Statistical robustness is an important property because statistical conclusions should

in principle follow from data, not the assumptions that were made at the outset of the

statistical analysis. If there is uncertainty about which specific distributional family

that satisfies the statement of Assumption A1, then from the perspective of statistical

robustness it is preferable to assume the weaker Assumption A2 and use the empirical

polychoric correlation coefficient. The cost of the additional statistical robustness seems

rather low, since the statistically robust method has better asymptotic properties and is

more stable in simulations.

For practical purposes, the empirical polychoric correlation coefficient also has the

advantages compared to a conventional polychoric correlation coefficient that neither

a distributional family nor a loss function need to be chosen. And consequently, such

an assumption does not need to be substantiated, something which can often be quite

difficult. Furthermore, since the empirical polychoric correlation coefficient is based on

the assumption of an underlying continuous joint distribution it retains the essence of

Karl Pearson’s original idea.
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Table 1. Polychoric correlation coefficients with standard deviations for

3× 3 contingency tables, sample size 100.

True Assumed ρpc = −.67 ρpc = −.33 ρpc = 0 ρpc = .33 ρpc = .67

G
au

ss
ia
n

Gaussian −.67 (.08) −.33 (.12) −.00 (.13) .33 (.12) .67 (.09)

Frank −.64 (.08) −.31 (.11) −.00 (.12) .31 (.11) .63 (.09)

Clayton −.66 (.10) −.30 (.11) −.00 (.12) .30 (.12) .64 (.10)

Nelsen-(2) −.59 (.12) −.22 (.28) .22 (.21) .47 (.11) .68 (.08)

Genest-G. −.63 (.09) −.28 (.19) .09 (.14) .38 (.11) .66 (.09)

Empirical −.51 (.06) −.25 (.09) −.00 (.09) .25 (.09) .51 (.07)

F
ra
n
k

Gaussian −.70 (.08) −.36 (.12) −.00 (.13) .35 (.12) .70 (.08)

Frank −.67 (.08) −.34 (.11) −.00 (.12) .33 (.11) .67 (.08)

Clayton −.69 (.09) −.32 (.12) −.00 (.12) .33 (.11) .67 (.09)

Nelsen-(2) −.61 (.11) −.26 (.28) .21 (.22) .49 (.11) .71 (.08)

Genest-G. −.64 (.09) −.32 (.19) .10 (.14) .40 (.11) .70 (.08)

Empirical −.54 (.06) −.26 (.09) −.00 (.09) .26 (.09) .53 (.06)

C
la
y
to
n

Gaussian −.67 (.09) −.33 (.12) −.00 (.13) .34 (.12) .69 (.09)

Frank −.64 (.09) −.31 (.11) −.00 (.12) .32 (.11) .65 (.09)

Clayton −.66 (.07) −.34 (.11) −.00 (.12) .34 (.11) .67 (.09)

Nelsen-(2) −.54 (.10) −.28 (.23) .22 (.21) .51 (.11) .74 (.07)

Genest-G. −.59 (.09) −.29 (.16) .10 (.14) .41 (.11) .71 (.07)

Empirical −.52 (.06) −.24 (.09) −.00 (.09) .25 (.09) .52 (.07)

N
el
se
n
-(
2)

Gaussian −.84 (.08) −.36 (.15) −.01 (.14) .37 (.12) .73 (.08)

Frank −.81 (.08) −.33 (.14) −.01 (.14) .35 (.12) .70 (.09)

Clayton −.79 (.06) −.50 (.10) −.26 (.14) .21 (.16) .70 (.12)

Nelsen-(2) −.67 (.11) −.33 (.13) −.02 (.14) .34 (.12) .67 (.10)

Genest-G. −.71 (.08) −.36 (.12) −.11 (.13) .28 (.12) .68 (.10)

Empirical −.54 (.07) −.26 (.09) −.01 (.10) .30 (.09) .58 (.06)

G
en
es
t-
G
h
o
u
d
i Gaussian −.77 (.09) −.35 (.12) .01 (.13) .36 (.12) .70 (.09)

Frank −.74 (.09) −.33 (.12) .01 (.13) .34 (.12) .67 (.09)

Clayton −.74 (.06) −.48 (.09) −.13 (.13) .25 (.14) .66 (.11)

Nelsen-(2) −.62 (.10) −.31 (.12) .09 (.18) .41 (.12) .67 (.09)

Genest-G. −.66 (.08) −.34 (.11) .00 (.12) .33 (.12) .67 (.09)

Empirical −.53 (.07) −.28 (.08) .01 (.09) .27 (.09) .53 (.07)

Note. Simulation of 3 × 3 contingency tables of sample size n = 100 from

different distributions with theoretical population polychoric correlation equal

to −.67, −.33, 0, .33 and .67. 1000 contingency tables were simulated and for

each, polychoric correlation coefficients were calculated. Figures in the table

are mean correlation coefficients and in parentheses the standard deviations.
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Table 2. Polychoric correlation coefficients with standard deviations for

5× 5 contingency tables, sample size 100.

True Assumed ρpc = −.67 ρpc = −.33 ρpc = 0 ρpc = .33 ρpc = .67
G
au

ss
ia
n

Gaussian −.67 (.08) −.33 (.11) −.01 (.12) .33 (.11) .67 (.07)

Frank −.65 (.08) −.32 (.11) −.01 (.12) .32 (.10) .65 (.08)

Clayton −.55 (.10) −.27 (.10) −.01 (.11) .28 (.10) .61 (.09)

Nelsen-(2) −.38 (.37) .09 (.29) .35 (.20) .58 (.16) .77 (.07)

Genest-G. −.44 (.18) −.11 (.17) .14 (.14) .43 (.11) .69 (.07)

Empirical −.60 (.06) −.29 (.09) −.01 (.10) .30 (.09) .60 (.06)

F
ra
n
k

Gaussian −.67 (.08) −.34 (.10) −.00 (.12) .34 (.11) .67 (.07)

Frank −.67 (.08) −.33 (.10) −.00 (.12) .33 (.10) .66 (.07)

Clayton −.55 (.10) −.28 (.10) −.00 (.11) .28 (.10) .62 (.09)

Nelsen-(2) −.40 (.37) .08 (.28) .35 (.20) .58 (.14) .78 (.07)

Genest-G. −.45 (.18) −.12 (.16) .15 (.14) .44 (.10) .69 (.06)

Empirical −.61 (.06) −.30 (.09) .00 (.10) .30 (.09) .61 (.06)

C
la
y
to
n

Gaussian −.69 (.08) −.32 (.10) −.00 (.11) .34 (.12) .69 (.08)

Frank −.67 (.08) −.31 (.10) −.00 (.11) .33 (.11) .68 (.09)

Clayton −.68 (.06) −.33 (.09) −.00 (.10) .33 (.10) .67 (.08)

Nelsen-(2) −.49 (.23) .03 (.24) .35 (.19) .65 (.15) .83 (.07)

Genest-G. −.55 (.11) −.14 (.15) .15 (.13) .48 (.12) .75 (.06)

Empirical −.61 (.07) −.29 (.09) −.00 (.10) .29 (.09) .60 (.06)

N
el
se
n
-(
2)

Gaussian −.86 (.07) −.44 (.21) .02 (.19) .33 (.16) .64 (.11)

Frank −.84 (.08) −.43 (.21) .02 (.19) .33 (.17) .65 (.11)

Clayton −.80 (.05) −.68 (.08) −.38 (.17) .02 (.19) .43 (.20)

Nelsen-(2) −.72 (.18) −.29 (.27) .03 (.16) .33 (.12) .66 (.08)

Genest-G. −.72 (.07) −.50 (.09) −.14 (.11) .16 (.15) .58 (.10)

Empirical −.62 (.08) −.32 (.11) .01 (.11) .32 (.10) .63 (.06)

G
en
es
t-
G
h
ou

d
i Gaussian −.79 (.08) −.38 (.15) .00 (.15) .33 (.13) .69 (.08)

Frank −.77 (.09) −.36 (.15) .01 (.15) .32 (.13) .68 (.09)

Clayton −.76 (.05) −.55 (.07) −.23 (.13) .11 (.13) .57 (.14)

Nelsen-(2) −.61 (.24) −.17 (.15) .15 (.17) .46 (.12) .74 (.07)

Genest-G. −.66 (.08) −.33 (.10) −.01 (.11) .32 (.11) .67 (.08)

Empirical −.62 (.08) −.31 (.10) .00 (.10) .30 (.09) .61 (.07)

Note. Simulation of 5 × 5 contingency tables of sample size n = 100 from

different distributions with theoretical population polychoric correlation equal

to −.67, −.33, 0, .33 and .67. 1000 contingency tables were simulated and for

each, polychoric correlation coefficients were calculated. Figures in the table

are mean correlation coefficients and in parentheses the standard deviations.
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Table 3. Polychoric correlation coefficients with standard deviations for

7× 7 contingency tables, sample size 100.

True Assumed ρpc = −.67 ρpc = −.33 ρpc = 0 ρpc = .33 ρpc = .67

G
au

ss
ia
n

Gaussian −.67 (.08) −.33 (.11) .00 (.11) .33 (.10) .66 (.07)

Frank −.66 (.08) −.32 (.11) .00 (.11) .33 (.11) .66 (.08)

Clayton −.51 (.09) −.26 (.10) .00 (.10) .26 (.10) .58 (.09)

Nelsen-(2) −.19 (.41) .22 (.26) .45 (.19) .61 (.15) .78 (.10)

Genest-G. −.33 (.18) −.03 (.15) .20 (.13) .44 (.12) .69 (.07)

Empirical −.63 (.07) −.31 (.09) .00 (.10) .31 (.09) .63 (.06)

F
ra
n
k

Gaussian −.65 (.08) −.33 (.10) .00 (.11) .33 (.10) .65 (.08)

Frank −.66 (.08) −.33 (.10) .00 (.11) .33 (.10) .66 (.08)

Clayton −.50 (.09) −.26 (.09) −.00 (.10) .26 (.10) .57 (.10)

Nelsen-(2) −.20 (.41) .21 (.27) .44 (.20) .61 (.14) .77 (.10)

Genest-G. −.33 (.17) −.04 (.15) .20 (.14) .43 (.11) .68 (.07)

Empirical −.63 (.06) −.32 (.09) .00 (.10) .32 (.09) .63 (.06)

C
la
y
to
n

Gaussian −.69 (.08) −.32 (.10) .00 (.11) .35 (.12) .69 (.08)

Frank −.67 (.08) −.31 (.10) .00 (.11) .34 (.12) .69 (.09)

Clayton −.66 (.05) −.33 (.08) .00 (.09) .34 (.10) .67 (.07)

Nelsen-(2) −.33 (.32) .16 (.22) .43 (.19) .65 (.16) .84 (.11)

Genest-G. −.49 (.08) −.06 (.13) .19 (.13) .48 (.15) .75 (.08)

Empirical −.63 (.07) −.31 (.09) .00 (.10) .31 (.09) .63 (.06)

N
el
se
n
-(
2
)

Gaussian −.87 (.07) −.44 (.21) .01 (.23) .35 (.19) .64 (.13)

Frank −.85 (.08) −.43 (.21) .00 (.22) .34 (.19) .65 (.13)

Clayton −.81 (.04) −.66 (.05) −.48 (.14) −.05 (.25) .35 (.25)

Nelsen-(2) −.57 (.52) −.15 (.39) .04 (.20) .33 (.12) .66 (.08)

Genest-G. −.72 (.07) −.47 (.09) −.23 (.10) .06 (.12) .56 (.11)

Empirical −.65 (.09) −.32 (.11) .00 (.12) .32 (.11) .65 (.07)

G
en

es
t-
G
h
ou

d
i Gaussian −.82 (.08) −.39 (.16) .01 (.17) .33 (.14) .68 (.09)

Frank −.80 (.08) −.37 (.16) .01 (.16) .33 (.15) .68 (.09)

Clayton −.79 (.04) −.58 (.05) −.28 (.14) .07 (.13) .51 (.15)

Nelsen-(2) −.47 (.50) −.10 (.25) .23 (.15) .55 (.13) .74 (.09)

Genest-G. −.67 (.07) −.33 (.09) −.00 (.10) .33 (.10) .66 (.07)

Empirical −.64 (.08) −.32 (.11) .01 (.11) .32 (.10) .64 (.06)

Note. Simulation of 7 × 7 contingency tables of sample size n = 100 from

different distributions with theoretical population polychoric correlation equal

to −.67, −.33, 0, .33 and .67. 1000 contingency tables were simulated and for

each, polychoric correlation coefficients were calculated. Figures in the table

are mean correlation coefficients and in parentheses the standard deviations.
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Table 4. Polychoric correlation coefficients with standard deviations for

3× 3 contingency tables, sample size 500.

True Assumed ρpc = −.67 ρpc = −.33 ρpc = 0 ρpc = .33 ρpc = .67
G
au

ss
ia
n

Gaussian −.67 (.04) −.33 (.05) −.00 (.06) .33 (.05) .67 (.04)

Frank −.63 (.04) −.31 (.05) −.00 (.05) .31 (.05) .63 (.04)

Clayton −.68 (.05) −.29 (.05) −.00 (.05) .31 (.05) .64 (.04)

Nelsen-(2) −.59 (.04) −.32 (.20) .26 (.09) .47 (.05) .68 (.04)

Genest-G. −.63 (.04) −.32 (.16) .10 (.05) .38 (.05) .67 (.04)

Empirical −.51 (.03) −.25 (.04) −.00 (.04) .25 (.04) .51 (.03)

F
ra
n
k

Gaussian −.70 (.04) −.35 (.05) −.00 (.06) .36 (.05) .70 (.04)

Frank −.67 (.04) −.33 (.05) −.00 (.05) .33 (.05) .67 (.04)

Clayton −.71 (.03) −.31 (.05) −.00 (.06) .33 (.05) .67 (.04)

Nelsen-(2) −.61 (.04) −.36 (.18) .26 (.10) .49 (.05) .71 (.03)

Genest-G. −.65 (.04) −.36 (.15) .10 (.05) .40 (.05) .70 (.03)

Empirical −.54 (.03) −.26 (.04) −.00 (.04) .26 (.04) .54 (.03)

C
la
y
to
n

Gaussian −.67 (.04) −.32 (.05) .00 (.06) .33 (.05) .69 (.04)

Frank −.64 (.04) −.30 (.05) −.00 (.05) .31 (.05) .65 (.04)

Clayton −.67 (.03) −.33 (.05) −.00 (.06) .33 (.05) .67 (.04)

Nelsen-(2) −.55 (.04) −.34 (.14) .26 (.09) .51 (.05) .73 (.03)

Genest-G. −.59 (.04) −.32 (.12) .10 (.05) .41 (.05) .71 (.03)

Empirical −.52 (.03) −.24 (.04) .00 (.04) .25 (.04) .52 (.03)

N
el
se
n
-(
2)

Gaussian −.85 (.03) −.36 (.06) −.02 (.06) .37 (.05) .73 (.04)

Frank −.82 (.03) −.33 (.06) −.01 (.06) .35 (.05) .70 (.04)

Clayton −.79 (.03) −.49 (.04) −.27 (.06) .21 (.07) .70 (.05)

Nelsen-(2) −.67 (.04) −.33 (.06) −.01 (.06) .33 (.05) .67 (.04)

Genest-G. −.71 (.04) −.36 (.06) −.11 (.06) .28 (.06) .68 (.04)

Empirical −.55 (.03) −.27 (.04) −.01 (.04) .30 (.04) .58 (.03)

G
en

es
t-
G
h
ou

d
i Gaussian −.78 (.04) −.35 (.06) .01 (.06) .36 (.05) .70 (.04)

Frank −.74 (.04) −.33 (.05) .01 (.05) .34 (.05) .67 (.04)

Clayton −.75 (.03) −.47 (.04) −.14 (.06) .26 (.06) .66 (.05)

Nelsen-(2) −.62 (.04) −.31 (.06) .10 (.12) .41 (.05) .67 (.04)

Genest-G. −.67 (.04) −.34 (.05) −.00 (.05) .33 (.05) .67 (.04)

Empirical −.53 (.03) −.28 (.04) .01 (.04) .27 (.04) .53 (.03)

Note. Simulation of 3 × 3 contingency tables of sample size n = 500 from

different distributions with theoretical population polychoric correlation equal

to −.67, −.33, 0, .33 and .67. 1000 contingency tables were simulated and for

each, polychoric correlation coefficients were calculated. Figures in the table

are mean correlation coefficients and in parentheses the standard deviations.
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Table 5. Polychoric correlation coefficients with standard deviations for

5× 5 contingency tables, sample size 500.

True Assumed ρpc = −.67 ρpc = −.33 ρpc = 0 ρpc = .33 ρpc = .67

G
au

ss
ia
n

Gaussian −.67 (.03) −.33 (.05) −.00 (.05) .33 (.05) .67 (.03)

Frank −.66 (.03) −.32 (.05) −.00 (.05) .32 (.05) .66 (.03)

Clayton −.56 (.04) −.27 (.04) −.00 (.04) .28 (.05) .60 (.04)

Nelsen-(2) −.12 (.29) .22 (.21) .37 (.09) .55 (.13) .78 (.02)

Genest-G. −.40 (.11) −.10 (.13) .13 (.06) .45 (.04) .69 (.03)

Empirical −.61 (.03) −.30 (.04) −.00 (.04) .30 (.04) .61 (.03)

F
ra
n
k

Gaussian −.67 (.03) −.34 (.05) .00 (.05) .34 (.04) .67 (.03)

Frank −.67 (.03) −.34 (.05) .00 (.05) .33 (.04) .67 (.03)

Clayton −.56 (.04) −.28 (.05) .00 (.05) .27 (.04) .62 (.04)

Nelsen-(2) −.11 (.30) .20 (.22) .37 (.08) .54 (.13) .79 (.02)

Genest-G. −.41 (.12) −.11 (.13) .13 (.06) .45 (.04) .70 (.03)

Empirical −.62 (.03) −.31 (.04) .00 (.04) .31 (.04) .62 (.03)

C
la
y
to
n

Gaussian −.69 (.03) −.32 (.05) −.00 (.05) .34 (.05) .69 (.04)

Frank −.67 (.03) −.31 (.05) −.00 (.05) .33 (.05) .68 (.04)

Clayton −.67 (.02) −.33 (.04) −.00 (.04) .33 (.04) .67 (.03)

Nelsen-(2) −.45 (.21) .13 (.21) .37 (.10) .67 (.12) .83 (.02)

Genest-G. −.56 (.09) −.11 (.11) .13 (.06) .50 (.04) .75 (.03)

Empirical −.61 (.03) −.30 (.04) −.00 (.05) .30 (.04) .61 (.03)

N
el
se
n
-(
2
)

Gaussian −.86 (.03) −.44 (.09) .01 (.09) .32 (.07) .64 (.05)

Frank −.85 (.03) −.43 (.09) .00 (.09) .32 (.08) .64 (.05)

Clayton −.80 (.02) −.69 (.03) −.43 (.06) −.01 (.07) .37 (.08)

Nelsen-(2) −.31 (.47) −.30 (.15) −.00 (.06) .33 (.05) .67 (.04)

Genest-G. −.72 (.03) −.51 (.04) −.15 (.05) .14 (.08) .57 (.04)

Empirical −.62 (.04) −.32 (.05) .00 (.05) .32 (.04) .64 (.03)

G
en

es
t-
G
h
ou

d
i Gaussian −.80 (.03) −.38 (.07) .00 (.07) .33 (.06) .69 (.04)

Frank −.78 (.03) −.37 (.07) .00 (.07) .33 (.06) .68 (.04)

Clayton −.75 (.02) −.55 (.03) −.23 (.06) .10 (.05) .56 (.06)

Nelsen-(2) −.33 (.42) −.16 (.05) .17 (.15) .44 (.05) .76 (.03)

Genest-G. −.67 (.03) −.34 (.04) .00 (.04) .33 (.04) .67 (.03)

Empirical −.62 (.03) −.31 (.05) .00 (.05) .31 (.04) .62 (.03)

Note. Simulation of 5 × 5 contingency tables of sample size n = 500 from

different distributions with theoretical population polychoric correlation equal

to −.67, −.33, 0, .33 and .67. 1000 contingency tables were simulated and for

each, polychoric correlation coefficients were calculated. Figures in the table

are mean correlation coefficients and in parentheses the standard deviations.
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Table 6. Polychoric correlation coefficients with standard deviations for

7× 7 contingency tables, sample size 500.

True Assumed ρpc = −.67 ρpc = −.33 ρpc = 0 ρpc = .33 ρpc = .67
G
au

ss
ia
n

Gaussian −.67 (.03) −.33 (.05) −.00 (.05) .33 (.05) .67 (.03)

Frank −.67 (.03) −.33 (.05) −.00 (.05) .33 (.05) .67 (.03)

Clayton −.51 (.04) −.26 (.04) −.00 (.04) .26 (.04) .58 (.04)

Nelsen-(2) −.14 (.26) .22 (.17) .42 (.11) .58 (.11) .77 (.08)

Genest-G. −.32 (.12) −.02 (.09) .21 (.07) .44 (.06) .70 (.03)

Empirical −.63 (.03) −.32 (.04) −.00 (.05) .31 (.04) .64 (.03)

F
ra
n
k

Gaussian −.65 (.03) −.33 (.05) .00 (.05) .33 (.04) .65 (.03)

Frank −.66 (.03) −.33 (.05) −.00 (.05) .33 (.04) .67 (.03)

Clayton −.49 (.05) −.26 (.04) −.00 (.04) .25 (.04) .57 (.04)

Nelsen-(2) −.14 (.27) .19 (.18) .41 (.12) .59 (.11) .76 (.07)

Genest-G. −.30 (.12) −.03 (.09) .21 (.08) .44 (.06) .69 (.03)

Empirical −.64 (.03) −.32 (.04) −.00 (.05) .32 (.04) .64 (.03)

C
la
y
to
n

Gaussian −.69 (.03) −.32 (.05) .00 (.05) .35 (.05) .69 (.04)

Frank −.68 (.04) −.32 (.05) −.00 (.05) .34 (.06) .69 (.04)

Clayton −.67 (.02) −.33 (.03) −.00 (.04) .33 (.05) .66 (.03)

Nelsen-(2) −.35 (.08) .15 (.15) .41 (.11) .59 (.12) .87 (.05)

Genest-G. −.50 (.03) −.03 (.08) .21 (.07) .50 (.08) .76 (.03)

Empirical −.64 (.03) −.32 (.04) .00 (.05) .31 (.05) .64 (.03)

N
el
se
n
-(
2)

Gaussian −.88 (.03) −.47 (.09) .01 (.11) .35 (.09) .64 (.06)

Frank −.86 (.03) −.45 (.10) .00 (.10) .35 (.09) .66 (.06)

Clayton −.81 (.02) −.66 (.02) −.51 (.04) −.07 (.09) .27 (.09)

Nelsen-(2) −.17 (.51) −.31 (.14) −.00 (.06) .33 (.05) .67 (.04)

Genest-G. −.72 (.03) −.48 (.04) −.24 (.04) .04 (.05) .56 (.05)

Empirical −.65 (.04) −.33 (.05) .00 (.05) .33 (.04) .65 (.03)

G
en

es
t-
G
h
ou

d
i Gaussian −.82 (.03) −.40 (.07) .00 (.08) .33 (.06) .68 (.04)

Frank −.80 (.03) −.39 (.07) .00 (.08) .33 (.07) .69 (.04)

Clayton −.79 (.02) −.59 (.02) −.29 (.06) .05 (.05) .48 (.07)

Nelsen-(2) −.44 (.37) −.14 (.08) .21 (.10) .52 (.10) .73 (.05)

Genest-G. −.67 (.03) −.33 (.04) .00 (.04) .34 (.04) .67 (.03)

Empirical −.65 (.04) −.33 (.05) .00 (.05) .32 (.04) .64 (.03)

Note. Simulation of 7 × 7 contingency tables of sample size n = 500 from

different distributions with theoretical population polychoric correlation equal

to −.67, −.33, 0, .33 and .67. 1000 contingency tables were simulated and for

each, polychoric correlation coefficients were calculated. Figures in the table

are mean correlation coefficients and in parentheses the standard deviations.




