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ABSTRACT OF THE DISSERTATION

Mathematical Studies of Electrostatic Free Energies

by

Benjamin Ciotti

Doctor of Philosophy in Mathematics

University of California San Diego, 2019

Professor Bo Li, Chair

Motivated by biological models of solvation, this dissertation consists of anal-

ysis of models of electrostatic free energy of charged systems that incorporate both

continuum and discrete idealizations of charges.

Discrete models of charge can yield vastly divergent results than the corre-

sponding continuum models for systems with a small number of particles, but will

be shown in Chapter 2 to be asymptotically equivalent in the large particle num-

ber limit. In Section 2.1 the energy of a given continuum charge distribution is

shown to be representable as a limit of approximating discrete charge distributions

by way of properties of harmonic functions and Riemann sum approximations. In

Section 2.2 the problem is reversed in that a given sequence of collections of point

charges is shown to have a limiting continuum charge density with the same limiting

xi



electrostatic energy.

Motivated by application to a minimization problem common in molecular

modelling, potential theory, and fluid mechanics, Chapter 3 details a delicate multi-

scale construction to generalize the results of Chapter 2 to more general measures,

requiring the further development of the theory of Radon measures and their Fourier

transforms, facilitated by a gradient flow evolution of the domain.

The analysis of Chapter 4 concerns a hybrid model of solvation that incorpo-

rates statistical mechanics and the classical Coulomb energy of a system, allowing

for both continuous and discrete distributions of charge whose equilibrium configura-

tion is described by the Poisson–Boltzmann Equation. Motivated by application to

optimization, a modified free energy functional is constructed by way of a Legendre

transform and is shown to be equivalent.

Despite the long history of competition between these models, a precise treat-

ment of the question has never been addressed, to this author’s knowledge. This work

is significant in bridging the gap between scales, and furthermore has application to

a wide variety of physical and biological modelling problems.
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Chapter 1

Introduction

Electrostatics is the branch of physics concerned with time-independent dis-

tributions of electric charge and the corresponding fields, potentials and energies. It

is fundamental and serves as the first chapter in many introductory textbooks on

the topic of electricity and magnetism. The implications and applications of electro-

statics are numerous and far-reaching, coming to bear on biophysics, physical chem-

istry, solid state physics, nanophysics, optics, chemical engineering, and materials

science. A survey of the Journal of Electrostatics will reveal applications as varied

as drug design, ceramics, turbine generators, induction heating systems, chipsets,

cell phones, transmission lines, and antennae. Electrostatics plays an important role

in the distribution of ions in a solution surrounding charged macromolecules, hence

the application to molecular modelling which can be used to study lipid bilayers,

proteins, and DNA, and are useful in drug design and cancer research.

At the core of electrostatics is Coulomb’s law, which states [30] that the force

between two small charged bodies separated by a distance that is large compared to

their internal breadth should be

- repulsive between like charges, and attractive between unlike charges;
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- directly proportional to the charge of the bodies; and

- inversely proportional to the square of the distance between them.

Figure 1.1: Field line flux per unit area decreasing with the inverse square of distance

Coulomb’s law is one of the four Maxwell’s equations that comprise the basis of

classical electromagnetic theory. While it is derivable from quantum electrodynamics,

the intuition that electric field lines should decrease in density with the inverse square

of distance seems physically plausible from the standpoint that the flux of field lines

through a surface bounding the object should be conserved, as seen in Figure 1. The

inverse-square relation was initially determined in experimental work by Coulomb,

Cavendish, and Priestly dating to the late 1700’s [70], and has been repeatedly

confirmed to greater orders of accuracy as technology has improved, but there is

now a theoretical basis in relativistic quantum mechanics from which Coulomb’s law

can be derived as a consequence of the massless nature of the photon, the carrier of

electromagnetic force. The inverse square law notably appears as well in Newton’s

law of gravitation. It has thus been the focus of much mathematical analysis, and has

spurred the development of rich and varied mathematical subfields, including partial

differential equations, harmonic analysis, potential theory, and geometric measure

theory, all of which come to bear on this dissertation.

To be precise, suppose we have a pair of small, spherical charged particles

2



Figure 1.2: Coulomb’s Law for the force between charged particles

whose centers are a distance r apart, and with charges represented by real numbers

q1 and q2 (cf. Figure 1). Then the electric force on q2 due to q1 will be

kq1q2

r2
,

in a direction opposite to that of the location of charge q1 [70, 30]. Note that, in

accordance with Newton’s 3rd Law, the force on q1 due to q2 is equal and opposite

to that on q2 due to q1. By integrating this force along a path starting infinitely far

away, we find

kq1

r

is the energy per unit charge required to bring q2 to this position, and is referred to

as the potential due to q1. The constant k varies with the unit system being used,

and shall be hereafter normalized to 1. By the principle of linear superposition, if we

have a set of discrete charges q1, . . . , qn, at respective positions x1, . . . , xn in space,

then the potential at a point x in space due to q1, . . . , qn is

n
ÿ

i“1

qi
|x´ xi|

,

and represents the energy required to bring a unit charge in from infinitely far away

to position x while holding all the other charges fixed. If we imagine assembling
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this configuration of charges by sequentially bringing in each charge from a distance

infinitely far away while holding the previously assembled charges fixed, we arrive at

an expression [70, 30] for the energy required to do so:

n
ÿ

i“1

n
ÿ

j“i`1

qiqj
|xi ´ xj|

.

This can be written more symmetrically as

1

2

ÿ

i‰j

qiqj
|xi ´ xj|

.

The factor of 1{2 compensates for double counting pairs of interactions, but is incon-

sequential for the purposes of this dissertation and will be dropped, and we henceforth

regard
ÿ

i‰j

qiqj
|xi ´ xj|

(1.0.1)

as the discrete energy of the configuration (or “distribution”) of charges q1, . . . , qn at

respective positions x1, . . . , xn.

No reference is made here to the size or shape of the charges, or what is meant

by their position. A natural choice would be their center of mass (or charge, rather).

For radially symmetric distributions, this is the same as their center. As specified

in the statement of Coulomb’s law, their breadth (or “diameter”) should be small

compared to the inter–particle distances. In the limit that the particle diameter

decreases to 0, the charges are idealized as points. A famous result which shall be

re–proven in this paper is Newton’s theorem, which states that the interaction energy

between non-overlapping radially symmetric charge distributions is the same as that

between two point charges positioned at the respective centers and comprising the

same charge.
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The practice of idealizing particles as point charges (or masses) is common

in physics and engineering, due to the ease and intuition with which the models

can be understood and implemented, owing to the reduction in degrees of freedom.

It is understood that such an idealization is a physical impossibility and leads to

mathematical singularities (to which a considerable portion of this dissertation is

devoted to addressing). This can be seen readily from the equations, for example, if

one imagines assembling a unit point charge by bringing two half charges together

to the same point – the energy required would be infinite. If this is not convincing,

one can calculate the energy of a uniformly charged ball of unit charge and radius

R. A simple calculation yields the energy of this charge configuration to be .6R´1,

which diverges as R tends to 0.

The usual carrier of charge in practice is the electron, and modern estimates

for the radius of the electron put it at roughly (with within a few orders of magnitude)

10´20 meters [15], suggesting the point charge idealization to be reasonable on a wide

range of length scales, including those relevant to biology1. Accordingly, biological

systems will tend to have a large number of particles, on the order of 1023. This is

far more than is reasonable for any computation that makes use of equation (1.0.1),

and it becomes reasonable if not necessary to formulate models in terms of a charge

density.

The concept of density is not always well–defined. The familiar definition of

the density of a quantity is the amount per unit volume. But this definition has an

inherent length scale involved. For in the case of particle density, for example, the

definition breaks down at extreme scales. From a faraway perspective, the density

of almost any earthly quantity is negligible. While at the scale of atomic radii, the

density of nearly any substance outside a black hole will be zero almost everywhere,

1To put this into perspective, the diameter of a human cell is approximately 10´5 meters.
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except inside an atomic nuclei, where it will be approximately equal to that of a black

hole, roughly 1018 kg/m3 [35]. Yet no one will deny the utility of density calculations

in most practical applications, including biological models.

Thus we consider a density ρ as a function from R3 to R satisfying that
ş

V
ρdx should approximate the charge in a volume V . Then the potential U due to

this distribution of charge is given by

Upxq “

ż

ρpyqdy

|x´ y|
, (1.0.2)

and the energy of the distribution ρ is

1

2

ż

Upxqρpxqdx,

which can be written more symmetrically as

1

2

ż ż

ρpxqρpyq

|x´ y|
dydx.

As in (1.0.1) we disregard the prefactor of 1{2 that accounts for double–counting of

pairs of interactions, and regard

Erρs “

ż ż

ρpxqρpyq

|x´ y|
dydx, (1.0.3)

to be the continuum energy of ρ, when this expression is makes sense (which will be

discussed shortly).

These expressions for the potential and the energy are believable extensions

of the discrete forms, by way of Riemann sum approximations of the integrals. But

the integrand is unbounded due to the singularity of the Coulomb potential, so the
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analysis must be done with care. Even the existence and well-definedness of the

expression (1.0.3) is non-trivial and must be addressed.

The function Upxq defined in (1.0.2) is well known as the solution to Poisson’s

equation with zero boundary conditions at infinity:

$

’

&

’

%

∆ψ “ ´ρ in R3,

ψp8q “ 0,

[26, 22] and is the cornerstone of the theory of elliptic PDE. Solutions are well-

behaved in charge-free regions, where they satisfy several properties such as har-

monicity, regularity, the maximum principle and the mean value property.

One issue manifestly apparent is the discrepancy between the discrete energy

(1.0.1) and the continuum energy (1.0.3). As we will show in the appendix, the

continuum energy is never negative but the discrete energy can be, for example in

the case of a positive and negative charge. So clearly they are not equal, even if

it were possible to conceive of a way to represent a point charge with a continuous

distribution.

The discrepancy lies in the infinite self energy of point charges. These are

excluded, for obvious reasons, from the discrete formulation via the “i ‰ j” condition.

No such restriction exists for the continuum energy. In fact, even if we did exclude

the set of points tpx, yq P R3 ˆR3 : x “ yu, the continuum energy would not change

since that is a set of measure zero in R6.

But perhaps, with an appropriate scaling, they approach a common value

in the limit that the number of particles gets very large, lending validation to the

practice of employing density calculations. This is the central problem of this disser-

tation, and shall be addressed directly in Chapter 2. Chapter 3 generalizes results of
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Chapter 2 to charge distributions concentrated on lower dimensional surfaces, with

a goal of applying the results to a minimization problem common in electrostatics

and molecular modelling. Chapter 4 is independent but related, and analyzes an

alternative approach to models of electrostatics in statistical mechanics by way of

Legendre transforms.

In Section 2.1, we wish to express the energy of a given smooth and bounded

charge density ρ on a bounded Lipschitz domain Ω as a limit of discrete energies. This

is achieved via a careful Reimann sum approximation of the integral (1.0.3). The

unbounded integrand necessitates a delicate analysis. Key will be the harmonicity

and local integrability of the Coulomb potential, which allow us to establish bounds

on the discrete energy in terms of the continuum energy.

In Section 2.2, the problem is a reversal, in a sense, of that of the previous

section. Rather than starting with a fixed charge density, we assume the existence of

a sequence of discrete charge densities. Then under a geometric assumptions on their

distribution, a subsequence will converge to a charge distribution whose density is

continuous with respect to Lebesgue measure in R3. We heavily employ the technique

of convolution, which for two functions f and g from R3 to R is given by

pf ˚ gqpxq “

ż

fpx´ yqgpyqdy,

when this makes sense. This definition can be extended to measures, and has the ben-

eficial property that f ˚ g inherits the nicest regularity of either f or g. We typically

choose f to be smooth, compactly supported in the unit ball, radially symmetric,

nonnegative, and of unit mass, in which case the convolution (or mollification) of g

by f is akin to an averaging procedure, with f being the weighting. In this sense, the
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mollification of a discrete charge distribution is a good approximation to the density,

yielding the approximate number of particles in a volume at a given length scale.

We can adjust this length scale by defining rescaled mollifier fλpxq “ λ´3fpx{λq.

Then
ş

fdx “
ş

fλdx, so the mass is preserved, but is highly concentrated for small λ

since the support of fλ is contained in a ball of radius λ. By employing the Banach–

Alaoglu Theorem to guarantee the existence of a vaguely convergent subsequence,

we can extract a limit and demonstrate it has the desired properties.

In Chapter 3 we are required to further develop the theory of Radon measures

as distributions of charge. A useful property of Radon measures is that they are

exactly dual to the space of continuous functions vanishing at infinity. Although the

vanishing at infinity condition is actually not much needed for our purposes, as all

measures we consider will be supported in the closure of a bounded domain Ω.

The set of Radon measures is large enough to include delta functions as well as

Lebesgue measure and measures whose Radon–Nikodym density with respect to the

Lebesgue measure are given by any integrable function. They can also be considered

as distributions, which are often called “generalized functions” and are dual to C8c ,

the space of compactly supported, infinitely differentiable functions. The theory of

distributions was largely developed to handle delta functions and their derivatives.

Since we will not be concerned with derivatives of charge densities, we will not be

concerned with this generalization, and will largely confine our discussions to the

language of measures. This has the advantage of staying dual to C0pRnq as opposed

to C8c pRnq.

In order to fully utilize the theory of energies of Radon measures, we develop

some Fourier analysis, as detailed in the Appendix, and briefly summarized here.
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The Fourier transform of a compactly supported signed Radon measure is µ is

pµpkq :“

ż

e´ik¨xdµpxq.

pµ is bounded and continuous, although rarely of compact support. Loosely speaking,

Fourier transforms interchange decay for regularity. In this dissertation, almost all

distributions considered will have compact support, so their transforms will all be

quite smooth but will also have low regularity. Consider, e.g., the Fourier transform

of a delta function δx0 :

xδx0pkq “ e´ik¨x0 ,

which is infinitely differentiable but has no decay.

By extending the theory to tempered distributions, we can define the Fourier

transform of the Coulomb potential: If vpxq “ 1{|x| for x P R3, then we have the

“equality”

pvpkq “
4π

|k|2

holding in a weak sense, which allows us to express the electrostatic energy of a

signed Radon measure in terms of its Fourier transform via

ĳ

dµpxqdµpyq

|x´ y|
“

ż

|pµpxq|2

2π2|x|2
dx. (1.0.4)

Much of the difficulty in analyzing electrostatic energies of distributions of

point charges is due to the infinities involved, such as the infinite self-energy of a

point charge. But these need not be the only infinities. It is also possible to have

finite, compactly supported charge distributions that are not point charges but still

have infinite energy. For example, the energy of a unit charge supported on the
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thin “wire” comprising the line segment from (0,0,0) to (1,0,0) in R3 has infinite

energy, as will any charge distribution supported on a set of Hausdorff dimension 1

or less [51]. On the other hand, it is a simple exercise in calculus to show that a

normalized uniform measure on the surface of a sphere of radius R has finite energy

.5R´1, implying that measures need not be absolutely continuous with respect to

Lebesgue measure in order to have finite energy. Conversely, a charge distribution

that is absolutely continuous with respect to Lebesgue measure need not be of finite

energy, e.g., a measure whose Lebesgue density is equal to |x|´5{2 in a neighborhood

of the origin.

The collection of subsets of R3 satisfying the property that any nonzero mea-

sure supported on them has infinite energy are exactly the sets of capacity 0, where

the capacity of a measurable set A Ă R3 is defined by

CpAq :“
ˆ

inft

ĳ

dµpxqdµpyq

|x´ y|
: µ is a Borel probability measure supported on Au

˙´1

.

The mathematical theory of capacitance (with its generalizations of the definition

given above) is rich in its own right. While the results contained in this dissertation

do not directly address questions of capacity, it will be useful to occasionally reference

this definition.

In [9], Capet and Friesecke consider a system of fixed, hard spheres enclosing

positive charges that are themselves surrounded by a sea of discrete negative charges,

and they prove that in the large particle number limit there is a convergence of

discrete particle densities and energies to a continuum limit, and that in the large

particle asymptotic limit, the energy minimizing distribution of negative ions will
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uniformly cover the spheres of positive charge in such a way as to exactly neutralize

their charge. By way of the concept of balayage which we describe in Section 3.3,

a point charge at the center of a spherical volume from which other charges are

excluded is equivalent to a surface charge uniformly distributed on the surface of the

sphere, of total charge equal to that of the charge at the center. In light of (1.0.4),

it is not surprising that the minimizing configuration is thus equivalent to a zero

charge distribution.

In [59], Serfaty proves a similar but more generalized result relating conver-

gence of the minima/minimizers of discrete energy functionals (of discrete probability

measures) to a continuum energy functional, in the presence of an external potential

which could itself describe the field of a fixed background charge density, a confining

bounded domain, or other forces.

Both Friesecke and Serfaty rely upon the same delicate multiscale construction

whereby densities are averaged at an intermediate mesoscale and discrete particle are

placed on a finer microscale (or “interparticle distance”). And in both of their proofs,

only discrete probability measures of the form

1

n

n
ÿ

i“1

δxi

are considered, while in this dissertation their techniques are adapted to signed mea-

sures of the form

1

n

n
ÿ

i“1

qiδxi

for ´1 ď qi ď 1. This generalization of allowed charge “valences” is intended to

model the physically plausible scenario that the domain in question should contain

both negative and positive charges (or ions), possibly of differing valence (i.e. integer
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multiples of the fundamental charge of the electron). Moreover, the problem in this

dissertation is not phrased as a minimization problem as in [9] and [59], although we

do present an application to the minimization problem in Section 3.3.

Chapter 4 of this dissertation is independent of the others. It concerns models

of solvation, which were the impetus for investigating electrostatics. Solvation is the

study of solutes dissolved in a solvent. The solute typically consists of charged macro-

molecules, which interact with a dielectric solvent containing mobile ions. The typical

quantities of interest include the concentrations of the various chemical species, the

electric potential, the entropy, the shape of the solvent accessible surface, the temper-

ature, the surface tension, and the pressure. The assumptions of statistical mechanics

dictate that we assume the ions to be in a Boltzmann distribution, according to their

electrostatic energy. This leads to the Poisson–Boltzmann (PB) equation:

∇ ¨ ε∇φ “ ´f ´
M
ÿ

i“1

c8i qie
´βqiφ. (1.0.5)

Here φ the electrostatic potential, ε the dielectric coefficient, f a fixed charge dis-

tribution, c8i the reference densities of the ith chemical species, M the number of

species, and β the inverse thermal energy.

The PB equation can be obtained as the Euler–Lagrange equation of the PB

functional

Irφs “

ż

Ω

«

´
ε

2
|∇φ|2 ` fφ´ β´1

M
ÿ

i“1

c8i
`

e´βqiφ ´ 1
˘

ff

dx.

However, such a PB functional is concave downward and maximized at its critical

point, making it inconsistent in many applications where a macroscopic free-energy
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functional is minimized. In [48], Maggs proposed a Legendre transformed form of the

electrostatic free-energy functional of all possible dielectric displacements. This new

functional is convex and minimized at the displacement corresponding to the critical

point of the PB functional, and the minimum value is exactly the equilibrium electro-

static free energy. In Chapter 4, we study mathematically the Legendre transformed

electrostatic free-energy functionals and the related variational principles. We first

prove that the PB functional and its Legendre transformed functional are equiva-

lent. We then consider a phenomenological electrostatic free-energy functional that

includes a higher-order gradient term, proposed by Bazant, Storey, and Kornyshev

[3] to describe charge-charge correlations. For such a functional, we introduce the

corresponding Legendre transformed functional and obtain the related equivalence.

We further consider the case without ions. We show that the electrostatic energy

functional is equivalent to a Legendre transformed energy functional with constraint,

and prove the convergence of the Legendre transform of a perturbed electrostatic en-

ergy functional. Finally, we apply the Legendre transform to the dielectric boundary

electrostatic free energy in molecular solvation.
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Chapter 2

Passage from Discrete to

Continuum Models

2.1 Continuum energy as the limit of discrete en-

ergies: The case of a given continuous charge

density

Let Ω Ă R3 be a bounded domain with a Lipschitz-continuous boundary BΩ.

Let ρ P C1pΩq represent a charge density. The continuum electrostatic energy due

to the charge density ρ is given by

ż

Ω

1

2
ρψ dx (2.1.1)
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(see e.g., [30]). Here ψ is the electrostatic potential, defined to be the unique weak

solution to the boundary-value problem of Poisson’s equation

$

’

&

’

%

∆ψ “ ´ρ in R3,

ψp8q “ 0,

where we set ρ “ 0 in R3zΩ and we assume a uniform dielectric coefficient taken to

be the unity in certain units. One can verify (see e.g., p.23 in [22], Section 1.7 in

[30]) that the unique solution ψ is given by

ψpxq “
1

4π

ż

Ω

ρpyq

|x´ y|
dy @x P R3.

This and (2.1.1) imply that

1

8π

ĳ

ΩˆΩ

ρpxqρpyq

|x´ y|
dxdy (2.1.2)

is the electrostatic energy of ρ. By the Fubini–Tonelli theorem (Theorem 2.39 in

[25]), we also have

1

8π

ĳ

ΩˆΩ

ρpxqρpyq

|x´ y|
dxdy “

1

8π

ż

Ω

ż

Ω

ρpxqρpyq

|x´ y|
dxdy “

1

8π

ż

Ω

ż

Ω

ρpxqρpyq

|x´ y|
dydx.

We now construct a sequence of sets of point charges by partitioning the do-

main Ω and approximating the continuous charge density ρ with linear combinations

of delta functions, and we define the corresponding discrete electrostatic energies

using Coulomb’s law. We call a class of finitely many subsets of Ω a partition of Ω,

if the following are satisfied:

(P1) Each of these subsets is a domain in R3 with a Lipschitz-continuous boundary;

16



(P2) These subsets are pairwise disjoint;

(P3) The union of the closures of these subdomains is Ω.

We call these subsets cells of the partition. For any partition P of Ω, we shall define

the size of P by

}P } “ max
ωPP

diam pωq.

Let tP nu8n“1 be a sequence of partitions of Ω. We assume that there exist

natural numbers Nn Õ `8 and real numbers rn Œ 0 such that, for each n ě 1,

P n consists of regular cells ωni pi “ 1, . . . , Nnq and irregular cells (which are the

remaining cells, if any) satisfying the following two conditions:

‚ The uniform size condition: For each n ě 1 and each i p1 ď i ď Nnq, there

exists xni P ω
n
i such that the open ball Bpxni , rnq Ď ωni . Moreover,

γ :“ inf
ně1

inf
1ďiďNn

|Bpxni , rnq|

|ωni |
ą 0; (2.1.3)

‚ The almost covering condition: limnÑ8

ˇ

ˇΩz
`

∪Nni“1ω
n
i

˘ˇ

ˇ “ 0.

Here and below, we denote by |A| the Lebesgue measure of a Lebesgue-measurable

set A in a properly understood space Rd. Note that, since rn Œ 0, the uniform size

condition implies that

lim
nÑ8

}P n
} “ 0. (2.1.4)

An example of a sequence of partitions P n pn “ 1, 2, . . . q that satisfy these

conditions can be constructed as follows; cf. Figure 2.1: Let Ω Ď Π3
α“1paα, bαq

for some real numbers aα and bα with aα ă bα pα “ 1, 2, 3q. Set Lα “ bα ´ aα.

For each integer n ě 1, cover Π3
α“1paα, bαq with a finite difference grid with grid

cells Π3
α“1 paα, aα ` piα{nqLαq piα “ 1, . . . , nq. The partition P n consists of all the

17



Figure 2.1: Example of regular cells

nonempty intersections of Ω and these grid cells. The regular cells of P n are those

grid cells that are completely contained in Ω, and the charge positions xni are

the centers of those regular cells. The uniform size condition is satisfied with

rn “ minα“1,2,3 Lα{p2nq. Since the boundary BΩ is Lipschitz-continuous,

lim
ηÑ0`

|tx P Ω : dist px, BΩq ď ηu| “ 0,

see, e.g., [39]. Therefore, the almost covering condition is satisfied.

Given a sequence of partitions P n of Ω that satisfy the uniform size condition

and the almost covering condition, with associated sequences Nn Õ `8, rn Œ 0,

ωni P P
n and xni P ω

n
i pi “ 1, . . . , Nn;n “ 1, 2, . . . q as above, we define the sequence

of discrete charges tQn
i u
Nn
i“1 pn “ 1, 2, . . . q by

Qn
i “ ρpxni q|ω

n
i |, i “ 1, . . . , Nn; n “ 1, 2, . . . (2.1.5)

By Coulomb’s law [30],

1

8π

Nn
ÿ

i,j“1,i‰j

Qn
iQ

n
j

ˇ

ˇxni ´ x
n
j

ˇ

ˇ

. (2.1.6)

is the corresponding sequence of the discrete electrostatic energies

The main result of this section is as follows;
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Theorem 2.1.1.

lim
nÑ8

Nn
ÿ

i,j“1,i‰j

Qn
iQ

n
j

ˇ

ˇxni ´ x
n
j

ˇ

ˇ

“

ĳ

ΩˆΩ

ρpxqρpyq

|x´ y|
dxdy. (2.1.7)

We shall use two facts, stated below as lemmas, to prove the theorem. The

first is the integrability of the function

fpx, yq :“
ρpxqρpyq

|x´ y|
@x, y P Ω. (2.1.8)

This will imply absolute continuity: the integral of f is small over a set of small

measure. The second is an identity connecting the discrete expression 1{|x0´ y0| for

distinct points x0, y0 P R
3, and an integral of 1{|x ´ y| against x and y over two

disjoint balls in R3 centered at x0 and y0, respectively.

Lemma 2.1.1. With f defined as above we have that f P L1pΩˆ Ωq.

Proof. Clearly, f is Lebesgue-measurable. Let R ą 0 be such that Ω Ă Bp0, Rq. We

have

ĳ

ΩˆΩ

|fpx, yq| dxdy ď }ρ}28

ĳ

ΩˆΩ

dxdy

|x´ y|

ď }ρ}28

ż

Bp0,Rq

„
ż

Bp0,Rq

dx

|x´ y|



dy

ď }ρ}28

ż

Bp0,Rq

„
ż

Bp0,2Rq

dx

|x|



dy

“ }ρ}28

ż

Bp0,Rq

„

4π

ż 2R

0

1

s
s2ds



dy

“
32

3
π2R5

}ρ}28
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ă 8,

as desired.

Lemma 2.1.2. Suppose x0, y0 P R3 and R, S ą 0 satisfy Bpx0, Rq ∩ Bpy0, Sq “ ∅,

then

1

|x0 ´ y0|
“

1

|Bpx0, Rq| |Bpy0, Sq|

ż

Bpx0,Rq

ż

Bpy0,Sq

1

|x´ y|
dydx

Proof. Note that 1{|z| is a harmonic function for z P R3zt0u. Note also that x R

Bpy0, Sq provided that x P Bpx0, Rq, since

|x´ y0| “ |x´ x0 ` x0 ´ y0| ě |x0 ´ y0| ´ |x´ x0| ą R ` S ´R “ S.

We have now by the (volumetric) mean-value theorem for a harmonic function that

1

|x0 ´ y0|
“

1

|Bpx0, Rq|

ż

Bpx0,Rq

1

|x´ y0|
dx

“
1

|Bpx0, Rq|

ż

Bpx0,Rq

„

1

|Bpy0, Sq|

ż

Bpy0,Sq

1

|x´ y|
dy



dx

“
1

|Bpx0, Rq| |Bpy0, Sq|

ż

BRpx0q

ż

Brpy0q

1

|x´ y|
dydx,

completing the proof.

For convenience, we denote

E “

ĳ

ΩˆΩ

ρpxqρpyq

|x´ y|
dxdy and En “

Nn
ÿ

i,j“1,i‰j

Qn
iQ

n
j

ˇ

ˇxni ´ x
n
j

ˇ

ˇ

. (2.1.9)
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By (2.1.2) and (2.1.6), we need to prove

lim
nÑ8

En “ E. (2.1.10)

To do so, we shall decompose the continuum energy E into three parts: Eirreg;

Ereg diag; and Ereg nondiag. We also decompose accordingly the discrete energy En into

two parts: Ereg diag
n and Ereg nondiag

n .

‚ The part Eirreg is an integral related to irregular cells in a partition P n, which

converges to 0 as n Ñ 8 by the almost covering condition and the absolute

continuity of f P L1pΩˆ Ωq; cf. Lemma 2.1.1.

‚ The part Ereg diag is an integral over a region of all the pairs of regular cells in

P n that are inside a small neighborhood of the diagonal

D :“ tpx, yq P Ωˆ Ω : x “ yu. (2.1.11)

This part is small, again due to the absolute continuity of f .

‚ The part Ereg diag
n is the sum of those terms in the discrete energy En that are

related to pairs of regular cells in a small neighborhood along the diagonal D.

This part is small for large n by Lemma 2.1.2 and the absolute continuity of

of 1{|x´ y| (a special case of f with ρ ” 1.)

‚ The difference between Ereg nondiag and Ereg nondiag
n is small for large n due to

the uniform continuity of f off the diagonal and our definition of Qn
i .

Proof of Theorem 2.1.1. Step 1. Treatment of irregular cells. For each n ě 1, let us

denote by Rn and In the class of all regular cells and irregular cells of the partition
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P n, and by ∪Rn and ∪In their unions, respectively. Since fpx, yq “ fpy, xq, we have

by (2.1.9) that

E “

ĳ

ΩˆΩ

fpx, yq dxdy

“

ˆ
ż

∪Rn
`

ż

∪In

˙„ˆ
ż

∪Rn
`

ż

∪In

˙

fpx, yq dx



dy

“

ż

∪Rn

ż

∪Rn
fpx, yq dxdy `

ż

∪In

ż

∪In
fpx, yq dxdy ` 2

ż

∪In

ż

∪Rn
fpx, yq dxdy

“

ĳ

∪Rnˆ∪Rn

fpx, yq dxdy `

ĳ

∪Inˆ∪In

fpx, yq dxdy ` 2

ĳ

∪Inˆ∪Rn

fpx, yq dxdy.

It therefore follows from the almost covering condition limnÑ8 | ∪ In| “ 0, which

implies that limnÑ8 |∪ Inˆ∪In| “ 0 and limnÑ8 |∪ Inˆ∪Rn| “ 0, and the absolute

continuity of f that

E “ lim
nÑ8

ĳ

∪Rnˆ∪Rn

fpx, yq dxdy. (2.1.12)

Let ε ą 0. By (2.1.10) and (2.1.12), it suffices to show now that there exists

a natural number N such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

∪Rnˆ∪Rn

fpx, yq dxdy ´ En

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε. (2.1.13)

Step 2. Treatment of pairs of regular cells in a small neighborhood of the

diagonal D. By the absolute continuity of fpx, yq and that of 1{|x ´ y| (a special

case of f with ρ ” 1) on Ω ˆ Ω, there exists δ ą 0 such that for any measurable

subset A Ď Ωˆ Ω

ĳ

A

|fpx, yq| dxdy ă
ε

3
and

ĳ

A

dxdy

|x´ y|
ă

εγ2

3p}ρ}28 ` 1q
if |A| ă δ.

(2.1.14)
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Let η ą 0 be such that

|D2η| ă δ, (2.1.15)

where

Dα “ tpx, yq P Ωˆ Ω : dist ppx, yq, Dq ă αu

with α ą 0 is the α-neighborhood of the diagonal D defined in (2.1.11).

For each n ě 1, let us denote

Tn,η “ tω
n
i ˆ ω

n
j : ωni and ωnj are regular cells of P n, pωni ˆ ω

n
j q ∩Dη ‰ ∅u,

Sn,η “ tω
n
i ˆ ω

n
j : ωni and ωnj are regular cells of P n, pωni ˆ ω

n
j q ∩Dη “ ∅u.

Note that Sn,η and Tn,η are disjoint. Moreover,

∪Rn ˆ ∪Rn “ p∪Sn,ηq ∪ p∪Tn,ηq. (2.1.16)

By the uniform size condition, thre exists Ñ such that the union of all

∪Tn,η Ď D2η if n ě Ñ . (2.1.17)

This, together with (2.1.15) and (2.1.14), implies that

ĳ

∪Tn,η

|fpx, yq| dxdy ă
ε

3
and

ĳ

∪Tn,η

dxdy

|x´ y|
ă

εγ2

3p}ρ}28 ` 1q
if n ě Ñ .

(2.1.18)

Now, let ωni and ωnj be any pair of distinct regular cells in Tn,η. Then it follows

from the definition of Qn
i and Qn

j (cf. (2.1.5)), Lemma 2.1.2, and the uniform size
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condition (cf. (2.1.3)) that

|Qn
iQ

n
j |

|xni ´ x
n
j |
“
|ρpxni qρpx

n
j q| |ω

n
i | |ω

n
j |

|xni ´ x
n
j |

ď
}ρ}28|ω

n
i | |ω

n
j |

|xni ´ x
n
j |

“
}ρ}28|ω

n
i | |ω

n
j |

|Bpxni , rnq| |Bpx
n
j , rnq|

ĳ

Bpxni ,rnqˆBpx
n
j ,rnq

dxdy

|x´ y|

ď
}ρ}28
γ2

ĳ

ωni ˆω
n
j

dxdy

|x´ y|
if n ě Ñ .

This and the second inequality in (2.1.18) then imply that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ωni ˆω
n
j PTn,η ,i‰j

Qn
iQ

n
j

|xni ´ x
n
j |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
}ρ}28
γ2

ż

∪Tn,η

dxdy

|x´ y|
ă
ε

3
if n ě Ñ . (2.1.19)

Step 3. Treatment of pairs of regular cells away from the diagonal. The

uniform continuity of f on Ωˆ ΩzDη implies the existence of σ ą 0 such that

|fpx, yq ´ fpx1, y1q| ă
ε

3|Ωˆ Ω|
if |px, yq ´ px1, y1q| ă σ. (2.1.20)

By (2.1.4), there exists a natural number N̂ such that }P n} ă σ if n ě N̂ . Note that

if ωni ˆ ωnj P Sn,η, then we must have i ‰ j. Therefore, it follows from (2.1.5) and

(2.1.20) that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

∪Sn,η

fpx, yq dxdy ´
ÿ

ωni ˆω
n
j PSn,η

Qn
iQ

n
j

|xni ´ x
n
j |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

ωni ˆω
n
j PSn,η

ĳ

ωni ˆω
n
j

ˇ

ˇfpx, yq ´ fpxni , x
n
j q
ˇ

ˇ dxdy
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ă
ε

3
if n ě N̂ . (2.1.21)

Finally, let N “ maxtÑ , N̂u. We have by (2.1.16), the first inequality in

(2.1.18), (2.1.19), and (2.1.21) that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

∪Rnˆ∪Rn

fpx, yq dxdy ´ En

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ĳ

∪Tn,η

|fpx, yq| dxdy `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ωni ˆω
n
j PTn,η ,i‰j

Qn
iQ

n
j

|xni ´ x
n
j |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

∪Sn,η

fpx, yq dxdy ´
ÿ

ωni ˆω
n
j PSn,η

Qn
iQ

n
j

|xni ´ x
n
j |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε if n ě N,

leading to (2.1.13).

2.2 Continuum energy as the limit of discrete en-

ergies: The case of a sequence of sets of point

charges

Consider now a sequence of sets of point charges in our bounded domain

Ω in R3. Each such set yields a discrete electrostatic energy. We shall furnish a

continuum charge density as a limit (in an appropriate sense) of a sequence of the

discrete particle densities, calculate its continuum energy, and show that to be the

limit of corresponding discrete energies.

Let Nn be a sequence of natural numbers increasing to 8. For each n P

t1, 2, . . .u, let Xn “ tx
n
1 , . . . , x

n
Nn
u Ă Ω be a set of Nn discrete points in Ω. To each

xni we associate a partial charge Qn
i P r´1, 1s. The familiar discrete energy of this
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configuration of charges Qn
i at positions xni is given (up to a factor of 1

2
or 1

8π
) by

ÿ

1ďi,jďNn,i‰j

Qn
iQ

n
j

|xni ´ x
n
j |
.

In allowing the number of charges to increase to 8, it will be natural to rescale

our charges by a normalization factor of 1{Nn. Thus we consider discrete charge

distribution

ρn “
1

Nn

Nn
ÿ

i“1

Qn
i δxni ,

which will be regarded as a signed Radon measure on R3, the space of which is dual

to C0pR3q, the completion of CcpR3q under the uniform norm. We accordingly define

the discrete energy

Edrρns “
1

N2
n

ÿ

1ďi,jďNn,i‰j

Qn
iQ

n
j

|xni ´ x
n
j |
.

If ρ is a signed Radon measure with dρ “ fdx for some f P L8pR3q supported on

Ω, then we define

Erρs “

ĳ

R3ˆR3

dρpxqdρpyq

|x´ y|
.

The geometric assumption will be that, for each n “ 1, 2, ... there exists a

radius rn ą 0 such that

(G1) Brnpx
n
i q Ă Ω for all i “ 1, . . . , Nn,

(G2) Brnpx
n
i q ∩Brnpx

n
j q “ ∅ holds for all i, j “ 1, . . . , Nn with j ‰ i,

(G3) γ :“ infně1Nn|Brn | ą 0.

Note the boundedness of Ω and assumption (G2) imply that rn Ñ 0 as nÑ 8.

Theorem 2.2.1. There exists a subsequence of tρnu, not relabeled, and a signed

Radon measure ρ on R3 that satisfy the following:
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(1) ρn converges vaguely to ρ;

(2) There exists f P L8pR3q such that f “ 0 a.e. on Ω
c

and dρ “ fdx;

(3) limnÑ8Edrρns “ Erρs.

Here and below, νn á ν denotes vague convergence, and means

ż

R3

gdνn Ñ

ż

R3

gdν @ g P C0pR3
q.

The proof of Theorem 2.2.1 consists of 4 steps.

Step 1. Show the existence of the limit ρ and that dρ{dx “ f P L8pR3q.

Step 2. Use mollifiers to construct “smoothed out” densities ρn ∗ ϕλ with corre-

sponding energies Erρn ∗ ϕλs.

Step 3. Obtain three different energy approximations.

Step 4. Show convergence via an “epsilon over three”–type argument.

Proof of Theorem 2.2.1: Step 1. Existence of a limiting Radon measure with a bounded

density. For a given signed measure ν, the Hahn Decomposition Theorem (Theorem

3.3 of Folland [25]) gives that there exist disjoint measurable sets Pν and Nν , the

positive and negative sets for ν respectively, which are unique up to ν–null sets and

such that ν`p¨q :“ νp¨∩Pνq and ν´p¨q :“ ´νp¨∩Nνq are (nonnegative) measures and

ν “ ν` ´ ν´.

The positive (respectively negative) sets for ρn are exactly the locations of

positive (respectively negative) charge i.e.

Pρn “ tx
n
i : Qn

i ą 0, 1 ď i ď Nnu, Nρn “ tx
n
i : Qn

i ă 0, 1 ď i ď Nnu,
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as ρn is positive on any subset of Pρn , negative on any subset of Nρn , and null on

pPρn ∪Nρnq
c. Letting ν` and ν´ denote the positive and negative parts, respectively,

of a given signed measure ν, and a˘ “ maxp˘a, 0q for a P R, it follows that ρn “

ρ`n ´ ρ
´
n is the Hahn decomposition of ρn with

ρ`n “
1

Nn

Nn
ÿ

i“1

Qn`
i δxni and ρ´n “

1

Nn

Nn
ÿ

i“1

Qn´
i δxni ,

and the total variation |ρn| “ ρ`n ` ρ
´
n .

Since |Qn
i | ď 1 for all i, n, we have for g P C0pR3q that

|xρ`n , gy| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nn

Nn
ÿ

i“1

Qn`
i gpxni q

ˇ

ˇ

ˇ

ˇ

ˇ

ď }g}8 for n “ 1, 2, . . .

Similarly,

|xρ´n , gy| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nn

Nn
ÿ

i“1

Qn´
i gpxni q

ˇ

ˇ

ˇ

ˇ

ˇ

ď }g}8 for n “ 1, 2, . . .

Since ρ`n and ρ´n are uniformly bounded linear functionals on separable space

C0pR3q, by Theorem 5.18 of Folland [25] they have vaguely convergent subsequences.

By consecutively passing to such a subsequence, first for ρ`n and then for ρ´n , we may

assume without relabeling that

ρ`n á ρ1 and ρ´n á ρ2

for some (nonnegative) Radon measures ρ1, ρ2 on R3. Setting ρ :“ ρ1 ´ ρ2, we have

ρn “ ρ`n ´ ρ
´
n á ρ. (2.2.1)
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We claim that

|ρ| ď ρ1 ` ρ2. (2.2.2)

The Hahn Decomposition for ρ gives that there exist disjoint measurable sets Pρ and

Nρ such that

ρ “ ρ` ´ ρ´

with

ρ`p¨q “ ρp¨ ∩ Pρq and ρ´p¨q “ ´ρp¨ ∩Nρq.

Then for measurable A Ă R3,

ρ`pAq “ ρpA ∩ P q “ ρ1pA ∩ P q ´ ρ2pA ∩ P q ď ρ1pA ∩ P q ď ρ1pAq

i.e., ρ` ď ρ1. Similarly, ρ´ ď ρ2. It follows that

|ρn| “ ρ`n ` ρ
´
n á ρ1 ` ρ2 ě ρ` ` ρ´ “ |ρ|. (2.2.3)

To show that ρ has an L8 Radon–Nikodym derivative with respect to the

Lebesgue measure, we first establish a bound on |ρn|pBλq for balls Bλ of radius λ:

|ρn|pBλq ď
1

Nn

#ti : xni P Bλu. (2.2.4)

From volume considerations, we have that

#ti : xni P Bλu ď #ti : Brnpx
n
i q Ă Bλ`rnu ď

|Bλ`rn |

|Brn |
, (2.2.5)

since Brnpx
n
i q Ă Bλ`rn if xni Ă Bλ, and Brnpx

n
i q ∩Brnpx

n
j q “ ∅ if i ‰ j. This, (2.2.4),
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and the definition of γ imply that

|ρn|pBλq ď
|Bλ`rn |

Nn|Brn |
ď

1

γ
|Bλ`rn |. (2.2.6)

This implies that

lim inf
n

|ρn|pBq ď
1

γ
|B| (2.2.7)

for any ball B Ă R3.

Suppose A Ă R3 is bounded with |A| “ 0. By Lemma 2.2.1 below, this implies

that for any ε ą 0, there exist a countable collection of open balls Bi covering A with
ř

i |Bi| ă ε. If O is an open set and Radon measures νn converge vaguely to ν, then

νpOq ď lim inf
n

νnpOq

by Theorem 1.24 in [50]. This, (2.2.3), and (2.2.7) give

|ρ|pBq ď pρ`8 ` ρ
´
8qpBq ď lim inf

n
|ρn|pBq ď

1

γ
|B| (2.2.8)

for any open ball B P R3. Thus

|ρ|pAq ď |ρ|p
ď

i

Biq ď
ÿ

i

|ρ|pBiq ď
1

γ

ÿ

i

|Bi| ă
1

γ
ε. (2.2.9)

It follows from the Radon–Nikodym Theorem (Theorem 3.8 in [25]) that

dρ “ fdx (2.2.10)

for some f P L1pR3q. Moreover, the Lebesgue Differentiation Theorem (Theorem
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3.21 in [25]) gives that

|fpxq| “ lim
λÑ0`

1

|Bλ|

ż

Bλpxq

|fpyq|dy for almost every x P R3.

But using the fact that d|ρ| “ |f |dx (cf. Section 3.3 in [25]), we have

1

|Bλ|

ż

Bλpxq

|fpyq|dy “
1

|Bλ|
|ρ|pBλpxqq

ď
1

|Bλ|
lim inf

n
|ρn|pBλpxqq

ď
1

γ
,

so |fpxq| ď 1{γ for almost every x, hence f P L8pR3q.

Since |ρ|pOq ď lim inf |ρn|pOq “ 0 for any open set O Ă Ω
c
, the support of of

ρ is contained in Ω. Thus, after modifying f on a set of measure 0 if necessary, we

have

supppfq Ă Ω. (2.2.11)

Step 2. Construction of coarse-grained densities and energies. It is a standard

result that for any signed Radon measure ν we have

ϕλ ∗ ν á ν as λÑ 0`,

where ϕ P C8c pR3q is nonnegative, radially symmetric, of unit mass, supppϕq Ă B1p0q,

and ϕλpxq “ λ´3ϕpx{λq (cf. Theorem 2.6 in Mattila [51]). That is,

lim
λÑ0`

ż

R3

gpxqpϕλ ∗ νqpxqdx “
ż

R3

gpxqdνpxq
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for all g P C0pR3q. Here the convolution

pϕ ∗ νqpxq “
ż

R3

ϕpx´ yqdνpyq

is a function from R3 to R. As is typical in related texts, when there is no possibility

of confusion we occasionally abuse notation by referring to ϕ ∗ ν in place of the

measure whose Radon–Nikodym density with respect to the Lebesgue measure is

given by ϕ ∗ ν.

In particular we have

ρn ∗ ϕλ á ρn as λÑ 0`

for each fixed n, where

pρn ∗ ϕλqpxq “
1

Nn

Nn
ÿ

i“1

Qn
i ϕλpx´ x

n
i q.

And since ϕλp¨ ´ xq P C
8
c pR3q, we have the pointwise convergence

lim
nÑ8

pρn ∗ ϕλqpxq “ pρ ∗ ϕλqpxq for all x P R3, (2.2.12)

by the definition of vague convergence.

Having smoothed the densities by mollifying with ϕλ, we have well-defined

energies

Erρn ∗ ϕλs “
ĳ

R3ˆR3

pρn ∗ ϕλqpxqpρn ∗ ϕλqpyqdxdy
|x´ y|

(2.2.13)
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and

Erρ ∗ ϕλs “
ĳ

R3ˆR3

pρ ∗ ϕλqpxqpρ ∗ ϕλqpyqdxdy
|x´ y|

. (2.2.14)

We then have

|Edrρns ´ Erρs| ď

|Edrρns ´ Erρn ∗ ϕλs| ` |Erρn ∗ ϕλs ´ Erρ ∗ ϕλs| ` |Erρ ∗ ϕλs ´ Erρs|, (2.2.15)

and the strategy that follows will be to show each of these terms gets small.

Step 3. Energy estimates on the three terms of (2.2.15). For the first term we

need the following claim: For all λ ą 0 there exists Ñ “ Ñpλq such that

|Edrρns ´ Erρn ∗ ϕλs| ď C

ˆ

λ2
`

1

Nnλ

˙

if n ě Ñpλq, (2.2.16)

where C is a constant independent of n and λ.

Step 3a. Proof of the inequality (2.2.16). Defining ϑ :“ ϕ ∗ ϕ, we have that

ϑ P C8c pR3q is supported inside B2p0q. Setting ϑλpxq :“ λ´3ϑpx{λq, the following

properties for all λ ą 0:

‚ ϑλ ě 0;

‚ ϑλ “ ϕλ ∗ ϕλ (via the change of variables y ÞÑ λy);

‚
ş

R3 ϑλpxqdx “
ş

R3 ϕλpxqdx ¨
ş

R3 ϕλpxqdx “ 1 ¨ 1 “ 1;

‚ ϑλ is radially symmetric (via the change of variables x ÞÑ Rx, with R a rotation,

and using the radial symmetry of ϕλ).
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Then using the Fubini–Tonelli Theorem, the local integrability of 1{|x´ y|, and the

fact that ρn ∗ ϕλ P L8,

Erρn ∗ ϕλs “
ĳ

R3ˆR3

pρn ∗ ϕλqpxqpρn ∗ ϕλqpyq
|x´ y|

dxdy

“

ĳ

R3ˆR3

1

|x´ y|

«

1

Nn

Nn
ÿ

i“1

Qn
i ϕλpx´ x

n
i q

ff«

1

Nn

Nn
ÿ

j“1

Qn
jϕλpy ´ x

n
j q

ff

dxdy

“
1

N2
n

ÿ

1ďi,jďNn

Qn
iQ

n
j

ĳ

R3ˆR3

ϕλpx´ x
n
i qϕλpy ´ x

n
j q

|x´ y|
dxdy.

Making the change of variables y ÞÑ y ` xnj gives

Erρn ∗ ϕλs “
1

N2
n

ÿ

1ďi,jďNn

Qn
iQ

n
j

ż

R3

ż

R3

ϕλpx´ x
i
nqϕλpyq

|x´ y ´ xnj |
dxdy,

and the further change x ÞÑ y ´ x` xni gives

Erρn ∗ ϕλs “
1

N2
n

ÿ

1ďi,jďNn

Qn
iQ

n
j

ż

R3

ż

R3

ϕλpy ´ xqϕλpyq

|xni ´ x
n
j ´ x|

dxdy

“
1

N2
n

ÿ

1ďi,jďNn

Qn
iQ

n
j

ż

R3

1

|xni ´ x
n
j ´ x|

„
ż

R3

ϕλpy ´ xqϕλpyqdy



dx

“
1

N2
n

ÿ

1ďi,jďNn

Qn
iQ

n
j

ż

R3

ϑλpxq

|xni ´ x
n
j ´ x|

dx. (2.2.17)

Since
ş

R3 ϑλpxqdx “ 1, the difference in energies is

Edrρns ´ Erρn ∗ ϕλs

“
1

N2
n

ÿ

1ďi,jďNn,i‰j

Qn
iQ

n
j

1

|xni ´ x
n
j |

´
1

N2
n

ÿ

1ďi,jďNn

Qn
iQ

n
j

ż

R3

ϑλpxqdx

|xni ´ x
n
j ´ x|

34



“
1

N2
n

ÿ

1ďi,jďNn,i‰j

Qn
iQ

n
j

ż

R3

„

1

|xni ´ x
n
j |
´

1

|xni ´ x
n
j ´ x|



ϑλpxqdx

´
1

N2
n

Nn
ÿ

i“1

pQn
i q

2

ż

R3

ϑλpxq
1

|x|
dx.

The integral in the last term
ş

R3 ϑλpxq
1
|x|
dx “ c{λ, where

c :“

ż

R3

ϑpxq
1

|x|
dx “

ż

R3

pϕ ∗ ϕqpxq 1

|x|
dx ą 0 (2.2.18)

depends only on ϕ and is finite by the local integrability of 1{|x|, hence the self-energy

terms are bounded by

1

N2
n

Nn
ÿ

i“1

pQn
i q

2 c

λ
ď

c

Nnλ
.

This leaves the main term:

1

N2
n

ÿ

1ďi,jďNn,i‰j

Qn
iQ

n
j

ż

R3

„

1

|xni ´ x
n
j |
´

1

|xni ´ x
n
j ´ x|



ϑλpxqdx,

which is split into two parts. If |xni ´x
n
j | ą 2λ, then by Newton’s Theorem (Theorem

A.1.1), the interaction energy is the same as that between two discrete charges, and

the terms cancel out. Combining this fact with the estimate

ˇ

ˇ

ˇ

ˇ

1

|xni ´ x
n
j |
´

1

|xni ´ x
n
j ´ x|

ˇ

ˇ

ˇ

ˇ

ď
|x|

|xni ´ x
n
j ||x

n
i ´ x

n
j ´ x|

gives that
ˇ

ˇ

ˇ

ˇ

ˇ

1

N2
n

ÿ

i‰j

Qn
iQ

n
j

ż

R3

„

1

|xni ´ x
n
j |
´

1

|xni ´ x
n
j ´ x|



ϑλpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

N2
n

ÿ

i,j:0ă|xni ´x
n
j |ď2λ

1

|xni ´ x
n
j |

ż

R3

|x|ϑλpxq

|xni ´ x
n
j ´ x|

dx.
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By the mean value property, if i ‰ j then

1

|xni ´ x
n
j |
“

1

p4
3
πr3

nq

ż

Brn px
n
j q

dy

|xni ´ y|
.

Since the Brnpx
n
i q are pairwise disjoint, we have

ÿ

i,j:0ă|xni ´x
n
j |ď2λ

1

|xni ´ x
n
j |
“
ÿ

i

ÿ

j:0ă|xni ´x
n
j |ď2λ

1

p4
3
πr3

nq

ż

Brn px
n
j q

dy

|xni ´ y|

ď
ÿ

i

C

r3
n

ż

B2λ`rn p0q

dy

|y|

ďCNn
p2λ` rnq

2

r3
n

ďCNn

ˆ

λ2

r3
n

`
1

rn

˙

.

Using (A.1.2),

ż

R3

|x|ϑλpxqdx

|xni ´ x
n
j ´ x|

“

ż

R3

min

ˆ

1

|x|
,

1

|xni ´ x
n
j |

˙

|x|ϑλpxqdx

ď

ż

R3

1

|x|
|x|ϑλpxqdx

“

ż

R3

ϑλpxqdx

“1.

Thus

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

N2
n

ÿ

i,j:0ă|xni ´x
n
j |ď2λ

Qn
iQ

n
j

|xni ´ x
n
j |

ż

R3

|x|ϑλpxq

|xni ´ x
n
j ´ x|

dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

Nn

ˆ

λ2

r3
n

`
1

rn

˙

. (2.2.19)

Since rn Œ 0, choose Ñ “ Ñpλq such that n ą Ñ implies rn ď λ. Then combining
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(2.2.19) with the estimate bounding the self energy term by c{Nnλ, we have

|Edrρns ´ Erρn ∗ ϕλs| ď C

ˆ

λ2

Nnr3
n

`
1

Nnλ

˙

for n ě Ñ .

Applying the uniform size condition that Nnr
3
n is bounded below by a positive con-

stant, we get the result (2.2.16).

Step 3b. We show that for any λ ą 0, limnÑ8Erρn ∗ ϕλs “ Erρ ∗ ϕλs: Since

|ρn ∗ ϕλpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nn

Nn
ÿ

i“1

Qn
i ϕλpx´ x

n
i q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

Nn

Nn
ÿ

i“1

|Qn
i |}ϕλ}8

ď}ϕλ}8 “ λ´3
}ϕ}8,

for fixed λ the ρn ∗ ϕλ are uniformly bounded in n, x. It was also shown previously

that 1{|x ´ y| is locally integrable on R6. Thus, pρn ∗ ϕλqpxqpρn ∗ ϕλqpyq{|x ´ y| is

bounded by pλ´3}ϕ}8q
2{|x ´ y|, which is locally integrable, so by (2.2.12) and the

dominated convergence theorem,

lim
nÑ8

ĳ

R3ˆR3

pρn ∗ ϕλqpxqpρn ∗ ϕλqpyqdxdy
|x´ y|

“

ĳ

R3ˆR3

pρ ∗ ϕλqpxqpρ ∗ ϕλqpyqdxdy
|x´ y|

,

i.e.,

lim
nÑ8

Erρn ∗ ϕλs “ Erρ ∗ ϕλs. (2.2.20)

Step 3c. We show limλÑ0` Erρ ∗ ϕλs “ Erρs. We have

Erρ ∗ ϕλs “
ĳ

R3ˆR3

pρ ∗ ϕλqpxqpρ ∗ ϕλqpyq
|x´ y|

dxdy
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“

ĳ

R3ˆR3

1

|x´ y|

„
ż

R3

ϕλpx´ x
1
qdρpx1q

 „
ż

R3

ϕλpy ´ y
1
qdρpy1q



dxdy

“

ĳ

R3ˆR3

1

|x´ y|

„
ż

R3

ϕλpx´ x
1
qfpx1qdx1

 „
ż

R3

ϕλpy ´ y
1
qfpy1qdy1



dxdy

“

ĳ

R3ˆR3

»

–

ĳ

R3ˆR3

ϕλpx´ x
1qϕλpy ´ y

1qfpx1qfpy1q

|x´ y|
dx1dy1

fi

fl dxdy

“

ĳ

R3ˆR3

»

–

ĳ

R3ˆR3

ϕλpx´ x
1qϕλpy ´ y

1q

|x´ y|
dxdy

fi

fl fpx1qfpy1qdx1dy1.

by the Fubini–Tonelli Theorem. In Theorem A.1.2 it is shown that if radially sym-

metric nonnegative φ P L1 is unit mass, then

ż

R3

φpxqdx

|x´ y|
ď

1

|y|
.

It follows that

ĳ

R3ˆR3

ϕλpx´ x
1qϕλpy ´ y

1qdxdy

|x´ y|
“

ż

R3

ϕλpy ´ y
1
q

„
ż

R3

ϕλpx´ x
1qdx

|x´ y|



dy

“

ż

R3

ϕλpy ´ y
1
q

„
ż

R3

ϕλpxqdx

|x´ py ´ x1q|



dy

ď

ż

R3

ϕλpy ´ y
1q

|y ´ x1|
dy

“

ż

R3

ϕλpyq

|y ´ px1 ´ y1q|
dy

ď
1

|x1 ´ y1|
. (2.2.21)

Thus we get that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

R3ˆR3

ϕλpx´ x
1qϕλpy ´ y

1qdx1dy1

|x1 ´ y1|
fpxqfpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
|fpxq||fpyq|

|x´ y|
. (2.2.22)
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Similar to the calculation leading to (2.2.17), we can write

ĳ

R3ˆR3

ϕλpx´ x
1qϕλpy ´ y

1qdxdy

|x´ y|
“

ż

R3

ϑλpzqdz

|x1 ´ y1 ´ z|
.

Since ϑ is radially symmetric, nonnegative, and of unit mass, ϑλ forms an approxi-

mate identity as λÑ 0, i.e.,

lim
λÑ0

ż

R3

gpxqϑλpxqdx “ gp0q

for all g in C0pR3q. In particular, if x ‰ y and if φp¨q is equal to 1{|x´y´¨| multiplied

by a smooth cutoff function equal to 1 in a neighborhood of the origin and supported

in a ball of radius less than |x´ y|, we get that

ż

R3

ϑλpzqdz

|x´ y ´ z|
Ñ

1

|x´ y|
as λÑ 0`,

i.e.,

lim
λÑ0`

ĳ

R3ˆR3

ϕλpx´ x
1qϕλpy ´ y

1qdx1dy1

|x1 ´ y1|
“

1

|x´ y|
. (2.2.23)

for x ‰ y. This convergence still holds if we allow x to equal y (so 1{|x´ y| “ `8)

but this is immaterial as the diagonal tpx, yq P R3 ˆ R3 : x “ yu is measure zero in

R6.

Apply the dominated convergence theorem in conjunction with (2.2.22) and

(2.2.23) and dominating function }f}28{|x´ y| P L
1
locpR3 ˆ R3q to get

ĳ

R3ˆR3

»

–

ĳ

R3ˆR3

ϕλpx´ x
1qϕλpy ´ y

1q

|x1 ´ y1|
dx1dy1

fi

fl fpxqfpyqdxdy Ñ

ĳ

R3ˆR3

fpxqfpyq

|x´ y|
dxdy
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as λÑ 0`, i.e.,

lim
λÑ0`

Erρ ∗ ϕλs “ Erρs. (2.2.24)

Step 4. Convergence of the energies. Given ε ą 0, first select λ small enough

that |Erρ ∗ϕλs ´Erρs| ă ε{2, and Cλ2 ă ε{2, where the constant C is that from the

estimate (2.2.16) that

|Edrρns ´ Erρn ∗ ϕλs| ď C

ˆ

λ2
`

1

Nnλ

˙

.

Then

|Edrρns ´ Erρs| ď |Edrρns ´ Erρn ∗ ϕλs| ` |Erρn ∗ ϕλs ´ Erρ ∗ ϕλs|

` |Erρ ∗ ϕλs ´ Erρs|

ď
ε

2
`

C

Nnλ
` |Erρn ∗ ϕλs ´ Erρ ∗ ϕλs| `

ε

2
.

Letting n tend to infinity, we have

lim
n

C

Nnλ
“ 0 and lim

n
|Erρn ∗ ϕλs ´ Erρ ∗ ϕλs| “ 0,

so

lim sup
nÑ8

|Edrρns ´ Erρs| ď ε.

Since ε ą 0 was arbitrary, we must have

lim sup
n

|Edrρns ´ Erρs| “ 0,
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hence

lim
n
|Edrρns ´ Erρs| “ 0,

and the theorem is proved.
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The various convergences are summarized in the following diagrams:

Erρn ∗ ϕλs Ñn Erρ ∗ ϕλs ρn ∗ ϕλ Ñn ρ ∗ ϕλ

Óλ çλ çλ

Edrρns Ñn Erρs ρn án ρ

Lemma 2.2.1. If A Ă R3 is a bounded set of Lebesgue measure 0, then for all ε ą 0

there exists a countable collection of open balls Bi covering A with
ř

i |Bi| ă ε.

Proof. By Theorem 2.40 in Folland [25], there exists an open set O containing A

with |O| ă ε{5. By Lemma 2.43 in Folland [25], O is a countable union of cubes (i.e.

products of intervals of equal length) Qi with disjoint interiors Q̊i. Since

ď

i

Q̊i Ă O,

we have
ÿ

i

|Q̊i| ď |O| ă ε{5.

Enclose each Qi in an open ball Bi of radius equal to the side length of Qi, so

|Bi| “
4π
3
|Qi| ă 5|Qi|. Then

O Ă
ď

i

Qi Ă
ď

i

Bi,

and hence
ÿ

i

|Bi| ă
ÿ

i

5|Qi| “ 5
ÿ

i

|Q̊i| ă ε.
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2.3 Non-uniqueness of the limit of a sequence of

sets of point charges

The non-uniqueness of the limit of the of the sequence of sets of point charges

holds true in general, even if additional assumptions are imposed upon the sets,

as the following counterexamples will demonstrate. Retaining the notation of the

prvious section, Ω is a smooth, bounded domain in R3, and Xn “ tx
n
1 , . . . , x

n
Nn
u is a

collection of distinct points in Ω.

Claim: Even if Xn Ă Xn`1 holds for n “ 1, 2, . . ., the corresponding sequence

of rescaled discrete charge distributions

ρn “
1

Nn

Nn
ÿ

i“1

δxni

representing unit charges (i.e. electrons) at positions xn1 , . . . , x
n
Nn

need not have a

unique limit.

Consider a partition of Ω into two components A and B with nonempty

interiors and having boundary of measure 0. Let Yn “ p2
´nZ3q∩Ω. Then Yn Ă Yn`1,

and Yn`1 has 23 “ 8 times the point density as does Yn. Define

Xn “

$

’

&

’

%

pYn ∩Bq ∪ pYn`1 ∩ Aq for n even,

pYn ∩ Aq ∪ pYn`1 ∩Bq for n odd.

Then Xn Ă Xn`1, and letting Nn be the number of points in Xn, we set ρn “

1
Nn

ř

xiPXn
δxi .

Xn is uniformly distributed on A, and uniformly distributed on B, but has

eight times as many points per unit volume in one than the other, hence eight times

the density. Then in the limit we will have
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µ2n á 8ρ0χA ` ρ0χB,

where ρ0 is a constant to be determined, and χA is the indicator function of the set

A. Normalizing the total mass to 1 gives

1 “ 8ρ0|A| ` ρ0|B| “ 8ρ0|A| ` ρ0p|Ω| ´ |A|q “ ρ0p7|A| ` |Ω|q,

so

ρ0 “
1

7|A| ` |Ω|
,

and

µ2n á
8

7|A| ` |Ω|
χA `

1

7|A| ` |Ω|
χB.

Similarly,

µ2n`1 á
1

7|B| ` |Ω|
χA `

8

7|B| ` |Ω|
χB.

Thus, we get two different subsequential limits of the densities. Moreover, the cor-

responding energies are different as well, in general.

We demonstrate this with a specific example: Let Ω “ tx P R3 : |x| ă 2u, and

set A “ tx P R3 : |x| ď 1u and B “ tx P R3 : 1 ă |x| ă 2u. After much calculation,

we find the normalized limiting densities and energies:

µ2n á µeven :“
8 ¨ 3

15 ¨ 4π
χA `

3

15 ¨ 4π
χB

and

µ2n`1 á µodd :“
3

57 ¨ 4π
χA `

8 ¨ 3

57 ¨ 4π
χB,
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with corresponding energies

Erµevens “
59

150
« .393 and Erµodds “

313

1083
« .289.

The result is in agreement with the intuition that the distribution with the higher

concentration of charge closer together should have the higher energy. It also follows

from the results of this chapter that the discrete energies corresponding to µ2n and

µ2n`1 converge to Erµevens and Erµodds, respectively.
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Chapter 3

Extensions to Radon measures

3.1 Introduction

The principal of energy minimization is abundant in nature. Given a conduct-

ing material (a medium in which charges can move) in the presence of an external

electric field, the charges in the conductor will align themselves so as to minimize the

energy of the configuration. Any higher energy states are non-equilibrium states or

at best unstable, and will quickly tend to a local minimum of the energy. Earnshaw’s

theorem [19] states that charges cannot be held in equilibrium by electrostatic forces

alone. This is reflected in the concept of capacity, whereby the charge in a conducting

material accumulates on the surface and is representable as a surface charge density.

In the case of collection of positive charges confined to a conductor, discrete

charges will repel each other onto the surface of the conductor. More to the point from

a biological perspective is the case of a fixed, charged macromolecule surrounded by

ions. Here the ions may be positively or negatively charged or a mixture of both, and

are subject to an external electric field emitted by the fixed charges. In a physical

situation, there will be other contributions to the energy, such as van der Waals
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forces, pressure, and entropy, and these must be accounted for. In this section we

consider only the classical Coulomb force, and suppose the charges to be confined

to a fixed domain Ω, effectively introducing an insurmountable force to be present

against charges that push against the boundary of the domain. In Chapter 4 we

address contributions from additional forces.

The theory of balayage dictates that for the purposes of charges contained in

a conducting medium, the field due to an external source of charge is equivalent to

that produced by a surface charge on the boundary of the conductor. This is the

motivation for extending our results of Chapter 2 to charge distributions that are

concentrated on lower dimensional objects such as surfaces. Such distributions are no

longer absolutely continuous with respect to three–dimensional Lebesgue measure,

but can be represented in full generality by signed Radon measures.

The results of Section 2.1 demonstrated that continuously differentiable dis-

tributions of charge ρ could be approximated by discrete distributions such that

the discrete energies converge to the energy of the continuous distribution. With a

modification of the argument, this can be shown to hold for compactly supported

ρ P L8pR3q, provided we continue to accept

Erρs :“

ĳ

dρpxqdρpyq

|x´ y|

as the definition of the energy of ρ. From Lemma 2.1.1, this is well–defined for

compactly supported ρ P L8pR3q. In this chapter we show that results of Chapter 2

can be generalized to arbitrary signed Radon measures supported on Ω, for which L8

densities are a special case. Following this we demonstrate an application of these

results to a problem of minimization in the presence of an external field.

47



3.2 Extension to signed Radon measures

Let Ω Ă R3 be a bounded domain with C2 boundary. As before, we let M

be the set of signed Radon measures supported on Ω with total variation less than

or equal to one. Let µ PM be such that

ĳ

dµ`pxqdµ´pyq

|x´ y|
ă 8,

where µ “ µ`´µ´ is the Jordan decomposition of µ in to positive measures µ` and

µ´, and define

Erµs “ Erµ`s ` Erµ´s ´ 2Erµ`, µ´s, (3.2.1)

where

Erα, βs :“

ĳ

dαpxqdβpyq

|x´ y|
(3.2.2)

for positive Radon measures α and β, and we write

Erαs :“ Erα, αs.

If Erµ`s and Erµ´s are finite, then

Erµ`, µ´s ď
a

Erµ`sErµ´s ă 8

by Corollary B.2.3, so Erµs P p´8,8s.

Note that in most literature relevant to the problem (e.g., [37, 51, 9]), the

authors avoid the issue of well–definedness of the Coulomb energy by restricting to

nonnegative measures or to measures with finite energy.

Interestingly, there is an alternate formulation for the energy of a signed
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Radon measure of compact support in terms of its Fourier transform which has the

benefit of always being defined, and which agrees with Erµs whenever Erµs is defined.

This is proved in Theorem B.2.4 of Appendix B, in which we derive properties of

Fourier transforms of Radon measures and apply them to energy integrals.

A discrete charge density is a signed Radon measure of the form µ “
řn
i“1 qiδxi ,

with x1, . . . , xn P R3 distinct, and q1, . . . , qn P R, and for which the discrete energy is

Edrµs “
ÿ

i‰j

qiqj
|xi ´ xj|

.

Note this is not the same as Erµs, which would be undefined or at best infinite for

non-zero discrete measures µ. Denoting the “diagonal” terms by

D :“ tpx, xq P R3
ˆ R3

u,

we have

Edrµs “

ż

R3ˆR3zD

dpµˆ µqpx, yq

|x´ y|
,

which is Erµs excepting the infinite self–energy terms comprising the diagonal D.

In this dissertation we are concerned with physically plausible charge distribu-

tions, which are comprised of electrons or other ions, and for which there is an upper

bound on the amount of charge a single particle can carry, such as the maximum

valence of any ion in the system we are considering. Normalizing this maximum

to 1 and renormalizing our densities by particle number, we restrict ourselves to

consideration of discrete charge densities in the admissible set

A :“

#

µ “
1

N

N
ÿ

i“1

qiδxi : N P N, tqiuNi“1 Ă r´1, 1s, txiu
N
i“1 Ă Ω distinct

+

.
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We continue the convention of identifying µ with f when µ is absolutely continuous

with respect to Lebesgue and dµ “ fdx.

The main result of this section is as follows:

Theorem 3.2.1. For µ P M with Er|µ|s ă 8, there exists a sequence of discrete

charge distributions µn P A such that

1. µn á µ as nÑ 8,

2. Edrµns Ñ Erµs as nÑ 8.

Note that by preceding remarks, the requirement that Er|µ|s ă 8 is equiva-

lent to the requirement that Erµs be defined and finite.

The proof consists of a careful multiscale construction, and is preceded by a

reduction to the case that µ is compactly supported inside Ω and has C1 density

with respect to Lebesgue measure, which we justify with two lemmas. Here and

throughout this dissertation, supppµq denotes the support of a signed measure (or

function) µ, and is defined as the smallest closed set for which µ is null (or zero,

respectively) on its complement.

Lemma 3.2.1. Given µ PM with Er|µ|s ă 8, there exist a sequence of measures

νk PM satisfying

1. supppνkq Ă Ω,

2. νk á µ as k Ñ 8,

3. Erνks Ñ Erµs as k Ñ 8.

Proof. Define the signed distance function

dpxq “

$

’

&

’

%

mint|x´ y| : y P BΩu x P Ω,

´mint|x´ y| : y P BΩu x P R3zΩ.
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For r ą 0, set Tr :“ tx P Ω : dpxq ă ru. There exists δ ą 0 such that

‚ d is twice continuously differentiable on Tδ; and

‚ for every x P Tδ there exists a unique x1 P BΩ such that |x´ x1| “ dpxq

(see Theorem 3 in [36]). Applying the triangle inequality to nearby points x and y

in Tδ give that |∇d| ď 1 in Tδ. Choosing x P Tδ and x1 P BΩ such that dpxq “ |x´x1|

and considering points on the straight line segment connecting x and x1, one finds

that |∇d| “ 1 on Tδ. Since BΩ is the level set td “ 0u, ∇d is the normal to BΩ, and

is oriented toward the interior of Ω as defined.

Let ξ be a smooth cutoff function that is equal to one on Tδ{2 and supported

in Tδ, and let d̃pxq “ dpxqξpxq. Since ∇d̃ is the inward pointing normal vector on

BΩ, the flow on R3 of the ODE

d
dt
X “ ∇d̃pXq (3.2.3)

is “inward” to Ω along BΩ. Since d̃ P C2
c pR3q, ∇d̃ is Lipschitz, say with Lipschitz

constant

L :“ sup
x‰y

|∇d̃pxq ´∇d̃pyq|
|x´ y|

.

The fundamental theorem of ODE (see e.g., Section 17.1 in [67]) gives that

there exists a time interval r´τ, τ s on which the flow exists and is unique. Let Φt be

the associated flow map taking x P R3 to its position at time t P r´τ, τ s under the

flow (3.2.3). Then

d

dt
Φtpxq “ ∇d̃pΦtpxqq and Φ0pxq “ x
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for all x P R3 and t P r´τ, τ s, so for x, y P R3 and t P r0, τ s we have

Φtpxq ´ Φtpyq “ x´ y `

ż t

0

”

∇d̃pΦspxqq ´∇d̃pΦspyqq
ı

ds,

so

|Φtpxq ´ Φtpyq| ď |x´ y| `

ż t

0

ˇ

ˇ

ˇ
∇d̃pΦspxqq ´∇d̃pΦspyqq

ˇ

ˇ

ˇ
ds

ď |x´ y| `

ż t

0

L |Φspxq ´ Φspyq| ds.

By Gronwall’s Inequality (see e.g., Section 17.3 in [67]), this gives

|Φtpxq ´ Φtpyq| ď eLt|x´ y| (3.2.4)

for all t P r0, τ s and x, y P R3.

Similarly, for t P r0, τ s we have

|Φ´tpxq ´ Φ´tpyq| “

ˇ

ˇ

ˇ

ˇ

x´ y `

ż ´t

0

”

∇d̃pΦspxqq ´∇d̃pΦspyqq
ı

ds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

x´ y ´

ż 0

´t

”

∇d̃pΦspxqq ´∇d̃pΦspyqq
ı

ds

ˇ

ˇ

ˇ

ˇ

ď |x´ y| `

ż 0

´t

L |Φspxq ´ Φspyq| ds.

Gronwall’s Inequality then gives

|Φ´tpxq ´ Φ´tpyq| ď eLt|x´ y| (3.2.5)

for x, y P R3 and t P r0, τ s. By uniqueness, Φt is one–to–one and Φ´tpΦtpxqq “ x, so
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replacing x and y in (3.2.5) by Φtpxq and Φtpyq, respectively, gives

|x´ y| ď eLt|Φtpxq ´ Φtpyq|,

which combined with (3.2.4) gives

e´Lt|x´ y| ď |Φtpxq ´ Φtpyq| ď eLt|x´ y| (3.2.6)

for all t P r0, τ s and x, y P R3.

Define the push–forward measures Φt#µ by

Φt#µpAq “ µpΦ´1
t pAqq. (3.2.7)

Since ∇d̃ is the inward normal along BΩ, ΦtpΩq is contained in Ω for t P p0, τ s.

But ΦtpΩq is compact since Φtp¨q is a homeomorphism, so

supppΦt#µq Ă Ω for t P p0, τ s. (3.2.8)

If µ “ µ|P ´ µ|N is the Hahn decomposition of µ, then |µ| “ µ|P ` µ|N , and

a straightforward calculation shows

Φt#µ “ pΦt#µq|ΦtpP q ´ pΦt#µq|ΦtpNq

to be the Hahn decomposition of Φt#µ, so

|Φt#µ| “ pΦt#µq|ΦtpP q ` pΦt#µq|ΦtpNq. (3.2.9)

Theorem 3.6.1 in [6] states that given measurable spaces X and Y , signed measure

53



µ on X, and measurable mapping f : X Ñ Y , a measurable function g on Y is inte-

grable with respect to the pushforward measure f#µ if and only if the composition

g ˝ f is integrable with respect to µ, in which case

ż

Y

g dpf#µq “

ż

X

g ˝ f dµ. (3.2.10)

Writing χA for the indicator function of a set A Ă R3, (3.2.9) and (3.2.10)

give

}Φt#µ} “

ż

R3

d|Φt#µ|

“

ż

R3

dpΦt#µq|ΦtpP q `

ż

R3

dpΦt#µq|ΦtpNq

“

ż

R3

χΦtpP qpxqdpΦt#µqpxq `

ż

R3

χΦtpNqpxqdpΦt#µqpxq

“

ż

R3

χΦtpP qpΦtpxqqdµpxq `

ż

R3

χΦtpNqpΦtpxqqdµpxq

“

ż

R3

χP pxqdµpxq `

ż

R3

χNpxqdµpxq

“

ż

R3

dµ|P `

ż

R3

dµ|N

“

ż

R3

d|µ|

“ }µ}. (3.2.11)

From (3.2.8) and (3.2.11), it follows that

Φt#µ PM. (3.2.12)

To establish vague convergence, let g P C0pR3q, and apply the change of
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variables formula (3.2.10):

ż

R3

gdpΦt#µq ´

ż

R3

gdµ “

ż

R3

g ˝ Φtdµ´

ż

R3

gdµ “

ż

R3

rgpΦtpxqq ´ gpxqsdµpxq.

Since

Φtpxq “ x`

ż t

0

∇d̃pΦspxqqds,

we find that |Φtpxq ´ x| ď t}∇d̃ }8 holds for t P r0, τ s. Given ε ą 0, there exists

δ ą 0 such that |gpxq ´ gpyq| ă ε holds for all x, y P R3 such that |x´ y| ă δ. Then

for 0 ď t ă δ{}∇d̃ }8, we get

|gpΦtpxqq ´ gpxq| ă ε,

so
ˇ

ˇ

ˇ

ˇ

ż

R3

gdpΦt#µq ´

ż

R3

gdµ

ˇ

ˇ

ˇ

ˇ

ď ε

ż

R3

d|µ| ď ε,

proving that

Φt#µá µ as tÑ 0`. (3.2.13)

Since

e´Lt|x´ y| ď |Φtpxq ´ Φtpyq| ď eLt|x´ y| (3.2.14)

holds for all t P r0, τ s and x, y P R3, we get

e´Lt

|x´ y|
ď

1

|Φtpxq ´ Φtpyq|
ď

eLt

|x´ y|
.

Hence,
ˇ

ˇ

ˇ

ˇ

1

|Φtpxq ´ Φtpyq|
´

1

|x´ y|

ˇ

ˇ

ˇ

ˇ

ď
peLt ´ 1q

|x´ y|
. (3.2.15)
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From the change of variables formula (3.2.10), we find that

ErΦt#µs “

ĳ

R3ˆR3

dµpxqdµpyq

|Φtpxq ´ Φtpyq|
.

Using (3.2.15), it follows that

|ErΦt#µs ´ Erµs| ď pe
Lt
´ 1qEr|µ|s,

hence

ErΦt#µs Ñ Erµs as tÑ 0`. (3.2.16)

For for k ą 1{τ , we set νk :“ Φ 1
k
#µ and by (3.2.8), (3.2.12), (3.2.13) and

(3.2.16), the lemma is proved.

Lemma 3.2.2. For µ PM with Er|µ|s ă 8 and supppµq Ă Ω, there exists a sequence

of signed measures νk PM such that

1. νk is absolutely continuous with respect to Lebesgue measure with C1 density,

2. supppνkq Ă Ω,

3. νk á µ as k Ñ 8,

4. Erνks Ñ Erµs as k Ñ 8.

Proof. Let ϕ P C1
c pR3q be a mollifier, i.e., ϕ is radially symmetric, compactly sup-

ported in B1p0q, nonnegative, and of unit mass. For λ ą 0 we set ϕλpxq “ λ´3ϕpx{λq.

Recall the convolution pϕ ∗ µqp¨q is the function (or measure, whose density with re-

spect to Lebesgue measure is)
ş

R3 ϕp¨ ´ yqdµpyq. We have from standard results on

convolutions (see e.g., Section 9.1 in [25]) that
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‚ ϕλ ∗ µ (regarded as a function) is C1,

‚ ϕλ ∗ µá µ as λÑ 0`,

‚ supppϕλ ∗ µq Ă supppµq ` supppϕλq.

Since supppϕλq Ă Bλp0q, there exists λ0 “ λ0pµq such that supppϕλ ∗ µq Ă Ω for

λ ă λ0. From Theorem B.2.4,

Erµs “ p2πq´3

ż

R3

4π|pµ|2

|k|2
dk.

Similarly, we also have for λ ą 0 that

Erϕλ ˚ µs “ p2πq
´3

ż

R3

4π|{ϕλ ∗ µ|2

|k|2
dk “ p2πq´3

ż

R3

4π|xϕλ|
2|pµ|2

|k|2
dk.

But |xϕλ| ď 1, and |xϕλ| Ñ 1 as λÑ 0. Hence by the dominated convergence theorem,

Erϕλ ˚ µs Ñ Erµs

as λÑ 0`. Then for k ą 1{λ0, νk :“ ϕ1{k ∗ µ will suffice.

Proof of theorem 3.2.1. Step 1. Reduction to the case of compactly supported C1

densities. Since CpΩq is separable, the closed unit ball in CpΩq˚ is metrizable with

respect to the vague (or weak*, equivalently) topology (cf. Lemma 3.101 in [47]).

But CpΩq˚ is isometrically isomorphic to the set of signed Radon measures on Ω

by Theorem 7.18 in [25]. By identifying measures on Ω with their zero extensions

to R3, we find the closed unit ball of the set of signed Radon measures on Ω to

be isometrically isomorphic to M, hence M is metrizable (with respect to vague
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convergence), say with metric D.

Now for k P N, we choose νk PM such that

‚ νk is compactly supported in Ω,

‚ νk has C1 density with respect to Lebesgue measure on R3,

‚ Dpνk, µq ă
1
k
,

‚ |Erνks ´ Erµs| ă
1
k
.

Suppose we can show the theorem for µ PM with C1 density and supppµq Ă

Ω. Then for each νk we can find a sequence µ1npνkq P A, n “ 1, 2 . . . , such that

‚ µ1npνkq á νk as nÑ 8,

‚ Edrµ
1
npνkqs Ñ Erνks as nÑ 8.

Then for each k “ 1, 2, . . . , we choose nk P N such that

‚ nk is increasing with k,

‚ Dpµ1nkpνkq, νkq ă 1{k,

‚ |Edrµ
1
nk
pνkqs ´ Erνks| ă 1{k.

Then µk :“ µ1nkpνkq is a discrete charge distribution in A that satisfies

Dpµk, µq “ Dpµ1nkpνkq, µq ď Dpµ1nkpνkq, νkq `Dpνk, µq ď 2{k,

so µk converges vaguely to µ as k Ñ 8, and moreover,

|Edrµks ´ Erµs| “
ˇ

ˇEdrµ
1
nk
pνkqs ´ Erµs

ˇ

ˇ
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ď
ˇ

ˇEdrµ
1
nk
pνkqs ´ Erνks

ˇ

ˇ` |Erνks ´ Erµs|

ď 2{k,

so Edrµks converges to Erµs as k Ñ 8.

Step 2. Construction of discrete densities. It remains to prove the theorem for

the case that µ PM with C1 density and supppµq Ă Ω. The techniques of Chapter

2 will not suffice due to the unboundedness of µ with respect to Lebesgue density,

so we implement a technical multiscale construction comparable to that in [9]. In

this construction we will partition the region Ω at different scales: a mesoscale hn

describing the cell width upon which the averaging procedure used to define density

will take place, and a microscale an characterizing the interparticle distances. Crucial

will be how the various scales transform with the number of particles. If Nn is the

number of particles, then for the microscale, we will require that a3
n „ 1{Nn, for

this will enforce a “volume filling” property of the sets of point charges similar to

the geometric properties enforced in Chapter 2. For the mesoscale, we will need the

number of particles per mescoscale cell to increase without bound, necessitating a

scaling law of hsn „ 1{Nn for some s ą 3. For concreteness, we let s “ 4, and to ensure

that all lengths divide each other evenly, we partition Ω into diadic length boxes.

With a3
n and h4

n both scaling as a power of 2 representing inverse particle number

1{Nn, we set Nn “ 212n as a natural choice relative to which all other relative scales

involved are made apparent.

Proceeding, we may assume that dµ “ ρdx, with ρ P C1pR3q and supppµq Ă Ω.

Cover supppµq by m0 disjoint cubes contained in Ω of side length h0 “ 2n0

for n0 P Z. Further subdivide these into smaller disjoint cubes Ci of side length

hn “ h0{8
n.
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Then

supppµq Ă
mn
ď

i“1

Ci Ă Ω,

where

mn “ m0ph0{hq
3
“ m029n (3.2.17)

is the number of smaller cubes. We set the number of particles of µn to be

Nn “ 212n. (3.2.18)

Recalling }µ} to denote the total variation norm of µ, we select li P N “

t0, 1, . . .u such that
ˇ

ˇ

ˇ

ˇ

li ´
Nn|µ|pCiq

}µ}

ˇ

ˇ

ˇ

ˇ

ď 1 (3.2.19)

and
mn
ÿ

i“1

li “ Nn. (3.2.20)

li is the number of particles to be placed in cube Ci, and li{Nn approximates the

fraction of total charge of |µ| that is contained in Ci by choosing li to be one of the

two closest integers to Nn|µ|pCiq{}µ} in such a way that

ÿ

i

li “
ÿ

i

Nn|µ|pCiq

}µ}
“ Nn.

The li charges to be placed in Ci (with positions xij to be specified shortly)

are each assigned a charge

qi :“
µpCiq}µ}

|µ|pCiq
. (3.2.21)
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Observe that |qi| ď 1, and our discrete density on Ci will be

µn|Ci “
1

Nn

li
ÿ

j“1

qiδxij . (3.2.22)

Let k0 P Z be such that 23k0`2 ě }ρ}8{}µ}, and set an :“ 2´4n´k0´1 to be our

interparticle distance. From (3.2.19) we have

li ď
Nn|µ|pCiq

}µ}
` 1

ď
212n}ρ}8h

3
n

}µ}
` 1

“
212n}ρ}823n0´9n

}µ}
` 1

ď 212n`3k0`2`3n0´9n
` 1

“ 23n`3k0`3n0`2
` 1.

Then for n ě ´n0´ k0 (n0 and k0 being two integer constants depending only on µ)

we have li ď 23n`3k0`3n0`3, so

ˆ

hn
an

˙3

“

ˆ

2n0´3n

2´4n´k0´1

˙3

“ 23n`3k0`3n0`3
ě li

for all i “ 1, . . . ,mn. Thus it makes sense to place xi1, . . . , x
i
li

in distinct points of

anZ3 ∩ Ci and define

µn :“
1

Nn

mn
ÿ

i“1

li
ÿ

j“1

qiδxij . (3.2.23)

Observe that

}µn} “
1

Nn

ÿ

i

li|qi| ď
1

Nn

ÿ

i

li “ 1.
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Having constructed our discrete density, we are ready to show the two convergences.

Step 3. Vague convergence. Let g P C0pR3q and ci be the center of cube Ci.

Then

ż

R3

gdµn ´

ż

R3

gdµ “
ÿ

i

ż

Ci

rgpxq ´ gpciqsdµnpxq

`
ÿ

i

gpciq

ˆ
ż

Ci

dµnpxq ´

ż

Ci

dµpxq

˙

`
ÿ

i

ż

Ci

rgpciq ´ gpxqsdµpxq,

so

ˇ

ˇ

ˇ

ˇ

ż

R3

gdµn ´

ż

R3

gdµ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

i

ż

Ci

|gpxq ´ gpciq|d|µn|pxq `
ÿ

i

gpciq|µnpCiq ´ µpCiq|

`
ÿ

i

ż

Ci

|gpxq ´ gpciq|d|µ|pxq

ďmax
i

max
xPCi

|gpxq ´ gpciq|}µn} ` }g}8
ÿ

i

|µnpCiq ´ µpCiq|

`max
i

max
xPCi

|gpxq ´ gpciq|}µ}

ďmax
i

max
xPCi

|gpxq ´ gpciq| `mn}g}8 max
i
|µnpCiq ´ µpCiq|

`max
i

max
xPCi

|gpxq ´ gpciq|.

The first and last terms go to 0 as n Ñ 8 since g is continuous and the

diameter of each Ci goes to 0 as nÑ 8.

For the middle term, we need the fact that (3.2.19), (3.2.21), and (3.2.22)

imply that

|µnpCiq ´ µpCiq| ď
1

Nn

(3.2.24)
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holds for all i “ 1, . . . , Nn. Then

mn}g}8 max
i
|µnpCiq ´ µpCiq| ď

mn

Nn

}g}8 “ m0}g}82´3n,

which goes to 0 in the limit nÑ 8. This establishes the vague convergence of µn to

µ.

Step 4. Energy convergence. Let txk : k “ 1, . . . , Nnu be a re–enumeration of

txij : j “ 1, . . . ,mn, i “ 1, . . . , liu, so

µn “
1

Nn

Nn
ÿ

k“1

qkδxk .

Denote Coulomb potential vpxq :“ 1
|x|

, and for α ą 0, define cutoff Coulomb potential

vαpxq :“

$

’

’

&

’

’

%

1
|x|

|x| ě α,

1
α

|x| ă α.

Then

Edrµns ´ Erµs “

ĳ

pR3ˆR3qzD

dµnpxqdµnpyq

|x´ y|
´

ĳ

pR3ˆR3q

dµpxqdµpyq

|x´ y|

“

ĳ

pR3ˆR3qzD

vpx´ yqdµnpxqdµnpyq ´

ĳ

pR3ˆR3q

vpx´ yqdµpxqdµpyq

“

ĳ

R3ˆR3

vαpx´ yq
´

dµnpxqdµnpyq ´ dµpxqdµpyq
¯

´

ĳ

D

vαpx´ yqdµnpxqdµnpyq
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`

ĳ

pR3ˆR3qzD

´ 1

|x´ y|
´ vαpx´ yq

¯

dµnpxqdµnpyq

´

ĳ

R3ˆR3

´ 1

|x´ y|
´ vαpx´ yq

¯

dµpxqdµpyq.

The first term goes to 0 as nÑ 8 since µnˆµn á µˆµ and vα is continuous.

The second term equals 1
αN2

n

řNn
k“1 q

2
k and is bounded in absolute value by

1{Nnα, which goes to 0 in the limit nÑ 8.

The fourth term is the negative of

ĳ

|x´y|ăα

dµpxqdµpyq

|x´ y|
,

and is bounded in absolute value by

}ρ}28

ĳ

px,yqPΩˆΩ,|x´y|ăα

dxdy

|x´ y|
,

which can be made arbitrarily small for small α by the local integrability of v (see

Lemma 2.1.1).

Using Lemma 2.1.2, the third term is equal to

1

N2
n

ÿ

k,l:0ă|xk´xl|ăα

qkql
|xk ´ xl|

“
1

N2
n|Ban |

2

ÿ

k,l:0ă|xk´xl|ăα

qkql

ż

Ban pxkq

ż

Ban pxlq

1

|x´ y|
dxdy.

But Nn|Ban | “ 212n4πa3{3 “ π2´3k0´1{3 “: C is constant, so the above expression is
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bounded in absolute value by

C2

ĳ

px,yqPΩˆΩ,|x´y|ăα`an

dxdy

|x´ y|
,

which converges as nÑ 8 to

C2

ĳ

px,yqPΩˆΩ,|x´y|ăα

dxdy

|x´ y|
,

which can be made arbitrarily small for small α.

Thus we have shown that Edrµns Ñ Erµs as nÑ 8.

3.3 Application to minimization in the presence

of an external field

Let Ω Ă R3 be a bounded domain with C2 boundary, and suppose a signed

Radon measure ν to be a fixed external charge density of total charge }ν} ď 1 that is

compactly supported outside Ω. Consider the problem of minimizing the energy of

of the combined distribution of charge µ` ν, where µ is allowed to vary over the set

M of charge distributions (signed Radon measures) supported on Ω of total charge

(total variation) bounded by 1. This could apply, for example, to an implicit–solvent

model in which Ω is the solvent region, ν represents fixed solute charges, and µ the

distribution of ions in the solvent (cf. [64, 14, 27, 65, 41, 66, 18, 23, 53, 58, 10, 11, 71]).

Recall from (3.2.2) the mutual energy of (nonnegative) Radon measures,

which is extended to signed Radon measures µ1 and µ2 with respective Jordan de-
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compositions µ1 “ µ`1 ´ µ
´
1 , µ2 “ µ`2 ´ µ

´
2 , as

Erµ1, µ2s “ Erµ`1 , µ
`
2 s ` Erµ

´
1 , µ

´
2 s ´ Erµ

`
1 , µ

´
2 s ´ Erµ

´
1 , µ

`
2 s, (3.3.1)

provided this expression does not consist of infinities of opposite sign.

Then if it is defined, the electrostatic energy of our combined system is

Erµ` νs “ Erµs ` 2Erµ, νs ` Erνs.

Erνs is the energy of the fixed charge distribution and is not assumed to be finite

or even defined, but since it is constant, it can be disregarded for the purpose of

minimization. It will be shown shortly that Erµ, νs is well defined for all µ P M.

Thus we are left with the problem of minimizing Erµs`2Erµ, νs over µ PM. Define

functional J :MÑ RY t˘8u by

Jrµs :“

$

’

&

’

%

Erµs ` 2Erµ, νs if Er|µ|s ă 8

8 otherwise,

and our minimization problem becomes the problem of finding µ PM such that

Jrµs “ inf
µPM

Jrµs. (3.3.2)

Likewise, we can consider discrete charge distributions in

A “

#

1

N

N
ÿ

i“1

qiδxi PM : N P N, tqiuNi“1 Ă r´1, 1s, txiu
N
i“1 Ă Ω distinct

+
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with discrete energy functional Jd : AÑ RY t˘8u given by

Jdrµs :“ Edrµs ` 2Erµ, νs.

Write

Uν
pxq “

ż

R3

dνpyq

|x´ y|

for the potential due to ν. Since ν is compactly supported in Ω
c
, there exists r ą 0

such that |x´ y| ą r for all x P Ω and y P supppνq. Then for x, z P Ω,

|Uν
pxq ´ Uν

pzq| “

ˇ

ˇ

ˇ

ˇ

ż

R3

dνpyq

|x´ y|
´

ż

R3

dνpyq

|z ´ y|

ˇ

ˇ

ˇ

ˇ

ď

ż

R3

|x´ z|d|ν|pyq

|x´ y||z ´ y|

ď |x´ z|
}ν}

r2
,

so Uν is Lipschitz continuous on Ω. Thus we find that Erµ, νs “
ş

Uνdµ is well–

defined and finite for all µ PM. Then for x P Ω we find that

|Uν
pxq| “

ˇ

ˇ

ˇ

ˇ

ż

R3

dνpyq

|x´ y|

ˇ

ˇ

ˇ

ˇ

ď

ż

R3

d|ν|pyq

|x´ y|
ď

ż

R3

d|ν|pyq

r
“
}ν}

r
, (3.3.3)

so Uν is bounded by }ν}{r on Ω, so for µ PM we find that

|Erµ, νs| “

ˇ

ˇ

ˇ

ˇ

ż

R3

Uν
pxqdµpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

R3

|Uν
pxq| d|µ|pxq ď

}µ}}ν}

r
.

Theorem 3.3.1. Let Ω, ν, J, Jd be as defined above.

(1) There exists a unique solution µ PM to the minimization problem (3.3.2), and

moreover, the support of µ is contained in BΩ.

(2) There exists a sequence of measures µn P A such that
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(a) µn á µ as nÑ 8,

(b) Jdrµns Ñ Jrµs as nÑ 8.

(3) If ε ą 0 is given, then the sequence µn may be constructed so as to have the

support of µn contained in an ε–neighborhood of BΩ for all n.

Here an “ε–neighborhood” of a set A refers to

ď

yPA

Bεpyq “ tx : |x´ y| ă ε for some y P Au.

Proof. Observe that an arbitrary C2 domain G Ă R3 satisfies an exterior cone con-

dition: every point x P BG is accessible from outside of G by a finite cone that does

not otherwise intersect G. Then given any signed Radon measure α supported on

G, there exists a new signed measure α1 supported on BG such that

Uα1
pxq “ Uα

pxq for all x R G,

by Theorem 4.3 in [37]. Moreover, we have that }α1} ď }α}, by Theorem 4.1 in [37].

Applying this to the present problem with G “ R3zΩ, we have that there

exists a signed Radon measure ν 1 supported on BΩ such that }ν 1} ď }ν} (so ν 1 PM)

and Uν1 “ Uν on Ω. Furthermore, we find by Corollary 2 to Theorem 4.6 in [37] that

the induced measure ν 1 is unique, by the boundedness of Uν on Ω (cf. (3.3.3)). Then

Erµ, νs “ Erµ, ν 1s, and while Erνs may not be finite or even defined, we have that

Erν 1s “

ż

R3

Uν1dν 1 “

ż

R3

Uνdν 1 “

ĳ

R3ˆR3

dνpxqdν 1pyq

|x´ y|
ď
}ν 1}}ν}

r
ď

1

r
ă 8.
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Thus, for µ PM with Er|µ|s ă 8 we have that

Erµs ` 2Erµ, νs “ Erµs ` 2Erµ, ν 1s ` Erν 1s ´ Erν 1s “ Erµ` ν 1s ´ Erν 1s

so

Jrµs “ Erµ` ν 1s ´ Erν 1s. (3.3.4)

But

Erµ` ν 1s “ p2πq´3

ż

R3

4π

|k|2
|pµ` pν 1|2dk

by Theorem B.2.4. Observe that if α is any signed Radon measure of compact

support, then pα is bounded and continuous, and

ż

R3

|pα|2

|k|2
dk “ 0 ðñ pα ” 0 ðñ α is the zero measure,

by uniqueness of the Fourier transform. Then we see that J is uniquely minimized

at µ “ ´ν 1 PM, establishing (1). Note the minimum is then given by

Jr´ν 1s “ ´Erν 1s.

Now that we have identified our minimizer of the continuum energy functional

Jr¨s, we can apply Theorem 3.2.1 of the previous section to yield a sequence of discrete

charge distributions µn P A such that

‚ µn á ´ν 1 as nÑ 8,

‚ Edrµns Ñ Er´ν 1s as nÑ 8.
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Since Uν is continuous on Ω, we find that

lim
nÑ8

Erµn, νs “ lim
nÑ8

ż

Ω

Uνdµn “ ´

ż

Ω

Uνdν 1 “ ´

ż

Ω

Uν1dν 1 “ ´Erν 1s,

so

lim
nÑ8

Jdrµns “ lim
nÑ8

´

Edrµns ` 2Erµn, νs
¯

“ Er´ν 1s ´ 2Erν 1s

“ Erν 1s ´ 2Erν 1s “ ´Erν 1s “ Jr´ν 1s “ inf
µPM

Jrµs,

establishing (2).

To show that our discrete densities may be assumed to be contained in an

arbitrarily small neighborhood of BΩ, refer to lemmas 3.2.1 and 3.2.2, which were

used in the construction of the approximating discrete measures of Theorem 3.2.1.

Recalling the notation of the lemmas, we had

‚ dpxq “ minyPBΩ |x´ y| for x P Ω,

‚ flow map Φt taking points to their position after time t under the flow (3.2.3),

‚ smooth, nonnegative, radially symmetric unit mass mollifier ϕλ compactly sup-

ported in Bλp0q.

As shown in Lemma 3.2.1, the flow map Φt smoothly flows points on BΩ with

velocity given by the inward normal vector, and there exists a δ ą 0 such that all

points in tx P Ω : dpxq ă δu flow with unit speed. Then for 0 ď t ă δ, we will have

ΦtpBΩq Ă tx P Ω : dpxq ă tu.

But

supppϕλ ∗ Φt#ν
1
q Ă

ď

yPsupppΦt#ν1q

Bλpyq,
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so ϕλ ∗ Φt#ν
1 will be supported in a λ–neighborhood of a t–neighborhood of BΩ.

Hence, given any ε ą 0, we can choose t ă ε{3 and λ ă ε{3 so

supppϕλ ∗ Φt#ν
1
q Ă tx P Ω : dpxq ă 2ε{3u.

Referring now to the construction of the discrete densities in Step 2 of Theorem

3.2.1, we can choose the support of the discrete densities to be contained in an

arbitrarily small neighborhood of the support of the smooth densities which they are

approximating, hence they may be assumed to be contained in tx P Ω : dpxq ă εu,

establishing (3).
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Chapter 4

Legendre Transforms

4.1 Introduction

We consider an ionic solution that consists of M ionic species together with

solvent and that occupies a bounded region Ω Ď R3. A commonly used electrostatic

free-energy functional, often termed the Poisson–Boltzmann (PB) electrostatic free-

energy functional, takes the form [55, 63, 27, 10, 41, 24, 2, 14]

Irφs “

ż

Ω

”

´
ε

2
|∇φ|2 ` fφ´Bpφq

ı

dx. (4.1.1)

Here, φ : Ω Ñ R is any possible electrostatic potential, ε : Ω Ñ R is the dielectric

coefficient that can vary spatially in the region Ω, and f : Ω Ñ R is the density of

fixed charges. In the classical PB theory, the function B : RÑ R is given by

Bpφq “ β´1
M
ÿ

i“1

c8i
`

e´βqiφ ´ 1
˘

, (4.1.2)
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where β “ pkBT q
´1 with kB the Boltzmann constant and T the absolute temperature,

c8i is the bulk concentration of the ith ionic species, and qi “ Zie is the charge

of an ion in the ith ionic species with Zi the valence of such an ion and e the

elementary charge. Note that the function B “ Bpsq is smooth and strictly convex,

and is minimized at s “ 0 under the usual assumption of charge neutrality: B1p0q “
řM
i“1 c

8
i qi “ 0. The Euler–Lagrange equation of the functional I “ Irφs is

∇ ¨ ε∇φ´B1pφq “ ´f. (4.1.3)

This is exactly the PB equation for the equilibrium electrostatic potential φ. More-

over, the functional value Irφs at this critical point φ, which is the same as the

maximum value of the functional I, is exactly the (macroscopic) electrostatic free

energy.

The functional I defined in (4.1.1) is an expression of the electrostatic free

energy through the equilibrium electrostatic potential of an underlying ionic system.

It can be derived from minimizing the following effective electrostatic free-energy

functional of all the ionic concentrations ci : Ω Ñ r0,8q p1 ď i ďMq [55, 10, 41, 24]:

F rcs

“

ż

Ω

#

1

2

˜

f `
M
ÿ

i“1

qici

¸

φ ` β´1
M
ÿ

i“1

ci
“

ln
`

Λ3ci
˘

´ 1
‰

´

M
ÿ

i“1

µici ´ β
´1

M
ÿ

i“1

c8i

+

dx,

(4.1.4)

where c “ pc1, . . . , cMq. (We define s ln s “ 0 for s “ 0.) The first part of the free

energy F rcs is the electrostatic potential energy, where f `
řM
i“1 qici is the total

charge density and φ : Ω Ñ R is the corresponding electrostatic potential defined as
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the solution to Poisson’s equation

∇ ¨ ε∇φ “ ´

˜

f `
M
ÿ

i“1

qici

¸

, (4.1.5)

together with some boundary conditions. The second part, where Λ is the thermal

de Broglie wavelength, is the entropy of the ions. The third part of the free energy

F rcs arises from the constraint of a fixed total number of ions in each ionic species.

Here µi is the chemical potential for an ion of the ith species and is related to other

parameters by µi “ β´1 lnpΛ3c8i q [10]. The last part of the free energy F rcs is the

ionic pressure. Note that the functional F is strictly convex. The equilibrium ionic

concentrations ci “ cipxq p1 ď i ďMq, defined by the vanishing of the first variations

δciF rcs “ 0 p1 ď i ď Mq, and the corresponding equilibrium electrostatic potential

φ, satisfy the Boltzmann distributions cipxq “ c8i e
´βqiφpxq for x P Ω and i “ 1, . . . ,M.

These and Poisson’s equation (4.1.5) lead to the PB equation (4.1.3), where

´B1pφq “
M
ÿ

i“1

c8i qie
´βqiφ “

M
ÿ

i“1

qici

is exactly the local density of the ionic charges. Moreover, the free energy F is

minimized at the equilibrium concentrations, and this minimum value is exactly Irφs,

the (macroscopic) electrostatic free energy; see, e.g., [41, 55, 10] for more details.

We remark that the variational approach in the PB theory has been general-

ized to include the ionic size effect (or excluded volume effect); cf. [34, 7, 41, 40] and

also [4, 20, 12, 8, 31, 32, 69, 46, 72, 33, 43, 21, 45]. Let us denote by vi the volume

of an ion in the ith ionic species p1 ď i ď Mq. Let us also denote by c0 “ c0pxq

px P Ωq the local concentration of solvent molecules, and by v0 the volume of a solvent

molecule. Then
řM
i“0 vicipxq “ 1 for all x P Ω. This means that the solvent concen-
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tration is determined by all the ionic concentrations. The generalized, size-modified

electrostatic free-energy functional of all the ionic concentrations is the same as the

functional F rcs defined in (4.1.4), except that the entropy integrand term (i.e., the

logarithmic term in the integrand) is replaced by β´1
řM
i“0 rci lnpviciq ´ 1s , where the

sum starts from i “ 0 [34, 7, 40]. The new functional is strictly convex and admits

a unique set of free-energy minimizing concentrations that are determined by the

equilibrium conditions (i.e., the vanishing of first variations) [41, 40, 43]:

vi
v0

lnpv0c0q ´ lnpviciq “ β pqiφ´ µiq in Ω, i “ 1, . . . ,M, (4.1.6)

where φ is the corresponding electrostatic potential. This set of nonlinear algebraic

equations determine uniquely the generalized Boltzmann distributions ci “ cipφq

pi “ 1, . . . ,Mq. If all vi pi “ 0, 1, . . . ,Mq are the same, say, vi “ v, then such

distributions are given by

ci “
c8i e

´βqiφ

1`
řM
j“1 vc

8
j pe

´βqjφ ´ 1q
in Ω, i “ 1, . . . ,M, (4.1.7)

where c8i “ v´1eβµi{p1`
řM
j“1 e

βµjq pi “ 1, . . . ,Mq. If the sizes are nonuniform, then

explicit formulas of Boltzmann distributions ci “ cipφq pi “ 1, . . . ,Mq seem unavail-

able. (Numerically, one can minimize the free-energy functional of concentrations

using Poisson’s equation (4.1.5) as a constraint; cf. [72]. Alternatively, one can ob-

tain such distributions by solving numerically the system of equations (4.1.6) for a

set of values of φ.) In any case (with or without the size effect included, and uniform

or nonuniform size when the size effect is included), the minimum electrostatic free

energy can be written in terms of the electrostatic potential φ as in (4.1.1), where
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the function B : RÑ R is defined by

´B1pφq “
M
ÿ

i“1

qicipφq and Bp0q “ 0, (4.1.8)

The condition of the charge neutrality is now B1p0q “ 0. It is shown in [40] that B is

smooth, strictly convex, and minimized uniquely at 0. The generalized PB equation

has exactly the same form as in (4.1.3).

An advantage of the PB theory (classical or size-modified) is that once the

equilibrium potential φ is determined by solving the PB equation, all the ionic con-

centrations are also known. However, the fact that the critical point φ maximizes

the functional I defined in (4.1.1), due to the negative quadratic term in the func-

tional, makes it inconsistent to couple the PB electrostatic free energy with other

macroscopic energies, such as the surface energy of a dielectric boundary, that are

often minimized to yield a stable equilibrium state. Naturally, one tries to construct

a free-energy functional that is satisfactory in several ways. First, such a functional

should have a unique minimizer and the corresponding minimum value should be the

exact (macroscopic) electrostatic free energy. Second, the minimizer should satisfy

the PB equation. It turns out that this is impossible as shown in [10].

To see the idea, let us only consider the case in which there are no mobile

ionic charges; and hence set the B-term to be 0. The electrostatic energy is given by

E “

ż

Ω

1

2
fφ dx, (4.1.9)

where φ is the solution to Poisson’s equation

∇ ¨ ε∇φ “ ´f, (4.1.10)
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together with some boundary conditions. Using this equation, we have by integration

by parts that

E “

ż

Ω

ˆ

fφ´
1

2
fφ

˙

dx

“

ż

Ω

„

fφ`
1

2
p∇ ¨ ε∇φqφ



dx

“

ż

Ω

´

fφ´
ε

2
|∇φ|2

¯

dx` some boundary terms.

If the region Ω is large enough, with its boundary far away from the support of

f (the closure of the set of points where f is not zero), then the boundary terms

are small and can be neglected. This derivation shows how the negative quadratic

term appears. Now the electrostatic potential φ, the solution to Poisson’s equation

(4.1.10), maximizes this functional (without the boundary terms). One may try the

following functional:
ż

Ω

`

a|∇φ|2 ` bφ
˘

dx,

for some a and b that can depend on f and ε but not on φ. If the functional is

minimized at some φ that solves Poisson’s equation and the minimum value is the

same as (4.1.9), then the only choice of a and b is that a “ ´ε{2 and b “ f ; cf. [10].

To resolve the issue of concavity of the PB free-energy functional, Maggs

[48] constructed a Legendre transformed electrostatic free-energy functional of all

possible electrostatic displacements D : Ω Ñ R3 :

D ÞÑ

ż

Ω

„

1

2ε
|D|2 `B˚pf ´∇ ¨Dq



dx. (4.1.11)

Here B˚ is the Legendre transform of the function B. Indeed, the dielectric dis-

placement is related to the electrostatic potential φ by D “ ´ε∇φ. This allows us

77



to rewrite

´
ε

2
|∇φ|2 “ 1

2ε
|D|2 `D ¨∇φ.

With this and an integration by parts, we can then rewrite the original PB functional

(4.1.1) into

ż

Ω

”

´
ε

2
|∇φ|2 ` fφ´Bpφq

ı

dx

“

ż

Ω

„

1

2ε
|D|2 ` pf ´∇ ¨Dqφ´Bpφq



dx` boundary term.

Now, the terms pf ´ ∇ ¨ Dqφ ´ Bpφq are related to the Legendre transform of the

convex function B evaluated at f ´∇ ¨D. Therefore, it is natural to construct the

functional (4.1.11) [48]. Pujos and Maggs [54] applied this approach to develop mod-

els for computer simulations of fluctuations in ionic solution. Maggs and Podgornik

[49] and Blossey, Maggs, and Podgornik [5] have also used the Legendre transformed

functional to study the asymmetric steric effect and correlations in electrostatic in-

teractions.

We recall that the Legendre transform h˚ : RÑ R∪t`8u for a given function

h : RÑ R is defined by [56, 73]

h˚pξq “ sup
sPR
rsξ ´ hpsqs @ξ P R.

If h is smooth, strictly convex, and minimized at some critical point, then h˚ : RÑ R

is also smooth and strictly convex, and we have the equivalences

h˚pξq “ s˚ξ ´ hps˚q ðñ h1ps˚q “ ξ ðñ h˚1pξq “ s˚. (4.1.12)

In this chapter, we study mathematically Maggs’ Legendre transformed func-
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tional with extension to several cases and with application to dielectric boundary

implicit-solvent models for the solvation of charged molecules.

(1) We give a rigorous proof of the equivalence of the Legendre transformed func-

tional (cf. (4.1.11)) and the original PB functional (cf. (4.1.1)). This means

in particular that the minimizing displacement field D of the Legendre trans-

formed functional is exactly the one that corresponds to the maximizing poten-

tial φ of the PB functional: D “ ´ε∇φ. We also derive the interface conditions

for the equilibrium displacement for the case with a dielectric boundary.

(2) We study a phenomenological free-energy functional that includes higher-order

gradients of the electrostatic potential, proposed by Bazant, Storey, and Ko-

rnyshev [3] for describing charge-charge correlations. In a simple setting (e.g.,

without the surface charges), this functional can be written as

φ ÞÑ

ż

Ω

”

´
ε

2

`

|∇φ|2 ` l2c |∆φ|2
˘

` fφ´Bpφq
ı

dx,

where lc ą 0 is the (constant) correlation length. We shall introduce a cor-

responding Legendre transformed functional and prove that these functionals

are equivalent.

(3) We consider the case where there are no mobile ions in an underlying elec-

trostatic system. The electrostatic energy of such a system is the same as

(4.1.1) except the B-term is not included. This setting is simpler but is in fact

more subtle to understand, as the Legendre transform of the zero function is

`8 everywhere except at 0. We shall first show that the electrostatic energy

functional is equivalent to the Legendre transformed functional

D ÞÑ

ż

Ω

1

2ε
|D|2dx (4.1.13)
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that is to be minimized over the class of displacements D such that ∇¨D “ f in

Ω. Following the suggestion in [48], we also consider a perturbed electrostatic

energy functional

Iµrφs “

ż

Ω

”

´
ε

2
|∇φ|2 ` fφ´ µ

2
|φ|2

ı

dx,

where µ ą 0 is a small parameter. We apply the Legendre transform to this

functional, and prove that the minimizing displacement and minimum value of

the transformed energy converge as µ Ñ 0 to the displacement of the maxi-

mizing electrostatic potential and maximum value of the original, unperturbed

functional.

(4) We consider the dielectric boundary electrostatic free-energy functional in the

implicit-solvent model for the solvation of charged molecules [71, 42, 17, 18]

IΓrφs “

ż

Ω

”

´
εΓ

2
|∇φ|2 ` fφ´ χ`Bpφq

ı

dx.

Here, Γ is the dielectric boundary—an interface that separates a solute region

(i.e., the region of charged molecules) Ω´ from the solvent (e.g., salted water)

region Ω` in which there are mobile ions, f represents the fixed charges of solute

atoms, and χ` “ χΩ` is the characteristic function of the solvent region. The

dielectric coefficient εΓ is a constant in Ω´ and another constant in Ω`. The

term χ`Bpφq results from a usual assumption in the implicit-solvent modeling

that the mobile ions do not penetrate into the solute region. Based on our

analysis of the corresponding Legendre transform of the integrand of IΓrφs,

we propose to use the same Legendre transformed electrostatic free-energy

functional (4.1.11) but identify the admissible electrostatic displacements to

80



be those vector fields D : Ω Ñ R3 such that ∇ ¨ D “ f in Ω´. With such a

setting, we again prove the equivalence of the two free-energy functionals.

4.2 Equivalence of two free-energy functionals

Let Ω be a bounded domain in R3 with a C2 boundary BΩ, f P L2pΩq, and

g P W 1,8pΩq. (We use standard notations of Lebesgue and Sobolev spaces as in

[1, 26].) Denote

H1
g pΩq “

 

u P H1
pΩq : u “ g on BΩ

(

.

Here and below, the boundary values are understood in the sense of trace [1, 26].

Let ε P L8pΩq be such that εmin ď εpxq ď εmax for all x P Ω, where εmin and εmax

are two positive constants. Let B P C3pRq be such that

(1) B is strictly convex in R;

(2) B is minimized at 0 with minimum value Bp0q “ 0; and

(3) Bp˘8q “ 8, and either B1p˘8q “ ˘8 or B1 is bounded.

In the classical PB theory, the function B is given in (4.1.2), and hence B1p˘8q “

˘8. In the size-modified PB theory, it is shown in [40] that B1 is bounded. Note

that the Legendre transform B˚ : R Ñ R is a strictly convex and C2 function. In

particular, B˚p0q “ 0, since B1p0q “ 0. We define I : H1
g pΩq Ñ R∪ t´8u by (4.1.1).

Note that Irφs ă 8 for any φ P H1
g pΩq.

Theorem 4.2.1. The functional I : H1
g Ñ R ∪ t´8u has a unique maximizer

φB P H1
g pΩq and the maximum value is finite. Moreover, φB is the unique weak

solution to the boundary-value problem of PB equation

ż

Ω

rε∇φB ¨∇η `B1pφBqηs dx “
ż

Ω

fη dx @η P H1
0 pΩq, (4.2.1)
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and φB P L
8pΩq.

Proof. For the classical PB functional where the function B is given in (4.1.2), this

is similar to the proof of Theorem 2.1 in [42]. For the size-modified PB functional,

where B is given by (4.1.7) or implicitly by (4.1.8), this is similar to the proof of

Theorem 5.1 in [40], where the fact that φB P L
8pΩq is a direct consequence of the

PB equation and regularity theory (e.g., Chapter 8 in [26]).

We denote

Hpdiv,Ωq “
!

D P
“

L2
pΩq

‰3
: ∇ ¨D P L2

pΩq
)

,

where the divergence ∇ ¨D is defined in the weak sense:

ż

Ω

∇ ¨Dη dx “ ´

ż

Ω

D ¨∇η dx @η P H1
0 pΩq. (4.2.2)

We recall that Hpdiv,Ωq is a Hilbert space with the inner product [68]

xD,Gy “

ż

Ω

rD ¨G` p∇ ¨Dqp∇ ¨Gqs dx @D,G P Hpdiv,Ωq.

If D P Hpdiv,Ωq, then the trace D ¨ n : BΩ Ñ R is in L2pBΩq, where n is the unit

exterior normal at the boundary BΩ, and

ż

Ω

p∇ ¨Dq η dx “ ´
ż

Ω

D ¨∇η dx`
ż

BΩ

pD ¨ nq η dS @η P H1
pΩq; (4.2.3)

see [68]. We define J : Hpdiv,Ωq Ñ R ∪ t`8u by

JrDs “

ż

Ω

„

1

2ε
|D|2 `B˚pf ´∇ ¨Dq



dx`

ż

BΩ

gD ¨ n dS. (4.2.4)
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Note that we have an additional boundary integral term in this functional, compared

with the functional defined in (4.1.11). Formal calculations show that the Euler–

Lagrange equation for the functional J : Hpdiv,Ωq Ñ R ∪ t`8u is

D

ε
`∇pB˚1pf ´∇ ¨Dqq “ 0 in Ω. (4.2.5)

Let us denote

H0pdiv,Ωq “ tD P Hpdiv,Ωq : D ¨ n “ 0 on BΩu.

(Note that this is not the subspace of Hpdiv,Ωq that consists of divergence-free vector

fields. The subscript 0 here indicates a vanishing normal component of the vector

field on the boundary.) We call D P Hpdiv,Ωq a weak solution to the Euler–Lagrange

equation (4.2.5), if

ż

Ω

„

D ¨G

ε
´B˚1pf ´∇ ¨Dqp∇ ¨Gq



dx “ 0 @G P H0pdiv,Ωq. (4.2.6)

The following theorem indicates that the PB electrostatic free-energy func-

tional I defined in (4.1.1) and its Legendre transformed free-energy functional J

defined in (4.2.4) are equivalent:

Theorem 4.2.2. We have

Irφs ď JrDs @φ P H1
g pΩq @D P Hpdiv,Ωq. (4.2.7)

Moreover, if φB P H
1
g pΩq is the unique maximizer of I : H1

g pΩq Ñ R ∪ t´8u and
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DB “ ´ε∇φB, then DB P Hpdiv,Ωq and

IrφBs “ max
φPH1

g pΩq
Irφs “ min

DPHpdiv,Ωq
JrDs “ JrDBs. (4.2.8)

In particular, DB is the unique minimizer of J : Hpdiv,Ωq Ñ R∪ t`8u with a finite

minimum value, and DB is also the unique weak solution to boundary-value problem

of the Euler–Lagrange equation for the functional J : Hpdiv,Ωq Ñ R ∪ t`8u

D

ε
`∇pB˚1pf ´∇ ¨Dqq “ 0 in Ω, (4.2.9)

B˚1pf ´∇ ¨Dq “ g on BΩ. (4.2.10)

We note that the inequality (4.2.7) shows that the functional of two-variable

pφ,Dq derived in [48] (cf. Eq. (17) there) is convex in D and concave in φ. We

also note that, if D “ DB, then the Euler–Lagrange equation (4.2.9) is just the

constitutive relation DB “ ´ε∇φB, and the boundary condition (4.2.10) is just the

boundary condition for φB: φB “ g on BΩ.

Proof of Theorem 4.2.2. Let φ P H1
g pΩq and D P Hpdiv,Ωq. By the definition of the

Legendre transform and integration by parts, we obtain

Irφs “

ż

Ω

”

´
ε

2
|∇φ|2 ` fφ´Bpφq

ı

dx

ď

ż

Ω

„

´
ε

2
|∇φ|2 ` fφ´Bpφq ` 1

2ε
|D ` ε∇φ|2



dx

“

ż

Ω

„

1

2ε
|D|2 ` fφ´Bpφq `D ¨∇φ



dx

“

ż

Ω

„

1

2ε
|D|2 ` pf ´∇ ¨Dqφ´Bpφq



dx`

ż

BΩ

gD ¨ n dS

ď

ż

Ω

„

1

2ε
|D|2 `B˚pf ´∇ ¨Dq



dx`

ż

BΩ

gD ¨ n dS
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“ JrDs. (4.2.11)

This proves (4.2.7).

Now let φB P H
1
g pΩq be the unique maximizer of I over H1

g pΩq and let DB “

´ε∇φB. Clearly, DB P rL
2pΩqs3. By (4.2.1) and (4.2.2), ∇¨DB “ f´B1pφBq P L

2pΩq.

Hence DB P Hpdiv,Ωq. Moreover,

f ´∇ ¨DB “ B1pφBq P H
1
pΩq. (4.2.12)

This and (4.1.12) imply that

B˚pf ´∇ ¨DBq “ pf ´∇ ¨DBqφB ´BpφBq a.e. Ω, (4.2.13)

B˚1pf ´∇ ¨DBq “ φB a.e. Ω. (4.2.14)

Repeating similar steps in (4.2.11) above, we have then by (4.2.13) that

IrφBs “

ż

Ω

”

´
ε

2
|∇φB|2 ` fφB ´BpφBq

ı

dx

“

ż

Ω

„

´
ε

2
|∇φB|2 ` fφB ´BpφBq `

1

2ε
|DB ` ε∇φB|2



dx

“

ż

Ω

„

1

2ε
|DB|

2
` fφB ´BpφBq `D ¨∇φB



dx

“

ż

Ω

„

1

2ε
|DB|

2
` pf ´∇ ¨DBqφB ´BpφBq



dx`

ż

BΩ

gDB ¨ n dS

“

ż

Ω

„

1

2ε
|DB|

2
`B˚pf ´∇ ¨DBq



dx`

ż

BΩ

gDB ¨ n dS

“ JrDBs. (4.2.15)

By (4.2.11) and (4.2.15), we have for any D P Hpdiv,Ωq that JrDBs “ IrφBs ď

JrDs. This implies (4.2.8), and DB minimizes J over Hpdiv,Ωq. Since the Legendre
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transform takes convex functions to convex functions, the uniqueness of minimizer

of J : Hpdiv,Ωq Ñ R ∪ t`8u follows from the strict convexity of J . Clearly, the

minimum value JrDBs is finite.

By Theorem 4.2.1, φB P H
1pΩq∩L8pΩq; and hence, by (4.2.12), f ´∇ ¨DB P

H1pΩq ∩ L8pΩq. Consequently, for any G P rC1pΩqs3 Ă Hpdiv,Ωq, we conclude from

that fact that δJrDBsrGs :“ pd{dtq|t“0JrDB ` tGs “ 0, and from the dominated

convergence theorem allowing the exchange of the limit and integration that

δJrDBsrGs “

ż

Ω

„

DB ¨G

ε
`B˚1pf ´∇ ¨DBqp´∇ ¨Gq



dx`

ż

BΩ

gG ¨ n dS “ 0.

(4.2.16)

By (4.2.14), B˚1pf ´∇ ¨DBq “ φB P H
1pΩq ∩ L8pΩq. Note that rC1pΩqs3 is dense

in Hpdiv,Ωq. It then follows that (4.2.16) holds true for any G P Hpdiv,Ωq. In

particular, (4.2.6) is true for any G P H0pdiv,Ωq, implying that that DB is a weak

solution to (4.2.9). It follows from (4.2.3) and (4.2.16) with G P Hpdiv,Ωq that

ż

Ω

„

DB

ε
`∇

`

B˚1pf ´∇ ¨DBq
˘



¨Gdx`

ż

BΩ

“

g ´B˚1pf ´∇ ¨DBq
‰

G ¨ n dS “ 0.

(4.2.17)

By choosing G P H0pdiv,Ωq, we obtain (4.2.9) with D “ DB. The two equations

(4.2.9) and (4.2.17) then imply that the second integral in (4.2.17) vanishes for any

G P Hpdiv,Ωq. This leads to (4.2.10) with D “ DB. The uniqueness of the weak

solution follows from the strict convexity of B˚ and a usual argument; cf. e.g., the

proof of Theorem 2.1 in [42].

Let us denote

W “ tD P Hpdiv,Ωq : there exists φ P H1
pΩq such that D “ ´ε∇φu.
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Clearly, this is a linear subspace of Hpdiv,Ωq. The following is a direct consequence

of Theorem 4.2.2:

Corollary 4.2.1. Let DB be the minimizer of the functional J : Hpdiv,Ωq Ñ R ∪

t`8u as stated in Theorem 4.2.2. Then, DB P W and

JrDBs “ min
DPHpdiv,Ωq

JrDs “ min
DPW

JrDs.

We now consider the dielectric boundary problem and the interface conditions

for the minimizer of the Legendre transformed functional. Let Γ be a C2, closed

surface such that Γ Ă Ω. Denote Ω´ the interior of Γ and Ω` “ ΩzΩ´. So, both Ω´

and Ω` are bounded open sets in R3, and Ω “ Ω´ ∪ Ω` ∪ Γ. We assume now that

the dielectric coefficient is given by

εpxq “ εΓpxq “

$

’

&

’

%

ε´ if x P Ω´,

ε` if x P Ω`,

(4.2.18)

where ε´ and ε` are two distinct positive numbers. We denote by JuK “ u|Ω` ´u|Ω´

the jump across Γ of a function u : Ω Ñ R from Ω` to Ω´. We also denote by n

the unit normal at Γ pointing from Ω´ to Ω`. Since the piecewise constant function

ε P L8pΩq, Theorem 4.2.2 still holds true. It follows from routine calculations [41, 42]

that the maximizer φB P H
1
g pΩq of I : H1

g pΩq Ñ R ∪ t´8u is characterized by the
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following set of equations:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ε´∆φB ´B
1
pφBq “ ´f in Ω´,

ε`∆φB ´B
1
pφBq “ ´f in Ω`,

JφBK “ 0 and JεΓ∇φB ¨ nK “ 0 on Γ,

φB “ g on BΩ.

(4.2.19)

In particular, φB|Ω˘ P H
2pΩ˘q. The spaces H2pΩ˘q can be replaced by H3pΩ˘q if

f P H1pΩq.

The following theorem provides a similar set of conditions that characterize

the minimizerDB of the Legendre transformed functional J : Hpdiv,Ωq Ñ R∪t`8u :

Theorem 4.2.3. Assume f P H1pΩq. Let D P rL2pΩqs3 be such that D|Ω´ P

rH2pΩ´qs
3 and D|Ω` P rH

2pΩ`qs
3. Then D “ DB P Hpdiv,Ωq pthe unique mini-

mizer of J : Hpdiv,Ωq Ñ R ∪ t`8u as in Theorem 4.2.2q if and only if D satisfies

the following set of equations:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

D

ε´
`∇

`

B˚1pf ´∇ ¨Dq
˘

“ 0 in Ω´,

D

ε`
`∇

`

B˚1pf ´∇ ¨Dq
˘

“ 0 in Ω`,

JD ¨ nK “ 0 and J∇ ¨DK “ 0 on Γ,

B˚1pf ´∇ ¨Dq “ g on BΩ.

(4.2.20)

We note that, if D “ DB, the unique minimizer of J : Hpdiv,Ωq Ñ R∪t`8u,

then D “ ´εΓ∇φB with φB the unique maximizer of I : H1
g pΩq Ñ R ∪ t´8u.

Consequently, the first interface condition JD ¨ nK “ 0 on Γ in (4.2.20) is exactly the

second interface condition JεΓ∇φB ¨ nK “ 0 on Γ in (4.2.19); and, as shown below

in the proof of Theorem 4.2.3, the second interface condition J∇ ¨ DK “ 0 on Γ in
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(4.2.20) is exactly the first interface condition JφBK “ 0 on Γ in (4.2.19). Moreover,

the last equations in (4.2.20) and (4.2.19) are exactly the same.

Proof of Theorem 4.2.3. Clearly, the minimizer DB “ ´εΓ∇φB P rL2pΩqs3, where

φB P H
1
g pΩq is the maximizer of I : H1

g pΩq Ñ R∪ t´8u. Moreover, by the regularity

of φB, we have DB|Ω˘ P rH
2pΩ˘qs

3. It follows from (4.2.16), the divergence theorem,

and the fact that the unit normal n points from Ω´ to Ω` that

0 “ δJrDBsrGs (4.2.21)

“

ż

Ω´

„

DB ¨G

ε
`B˚1pf ´∇ ¨DBqp´∇ ¨Gq



dx

`

ż

Ω`

„

DB ¨G

ε
`B˚1pf ´∇ ¨DBqp´∇ ¨Gq



dx`

ż

BΩ

gG ¨ n dS

“

ż

Ω´

„

DB

ε
`∇

`

B˚1pf ´∇ ¨DBq
˘



¨Gdx

`

ż

Ω`

„

DB

ε
`∇

`

B˚1pf ´∇ ¨DBq
˘



¨Gdx`

ż

Γ

JB˚1pf ´∇ ¨DBqKG ¨ n dS

`

ż

BΩ

“

g ´B˚1pf ´∇ ¨DBq
‰

G ¨ n dS @G P Hpdiv,Ωq. (4.2.22)

Choosing G with its support inside Ω` and Ω´ implies the first two equations in

(4.2.20), respectively. As a result, the above equation is reduced to the one without

any volume integrals. ChoosingG supported inside Ω implies that JB˚1pf´∇¨DBqK “

0, which further implies that J∇ ¨ DBK “ 0 on Γ, since B˚1 is a strictly monotonic

function and the trace of f P H1pΩq on Γ is well defined. The above equation is then

further reduced to the one with the right-hand side being only the integral over BΩ.

This then finally leads to the boundary condition in the last equation of (4.2.20).

The first interface condition JDB ¨ nK “ 0 follows from the relation DB “ ´εΓ∇φB

and the continuity JεΓ∇φB ¨ nK “ 0 on Γ in (4.2.19).

Assume now D P rL2pΩqs3 with D|Ω˘ P rH
2pΩ˘qs

3. Define q P L2pΩq by

89



q “ ∇ ¨D in Ω´ ∪ Ω`. Since JD ¨ nK “ 0 on Γ and n points from Ω´ to Ω`,

ż

Ω

qu dx “

ż

Ω´

p∇ ¨Dqu dx`
ż

Ω`

p∇ ¨Dqu dx

“ ´

ż

Ω´

D ¨∇u dx´
ż

Ω`

D ¨∇u dx´
ż

Γ

JD ¨ nKu dS

“ ´

ż

Ω

D ¨∇u dx @u P H1
0 pΩq.

Hence, q “ ∇ ¨ D and D P Hpdiv,Ωq. If D also satisfies (4.2.20), then we have by

the similar calculations as before (cf. (4.2.16) and (4.2.21)) that δJrDsrGs “ 0 for

all G P Hpdiv,Ωq. Since J is strictly convex, D is the unique minimizer of J , and

hence D “ DB.

4.3 The case with a higher-order gradient term

In this (and only in this) section, we shall assume that ε is a constant for

simplicity. We also assume that the boundary of Ω, and the function f and g on

Ω are all sufficiently smooth so that the solution to an underlying boundary-value

problem of partial differential equation is regular enough. Let σ ą 0 be a constant.

We define

H2
g pΩq “ tφ P H

2
pΩq : φ “ g and Bnφ “ Bng on BΩu,

and Î : H2
g pΩq Ñ R ∪ t´8u by [3]

Îrφs “

ż

Ω

”

´
σ

2
p∆φq2 ´

ε

2
|∇φ|2 ` fφ´Bpφq

ı

dx.

Here the higher-order gradient term ´pσ{2q|∆φ|2 describes the ion-ion correlation

with
a

σ{ε the correlation length [3]. This functional is the same as the phenomeno-
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logical electrostatic free-energy functional proposed in [3] except we drop the surface

charge term for simplicity. By formal calculations, the Euler–Lagrange equation of

the functional pI is

σ∆2φ´ ε∆φ`B1pφq “ f in Ω.

A function φ P H2
g pΩq is a weak solution to this equation if

ż

Ω

rσ∆φ∆η ` ε∇φ ¨∇η `B1pφqηs dx “
ż

Ω

fη dx @η P H2
0 pΩq. (4.3.1)

Theorem 4.3.1. There exists a unique φ̂ P H2
g pΩq such that

Îrφ̂s “ max
φPH2

g pΩq
Îrφs

with a finite maximum value. Moreover, φ̂ is the unique weak solution to the boundary-

value problem

σ∆2φ´ ε∆φ`B1pφq “ f in Ω, (4.3.2)

φ “ g and Bnφ “ Bng on BΩ. (4.3.3)

Proof. We consider equivalently the minimization of the functional ´Î. Note that

u ÞÑ }∆u}L2pΩq is a norm of H2
0 pΩq that is equivalent to the H2pΩq-norm. Therefore,

since B ě 0, there exist constants C1 ą 0 and C2 ě 0 such that

´Îrus ě C1}u}
2
H2pΩq ´ C2 @u P H2

g pΩq. (4.3.4)

Now, let α “ infφPH2
g pΩq
p´Îqrφs ą ´8. Clearly, α ď p´Îqrgs ă 8 and hence α is

finite. Let φj P H
2
g pΩq pj “ 1, 2, . . . q be such that p´Îqrφjs Ñ α. Then, it follows
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from (4.3.4) that tφju is bounded in H2pΩq. Since H2pΩq is a Hilbert space and can

be compactly embedded into H1pΩq and CpΩq, there exists a subsequence, not rela-

beled, of tφju that converges weakly in H2pΩq, strongly in H1pΩq, and uniformly on Ω

to some φ̂ P H2pΩq. Since H2
g pΩq is convex and closed in H2pΩq by the trace theorem

[22, 26], it is weakly closed in H2
g pΩq. Hence φ̂ P H2

g pΩq. Clearly, ´Î is strictly convex.

Moreover, it is continuous with respect to the strong convergence of H2pΩq. There-

fore, ´Î is weakly lower-semicontinuous, and hence lim infjÑ8p´Îqrφjs ě p´Îqrφ̂s.

This implies that p´Îqrφ̂s “ α and that φ̂ is a minimizer of ´Î over H2
g pΩq. The

uniqueness of such a minimizer is a consequence of the strict convexity of the func-

tional ´Î . Finally, noting that φ̂ P CpΩq, we obtain (4.3.1), with φ̂ replacing φ,

by routine calculations; hence φ̂ P H2
g pΩq is a weak solution to the boundary-value

problem (4.3.2) and (4.3.3). The uniqueness of such a weak solution again follows

from the strict convexity of the functional ´Î.

We define

H2
pdiv,Ωq “ tD P rH2

pΩqs3 : ∇ ¨D P H2
pΩqu.

Note that if D P H2pdiv,Ωq then

ż

Ω

∆p∇ ¨Dq η dx “ ´
ż

Ω

∇p∇ ¨Dq ¨∇η dx`
ż

BΩ

Bnp∇ ¨Dq η dS @η P H1
pΩq.

We define the Legendre transformed functional Ĵ : H2pdiv,Ωq Ñ R ∪ t`8u of the

functional Î : H2
g pΩq Ñ R ∪ t´8u by

ĴrDs “

ż

Ω

„

1

2ε
|D|2 `

σ

2ε
|∇ ¨D|2 `B˚

´

f ´∇ ¨D ` σ

ε
∆p∇ ¨Dq

¯



dx
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`

ż

BΩ

!”

D ¨ n´
σ

ε
Bnp∇ ¨Dq

ı

g `
σ

ε
p∇ ¨DqBng

)

dS.

The following theorem is parallel to Theorem 4.2.2:

Theorem 4.3.2. We have

Îrφs ď ĴrDs @φ P H2
g pΩq @D P H2

pdiv,Ωq. (4.3.5)

Moreover, if φ̂ P H2
g pΩq is the unique maximizer of Î : H2

g pΩq Ñ R ∪ t´8u and

D̂ “ ´ε∇φ̂, then D̂ P H2pdiv,Ωq and

Îrφ̂s “ max
φPH2

g pΩq
Îrφs “ min

DPH2pdiv,Ωq
ĴrDs “ ĴrD̂s. (4.3.6)

In particular, D̂ is the unique minimizer of Ĵ : H2pdiv,Ωq Ñ R∪ t`8u with a finite

minimum value.

Proof. Fix φ P H2
g pΩq and D P H2pdiv,Ωq. We have by the definition of Îrφs and

ĴrDs, integration by parts, and the fact that φ “ g and Bnφ “ Bng on BΩ that

Îrφs “

ż

Ω

”

´
σ

2
p∆φq2 ´

ε

2
|∇φ|2 ` fφ´Bpφq

ı

dx

ď

ż

Ω

”

´
σ

2
p∆φq2 ´

ε

2
|∇φ|2 ` fφ´Bpφq ` σ

2ε2
|∇ ¨D ` ε∆φ|2

`
1

2ε
|D ` ε∇φ|2

ı

dx

“

ż

Ω

„

σ

2ε2
|∇ ¨D|2 ` 1

2ε
|D|2 ` fφ´Bpφq `

σ

ε
p∇ ¨Dq∆φ`D ¨∇φ



dx

“

ż

Ω

„

σ

2ε2
|∇ ¨D|2 ` 1

2ε
|D|2 ` fφ´Bpφq ´

σ

ε
∇p∇ ¨Dq ¨∇φ´ p∇ ¨Dqφ



dx

`

ż

BΩ

”σ

ε
p∇ ¨DqBng ` pD ¨ nqg

ı

dS

“

ż

Ω

„

σ

2ε2
|∇ ¨D|2 ` 1

2ε
|D|2 ` φ

´

f ´∇ ¨D ` σ

ε
∆p∇ ¨Dq

¯

´Bpφq



dx
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`

ż

BΩ

”σ

ε
p∇ ¨DqBng ` pD ¨ nqg ´

σ

ε
Bnp∇ ¨Dqg

ı

dS

ď

ż

Ω

„

1

2ε
|D|2 `

σ

2ε2
|∇ ¨D|2 `B˚

´

f ´∇ ¨D ` σ

ε
∆p∇ ¨Dq

¯



dx

`

ż

BΩ

!”

D ¨ n´
σ

ε
Bnp∇ ¨Dq

ı

g `
σ

ε
p∇ ¨DqBng

)

dS.

“ ĴrDs. (4.3.7)

This proves (4.3.5).

Now let φ̂ P H2
g pΩq be the unique maximizer of Î over H2

g pΩq and let D̂ “

´ε∇φ̂. Since φ̂ satisfies (4.3.2) and all Ω, f , and g are sufficiently smooth, we have

φ̂ P H3pΩq and ∆φ̂ P H2pΩq. These imply that D̂ P H2pdiv,Ωq. Moreover, by (4.3.2)

again, we have

f ´∇ ¨ D̂ ` σ

ε
∆p∇ ¨ D̂q “ B1pφ̂q a.e. Ω. (4.3.8)

This and (4.1.12) imply that

B˚
´

f ´∇ ¨ D̂ ` σ

ε
∆p∇ ¨ D̂q

¯

“ φ̂
´

f ´∇ ¨ D̂ ` σ

ε
∆p∇ ¨ D̂

¯

´Bpφ̂q a.e. Ω.

(4.3.9)

Repeating (4.3.7) above with φ̂ and D̂ replacing φ and D, respectively, noting that

the two inequalities are in fact equalities in this case, we then obtain Îrφ̂s “ ĴrD̂s.

This implies (4.3.6). Hence D̂ minimizes Ĵ over H2pdiv,Ωq. Since the Legendre

transform takes convex functions to convex functions, the uniqueness of the minimizer

of Ĵ : H2pdiv,Ωq Ñ R ∪ t`8u follows from the strict convexity of Ĵ . Clearly, the

minimum value ĴrD̂s is finite.
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4.4 The case without ions

We define I0 : H1
g pΩq Ñ R by

I0rφs “

ż

Ω

´

´
ε

2
|∇φ|2 ` fφ

¯

dx @φ P H1
g pΩq. (4.4.1)

This functional is the same as Irφs with Bpφq replaced by the 0 function. Let us

denote by B0 the 0 function, i.e., B0psq “ 0 for all s P R. As in the previous case,

we define J̃0 : Hpdiv,Ωq Ñ R ∪ t`8u by

J̃0rDs “

ż

Ω

„

1

2ε
|D|2 `B˚0 pf ´∇ ¨Dq



dx`

ż

BΩ

gD ¨ n dS @D P Hpdiv,Ωq.

However, by the definition of Legendre transform, B˚0 pξq “ 8 if ξ ‰ 0 and B˚0 p0q “ 0.

Hence, J̃0rDs “ `8 for all D P Hpdiv,Ωq except those that satisfy ∇ ¨ D “ f a.e.

in Ω. We therefore consider the following constrained variational problem: Minimize

the functional J0 : Hpdivf ,Ωq Ñ R, defined by

J0rDs “

ż

Ω

1

2ε
|D|2dx`

ż

BΩ

gD ¨ n dS @D P Hpdivf ,Ωq,

where

Hpdivf ,Ωq “ tD P Hpdiv,Ωq : ∇ ¨D “ f a.e. Ωu.

Note that J0 differs from the functional defined in (4.1.13) by the boundary integral

term.

We recall that there exists a unique φ0 P H
1
g pΩq that maximizes I0 over H1

g pΩq,

and the maximizer φ0 is the unique weak solution to ∇ ¨ ε∇φ0 “ ´f in Ω and φ0 “ g

on BΩ; cf. [22, 26, 41].
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Theorem 4.4.1. We have

I0rφs ď J0rDs @φ P H1
g pΩq @D P Hpdivf ,Ωq. (4.4.2)

Moreover, if φ0 P H
1
g pΩq is the unique maximizer of I0 : H1

g pΩq Ñ R and D0 “

´ε∇φ0, then D0 P Hpdivf ,Ωq and

J0rD0s “ min
DPHpdivf ,Ωq

JrDs “ max
φPH1

g pΩq
I0rφs “ I0rφ0s. (4.4.3)

In particular, D0 is the unique minimizer of J0 : Hpdivf ,Ωq Ñ R and the minimum

value is finite.

Proof. Let φ P H1
g pΩq and D P Hpdivf ,Ωq. Similar to the proof of (4.2.11) but with

the fact that ∇ ¨D “ f a.e. in Ω, we have

I0rφs “

ż

Ω

´

´
ε

2
|∇φ|2 ` fφ

¯

dx

ď

ż

Ω

ˆ

´
ε

2
|∇φ|2 ` fφ` 1

2ε
|D ` ε∇φ|2

˙

dx

“

ż

Ω

ˆ

1

2ε
|D|2 ` fφ`D ¨∇φ

˙

dx

“

ż

Ω

1

2ε
|D|2dx`

ż

BΩ

gD ¨ n dS

“ J0rDs.

This proves (4.4.2). Clearly, D0 P Hpdivf ,Ωq, since φ0 is the weak solution to ∇ ¨

ε∇φ0 “ ´f . To prove (4.4.3), we notice that the above inequality is in fact an

equality if we replace φ by φ0 and D by D0, respectively. This equality and (4.4.2)

then lead to (4.4.3). Now (4.4.3) implies that D0 is a minimizer of J0 over Hpdivf ,Ωq.

It is the unique minimizer, since J0 is convex.
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We now consider a different approach as suggested in [48]. We approximate

the functional I0 by Iµ : H1
g pΩq Ñ R with µ ą 0, defined by

Iµrφs “

ż

Ω

´

´
ε

2
|∇φ|2 ` fφ´ µ

2
φ2
¯

dx @φ P H1
g pΩq. (4.4.4)

For any µ ą 0, let us define Bµ : RÑ R by Bµpsq “ µs2{2. It is easy to verify that the

Legendre transform of Bµ is given by B˚µpξq “ ξ2{2µ for any ξ P R. Correspondingly,

for each µ ą 0, we define the Legendre transformed functional Jµ : Hpdiv,Ωq Ñ R

by

JµrDs “

ż

Ω

ˆ

1

2ε
|D|2 `

1

2µ
|f ´∇ ¨D|2

˙

dx`

ż

BΩ

gD ¨ n dS @D P Hpdiv,Ωq.

Theorem 4.4.2. (1) For each µ ě 0, there exists a unique φµ P H
1
g pΩq that maxi-

mizes Iµ : H1
g pΩq Ñ R and that is also the unique weak solution to the boundary-

value problem
$

’

&

’

%

∇ ¨ ε∇φµ ´ µφµ “ ´f in Ω,

φµ “ g on BΩ.

(4.4.5)

(2) We have for any µ ą 0 that

Iµrφs ď JµrDs @φ P H1
g pΩq @D P Hpdiv,Ωq. (4.4.6)

Let φµ be the maximizer of Iµ : H1
g pΩq Ñ R and Dµ “ ´ε∇φµ pµ ě 0q. Then

we have for any µ ą 0 that

Iµrφµs “ max
φPH1

g pΩq
Iµrφs “ min

DPHpdiv,Ωq
JµrDs “ JµrDµs. (4.4.7)

In particular, Dµ is the unique minimizer of Jµ : Hpdiv,Ωq Ñ R.
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(3) There exist constants C ą 0 and µ0 ą 0, depending only on Ω, f , g, and εmin

and εmax, such that for all µ P p0, µ0s

}Dµ ´D0}L2pΩq ď εmax}φµ ´ φ0}H1pΩq ď Cµ, (4.4.8)

|JµrDµs ´ I0rφ0s| “ |Iµrφµs ´ I0rφ0s| ď Cµ. (4.4.9)

Proof. (1) This part is standard; cf. [22, 26].

(2) The proof of this part is the same as that of Theorem 4.2.2 with Bµ, φµ,

and Dµ replacing B, φB, and DB, respectively.

(3) By (1), φµ pµ ą 0q and φ0 satisfy

ż

Ω

pε∇φµ ¨∇η ` µφµηq dx “
ż

Ω

fη dx @η P H1
0 pΩq, (4.4.10)

ż

Ω

ε∇φ0 ¨∇η dx “
ż

Ω

fη dx @η P H1
0 pΩq, (4.4.11)

respectively. Letting η “ φµ´φ0 P H
1
0 pΩq and subtracting (4.4.11) from (4.4.10), we

get
ż

Ω

ε|∇φµ ´∇φ0|
2dx “ ´µ

ż

Ω

φµpφµ ´ φ0q dx.

It then follows from Poincaré’s inequality and the Cauchy–Schwarz inequality that

}φµ ´ φ0}
2
H1pΩq ď Cµ}φµ}L2pΩq}φµ ´ φ0}L2pΩq.

Here C denotes a generic constant that only depends on Ω, f , g, ε´, and ε`. Conse-

quently,

}φµ ´ φ0}H1pΩq ď Cµ}φµ}L2pΩq ď Cµ}φµ ´ φ0}L2pΩq ` Cµ}φ0}L2pΩq.
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Note φ0 only depends on Ω, f , g, ε´, and ε`. Hence, we obtain the second inequality

in (4.4.8) for all µ P p0, µ0s for some µ0 ą 0 sufficiently small and depending only on

Ω, f , g, ε´, and ε`. The first inequality in (4.4.8) follows from Dµ “ ´ε∇φµpµ ě 0q

and 0 ă εmin ď ε ď εmax in Ω.

It now follows from the definition of Iµ (cf. (4.4.4)) and I0 (cf. (4.4.1)), and

(4.4.8) that for all µ P p0, µ0s

|Iµrφµs ´ I0rφ0s| “

ˇ

ˇ

ˇ

ˇ

ż

Ω

”

´
ε

2

`

|∇φµ|2 ´ |∇φ0|
2
˘

` fpφµ ´ φ0q ´
µ

2
φ2
µ

ı

dx

ˇ

ˇ

ˇ

ˇ

ď
εmax

2
}∇φµ ´∇φ0}L2pΩq }∇φµ `∇φ0}L2pΩq

` }f}L2pΩq}φµ ´ φ0}L2pΩq `
µ

2
}φµ}

2
L2pΩq

ď Cµ
´

}∇φµ `∇φ0}L2pΩq ` 1` }φµ}
2
L2pΩq

¯

ď Cµ
`

}∇φµ ´∇φ0}L2pΩq ` 2}∇φ0}L2pΩq ` 1

`2}φµ ´ φ0}
2
L2pΩq ` 2}φ0}

2
L2pΩq

¯

ď Cµ
`

µ` 2µ2
` 1

˘

.

This proves (4.4.9).

4.5 Application to dielectric boundary implicit sol-

vation

We now consider the dielectric boundary problem in molecular solvation. Let

again Γ be a C2, closed surface such that Γ Ă Ω. Denote Ω´ the interior of Γ and

Ω` “ ΩzΩ´. So, Ω “ Ω´ ∪ Ω` ∪ Γ. Here, Ω´ and Ω` are the solute and solvent

regions, respectively, and Γ is the dielectric boundary. As before, we denote by n
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the unit normal at Γ pointing from Ω´ to Ω`. The piecewise constant, dielectric

coefficient εΓ : Ω Ñ R is defined again in (4.2.18) with ε´ and ε` two distinct

positive constants. Denote again by χ` the characteristic function of Ω`. We define

IΓ : H1
g pΩq ∪ t´8u by

IΓrφs “

ż

Ω

”

´
εΓ

2
|∇φ|2 ` fφ´ χ`Bpφq

ı

dx @φ P H1
g pΩq. (4.5.1)

Clearly, Irφs ă 8 for any φ P H1
g pΩq. We consider the maximization of the functional

IΓ : H1
g pΩq ∪ t´8u and the boundary-value problem of the PB equation

∇ ¨ εΓ∇φ´ χ`B1pφq “ ´f in Ω, (4.5.2)

φ “ g on BΩ. (4.5.3)

The following theorem collects some useful results proved in [41, 42, 44, 13]:

Theorem 4.5.1. (1) The functional IΓ : H1
g pΩq Ñ R ∪ t´8u has a unique maxi-

mizer φΓ P H
1
g pΩq. Moreover, the maximum value is finite, and

}φΓ}H1pΩq ` }φΓ}L8pΩq ď C

for some constant C ą 0 depending on ε´, ε`, f, g, B, and Ω but not on Γ.

(2) The maximizer φΓ is the unique solution to the boundary-value problem of the

PB equation (4.5.2) and (4.5.3).

(3) The boundary-value problem of the PB equation (4.5.2) and (4.5.3) is equivalent
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to the elliptic interface problem

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ε´∆φ “ ´f in Ω´,

ε`∆φ´B1pφq “ ´f in Ω`,

JφK “ JεΓ∇φ ¨ nK “ 0 on Γ,

φ “ g on BΩ.

(4.5.4)

In particular, φ|Ω´ P H
2pΩ´q and φ|Ω` P H

2pΩ`q. The spaces H2pΩ´q and

H2pΩ`q can be replaced by H3pΩ´q and H3pΩ`q, respectively, if f P H1pΩq.

We now denote

VΓ “ tD P Hpdiv,Ωq : ∇ ¨D “ f a.e. Ω´u

and define JΓ : VΓ Ñ R ∪ t`8u by

JΓrDs “

ż

Ω

„

1

2εΓ

|D|2 `B˚pf ´∇ ¨Dq


dx`

ż

BΩ

gD ¨ n dS.

Note that VΓ is a convex subset of Hpdiv,Ωq. Note also that JΓrDs is the same as

JrDs defined in (4.2.4) (with εΓ replacing ε). Here we use the subscript Γ to indicate

that JΓ is defined on VΓ. It is clear that JΓrDs ą ´8 for any D P VΓ.

Theorem 4.5.2. We have for any φ P H1
g pΩq and any D P VΓ that IΓrφs ď JΓrDs. If

we denote φΓ P H
1
g pΩq the unique maximizer of IΓ : H1

g pΩq Ñ R and DΓ “ ´εΓ∇φΓ,

then DΓ P VΓ, and DΓ is the unique minimizer of JΓ : VΓ Ñ R ∪ t`8u. Moreover,

JΓrDΓs “ min
DPVΓ

JΓrDs “ max
φPH1

g pΩq
IΓrφs “ IΓrφΓs. (4.5.5)

Proof. Let φ P H1
g pΩq and D P VΓ. Since ∇ ¨D “ f in Ω´ and B˚p0q “ 0, we have
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B˚pf ´∇ ¨Dq “ 0 a.e. Ω´. Therefore, by integration by parts, we obtain that

IΓrφs “

ż

Ω

”

´
εΓ

2
|∇φ|2 ` fφ´ χ`Bpφq

ı

dx

ď

ż

Ω

„

´
εΓ

2
|∇φ|2 ` fφ´ χ`Bpφq `

1

2εΓ

|D ` εΓ∇φ|2


dx

“

ż

Ω

„

1

2εΓ

|D|2 ` fφ´ χ`Bpφq `D ¨∇φ


dx

“

ż

Ω

„

1

2εΓ

|D|2 ` fφ´ χ`Bpφq ´ φ∇ ¨D


dx`

ż

BΩ

gD ¨ n dS

“

ż

Ω

„

1

2εΓ

|D|2 ` χ` pφpf ´∇ ¨Dq ´Bpφqq


dx`

ż

BΩ

gD ¨ n dS

ď

ż

Ω

„

1

2εΓ

|D|2 ` χ`B
˚
pf ´∇ ¨Dq



dx`

ż

BΩ

gD ¨ n dS

“

ż

Ω

„

1

2εΓ

|D|2 `B˚pf ´∇ ¨Dq


dx`

ż

BΩ

gD ¨ n dS

“ JΓrDs. (4.5.6)

Let φΓ P H
1
g pΩq be the unique maximizer of IΓ : H1

g pΩq Ñ R ∪ t´8u and

DΓ “ ´εΓ∇φΓ P rL
2pΩqs3. Since φΓ is the unique weak solution to the boundary-

value problem of PB equation (4.5.2) and (4.5.3), we have by (4.5.2) that ∇ ¨DΓ “

f ´ χ`B
1pφΓq P L2pΩq. Hence DΓ P Hpdiv,Ωq. By the first equation in (4.5.4),

∇ ¨DΓ “ f a.e. Ω´. Hence, DΓ P VΓ. By the second equation in (4.5.4), we have

B1pφΓq “ f ´∇ ¨DΓ in Ω`. (4.5.7)

Consequently,

B˚pf ´∇ ¨DΓq “ φΓpf ´∇ ¨DΓq ´BpφΓq in Ω`.

Therefore, we can repeat those steps in (4.5.6) with φΓ and DΓ replacing φ and D,

102



respectively, to get

IΓrφΓs “

ż

Ω

”

´
εΓ

2
|∇φΓ|

2
` fφΓ ´ χ`BpφΓq

ı

dx

“

ż

Ω

„

´
εΓ

2
|∇φΓ|

2
` fφΓ ´ χ`BpφΓq `

1

2εΓ

|DΓ ` εΓ∇φΓ|
2



dx

“

ż

Ω

„

1

2εΓ

|DΓ|
2
` fφΓ ´ χ`BpφΓq `DΓ ¨∇φΓ



dx

“

ż

Ω

„

1

2εΓ

|DΓ|
2
` fφΓ ´ χ`BpφΓq ´ φΓ∇ ¨DΓ



dx`

ż

BΩ

gDΓ ¨ n dS

“

ż

Ω

„

1

2εΓ

|DΓ|
2
` χ` pφΓpf ´∇ ¨DΓq ´BpφΓqq



dx`

ż

BΩ

gDΓ ¨ n dS

“

ż

Ω

„

1

2εΓ

|DΓ|
2
` χ`B

˚
pf ´∇ ¨DΓq



dx`

ż

BΩ

gDΓ ¨ n dS

“

ż

Ω

„

1

2εΓ

|DΓ|
2
`B˚pf ´∇ ¨DΓq



dx`

ż

BΩ

gDΓ ¨ n dS

“ JΓrDΓs.

This and (4.5.6), together with the fact that φΓ maximizes IΓ : H1
g pΩq Ñ R∪ t´8u,

imply (4.5.5). The inequality (4.5.6) and (4.5.5) imply that DΓ minimizes JΓ :

VΓ Ñ R ∪ t8u. This minimizer is unique since the functional JΓ : VΓ Ñ R ∪ t8u is

convex.

Denote

WΓ “ tD P VΓ : there exists φ P H1
pΩq such that D “ ´εΓ∇φ in Ωu.

Clearly, WΓ is a convex subset of VΓ. The following is a direct consequence of Theo-

rem 4.5.2:

Corollary 4.5.1. Let DΓ be the minimizer of the functional JΓ : VΓ Ñ R∪ t`8u as
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stated in Theorem 4.5.2. Then, DΓ P WΓ and

JΓrDΓs “ min
DPVΓ

JrDs “ min
DPWΓ

JrDs.

The following theorem provides a set of conditions, similar to those in (4.5.4),

that characterize the minimizer DΓ of the Legendre transformed functional JΓ : VΓ Ñ

R ∪ t`8u:

Theorem 4.5.3. Assume f P H1pΩq. Let D P rL2pΩqs3 be such that D|Ω´ P

rH2pΩ´qs
3 and D|Ω` P rH

2pΩ`qs
3, and D “ ´ε´∇φ´ in Ω´ for some φ´ P H

1pΩ´q.

Then D “ DΓ P VΓ pthe unique minimizer of JΓ : VΓ Ñ R ∪ t`8u as in Theo-

rem 4.5.2q if and only if D satisfies the following set of equations:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

∇ ¨D “ f in Ω´,

D

ε`
`∇

`

B˚1pf ´∇ ¨Dq
˘

“ 0 in Ω`,

JD ¨ nK “ 0 on Γ,

1

ε´
D|Ω´ ¨ τ “ ´Bτ

`

B˚1pf ´∇ ¨Dq|Ω`
˘

@ unit vector τ tangential to Γ,

B˚1pf ´∇ ¨Dq “ g on BΩ.

(4.5.8)

Several remarks are in order. First, if D “ DΓ, the unique minimizer of JΓ :

VΓ Ñ R∪ t`8u, then DΓ “ ´εΓ∇φΓ with φΓ the unique maximizer of IΓ : H1
g pΩq Ñ

R ∪ t´8u. Consequently, as shown in the proof of the theorem, the equations in

(4.5.8) are equivalent to those in (4.5.4). Second, the second interface condition (i.e.,

the fourth equation in (4.5.8)) is not the jump across Γ of a very same quantity.

This is because the B part is only for the solvent region Ω` as it models the ionic

contribution. Therefore, the Legendre transform is only applied to part of the entire

region Ω. Finally, we require D to be the gradient of a function in Ω´. Otherwise,
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the divergence-free vector field D` ε´∇φΓ in Ω´ may be nonzero in Ω´. (It will be

a curl of a vector field if Ω´ is simply connected.) Note the minimizer DΓ fulfills this

requirement. Moreover, in terms of numerical implementation, solving the equation

∇ ¨D “ f in Ω´ can be converted to solving a more well-defined equation ´ε´∆φ´ “

f in Ω´.

Proof of Theorem 4.5.3. Clearly, the minimizer DΓ P VΓ of the functional JΓ : VΓ Ñ

R ∪ t`8u satisfies DΓ P rL
2pΩqs3. Since DΓ “ ´εΓ∇φΓ with φΓ the maximizer

of IΓ : H1
g pΩq Ñ R ∪ t´8u, we have by Theorem 4.5.1 that DΓ|Ω˘ P rH

2pΩ˘qs
3,

and that clearly DΓ “ ´ε´∇φΓ in Ω´ with φΓ P H
1pΩq. We show that DΓ satisfies

(4.5.8). The first equation in (4.5.8) with DΓ replacing D follows from the definition

of VΓ and the fact that DΓ P VΓ. Note from (4.5.7) and (4.1.12) that

B˚1pf ´∇ ¨DΓq “ φΓ in Ω`. (4.5.9)

This and the relation DΓ “ ´εΓ∇φΓ imply the second equation in (4.5.8) with DΓ

replacing D. The third equation in (4.5.8) follows from the second interface condition

in the third equation of (4.5.4) with DΓ and φΓ replacing D and φ, respectively. With

D “ DΓ “ ´εΓ∇φΓ and (4.5.9), the fourth equation in (4.5.8) becomes BτφΓ|Ω´ “

BτφΓ|Ω` on Γ for any unit vector tangential to Γ. This is true, since φΓ|Ω´ “ φΓ|Ω`

on Γ by the continuity of φΓ; cf. the first interface condition in (4.5.4). Finally, by

(4.5.9) and the fact that BΩ is a subset of BΩ`, the last equation of (4.5.8) with

D “ DΓ is the same as the last equation in (4.5.4).

Assume now D P rL2pΩqs3 satisfies D|Ω´ P rH
2pΩ´qs

3 and D|Ω` P rH
2pΩ`qs

3,

and D “ ´ε´∇φ´ in Ω´ for some φ´ P H
1pΩ´q. Assume also that D satisfies (4.5.8).

Then by the third equation in (4.5.8), we have D P Hpdiv,Ωq; cf. the last part of

the proof of Theorem 4.2.3. Moreover, D P VΓ by the first equation in (4.5.8).
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It now suffices to show that D is a critical point of the strictly convex functional

JΓ : VΓ Ñ R ∪ t`8u, i.e.,

δJΓrDsrGs “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

JΓrD ` tGs “ 0 @G P Hpdiv,Ωq such that ∇ ¨G “ 0 in Ω´.

Fix G P Hpdiv,Ωq with ∇ ¨G “ 0 in Ω´. Suppose Ω´ “ ∪iΩpiq´ , where Ω
piq
´ are

countably many, disjoint, connected components of Ω´. Denote Γpiq “ BΩ
piq
´ . Hence,

we have the disjoint union Γ “ ∪iΓpiq. For each i, Γpiq is a connected smooth surface.

Therefore, by the fourth equation in (4.5.8) and the relation D ¨ τ “ ´ε´Bτφ´, we

have B˚1pf ´∇ ¨D|Ω`q ´ φ´|Ω´ “ ci on Γpiq for some constant ci P R. It now follows

from the second and fifth equations in (4.5.8), the divergence theorem, and the fact

that the unit normal n points from Ω´ to Ω` that

δJΓrDsrGs “

ż

Ω´

D ¨G

ε´
dx`

ż

Ω`

„

D ¨G

ε`
`B˚1pf ´∇ ¨Dqp´∇ ¨Gq



dx

`

ż

BΩ

gG ¨ n dS

“ ´

ż

Ω´

∇φ´ ¨Gdx`
ż

Ω`

„

D

ε`
`∇

`

B˚1pf ´∇ ¨Dq
˘



¨Gdx

`

ż

Γ

B˚1pf ´∇ ¨D|Ω`qpG ¨ nq dS

`

ż

BΩ

“

g ´B˚1pf ´∇ ¨Dq
‰

G ¨ n dS

“ ´
ÿ

i

ż

Ω
piq
´

∇pφ´ ` ciq ¨Gdx`
ż

Γ

B˚1pf ´∇ ¨D|Ω`qpG ¨ nq dS

“
ÿ

i

ż

Γpiq

“

B˚1pf ´∇ ¨D|Ω`q ´ pφ´|Ω´ ` ciq
‰

pG ¨ nq dS

“ 0.

This completes the proof.
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This chapter appeared in “Legendre Transforms of Electrostatic Free–Energy

Functionals,” by Benjamin Ciotti and Bo Li, published in the SIAM Journal on

Applied Mathematics in 2018. The dissertation author was the primary researcher

and author on this paper.
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Chapter 5

Conclusions and Future Work

In this dissertation we have demonstrated rigorously the validity of contrasting

discrete, continuum and hybrid models of electrostatics that are employed in physical

and biological sciences, particularly biophysical models of solvation.

In Section 2.1, we showed that any continuous charge density on a bounded

domain can be approximated by a discrete one for which the corresponding energy

forms also a good approximation, and key in the proof was the harmonicity of the

Coulomb potential. To the author’s knowledge this has never been done before, and

presents a novel approach to the problem.

In Section 2.2, we approached a reversal of the problem, in that we started

with a sequence of discrete charge densities, and by way of a multiscale construc-

tion showed that there necessarily exists a continuum density limit, and that the

corresponding sequence of energies also converges.

In [59], Serfaty proves a discrete to continuum result (Theorem 2.2), which

we briefly summarize: if Hn is a discrete energy functional defined on probability
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measures of the form

µ “
1

n

n
ÿ

i“1

δxi ,

with

Hnrµs “

ĳ

px,yqPR3ˆR3:x‰y

dµpxqdµpyq

|x´ y|
`

ż

V dµ, (5.0.1)

and E is the continuum energy functional defined on probability measures µ by

Erµs “
ĳ

R3ˆR3

dµpxqdµpyq

|x´ y|
`

ż

V dµ, (5.0.2)

then with some further details such as conditions on V , one has the convergence of

minimizers/minima of Hn to E . To rephrase, one has

min
x1,...,xnPR3

«

ÿ

i‰j

1

|xi ´ xj|
` n

ÿ

i

V pxiq

ff

“ n2 min E ` opn2
q. (5.0.3)

Next order asymptotics of these functionals are analyzed in [52] and [57], so a natural

question is to generalize the results of this dissertation on discrete signed measures

to next order asymptotics as well.

Moreover, one can define a Gibbs probability measure P on the set of discrete

probability measures whereby

Pn,βrµs “
1

Zn,β
expp´βHnrµsq (5.0.4)

assigns lower energy states a higher likelihood. It can be shown (see [29, 38]) that

under (5.0.4), almost surely every sequence of discrete probability measures will con-

verge vaguely to the minimizing (or equilibrium) measure. Contrast this with the

counterexample of Section 2.3, in which we demonstrated that without the assump-
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tion of Boltzmann statistics, limiting continuum densities need not be unique, even

in the simple case of a sequence of discrete probability measures concentrated on an

increasing nested sequence of sets of points.

In Chapter 3 we further generalized results of Chapter 2, with the goal of

application to a common minimization problem. There remains further work via the

concept of capacity to characterize more thoroughly those sets of zero capacity upon

which concentrations of charge lead to singularities, and this author believes that

there is room for generalization in the assumptions employed in this dissertation. In

particular with regard to the roughness of the domain of consideration, which was

limited in this dissertation to those with twice continuously differentiable bound-

ary but can likely be generalized to domains with merely Lipshitz or even Hölder

continuous boundary. The smoothness of the boundary was crucial in employing

the concept of balayage, which is intimately related to the solvability of the Dirich-

let problem and the barrier problem (see e.g. [37, 59]). In Theorem 3.3.1 it was

shown that discrete measure approximating an induced surface charge density can

be assumed to be supported in an arbitrarily small neighborhood of the boundary

surface, but the question remains open as to whether it is possible to confine them to

the surface. The problem can be further generalized in the allowance of unbounded

domains, although this introduces many difficulties. The loss of compactness can be

moderated by way of a sufficiently coercive confining external potential, as utilized

in [61, 60, 59, 62]. With a suitable construction, the problems in Chapter 2 and

Chapter 3 of this dissertation could be framed as a minimization problem, and the

benefits afforded by this approach may be the subject of future work. While the

problem in this dissertation considers measures supported in a bounded domain Ω,

one technique to generalize would be to allow for measures supported in R3 in the
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presence of an external potential that is `8 outside Ω.

The work in this dissertation has all been static, but a natural follow–up

question would be to allow the system to evolve in time, and show that the models

remain equivalent. See [28, 62, 61, 16] for solutions to this dynamical problem in

which discrete systems of identical particles are considered. To this author’s knowl-

edge, no work has been to to generalize these results to systems of signed charge

distributions, and this seems to be a natural extension of the problem.

In Chapter 4 we considered the Poison–Boltzmann equation and its associated

functionals. Maggs [48] proposed a Legendre transformed functional of electrostatic

displacements. This new functional is convex, and is therefore minimized at the

critical point. Here, we presented a rigorous proof of the equivalence of these two

functionals and apply this approach to the dielectric boundary model of molecular

solvation. and proved that they could be modified in such a way as to be convex by

way of the Legendre transformation, but there remain unanswered questions. The

derivation of the Poisson–Boltzmann statistics relies upon a lattice gas model [34, 69]

which has been remarkably effective in producing useful results but the validity of

which has yet to be rigorously demonstrated, particularly in a size–modified approach

considering non-uniform ionic sizes (see e.g., [40]).

Potentially, a Legendre transformed functional can be coupled with other

energy functional to minimize consistently the total energy. For example, in a con-

tinuum model of molecular solvation the electrostatic free energy with a dielectric

boundary is often coupled with the surface energy of such a boundary. In such a

situation, using the Legendre transformed electrostatic free-energy functional of di-

electric displacements can be advantageous, as each part of the total energy is to

be minimized. A practical issue in using a Legendre transformed electrostatic free-
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energy functional is to find the Legendre transform B˚ of B. Only for a special case

(1:1 salt), the explicit form of B˚ seems to be available [48]. In general, the func-

tion B˚ can be numerically determined and tabulated. A disadvantage of using a

Legendre transformed functional is that the corresponding Euler–Lagrange equation

is more complicated, particularly for the case of the functional with a higher-order

gradient term. Further work is therefore needed to demonstrate how the new forms

of electrostatic free-energy functionals are both theoretically and practically useful.

Our main contributions in this respect are two-fold. One is to provide some

mathematical insight into the Legendre transformed electrostatic free-energy func-

tional in various situations. The other is to apply this framework to the solvation

of charged molecules. This includes the construction of a new Legendre transformed

electrostatic free-energy functional for the molecular electrostatics with a dielectric

boundary, and the derivation of a set of interface conditions for the equilibrium elec-

trostatic displacement. Follow–up work includes development of numerical methods

for molecular solvation with our newly constructed Legendre transformed electro-

static free-energy functional.

The passage from discrete to continuum models is a rich and vibrant prob-

lem, touching upon such varied disciplines as statistical mechanics, fluid mechanics,

partial/ordinary differential equations, differential geometry, convex analysis, opti-

mization, complex analysis, quantum field theory, probability, number theory, com-

binatorics, topology, algebraic geometry, solid state physics, potential theory, and

harmonic analysis, with direct application to physics, chemistry, and biology. De-

spite considerable progress over the last century, many questions remain and are

increasingly relevant as technology and interest in the physical sciences evolves.
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Appendix A

Newton’s Theorem

Newton’s Theorem (occasionally referred to as the Shell Theorem) is a famous

result we utilize repeatedly in this dissertation, and which we here provide a proof

for. It states that the potential outside the support of a radially symmetric charge

distribution is the same as that were all the charge concentrated at the center.

Theorem A.1.1 (Newton’s Theorem). Let ϕ P L1pR3q depend only on |x| and have

compact support supppϕq. Then

ż

ϕpyq

|x´ y|
dy “

1

|x|

ż

ϕpyqdy

for all x P R3zsupppϕq.

Proof. Suppose for convenience that supppϕq Ă ty P R3 : |y| ă 1u “: B. Then the

potential due to ϕ at a point x outside B is

Φpxq “

ż

ϕpyq

|x´ y|
dy “

ż 1

0

ż

BB

ϕprωq

|x´ rω|
r2dSωdr.

Here dSω denotes surface measure on the unit sphere. With abuse of notation,
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ϕpyq “ ϕprq pulls through the surface integral:

Φpxq “

ż 1

0

ϕprq

ż

BB

1

|x´ rω|
dSωr

2dr.

By the mean value property,

ż

BB

1

|x´ rω|
dSω “

4π

|x|
,

so

Φpxq “
4π

|x|

ż 1

0

ϕprqr2dr “
Q

|x|
,

where net charge

Q “ 4π

ż 1

0

ϕprqr2dr “

ż 1

0

ż

BB

ϕprωqr2drdSω “

ż

B

ϕpyqdy “

ż

ϕpyqdy.

Theorem A.1.2. For radially symmetric ϕ P L1pR3q we have

ż

ϕpxq

|x´ y|
dx “

ż

minp
1

|x|
,

1

|y|
qϕpxqdx.

Proof.
ż

ϕpxq

|x´ y|
dx “

ż

|x|ă|y|

ϕpxqdx

|x´ y|
`

ż

|x|ą|y|

ϕpxqdx

|x´ y|
.

Here we disregard the Lebesgue measure zero set tx : |x| “ |y|u. By Newton’s

theorem, the first integral is
ż

|x|ă|y|

ϕpxqdx

|y|
.

The second integral is the potential at y due to a thick spherical shell enclosing (but
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not centered at) y. By symmetry, this potential is the same for all points z such that

|z| “ |y| i.e.,

hpzq :“

ż

|x|ą|y|

ϕpxqdx

|x´ z|

is constant for constant |z|. It is also harmonic in the region |z| ď |y| (see e.g.,

Theorem 1.4 in [37]), hence obeys the mean value property, which implies that its

value at z “ 0 should be the same as the average of its value on the sphere |z| “ |y|,

which by the preceding remark is equal to hpyq:

hp0q “ hpyq

i.e.,
ż

|x|ą|y|

ϕpxqdx

|x´ y|
“

ż

|x|ą|y|

ϕpxqdx

|x|
.

Thus we have

ż

ϕpxq

|x´ y|
dx “

ż

|x|ă|y|

ϕpxqdx

|x´ y|
`

ż

|x|ą|y|

ϕpxqdx

|x´ y|

“

ż

|x|ă|y|

ϕpxqdx

|y|
`

ż

|x|ą|y|

ϕpxqdx

|x|

“

ż

minp
1

|x|
,

1

|y|
qϕpxqdx.

Corollary A.1.1. If in addition we have
ş

ϕ “ 1, then

ż

ϕpxq

|x´ y|
dx ď

1

|y|
.

Theorem A.1.3. For ϕ P L1pR3q ∩ L8pR3q that is nonnegative, radially symmet-

ric, and unit mass, the mutual energy of compactly supported Radon measures µ, ν
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satisfies

(1) Erϕε ∗ µ, ϕε ∗ νs ď Erµ, νs for ε ą 0; and

(2) Erϕε ∗ µ, ϕε ∗ νs Ñ Erµ, νs as εÑ 0`.

Proof.

Erϕε ∗ µ, ϕε ∗ νs “
ĳ

dpϕε ∗ µqdpϕε ∗ νq
|x´ y|

“

ĳ

|x´ y|´1

„
ż

ϕεpx´ x
1
qdµpx1q

ż

ϕεpy ´ y
1
qdνpy1q



dxdy

All terms here are non-negative, so Tonelli allows us to write this as

ĳ
„
ĳ

ϕεpx´ x
1qϕεpy ´ y

1qdxdy

|x´ y|



dµpx1qdνpy1q

Twice applying Corollary A.1.1 gives

ĳ

ϕεpx´ x
1qϕεpy ´ y

1qdxdy

|x´ y|
“

ż

ϕεpy ´ y
1
q

„
ż

ϕεpx´ x
1qdx

|x´ y|



dy

ď

ż

ϕεpy ´ y
1
q

1

|x1 ´ y|
dy

ď
1

|x1 ´ y1|
. (A.1.1)

Denote Coulomb potential vpxq :“ 1
|x|

, and for α ą 0, define the cutoff

Coulomb potential

vαpxq :“

$

’

’

&

’

’

%

1
|x|

|x| ě α

1
α

|x| ă α.
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Then the improper integral

ĳ

R3ˆR3

ϕεpx´x
1
qϕεpy´y

1
qvpx´yqdxdy “ lim

αÑ0`

ĳ

R3ˆR3

ϕεpx´x
1
qϕεpy´y

1
qvαpx´yqdxdy.

Since vα is bounded and continuous, it is straightforward to show that

ĳ

R3ˆR3

ϕεpx´ x
1
qϕεpy ´ y

1
qvαpx´ yqdxdy Ñ vαpx

1
´ y1q

as ε Ñ 0`, by well known properties of approximate identities. Using (A.1.1) and

the definition of vα we get

ĳ

R3ˆR3

ϕεpx´ x
1
qϕεpy ´ y

1
qvαpx´ yqdxdy

ď

ĳ

R3ˆR3

ϕεpx´ x
1
qϕεpy ´ y

1
qvpx´ yqdxdy

ď vpx1 ´ y1q.

Letting ε tend to 0, we find that

vαpx
1
´ y1q “ lim

εÑ0`

ĳ

R3ˆR3

ϕεpx´ x
1
qϕεpy ´ y

1
qvαpx´ yqdxdy

ď lim inf
εÑ0`

ĳ

R3ˆR3

ϕεpx´ x
1
qϕεpy ´ y

1
qvpx´ yqdxdy

ď lim sup
εÑ0`

ĳ

R3ˆR3

ϕεpx´ x
1
qϕεpy ´ y

1
qvpx´ yqdxdy

ď vpx1 ´ y1q.
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If x1 ‰ y1, then for α ă |x1 ´ y1|, vαpx
1 ´ y1q “ vpx1 ´ y1q, so

1

|x1 ´ y1|
“ lim

εÑ0`

ĳ

R3ˆR3

ϕεpx´ x
1
qϕεpy ´ y

1
qvpx´ yqdxdy.

If x1 “ y1, then

ĳ

ϕεpx´ x
1qϕεpy ´ y

1qdxdy

|x´ y|
“

ĳ

ϕεpx´ x
1qϕεpy ´ x

1qdxdy

|x´ y|
“
c

ε
,

where

c “

ż

pϕ ∗ ϕqpxqdx
|x|

is a positive constant depending only on ϕ. In either case, we have

ĳ

ϕεpx´ x
1qϕεpy ´ y

1qdxdy

|x´ y|

converging to 1{|x1 ´ y1| from below. Combining this with Fatou’s Lemma we have

(even if the integrals are infinite) that

Erµ, νs ď lim inf
εÑ0`

ĳ
„
ĳ

ϕεpx´ x
1qϕεpy ´ y

1qdxdy

|x´ y|



dµpx1qdνpy1q ď Erµ, νs,

so equality holds.

Corollary A.1.2. With µ and ϕ as above, we have Erϕε ˚ µs increases to Erµs as

εÑ 0`.
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Appendix B

Fourier Transforms of Radon

Measures

In this section of the appendix we derive various properties of Fourier trans-

forms of Radon measures that were used in Chapter 2 and Chapter 3. These notes

follow [51], beginning with the definition on L1.

Definition B.1.1. The Fourier transform of a function u in L1pR3q is

pupkq :“

ż

R3

e´ik¨xupxqdx,

and similarly define

qupkq :“

ż

R3

eik¨xupxqdx.

Properties of the Fourier transform on L1:

‚ For u, v P L1,
ş

puv “
ş

upv

‚ For u, v P L1, zu ∗ v “ pupv

‚ For u P L1, pū “ q̄u
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‚ For u P L1, qū “ p̄u

‚ For u P L1, {peiy¨xuqpkq “ pupk ´ yq (translation)

‚ For u P L1, {pup¨ ´ yqq “ eik¨ypupkq (translation)

‚ For u P L1, zupr¨qpkq “ r´3
pup r

k
q (dilation)

Less trivially is the Fourier inversion formula on L1:

Theorem B.1.1. For u, pu P L1, qpu “ p2πq3u, after possibly redefining u on a set of

measure 0.

The proof of Theorem B.1.1 relies on the computation of the transform of a

Guassian. One finds that if

gpxq :“ p2πq´3{2e´|x|
2{2,

then

pgpkq “ e´|k|
2{2.

It follows from the dilation property of Fourier transforms that for

gεpxq :“ ε´3gpε´1xq,

one has

pgεpkq “ e´ε
2|k|2{2. (B.1.1)

Equation (B.1.1) will be exploited repeatedly, and exemplifies the behavior of the

Fourier transform on a specific well–behaved subspace, the Schwartz space SpR3q of

infinitely differentiable functions vanishing at infinity faster than any negative integer
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power of |x|. A tempered distribution is a continuous linear functional on S. Writing

D :“ C8c pR3q for the space of test functions, we have D Ă S, hence S˚ Ă D˚, i.e.,

every tempered distribution is a distribution. If α is a multi-index and u P S, we get

the following properties of the Fourier transform on the Schwarz space:

‚ zpBαuq “ pikqαpu

‚ Bαppuq “ {pp´ixqαuq

‚
ş

uv “ 1
p2πq3

ş

puqv (Parseval)

‚ }u}L2 “ p2πq´3{2}pu}L2 (Plancherel)

Next we address Fourier transforms of measures and distributions:

Definition B.1.2. The Fourier transform of a finite Radon measure µ on R3 is

pµpkq :“

ż

R3

e´ikxdµpxq,

and similarly we define

qµpkq :“

ż

R3

eik¨xdµpxq.

Note that pµ is bounded and continuous. This definition easily extends to the

difference of two such measures, signed measures in particular.

For a measure µ that is absolutely continuous with respect to Lebesgue mea-

sure, dµ “ fdx, we identify f and µ.

For finite Radon measures µ, ν, and f, g P L1 we have the following properties

of Fourier transforms of Radon measures:

‚
ş

pfdµ “
ş

pµf
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‚
ş

pνdµ “
ş

pµdν

‚ zf ∗ µ “ pfpµ

‚ xfqµ “ p2πq´3
pf ∗ µ

‚ zµ ∗ ν “ pµpν

while if f P S, we have

‚
ş

f̄dµ “ 1
p2πq3

ş

p̄fpµ

Again, these results extend to signed Radon measures.

Via the L2-isometry between the Schwartz class which is dense in L2, we can

extend the Fourier transform to an isometry on L2, and the translation, dilation,

Parseval and Plancherel formulas still hold.

In order to apply the theory of Fourier transforms to energy integrals involving

Coulomb potentials, we must extend the Fourier transform to distributions:

Definition B.1.3. For T P S˚, we define

pT pϕq “ T ppϕq

for ϕ P S.

Observe that if f P L1
locpR3q, then

Tf pϕq “

ż

R3

fpxqϕpxqdx

defines a (tempered) distribution. Then the Fourier transform of Tf is given by

pTf pϕq “

ż

R3

fpxqpϕpxqdx
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for ϕ P S.

We now apply the theory of Fourier transforms to energy integrals, starting

with the transform of the Coulomb potential vpxq “ 1{|x|. v is in L1
locpR3q, so can

be regarded as a (tempered) distribution.

Theorem B.2.2. For Coulomb potential vpxq “ 1{|x|, we have pvpkq “ 4π{|k|2 in

the sense of (tempered) distributions.

Proof. We need to show that

ż

R3

1

|x|
pϕpxqdx “

ż

R3

4π

|x|2
ϕpxqdx

for all ϕ P S. Observe both of these integrals are then well-defined. By the dominated

convergence theorem,

ż

R3

1

|x|
pϕpxqdx “ lim

aÑ0`

ż

R3

e´a|x|
1

|x|
pϕpxqdx.

But
ż

R3

e´a|x|
1

|x|
pϕpxqdx “

ż

R3

xwapxqϕpxqdx,

where screened Coulomb potential

wapxq :“
e´a|x|

|x|
for a ą 0.

Then

xwapkq “

ż

R3

e´ik¨x
e´a|x|

|x|
dx

“

ż 8

0

ż 2π

0

ż π

0

ˆ

e´i|k|r cos θe´ar
1

r

˙

r2 sin θdθdφdr
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“2π

ż 8

0

ż π

0

e´i|k|r cos θe´arr sin θdθdr (substituting t “ ´ cos θ)

“2π

ż 8

0

ż 1

´1

ei|k|rte´arrdtdr

“2π

ż 8

0

1

i|k|

`

ei|k|r ´ e´i|k|r
˘

e´ardr

“
2π

i|k|

ż 8

0

`

epi|k|´aqr ´ ep´i|k|´aqr
˘

dr

“
2π

i|k|

„

1

a´ i|k|
´

1

a` i|k|



“
4π

a2 ` |k|2
.

Observe that xwapxq increases to 4π{|x|2 as aÑ 0`. Then

ż

R3

1

|x|
pϕpxqdx “ lim

aÑ0`

ż

R3

e´a|x|
1

|x|
pϕpxqdx “ lim

aÑ0

ż

R3

xwapxqϕpxqdx.

Applying again the dominated convergence theorem, this equals

ż

4π

|x|2
ϕpxqdx.

Before proceeding, we introduce the notation f̃pxq :“ fp´xq for functions f ,

and similarly for measures and distributions we set µ̃pAq “ µp´Aq “ µptx : ´x P

Auq, T̃ pϕq “ T pϕ̃q.

Corollary B.2.1. If wpxq “ 4π{|x|2, then

pwpxq “
p2πq3

|x|

as (tempered) distributions.
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Proof. By the previous result, we have

ż

1

|x|
pϕpxqdx “

ż

4π

|x|2
ϕpxqdx

for all ϕ P S. Since the Fourier transform is a bijection on S, we can replace ϕ by pϕ

to get

ż

4π

|x|2
pϕpxqdx “

ż

1

|x|
p

pϕpxqdx “

ż

1

|x|
p

qϕ̃pxqdx “ p2πq3
ż

1

|x|
ϕ̃pxqdx

“ p2πq3
ż

1

|x|
ϕpxqdx

Theorem B.2.3. If µ is a compactly supported Radon measure, then

Erµs “ p2πq´3

ż

R3

4π

|k|2
|pµ|2dk. (B.2.2)

Proof. First note that for measures µ of finite total variation, pµ is bounded and

continuous. If gpxq “ p2πq´3{2e´|x|
2{2 is the standard normalized Gaussian on R3 and

gεpxq “ ε´3gpx{εq, then

µε :“ gε ∗ µ

is in L1 ∩ L8 since
ż

gε ∗ µ “
ż

gε ¨

ż

dµ

and

}gε ∗ µ}8 ď }gε}8
ż

dµ.

Thus µε is in L2, and thus µε has a well defined Fourier transform pµε P L2. It is not
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hard to show that µε regarded as a function is in S, since µ has compact support.

Introducing the notation xu,wy for the linear pairing
ş

uw, we have

Erµεs “ xv ∗ µε, µεy “ xv, µ̃ε ∗ µεy

(with v the Coulomb potential). The product of Schwartz functions is again a

Schwartz function, hence by inverting we get that so is the convolution (see e.g.,

Proposition 8.11 in [25]). Then by Corollary B.2.1

xv, µ̃ε ∗ µεy “ p2πq´3
xpv, pµ̃ε ∗ µεqqy “ p2πq´3

xpv, qµ̃ε qµεy

“ p2πq´3
xpv, pµε qµεy “ p2πq´3

xpv, pµε pµεy “ p2πq´3
xpv, | pµε|2y.

Since gε P S, zµ ∗ gε “ pµpgε. Hence

Ergε ∗ µs “ p2πq´3

ż

4π

|k|2
|pgε|

2
|pµ|2dk. (B.2.3)

But pgεpkq “ e´ε
2|k|2{2 increases monotonically to 1 as ε Œ 0, hence by mono-

tone convergence the right side of (B.2.3) tends to the right side of (B.2.2). Note

that this even holds if the limit is infinite. On the other hand, the left side of (B.2.3)

converges to Erµs as εÑ 0` by Corollaary A.1.2.

Corollary B.2.2. If µ and ν are compactly supported Radon measures with finite

energy, then

Erµ, νs “ p2πq´3

ż

4π

|k|2
qµpνdk.
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Proof. By Theorem A.1.3, Erµ, νs “ limεÑ0` Ergε ∗ µ, gε ∗ νs. But

Ergε ∗ µ, gε ∗ νs “ p2πq´3

ż

4π

|k|2
|pgε|

2
qµ pν dk.

The integrand here is bounded in absolute value by

4π

|k|2
|pµ||pν| ď

4π

|k|2
p
1

2
|pµ|2 `

1

2
|pν|2q,

both terms of which are integrable by (B.2.2) and the assumption that Erµs and

Erνs are finite. Then the dominated convergence theorem gives

Erµ, νs “ lim
εÑ0`

Ergε ∗ µ, gε ∗ νs “ p2πq´3

ż

4π

|k|2
qµ pν dk.

Corollary B.2.3. If µ and ν are compactly supported Radon measures with finite

energy, then

Erµ, νs ď
a

ErµsErνs.

Proof. By Corollary B.2.2 and the Cauchy–Schwartz inequality,

Erµ, νs “p2πq´3

ż

4π

|k|2
qµpνdk

ď

d

p2πq´3

ż

4π

|k|2
|pµ|2dk ¨ p2πq´3

ż

4π

|k|2
|pν|2dk

“
a

ErµsErνs.

Corollary B.2.4. If µ and ν are compactly supported Radon measures with finite
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energy, then

Erµ´ νs “ p2πq´3

ż

4π

|k|2
|pµ´ pν|2dk.

Proof.

Erµ´ νs “ Erµs ´ 2Erµ, νs ` Erµs,

with all three terms being finite by assumption and Corollary B.2.3. But from

Theorem B.2.2 and Corollary A.1.3,

Erµs “ p2πq´3

ż

4π

|k|2
|pµ|2dk,

Erµ, νs “ p2πq´3

ż

4π

|k|2
qµpν dk,

and

Erνs “ p2πq´3

ż

4π

|k|2
|pν|2dk,

so

Erµ´ νs “ p2πq´3

ż

4π

|k|2
“

|pµ|2 ´ 2qµpν ` |pν|2
‰

dk “ p2πq´3

ż

4π

|k|2
|pµ´ pν|2dk.

Corollary B.2.5. If µ is a signed Radon measure of compact support with Er|µ|s ă

8, then

Erµs “ p2πq´3

ż

4π

|k|2
|pµ|2dk. (B.2.4)

Proof. Writing µ “ µ` ´ µ´ for the Jordan decomposition of µ, substitute µ` and

µ´ in place of µ and ν in Corollary B.2.4.

Finally, we present as a theorem that equation (B.2.4) holds even when the
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energy of signed measure µ is infinite, as long as it is defined. Per the discussion

at the beginning of Section 3.2, the energy of a signed measure µ is defined (and

possibly infinite) exactly when Erµ`, µ´s ă 8, with µ “ µ` ´ µ´ being the Jordan

decomposition of µ.

Theorem B.2.4. If µ is a signed measure of compact support such that Erµs is

defined, then

Erµs “ p2πq´3

ż

4π

|k|2
|pµ|2dk. (B.2.5)

Proof. As discussed, Erµs is defined exactly when Erµ`, µ´s is finite, with µ “

µ` ´ µ´ being the Jordan decomposition of µ. In this case,

Erµs “ Erµ`s ´ 2Erµ`, µ´s ` Erµ´s

can be regarded as true and possibly infinite, for the expression on the right has no

infinities of opposite sign. Utilizing again the Gaussian gε (see (B.1.1)), we have by

Theorem A.1.3 that

lim
εÑ0`

Ergε ˚ µ
`
s “ Erµ`s

and

lim
εÑ0`

Ergε ˚ µ
´
s “ Erµ´s,

even if the limits are infinite, and furthermore that

lim
εÑ0`

Ergε ˚ µ
`, gε ˚ µ

´
s “ Erµ`, µ´s.
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It follows that

Erµs “ lim
εÑ0`

Ergε ˚ µs,

even if infinite. But

Ergε ˚ µs “ p2πq
´3

ż

4π

|k|2
|pgε|

2
|pµ|2dk

by Theorem B.2.2. Since pgε increases to 1 as ε Œ 0, (see (B.1.1)), the monotone

convergence theorem gives that

lim
εÑ0`

p2πq´3

ż

4π

|k|2
|pgε|

2
|pµ|2dk “ p2πq´3

ż

4π

|k|2
|pµ|2dk,

even if infinite. But then

Erµs “ lim
εÑ0`

Ergε ˚ µs “ lim
εÑ0`

p2πq´3

ż

4π

|k|2
|pgε|

2
|pµ|2dk “ p2πq´3

ż

4π

|k|2
|pµ|2dk.
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