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Abstract

Ocular anterior segment dysgenesis (ASD) refers to a collection of developmental disorders 

affecting the anterior structures of the eye. Although a number of genes have been implicated in 

the etiology of ASD, the underlying pathogenetic mechanisms remain unclear. Mutations in genes 

encoding collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome, 

a multi-system disorder that often includes ocular manifestations such as ASD and glaucoma. 

COL4A1 and COL4A2 are abundant basement membrane proteins that provide structural support 

to tissues and modulate signaling through interactions with other extracellular matrix proteins, 

growth factors, and cell surface receptors. In this study, we used a combination of histological, 
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molecular, genetic and pharmacological approaches to demonstrate that altered TGFβ signaling 

contributes to ASD in mouse models of Gould syndrome. We show that TGFβ signaling was 

elevated in anterior segments from Col4a1 mutant mice and that genetically reducing TGFβ 
signaling partially prevented ASD. Notably, we identified distinct roles for TGFβ1 and TGFβ2 

in ocular defects observed in Col4a1 mutant mice. Importantly, we show that pharmacologically 

promoting type IV collagen secretion or reducing TGFβ signaling ameliorated ocular pathology in 

Col4a1 mutant mice. Overall, our findings demonstrate that altered TGFβ signaling contributes to 

COL4A1-related ocular dysgenesis and implicate this pathway as a potential therapeutic target for 

the treatment of Gould syndrome.

Keywords

Gould syndrome; anterior segment dysgenesis; basement membrane; COL4A1; COL4A2; type IV 
collagen; TGFβ

Introduction

Ocular anterior segment dysgenesis (ASD) refers to a spectrum of clinically and genetically 

heterogeneous diseases affecting the development of ocular tissues anterior to the vitreous 

surface: cornea, iris, lens, ciliary body, and drainage structures responsible for aqueous 

humor efflux. ASD clinical manifestations include corneal opacity, posterior embryotoxon 

(anteriorly displaced Schwalbe’s line), iris hypoplasia, abnormal pupil formation, 

iridocorneal adhesions, corneolenticular adhesions, and cataract. Notably, individuals with 

ASD are at increased risk of experiencing visual impairment and developing glaucoma 

as structural ocular malformations can obstruct the light path and impair aqueous humor 

outflow and intraocular pressure homeostasis [1–4]. ASD etiology is complex and multiple 

genes and developmental processes have been implicated. Development of anterior ocular 

structures relies on a series of highly orchestrated interactions between the surface ectoderm, 

neural ectoderm, and the periocular mesenchyme. Mutations in several genes have been 

reported in ASD, many of which encode transcription factors. Among them, FOXC1 and 

PITX2 are the most studied ASD genes and mutations in FOXC1 and PITX2 account for 

approximately 40% of all ASD cases [5]. FOXC1 and PITX2 are both expressed in the 

periocular mesenchyme, which gives rise to the majority of anterior segment tissues, and 

play important roles in mesenchymal cell specification and differentiation [2]. However, 

the mechanisms by which FOXC1 and PITX2 regulate these processes remain elusive. The 

widespread adoption of next-generation sequencing has broadened the genetic landscape for 

ASD as an increasing number of genes are being discovered; however, the genetic causes 

in many ASD cases remain to be identified and the underlying pathogenic mechanisms are 

poorly understood [6].

Recent genetic studies have highlighted the importance of the extracellular matrix (ECM) 

in ocular development and ASD [6, 7]. Notably, mutations in genes encoding the 

major basement membrane (BM) components collagen type IV alpha 1 (COL4A1) and 

alpha 2 (COL4A2) cause Gould syndrome, which is characterized by a broad range of 

cerebrovascular, ocular, muscular, renal, or cardiac manifestations [8–10]. Gould syndrome 
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has a highly variable clinical presentation in which disease severity and penetrance 

differ even among individuals within the same family [11–13]. Most of the mutations 

identified so far are dominant missense mutations; however, recessive, nonsense, splicing, 

and frameshift mutations, intragenic insertions and deletions, 3’-UTR mutations affecting 

miRNA binding sites, as well as gene duplications, have also been described [9, 14–

23]. Approximately 200 mutations have been reported in the literature and ASD-related 

manifestations occur in approximately 30% of the cases [9, 24]. Despite increasing 

awareness of Gould syndrome, the pathogenic processes involved remain to be defined. We 

and others have demonstrated previously that Col4a1 and Col4a2 mutant mice recapitulate 

the pathophysiological hallmarks of Gould syndrome, including ocular dysgenesis and 

glaucoma-relevant phenotypes, and represent valuable preclinical models to study the 

underlying disease mechanisms [25–33]. Notably, using an allelic series of Col4a1 and 

Col4a2 mutations and studying the effect of different genetic backgrounds in mice, we 

have shown that allelic heterogeneity, genetic context, and tissue-specific mechanistic 

heterogeneity all contribute to the variable expressivity of Col4a1 and Col4a2 mutations 

[10, 30, 32–35]. A better understanding of the molecular mechanisms by which Col4a1 
mutations lead to ASD will provide insights into the pathogenic processes underlying 

ASD and glaucoma and could have important implications for patient stratification and 

the development of personalized medicine for individuals with Gould syndrome.

COL4A1 and COL4A2 proteins represent fundamental BM components of every organ in 

the body, including the eye [36]. COL4A1 and COL4A2 contain three major domains: a 

short amino-terminal 7S domain, a long collagenous triple-helical domain, and a globular 

non-collagenous domain at the carboxy-terminus. One COL4A2 and two COL4A1 proteins 

assemble into heterotrimers [α1α1α2(IV)] in the endoplasmic reticulum (ER) before 

being secreted into the extracellular space where they form an intricate network and 

interact with other ECM components, growth factors, and cell surface receptors [37, 38]. 

Most Col4a1 and Col4a2 mutations impair protein folding during heterotrimer formation, 

resulting in intracellular accumulation and impaired secretion of collagen α1α1α2(IV) 

heterotrimers, both of which could constitute primary pathogenic events [25, 33]. For 

instance, accumulation of misfolded proteins in the ER can trigger chronic ER stress and 

cytotoxicity which could act as a cell-autonomous or ‘proximal’ insult [39]. In contrast, the 

concomitant extracellular deficiency, and in some cases the presence of mutant proteins in 

the BM, can impair BM integrity and/or functions of the collagen α1α1α2(IV) network 

and represent distinct classes of extracellular or ‘distal’ insults. However, the various 

biological functions of type IV collagens are not fully characterized and the downstream 

consequences of having reduced collagen α1α1α2(IV) levels or the presence of mutant 

collagen α1α1α2(IV) in the BM are largely unknown. This represents an important 

knowledge gap and a major obstacle to developing targeted mechanism-based interventions 

for individuals with Gould syndrome.

Independent lines of evidence suggest that type IV collagens can regulate transforming 

growth factor beta (TGFβ) superfamily signaling pathways, raising the possibility that 

perturbations of TGFβ superfamily signaling could represent a distal insult in the context 

of Col4a1 and Col4a2 mutations. Notably, type IV collagens can directly bind to 

TGFβ superfamily ligands such as TGFβ1 and BMP4 in vitro [40–42] and Drosophila 
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orthologs of type IV collagen control BMP signaling during embryogenesis, organogenesis, 

and maintenance of germline stem cells [41, 43]. Furthermore, members of the TGFβ 
superfamily play important roles in anterior segment development by promoting survival, 

migration, and differentiation of the periocular mesenchyme during ocular development 

[44–46]. Mice that lack TGFβ2 [45] or the TGFβ type 2 receptor (TGFBR2) in neural 

crest-derived periocular mesenchyme [44] have thin corneal stroma, and fail to form corneal 

endothelium, trabecular meshwork, and anterior chambers. While mice deficient for TGFβ1 

or TGFβ3 have no apparent ocular phenotypes [47–49], overexpression of TGFβ1 in the lens 

lead to abnormally thick corneal stroma [46]. Similarly, mice deficient for other members of 

the TGFβ superfamily [50], their antagonists [51, 52], and downstream signaling mediators 

[53, 54] develop severe ASD and mutations in BMP4, BMP7 and CHRDL1 are reported 

in individuals with ASD [55, 56]. Based on these findings, we hypothesized that collagen 

α1α1α2(IV) heterotrimers act as extracellular regulators of TGFβ and/or BMP signaling 

in ocular development and disease. In this study, we used a combination of histological, 

molecular, genetic, and pharmacological approaches to show that elevated canonical TGFβ 
signaling contributes to ASD in Col4a1 mutant mice. In addition, we show that genetically 

or pharmacologically reducing TGFβ signaling can partially prevent ocular defects in 

Col4a1 mutant mice, suggesting that the TGFβ signaling pathway represents a potential 

therapeutic target for Gould syndrome.

Results

Col4a1+/Δex41 mice have developmental corneal defects

We previously described a Col4a1 splice site mutation that results in skipping of exon 

41 (Col4a1Δex41) [25, 30, 31] and showed that Col4a1+/Δex41 mice have severe ASD 

characterized by open pupil, pigment dispersion, iridocorneal dysgenesis, enlarged anterior 

chamber, tortuous iris vasculature, and cataracts [30]. Here, we show that Col4a1+/Δex41 

mice also have developmental corneal defects resulting in abnormally thin corneas (Fig. 

1). At embryonic day 18.5 (E18.5), the corneal epithelium and endothelium are both one 

cell layer thick and the majority of the corneal thickness is contributed by the corneal 

stroma [52]. Histological analyses revealed that corneal stromal thickness was significantly 

reduced in Col4a1+/Δex41 compared to Col4a1+/+ mice (Fig. 1A). By 1.6–2.0 months of age, 

while the majority of Col4a1+/Δex41 corneas are transparent, optical coherence tomography 

(OCT) imaging showed that the central corneal thickness (CCT) remained significantly 

reduced in Col4a1+/Δex41 mice compared to Col4a1+/+ littermates (Fig. 1B). Consistent with 

our previous findings [30], OCT also revealed a significant increase in anterior chamber 

depth which contributed to a small but significant increase in ocular axial length (Fig. 

S1). Reduced lens diameter and retinal thickness, and increased vitreous chamber depth 

were also observed in Col4a1+/Δex41 eyes (Fig. S1). Together, these findings show that 

Col4a1+/Δex41 mice have reduced corneal thickness from development through adulthood 

and demonstrate the presence of defects in other ocular structures.

The corneal stroma is mainly composed of ECM secreted by sparsely distributed keratocytes 

[51]. To investigate the cause of reduced CCT, we first evaluated the number of keratocytes 

in Col4a1+/Δex41 mice. To this end, we used DAPI staining to quantify the total number 
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of corneal stromal nuclei in E18.5 mice (Fig. 1C). No difference in the total number of 

nuclei was observed between Col4a1+/+ and Col4a1+/Δex41 mice; however, the density was 

higher in the thinner corneas from Col4a1+/Δex41 mice. Next, we performed qPCR analyses 

on anterior segments from postnatal day 7 (P7) mice to test whether alterations in the 

expression of ECM components contributed to changes in corneal thickness (Fig. 1D). We 

found that expression levels for major constituents of mammalian corneal stroma (type I and 

type V collagens) [51] and matrix molecules implicated in corneal thinning [57–59] were 

similar between Col4a1+/+ and Col4a1+/Δex41 mice. However, the expression of Col15a1 
and Col18a1, which encode BM-associated collagens, was reduced in Col4a1+/Δex41 anterior 

segments. A thin BM called Descemet’s membrane is deposited by the corneal endothelium 

and separates the endothelium from the stroma. Because Col15a1 and Col18a1 mRNA levels 

were reduced, we evaluated the expression of corneal endothelial markers and found that 

Cdh2 and Gja1 mRNA levels were also reduced in anterior segments from P7 Col4a1+/Δex41 

mice, while Ocln mRNA levels were increased (Fig. 1E). Consistent with this observation, 

CDH2 protein levels were also decreased in anterior segments from P7 Col4a1+/Δex41 mice 

(Fig. 1F). Moreover, immunolabeling revealed a reduction in CDH2 levels in the corneal 

endothelium in two out of four P7 corneal whole mounts tested (Fig. 1G).

We next performed transmission electron microscopy (TEM) to investigate ultrastructural 

corneal morphology in neonatal and adult mice. TEM analyses revealed regular stromal 

organization of collagen fibrils in lamellar arrangements in Col4a1+/+ and Col4a1+/Δex41 

mice at both ages examined (Fig. S2). However, in the posterior stroma of P0 mice 

we observed regions of higher cellular density and densely packed collagen fibrils in 

Col4a1+/Δex41 compared to Col4a1+/+ mice (Fig. S2A). At 2.5 months of age, the collagen 

lamellae appeared denser and thinner in two out of three corneas of Col4a1+/Δex41 mice 

(Fig. S2B). Further, granular material was observed posterior to the corneal epithelium in 

2 out of 3 Col4a1+/Δex41 corneas, one of which also had disrupted epithelial basement 

membrane (Fig. S2C). In addition, while the morphology of the corneal endothelium was 

unremarkable, Descemet’s membrane was thinner in Col4a1+/Δex41 mice at 2.5 months 

of age (Fig. S2C, D). Upon higher magnification, we observed normal cylindrical-shaped 

fibril structures in Col4a1+/+ and Col4a1+/Δex41 stroma at both ages examined (Fig. 

S3A, B). However, the distribution of fibril diameters showed a significant shift toward 

smaller fibrils in Col4a1+/Δex41 mice and the mean fibril density tended to be higher 

in Col4a1+/Δex41 corneas (Fig. S3C–F), suggesting that collagen fibrils are smaller and 

more densely packed. Taken together, our results indicate that Col4a1+/Δex41 mice show 

aberrant corneal development characterized by reduced corneal thickness, thinner and denser 

collagen lamella composed of smaller and more densely packed fibrils, altered expression of 

corneal endothelial markers, and thinner Descemet’s membranes.

Evaluating the potential contribution of FOXC1 and PITX2 transcriptional networks to ASD 
in Col4a1 mutant mice

The majority of ocular anterior segment structures, including the corneal stroma and 

endothelium, are derived from periocular mesenchyme that migrates between the corneal 

epithelium and lens during development [60]. FOXC1 and PITX2 are transcription factors 

that are critical for periocular mesenchyme differentiation and are the two most frequently 
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mutated genes in human ASD [2]. FOXC1 and PITX2 functionally interact during ocular 

development and are both sensitive to gene dosage with either decreased or increased 

expression having pathological consequences [2]. To test whether ASD in Col4a1 mutant 

mice mechanistically converges on the FOXC1 and/or PITX2 transcriptional networks, 

we assessed the expression levels of Foxc1, Pitx2, their downstream targets, and binding 

partners in eyes from Col4a1+/Δex41 and Col4a1+/+ littermates at E14.5, when the expression 

of these genes is the highest (Fig. S4). qPCR analyses revealed a small but significant 

reduction in Foxc1 expression and a trend toward decreased expression for the FOXC1 

target gene Tjp1 in Col4a1+/Δex41 eyes (Fig. S4A). Although Pitx2 expression was 

unchanged, the mRNA levels for the PITX2 target gene Slc13a3 [61] and the genes 

coding two PITX2 interacting proteins, EFEMP2 [62] and PAWR [63], were slightly 

but significantly reduced in Col4a1+/Δex41 eyes (Fig. S4B). To further explore potential 

contributions of the FOXC1 and PITX2 regulatory networks we attempted to validate 

these observations using a second Col4a1 mutant mouse strain (Col4a1+/G1344D). This 

strain carries a missense mutation that may represent a more accurate model of mutations 

reported in humans but has milder ASD than Col4a1+/Δex41 mice [33]. In contrast to what 

we observed in Col4a1+/Δex41 mice, none of those genes showed altered expression in 

Col4a1+/G1344D eyes (Fig. S4C, D). Though intriguing, our results do not settle whether 

abnormal regulation of the FOXC1 and PITX2 transcriptional networks contribute to ASD in 

Col4a1 mutant mice.

TGFβ signaling is elevated in anterior segments of Col4a1+/Δex41 mice

Mutations in genes encoding various members of the TGFβ superfamily and their signaling 

mediators cause ASD in animal models and humans, and type IV collagens directly 

bind to TGFβ superfamily ligands in vitro and regulate their signaling in Drosophila [40–

46]. Based on these observations, we hypothesized that aberrant TGFβ signaling could 

contribute to ASD in Col4a1 mutant mice. To test this possibility, we first evaluated TGFβ 
signaling activity during anterior segment development in Col4a1+/Δex41 mice (Fig. 2). 

qPCR analyses revealed that the expression of the TGFβ target genes Ccn2, Cdkn1a and 

Serpine1 was significantly increased in anterior segments from P7 Col4a1+/Δex41 mice 

compared to their Col4a1+/+ littermates (Fig. 2A). Canonical TGFβ signaling is mediated 

by SMAD2/3 proteins, which are activated by phosphorylation before translocating to 

the nucleus to regulate gene expression (Fig. S5). To assess canonical TGFβ signaling in 
vivo, we crossed Col4a1+/Δex41 mice to the SBE-Luc TGFβ signaling reporter line which 

expresses luciferase in response to SMAD2/3-mediated TGFβ signaling [64]. Luciferase 

activity was significantly increased in P7 anterior segments from Col4a1+/Δex41;SBE-Luc 
mice compared to control Col4a1+/+;SBE-Luc littermates (Fig. 2B, C). Consistent with this 

finding, Western blot analyses revealed a significant increase in the ratio of phosphorylated 

to total SMAD2 (pSMAD2:SMAD2) in P7 Col4a1+/Δex41 anterior segments (Fig. 2D). 

We repeated this experiment using different antibodies to detect SMAD2, SMAD3, and 

pSMAD2/3. While there appeared to be a reduction in total SMAD levels, the Western 

blot analyses confirmed increased ratios of phosphorylated to total SMAD2 and SMAD3 

in P7 Col4a1+/Δex41 anterior segments (Fig. 2E). Furthermore, immunolabeling revealed 

increased pSMAD2 nuclear labeling intensity in corneal stromal cells from P7 Col4a1+/Δex41 

mice compared to Col4a1+/+ littermates (Fig. 2F). Taken together, these data indicate that 
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canonical TGFβ signaling is elevated in developing anterior segments from Col4a1+/Δex41 

mice.

In addition to TGFβs, several BMP family members play critical roles in the development of 

the ocular anterior segment [3]. To test if BMP signaling was also altered in Col4a1+/Δex41 

mice, we performed qPCR analyses for BMP target genes in P7 anterior segments but did 

not detect changes in their expression levels (Fig. S6A). Similarly, Western blot analyses 

did not detect differences in the ratio of phopho-SMAD1/5/9 to total SMAD1/5/9 between 

P7 anterior segments from Col4a1+/Δex41 and Col4a1+/+ littermates (Fig. S6B). In addition 

to the well-established role of canonical SMAD-mediated signaling [65], non-canonical 

TGFβ/BMP signaling pathways have also been implicated in ocular development and 

disease [66–69]. To determine whether non-canonical TGFβ signaling may play a role in 

ASD in Col4a1 mutants, we used Western blot analyses to test the signaling activity of the 

p38 MAPK and ERK pathways and detected no difference in the ratios of phosphorylated to 

total p38 and ERK1/2 kinases in anterior segments from Col4a1+/+ and Col4a1+/Δex41 mice 

(Fig. S6C, D). These findings suggest that perturbations in BMP and MAP kinase signaling 

are unlikely to contribute to anterior segment defects in Col4a1+/Δex41 mice and support 

the notion that abnormal canonical TGFβ signaling could play a predominant role in ASD 

pathogenesis.

The Col4a1G1344D missense mutation also causes developmental corneal defects and 
elevated TGFβ signaling

To investigate further the role of altered TGFβ signaling in COL4A1-related ocular 

pathology, we extended our analyses to the Col4a1G1344D mutation (Fig. 3 and Fig. S7–8). 

OCT revealed that Col4a1+/G1344D mice have ocular defects including reduced CCT (Fig. 

3A), enlarged anterior chamber, smaller lens, enlarged vitreous chamber depth, and thinner 

retina (Fig. S7). Furthermore, molecular analyses confirmed aberrant corneal endothelial 

marker expression in P7 Col4a1+/G1344D anterior segments (Fig. 3B, C). To determine if 

canonical TGFβ signaling was also elevated in the Col4a1+/G1344D mice, we evaluated 

pSMAD2/3 levels in P7 anterior segments using Western blot analysis. In contrast to our 

observations in Col4a1+/Δex41 mice, the pSMAD2/3:SMAD2/3 ratio was not significantly 

increased in anterior segments from Col4a1+/G1344D mice compared to Col4a1+/+ littermates 

(Fig. 3D). To re-evaluate our hypothesis, we used an independent, unbiased bulk RNA-seq 

approach to perform a comparative transcriptome analysis between anterior segments from 

Col4a1+/+ and Col4a1+/G1344D eyes at P0. We chose this age because Col4a1 mutant 

eyes appear grossly normal, with the exception of thin CCT and anterior hyphema [30], 

and sufficient amounts of RNA can be isolated by pooling four anterior segments per 

sample. Functional enrichment analysis of differentially expressed genes (DEGs) between 

Col4a1+/+ and Col4a1+/G1344D anterior segments revealed multiple significantly enriched 

biological processes and molecular pathways including angiogenesis and cell adhesion 

(Fig. S8). Importantly, the WikiPathway “TGFbeta signaling pathway” (WP113) and the 

gene ontology (GO) term “Response to transforming growth factor beta (GO0071059)” are 

among the top enriched pathways or biological process terms identified using two different 

types of functional enrichment analysis methods and were predicted to be upregulated 

by both tools (Fig. 3E, F), supporting that TGFβ signaling is enhanced in eyes from 
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Col4a1+/G1344D mice. To validate the RNA-seq results, we selected 13 DEGs that were 

previously reported to be induced by TGFβ activation from the enriched “Response to 

transforming growth factor beta (GO0071059)” category and tested them in independent 

biological replicates. Seven out of 13 genes tested by qPCR showed significantly elevated 

expression, and 2 additional genes showed trends towards significance (Fig. 3G), supporting 

the existence of elevated TGFβ signaling in P0 anterior segments from Col4a1+/G1344D 

mice. Collectively, our data demonstrate that TGFβ signaling is elevated in developing eyes 

from Col4a1 mutant mice and raises the possibility that it might contribute to ASD.

Differential contributions of TGFβ1 and TGFβ2 to ocular defects observed in 
Col4a1+/G1344D mice

To test whether elevated TGFβ signaling contributes to ASD in Col4a1 mutant mice we 

sought to experimentally reduce TGFβ signaling in vivo by genetically inactivating TGFβ 
ligands (Fig. 4, Fig. S5, and S9–10). Expression of all three TGFβ ligand isoforms has 

been reported in the developing eye and their receptors are ubiquitously expressed in the 

periocular mesenchyme [44, 70, 71]. TGFβ2 is the predominant ligand isoform in the 

developing mouse eye and inactivation of TGFβ2, but not TGFβ1 or TGFβ3, lead to 

ocular malformations [44, 47–49]. In contrast, TGFβ1 shows little expression in ocular 

structures [44, 70]; however, it is abundantly present in the circulation [72] and the 

vasculature [70, 73]. TGFβ3 is also expressed in the lens, and has overlapping functions 

with TGFβ2 during lens and corneal development [71]. Since both the lens and the 

vasculature play a role in COL4A1-related ocular dysgenesis [74], we sought to evaluate 

the relative contributions of TGFβ1 and TGFβ2 by generating Col4a1+/G1344D mice that 

are heterozygous for a null allele of either Tgfb1 [75] or Tgfb2 [76]. To determine the 

phenotypic consequence of genetically reducing TGFβ signaling in Col4a1+/G1344D mice, 

we first performed slit-lamp examination at 1.3 –1.5 months of age (Fig. S9). We have 

demonstrated previously that the nature and severity of ASD manifestations are highly 

variable even in mice with the same Col4a1 mutation [10, 31]. Consistent with these 

findings, we observed ocular phenotypes of variable severity in Col4a1+/G1344D mice and 

we show that genetically reducing Tgfb1 or Tgfb2 levels decreased the frequency of 

severe ASD in Col4a1+/G1344D mice. Out of 24 Col4a1+/G1344D;Tgfb1+/+ eyes examined, 

moderate and severe ASD was observed in 6 (25%) and 18 (75%) eyes, respectively (Fig. 

S9B). In contrast, 3 (15%), 8 (40%) and 9 (45%) out of 20 Col4a1+/G1344D;Tgfb1+/− 

eyes examined showed mild, moderate, and severe ASD, respectively. Similarly, 1 (4%), 

7 (29%), and 16 (67%) out of 24 Col4a1+/G1344D;Tgfb2+/+ eyes examined exhibited mild, 

moderate, and severe ASD, respectively, compared to 3 (13%), 9 (37%), and 12 (50%) out 

of 24 Col4a1+/G1344D;Tgfb2+/− eyes examined (Fig. S9C). We next tested whether genetic 

suppression of TGFβ signaling could rescue ASD in Col4a1 mutant mice using quantifiable 

outcome measures including CCT (Fig. 4 and Fig. S10). OCT biometric analyses revealed 

that genetically reducing Tgfb1 expression did not alter CCT in Col4a1+/G1344D mutants 

(Fig. 4A). However, the lens diameter was increased, while anterior chamber depth, vitreous 

chamber depth and axial length were reduced in Col4a1+/G1344D;Tgfb1+/− mice compared 

to their Col4a1+/G1344D;Tgfb1 +/+ littermates (Fig. S10A, C). In contrast, while reducing 

Tgfb2 gene dosage decreased CCT in Col4a1+/+ mice, it lead to a small but significant 

increase in CCT in Col4a1+/G1344D;Tgfb2+/− mice compared to Col4a1+/G1344D;Tgfb2 +/+ 
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littermates (Fig. 4B) but did not alter the size of other ocular structures (Fig. S10B, 

D), and qPCR analyses confirmed that expression of TGFβ target genes was reduced 

in P7 anterior segments from Col4a1+/G1344D;Tgfb2+/− mice compared to those from 

Col4a1+/G1344D;Tgfb2 +/+ littermates (Fig. 4C). Taken together, these genetic rescue 

experiments suggest differential roles for TGFβ1 and TGFβ2 in ocular development and 

disease and support the hypothesis that increased TGFβ signaling contributes to ASD in 

Col4a1 mutant mice.

TGFβ neutralizing antibody has a protective effect on corneal thickness in Col4a1+/G1344D 

mice

Next, we tested the therapeutic potential of pharmacologically modulating TGFβ signaling 

to prevent ASD in Col4a1 mutant mice. To this end, we first used the pan-TGFβ neutralizing 

antibody, 1D11, to reduce TGFβ signaling in Col4a1+/G1344D mice (Fig. 5 and Fig. S5). 

Since murine ocular development starts around E8.0 [77], mice were treated with 1D11 

or control IgG1 from E8.5 to E16.5, and we measured corneal stromal thickness on 

histological sections at E18.5 (Fig. 5A, B). Consistent with findings from the genetic rescue 

experiments, 1D11 administration also significantly increased corneal stromal thickness 

in Col4a1+/G1344D mice compared to their IgG1-treated control counterparts (Fig. 5B). 

To assess if TGFβ signaling activity was successfully reduced by 1D11 administration, 

we performed qPCR analyses for a subset of TGFβ target genes. All of the target 

genes examined showed reduced expression in Col4a1+/G1344D mice treated with 1D11 

compared to those that received IgG1; however, only the reduction in Ccl2 expression 

reached statistical significance (Fig. 5C, D). Taken together, these results indicate that 1D11 

administration has a protective effect in Col4a1+/G1344D mice, further supporting a causal 

role for altered TGFβ signaling in ASD pathogenesis in Col4a1 mutant mice.

4PBA and losartan have protective effects on corneal stromal thickness in Col4a1 mutant 
mice

The beneficial effects of 1D11 treatment on corneal thickness are an encouraging proof 

of concept for the therapeutic potential of pharmacologically reducing TGFβ signaling 

in Col4a1 mutant mice; however, it has limited translational potential. To explore other 

possible therapeutic avenues, we next tested two different treatment strategies using 4-

phenylbutyrate (4PBA) and losartan, two FDA-approved drugs that can be provided in 

drinking water, to target the proximal (protein folding and secretion) and distal (TGFβ 
signaling) insults in Col4a1 mutant mice, respectively (Fig. 6 and Fig. S5). 4PBA is a small 

molecule with chemical chaperone properties that promotes secretion of mutant collagen 

α1α1α2(IV) and can theoretically simultaneously target intracellular and extracellular 

pathogenic events, irrespective of the nature of the extracellular insults. In contrast, losartan 

is an antagonist of angiotensin II type 1 receptor, which has been shown to indirectly 

activate SMAD signaling [78]. In theory, this may address the distal insult of increased 

SMAD activation without addressing collagen α1α1α2(IV) secretion defects. We have 

previously demonstrated that 50 mM 4PBA treatment ameliorates cerebrovascular and 

neuromuscular pathologies in Col4a1+/Δex41 mice [34, 35, 79]. In contrast, in a pilot study 

we found that providing pregnant dams with 50 mM 4PBA did not reduce ASD severity 

in Col4a1+/Δex41 mice (data not shown). Higher concentrations of 4PBA (100 mM) had 
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beneficial effects on skeletal myopathy and intracerebral hemorrhages when provided after 

weaning, but led to dystocia and adverse maternal nurturing behavior leading to perinatal 

death when providing earlier [79]. We reasoned that the eye may be less accessible to 4PBA, 

and thus we provided pregnant dams with 100 mM 4PBA from E4.5 to E18.5 when corneal 

stromal thickness was assessed, or from E4.5 to E19.5 when pups were surgically delivered 

and used for molecular analyses. We found that while 100 mM 4PBA treatment caused a 

small but significant decrease in corneal stromal thickness in Col4a1+/+ mice, it significantly 

increased corneal stromal thickness in Col4a1+/G1344D mice (Fig. 6A, B). Moreover, 

4PBA administration normalized TGFβ target gene expression in anterior segments from 

E19.5 Col4a1+/G1344D embryos (Fig. 6C, D). Despite the significant contraindications for 

embryonic use, these findings demonstrate that 4PBA can ameliorate ocular dysgenesis in 

Col4a1 mutant mice and support a model where elevated TGFβ signaling represent a distal 

insult acting downstream of extracellular α1α1α2(IV) deficiency.

Next, we used losartan as a mechanism-based intervention to target increased SMAD 

activation as a distal insult contributing to ASD in Col4a1 mutant mice. To this end, 

pregnant dams were provided with losartan in drinking water from E4.5 to E18.5 when 

corneal stromal thickness was assessed (Fig. 6A, B). Losartan treatment resulted in a 

significant improvement in corneal stromal thickness in Col4a1+/G1344D mice compared 

to their untreated counterparts. Interestingly, we did not detect an effect of losartan on 

the expression of TGFβ target genes in anterior segments from P0 Col4a1+/G1344D mice 

(Fig. 6C, D) suggesting that the protective effect of losartan may not be mediated by 

modulation of the selected genes. Notably, however, despite having beneficial effect on 

CCT in Col4a1 mutant mice, gestational administration of losartan was also associated with 

increased postnatal death (Table S1) precluding it from being a viable treatment approach.

Since 4PBA and losartan treatments both improve CCT in Col4a1+/G1344D mice, we 

applied these approaches to two additional Col4a1 mutant strains – Col4a1Δex41 and 

Col4a1G394V (Fig. S11). As previously described, Col4a1G1344D represents a glycine 

missense mutation whereas Col4a1Δex41 has a deletion of 17 amino acids resulting 

from a skipped exon. The Col4a1G394V mutation is also a glycine missense mutation; 

however, the ASD and cerebrovascular phenotypes are less severe in Col4a1+/G394V mice 

compared to Col4a1+/G1344D and Col4a1+/Δex41 mice [33, 34]. Similar to what we observed 

in Col4a1+/G1344D and Col4a1+/Δex41 mice, histological analysis revealed a significant 

reduction in corneal stromal thickness in untreated Col4a1+/G394V mice compared to their 

respective Col4a1+/+ littermates (Fig. S11). Importantly, while 4PBA treatment lead to 

slightly thinner corneas in wildtype littermates, it improved corneal stromal thickness in 

Col4a1+/Δex41 and Col4a1+/G394V eyes compared to their untreated counterparts; however, 

statistical significance was only observed for Col4a1+/G394V eyes. While losartan had no 

effect on corneal thickness in Col4a1+/+ and Col4a1+/Δex41 mice, CCT was comparable 

between losartan-treated Col4a1+/G394V mice and their Col4a1+/+ littermates, and a trend 

toward increased corneal thickness was observed in losartan-treated Col4a1+/G394V mice 

compared to their untreated counterparts (Fig. S11). Collectively, these findings indicate that 

4PBA and losartan both have protective effects on CCT in Col4a1 mutant mice and highlight 

the importance of the TGFβ signaling pathway in Col4a1-related pathology. However, 

dystocia and perinatal lethality associated with embryonic administration of 100 mM 4PBA 
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or losartan underscore that these treatment strategies are not viable therapeutic options and 

approaches to specifically target the TGFβ signaling pathway in the eye without causing 

systemic detrimental effects will need to be explored.

Discussion

Type IV collagens are fundamental BM components and mutations in COL4A1 and 

COL4A2 cause Gould syndrome, a genetic disorder that typically presents as a constellation 

of variable manifestations affecting multiple organ systems [9, 80]. After cerebrovascular 

defects, ocular abnormalities, including ASD and glaucoma, are the most frequently 

reported clinical findings in individuals with Gould syndrome [14, 24]. Notably, pathogenic 

Col4a1 and Col4a2 mutations were first identified using forward mutagenesis screens in 

mice with variable forms of ocular pathology, and Col4a1 and Col4a2 mutant mice represent 

valuable preclinical models to study Gould syndrome [25–33]. Despite the increasing 

recognition of Gould syndrome as a clinical entity and the advances made in understanding 

this multisystemic disorder in recent years, the molecular mechanisms by which COL4A1 
and COL4A2 mutations lead to disease remain elusive. In this study, we show that TGFβ 
signaling is elevated in developing ocular anterior segments from Col4a1 mutant mice 

and demonstrate that genetically or pharmacologically reducing TGFβ signaling partially 

rescued ocular dysgenesis. These data suggest that elevated TGFβ signaling represents an 

important pathogenic mechanism contributing to ASD and possibly other aspects of Gould 

syndrome. These findings have broad implications for understanding the basic biological 

functions of type IV collagens and for the development of therapeutic interventions for 

clinical manifestations associated with Gould syndrome.

Here we show that, in addition to previously reported ocular features [30–33], reduced 

corneal thickness is an early morphological defect in Col4a1 mutant mice that persists 

through adulthood. Notably, in addition to ASD [81], corneal thinning is associated with 

other ocular diseases such as keratoconus and primary open angle glaucoma, as well as with 

connective tissue disorders including Marfan [82] and Ehlers-Danlos syndromes [83]. The 

corneal stroma is the major determinant of corneal thickness and is mainly composed of 

sparsely dispersed corneal keratocytes and orthogonally arranged layers of collagen fibrils. 

Thus, we predicted that thin corneas might be due to decreased numbers of keratocytes or 

reduced production of the stromal ECM but we did not detect differences in the number 

of corneal stromal cells or expression levels of genes coding for major ECM proteins. 

Ultrastructural analyses revealed reduced diameter and increased density of collagen fibrils 

in the corneal stroma of Col4a1 mutant mice as well as thinner and denser collagen 

lamellae. Consistent with a fundamental role of collagen α1α1α2(IV) in BM integrity, 

we also observed focal disruption of the epithelial BM and thinner Descemet’s membrane. 

The mechanism(s) underlying corneal morphological changes in Col4a1 mutant mice are 

unclear, and future studies using more detailed biochemical and biomechanical approaches 

may help to determine the pathogenic processes involved. Irrespective of the underlying 

mechanism(s), corneal thickness is a quantitative trait that represent a useful tool to assess 

ASD severity.
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Development of the anterior segment is a complex process and involves tissues of four 

different embryonic origins. Surface ectoderm gives rise to the lens and corneal epithelium, 

while the neural ectoderm give rise to the retina and pigmented epithelia of the iris and 

ciliary body. The periocular mesenchyme, which consists of neural crest and mesodermal 

cells, gives rise to the majority of the anterior segment structures including corneal stroma 

and endothelium, iris and ciliary stroma, and ocular drainage structures [77, 84]. Corneal 

stromal and endothelial abnormalities observed in Col4a1 mutant mice suggest potential 

defects in periocular mesenchyme differentiation. FOXC1 and PITX2 are transcription 

factors that are critical for periocular mesenchyme development, and FOXC1 and PITX2 
mutations are among the most common causes of ASD and developmental glaucoma 

[2]. Interestingly, animal studies show that FOXC1 is also required for cerebral vascular 

development, and some patients with FOXC1 and PITX2 mutations have cerebral small 

vessel disease, which is a central manifestation of Gould syndrome [85–87], suggesting that 

COL4A1, FOXC1, and PITX2 may participate in overlapping pathways. In Col4a1+/Δex41 

mice that have severe ASD, we observed a modest reduction in the expression of genes 

associated with the FOXC1 and PITX2 regulatory networks, but this observation was not 

validated in a second milder strain. However, because of the tissue scarcity and cellular 

heterogeneity of embryonic and early postnatal anterior segment structures these molecular 

approaches are technically challenging. It is possible that subtle changes in these pathways 

are indeed involved but that we lack the sensitivity or temporal resolution to detect 

them, thus, the potential roles of FOXC1 and/or PITX2 transcriptional networks in ASD 

pathogenesis in Col4a1 mutant mice remains equivocal.

We previously demonstrated that 50 mM 4PBA promoted α1α1α2(IV) heterotrimer 

secretion and reduced intracerebral hemorrhage and myopathy severity in Col4a1 mutant 

mice [34, 35, 79]. Here we show that 4PBA treatment at a higher dose (100 mM), 

could also partially rescue corneal thickness in Col4a1 mutant mice. Interestingly, another 

study reported that 4PBA administration ameliorated ICH but not ocular pathology in a 

distinct Col4a1 mutant mouse model [88]. The discrepancy between these studies might 

be explained by differences in phenotyping approaches, the specific mutant allele involved, 

or treatment dosages (1g/kg/day in the previous report). In support of this notion, in a 

pilot experiment we found that 50 mM 4PBA was unable to reduce corneal thickness in 

Col4a1 mutant mice suggesting the eye may be less accessible or have a higher threshold for 

efficacy. However, provision of 100 mM 4PBA during embryogenesis caused dystocia and 

affected maternal nurturing behavior [79], precluding evaluation of postnatal mice.

TGFβ superfamily members are pleiotropic cytokines involved in the regulation of multiple 

cellular processes, including those involved in anterior segment formation. Because loss 

of function mutations in BMP4 and BMP7 cause ASD in humans [55, 56] and type 

IV collagens can regulate the signaling strength and range of Dpp (a BMP ortholog) in 

Drosophila [41, 43], we predicted that Col4a1 mice might have altered BMP signaling. 

However, we found no evidence to support this hypothesis. In contrast, using a combination 

of independent hypothesis-driven and unbiased approaches, we show that canonical TGFβ 
signaling is elevated in Col4a1 mutant mice. The strongest evidence supporting a causative 

role for elevated TGFβ signaling in ASD in Col4a1 mutant mice is the observation that 

corneal thickness can be partially rescued by reducing gene dosage of Tgfb2 – the major 
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ligand isoform in developing eyes. Interestingly, our data also indicate that TGFβ1 and 

TGFβ2 have distinct roles in ocular development. Genetically reducing Tgfb1 levels rescued 

anterior chamber depth, lens diameter and vitreous chamber depth, but not CCT, whereas 

genetically reducing Tgfb2 rescued CCT but not the other ocular parameters. These data 

suggest that, while TGFβ2 may be the major ligand involved in corneal development, 

TGFβ1 is involved in other aspects of ocular development and that Col4a1 mutations 

influence both TGFβ1- and TGFβ2-mediated processes. Of note, Tgfb2 heterozygosity 

only partially rescued CCT suggesting that other mechanisms might also be involved. 

Collectively, these findings support that elevated TGFβ signaling is a key pathogenic 

consequence of reduced collagen α1α1α2(IV) secretion in Col4a1 mutant mice.

To test TGFβ signaling as a potential therapeutic target, we treated Col4a1 mutant mice with 

the 1D11 pan-TGFβ neutralizing antibody which blocks activity of all three TGFβ ligands. 

In support of our hypothesis, embryonic 1D11 administration rescued corneal thickness in 

Col4a1+/G1344D mice and reduced expression levels of several canonical TGFβ target genes. 

However, in contrast to 4PBA provision that significantly reduced the expression of 5 out 

of the 6 TGFβ target genes tested, only one target gene reached statistical significance 

following 1D11 administration. A possible explanation is that promoting α1α1α2(IV) 

secretion via continuous 4PBA treatment has effects that are both persistent and diverse 

if the heterotrimers polymerize into a stable network and execute multiple extracellular 

functions. In contrast, 1D11 may have achieved suppression of target genes during a critical 

developmental period allowing a partial phenotypic rescue but cannot sustain suppression 

at the ages tested because of the intermittent 1D11 injection and short circulatory half-life 

(34hrs) [89]. Alternatively, we have not exhaustively addressed the roles of canonical and 

non-canonical signaling or related pathways and the target genes that we selected may not be 

the key effectors for anterior segment development. Although we did not find evidence 

for the involvement of the ERK and p38 MAP kinase pathways, other non-canonical 

pathways remain to be tested and detailed studies using more sensitive analyses at multiple 

developmental stages might be required.

Elevated TGFβ signaling has been implicated in the pathogenesis of Marfan syndrome, 

a prototypical ECM disorder caused by Fibrillin 1 (Fbn1) [90–93]. The role for TGFβ 
signaling in Marfan syndrome is complex and although clinical trials using losartan to 

indirectly suppresses excess TGFβ signaling have given inconsistent results [94, 95], 

losartan improved clinically-relevant pathology in mouse models of Marfan syndrome 

[90, 96–100]. Individuals with Marfan syndrome also have thin corneas and we tested 

whether losartan administration could rescue ocular dysgenesis and corneal thickness in 

Col4a1 mutant mice. Because ocular development begins at mid-gestation, we administered 

losartan prenatally despite its contraindication during pregnancy [101]. Indeed, embryonic 

losartan administration caused early postnatal lethality, which diminishes prospects for 

therapeutic potential; however, corneal thickness at E18.5 was rescued in Col4a1+/G1344D 

and Col4a1+/G394V mice. In contrast, no beneficial effect of losartan was observed in 

Col4a1+/Δex41 mice, suggesting a different dose or dosing regimen might be needed in 

mice with more severe pathology. Similar observations were reported in mouse models of 

Marfan syndrome in which losartan displays no or moderate protective effect in more severe 

models [96, 98, 100]. In contrast to 1D11, expression levels of selected TGFβ target genes 
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were not reduced by losartan, suggesting that other target genes or downstream mechanisms 

may be involved. Notably, the protective effect of losartan in Marfan syndrome was mainly 

attributed to suppression of ERK signaling [78, 92, 93]. However, the angiotensin II type I 

receptor, the direct target of losartan, can signal through multiple pathways and modulate 

multiple pathophysiological functions [102] and the mechanism underlying the protective 

effect of losartan on CCT in Col4a1 mutant mice remains to be determined.

While the data presented in this study demonstrate a causal relationship between altered 

TGFβ signaling and ocular pathology in Col4a1 mutant mice, the specific molecular and 

cellular processes involved have yet to be defined. First, it is unclear how Col4a1 mutations 

lead to elevated TGFβ signaling. Evidence that TGFβs and BMPs bind directly to type IV 

collagens may lend support to a mechanism whereby extracellular collagen α1α1α2(IV) 

deficiency leads to increased TGFβ ligand bioavailability, similar to the mechanism 

proposed for Marfan syndrome [91]. TGFβ2 is highly expressed in the developing lens, 

and both the lens capsule and Descemet’s membrane are thick BMs that are capable of 

sequestering growth factors. It is possible that reduced levels of collagen α1α1α2(IV) 

in those BMs could increase TGFβ bioavailability. In support of this, we previously 

showed that lens-specific expression of mutant Col4a1 caused ASD in a dose-dependent 

manner [74]. Alternatively, collagen α1α1α2(IV) contains multiple consensus binding 

sites for integrins α1β1 and α2β1 [103–105], and integrin α1β1 activation can suppress 

TGFβ signaling by inhibiting TGFBR2 receptor activity [106]. Thus, reduced levels of 

extracellular collagen α1α1α2(IV) might lead to de-repression of TGFβ signaling through 

decreased integrin α1β1 activity. Furthermore, heparan sulfate deficiency in neural crest-

derived tissues also lead to elevated TGFβ signaling and ASD [107], raising the possibility 

that Col4a1 mutations could affect TGFβ signaling indirectly through other ECM molecules. 

Complicating attempts to identify the molecular mechanism is the fact that anterior segment 

morphogenesis is a complex multistep process involving highly coordinated interactions 

between multiple tissues and it is still not clear which cell types are responsible for 

aberrant TGFβ signaling and at which developmental stages. Conditional gene targeting 

approaches might help determining the spaciotemporal involvement of TGFβ signaling in 

COL4A1-mediated anterior segment development and dysgenesis.

Key findings of this study are that the type IV collagen network regulates TGFβ signaling 

and that elevated TGFβ signaling is a pathogenic mechanism contributing to COL4A1-

related ocular dysgenesis. However, the partial protective effects seen in the genetic and 

pharmacological rescue experiments suggest the contribution of additional pathogenic 

mechanisms. Supporting this possibility, RNA-seq analysis also highlighted functional 

terms such as “cell-matrix adhesion” and “focal adhesion” which have been implicated in 

various cellular processes central to ocular development and disease, including mechanical 

signal transduction, cell survival, migration and differentiation [108–111]. Enrichment 

for GO terms and pathways that have been linked to ECM responsiveness including 

“mitochondrion organization”, “electron transport chain”, and “oxidative phosphorylation” 

was also observed [112]. Moreover, accumulating evidence suggests that type IV collagen 

network acts as a multifunctional signaling platform and in vivo and in vitro studies have 

identified diverse biological functions including acting as ligands for G protein-coupled 

receptors [37, 113, 114] or regulating guidance cues such as Netrin-1 and Slit [115, 
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116]. In addition to regulating cell signaling, type IV collagens also play a central 

role in BM assembly and organization which is critical for embryonic development and 

tissue morphogenesis, including eye formation [31, 117–119]. In light of the diverse and 

multifunctional roles of type IV collagens and complexity of ocular development, additional 

pathological processes are likely to act in concert with elevated TGFβ signaling to cause 

ASD in Col4a1 mutant mice.

Although analyses presented in this study focused on development, chronically increased 

TGFβ signaling may also contribute to other progressive ocular defects observed in Col4a1 
mutant mice. For instance, Col4a1 mutations in mice cause glaucoma [30, 32] which 

is also observed in a subset of individuals with Gould syndrome [120–125]. Increased 

levels of TGFβ ligands were reported in the aqueous humor and optic nerve heads of 

glaucomatous eyes [126–130]. Increased TGFβ signaling can modulate cell contractility 

and ECM turnover in the trabecular meshwork, influencing aqueous humor outflow and 

intraocular pressure, and can induce changes at the optic nerve head and cause axon damage 

[128–130]. Thus, it is possible that chronically increased TGFβ signaling in Col4a1 mutants 

could also impair homeostasis of ocular drainage tissues leading to progressive intraocular 

pressure elevation and glaucoma. Finally, aberrant TGFβ signaling has well-established and 

important roles in other clinical manifestations commonly associated with Gould syndrome, 

including renal fibrosis and vascular diseases [131, 132], suggesting that elevated TGFβ 
signaling might represent a pathogenic mechanism contributing to various aspects of the 

syndrome.

Collectively, the findings presented in this study establish a functional role for type IV 

collagens in TGFβ signaling regulation and identify elevated TGFβ signaling as a novel and 

clinically-relevant mechanism contributing to ocular dysgenesis in Col4a1 mutant mice. A 

logical extension of our findings predicts that elevated TGFβ signaling may be generally 

important across many organs affected in Gould syndrome and potentially in Alport 

syndrome [133] which is also caused by mutations in genes encoding type IV collagens. 

If our findings are validated in other organs and in individuals with Gould syndrome, TGFβ 
signaling might represent a novel therapeutic target.

Experimental procedures

Animals

All experiments were conducted in compliance with the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research and approved by the Institutional Animal Care 

and Use Committee at the University of California, San Francisco (Protocols AN159737 and 

AN182181). Col4a1 mutant mouse strains have been described previously [25, 27, 33]. All 

Col4a1 mutant mice used in this study were heterozygous and backcrossed to C57BL/6J 

(B6) mice for at least 17 generations. TGFβ signaling reporter mice (SBE-Luc mice) that 

express luciferase in response to SMAD2/3-mediated TGFβ signaling [64], Tgfb1+/− [75] 

and Tgfb2+/− [76] mice were iteratively crossed to B6 mice for at least five generations and 

bred to Col4a1+/mut mice to generate Col4a1+/mut and Col4a1+/+ littermates heterozygous 

for the Tgfb1 or Tgfb2 null mutation or carrying the SBE-luc reporter transgene. All animals 

were maintained in full-barrier facilities free of pathogens on a 12-hour light/dark cycle 
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with ad libitum access to food and water. Both male and female mice were used for all 

experiments and no samples were excluded from the study.

Histological analyses and corneal stromal thickness quantification

Heads from E18.5 embryos were fixed in 4% paraformaldehyde (PFA) in phosphate buffered 

saline (PBS) overnight at 4 °C, cryoprotected in 30% sucrose/PBS, and embedded in optimal 

cutting temperature compound (Sakura Finetek, Torrance, CA). Coronal sections (12 μm) 

were prepared using a Leica CM1900 cryostat (Rankin Biomedical Corp. Holly, MI) and 

sections at the level of the optic nerve head were selected, stained with hematoxylin and 

eosin (H&E), and imaged for quantification of central corneal stromal thickness defined as 

the distance between the corneal epithelium and corneal endothelium.

Ocular biometry by optical coherence tomography (OCT)

Ocular biometry was performed using Envisu R4300 spectral-domain optical coherence 

tomography (SD-OCT, Leica/Bioptigen Inc., Research Triangle Park, NC, USA) as 

previously described [134]. Briefly, mice were anesthetized using ketamine/xylazine (100 

mg/kg and 50 mg/kg, respectively) and their pupils were dilated with 0.5% Tropicamide and 

0.5% phenylephrine hydrochloride. Artificial tears (Genteal, Alcon, Fort Worth, TX) were 

applied onto the cornea to maintain hydration and transparency during imaging. Eyes were 

positioned so that the laser beam passes along the optical axis and correct alignment was 

achieved by placing the Purkinje image in the center of the pupil. Rectangular volume and 

radial volume scans were performed to capture images for retinal thickness and axial length 

measurements, respectively. Various ocular parameters were measured including central 

corneal thickness, ocular axial length, anterior chamber depth, vitreous chamber depth, lens 

diameter and retinal thickness.

Transmission electron microscopy (TEM)

Intact eyes from P0 and 2.5 months old mice were fixed in 1.5% paraformaldehyde/1.5% 

glutaraldehyde (Electron Microscopy Sciences, #15950) with 0.05% tannic acid in DMEM 

for two hours, after which the interior of the globes were exposed to fixative via shallow 

scleral piercings. Following glutaraldehyde immersion for two days, the globes were rinsed 

in DMEM, then bisected using a double-edge razor blade. Tissues were post-fixed in 1% 

OsO4 overnight, then dehydrated in a graded series of ethanol to 100%, rinsed in propylene 

oxide, extensively infiltrated in Spurr’s epoxy, then embedded and polymerized at 70°C 

for 18h. Eighty-nanometer ultrathin sections were cut on a Leica EM UC7 ultramicrotome 

(Leica Microsystems) and mounted on formvar-coated 1×2mm slot grids. Grids were stained 

in uranyl acetate followed by lead citrate, then imaged using a FEI G2 TEM operated at 

120KV. Images were collected using an AMT 2K × 2K side entry digital camera (AMT, 

Woburn, MA).

Fibril diameter and density measurements

Two series of 15–22 images, spanning from corneal epithelium to the endothelium, were 

taken at 50,000x from two different locations. Regions of interest (ROIs) containing mostly 

cross-sectioned collagen fibrils were randomly selected from each image. The number and 
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cross-sectional area of fibrils were measured using Fiji (National Institutes of Health (NIH)). 

Fibril diameters were calculated from cross-sectional areas after calibration. To plot the 

distribution curve, measurements for fibrils from mice with the same age and genotype (n = 

3 per group) were combined. Total fibrils measured were 7393 and 9558 for P0 Col4a1+/+ 

and Col4a1+/Δex41 mice, respectively, and 11676 and 12402 for 2.5 months old Col4a1+/+ 

and Col4a1+/Δex41 mice, respectively. The total fibril number and the area for each ROI were 

recorded to calculate fibril density. The mean fibril density for each sample were averaged 

from all ROIs from the same image series.

Slit-lamp biomicroscopy

Ocular anterior segment examinations were performed on 1.3–1.5 months old mice using 

a slit-lamp biomicroscope (Topcon SL-D7; Topcon Medical Systems, Oakland, NJ, USA) 

attached to a digital SLR camera (Nikon D200; Nikon, Melville, NY, USA). ASD severity 

was determined based on the level of iris vessel dilation and tortuosity, pupil dilation, lens 

opacity and anterior chamber enlargement as previously described [10].

RNA extraction and quantitative polymerase chain reaction (qPCR)

Ocular tissues including whole eyes or anterior segments were stabilized in RNAlater 

(ThermoFisher Scientific, USA) and stored at −80 °C until use. Anterior segments were 

dissected in PBS by cutting along the limbus with scissors. After removing the lens, the 

remaining anterior segment (cornea, iris, ciliary body and ocular drainage structures) was 

collected. Embryonic and early postnatal samples were pooled with 4 eyes from 2 mice 

(E14.5 and P0) and 2 eyes from 1 mouse for P7 anterior segments. Total RNA was 

extracted using the RNeasy Plus Micro kit (Qiagen, Germantown, MD) according to the 

manufacturer’s instructions. RNA was reverse transcribed to cDNA using iScript cDNA 

synthesis kit (Bio-Rad, Hercules, CA). Quantitative PCR was performed on a Bio-Rad 

CFX96 real-time system using SsoFast Evagreen mix (Bio-Rad) and primers listed in Table 

S2. Briefly, 10 ng of cDNA and 1.25 μM primers were used per reaction in a final volume 

of 10 μl. Each cycle consisted of denaturation at 95 °C for 5 s, followed by annealing and 

extension at 60 °C for 5 s for a total of 45 cycles. All experiments were run with technical 

duplicates and at least 4 biological replicates were used per group. The relative expression of 

each gene was normalized to Hprt1 or Gapdh and analyzed using the 2−ΔΔCT method [135].

RNA-sequencing and data analysis

Four anterior segments from 2 P0 mice of the same genotype were pooled for RNA 

purification with RNeasy Plus Micro kit (Qiagen). RNA quality assessment, library 

preparation, sequencing and bioinformatic analysis were performed by Novogene Inc. 

(Sacramento, CA). Briefly, RNA quality was determined using an Agilent Bioanalyzer, and 

samples with RNA integrity number (RIN) scores > 9.0 were further processed. Illumina 

sequencing libraries were prepared and sequenced (150 bp pair-ended) on an Illumina 

Novaseq6000 sequencer. Raw reads were trimmed and filtered to remove the adaptor 

sequence and low-quality reads. Filtered reads were aligned to mouse reference genome 

assembly (GRCm38) using STAR v2.6.1 and the read count table was generated using 

HTseq v0.6.1. Fragments per kilobase of transcript sequence per million mapped reads 

(FPKM) > 1 were used as a threshold for gene expression. Differential gene expression 
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analysis was performed using the DEseq2 v1.6.3 R package and p values were adjusted 

using the Benjamini-Hochberg method. Differentially expressed genes (DEGs) were defined 

by having adjusted p values of less than 0.05. Over-representation analysis including gene 

ontology (GO) enrichment analysis was implemented using the clusterProfiler v2.4.3 R 

package [136]. GO terms with corrected p values < 0.05 were considered significantly 

enriched. Gene set enrichment analysis (GSEA) were performed using WebGestalt v2019 

[137, 138] and molecular pathways collected in Wikipathways as a functional database 

[139, 140]. Pathways with a false discovery rate (FDR) < 0.05 were considered significantly 

enriched.

Immunofluorescence labeling

Heads from E18.5 embryos were fixed in 4% PFA in PBS overnight at 4 °C, cryoprotected 

in 30% sucrose in PBS, and embedded in optimal cutting temperature compound. Coronal 

cryosections (12 μm) were prepared as described for histological analyses. For pSMAD2 

immunolabeling, sections were boiled in 10 mM citrate buffer pH 6.0 for 20 min for antigen 

retrieval, blocked in PBS containing 1% Triton X-100 (PBST), 10% normal donkey serum 

and 1% BSA, and incubated with rabbit anti-pSMAD2 antibody (Cell Signaling #3101, 

1:100) in blocking buffer at 4 °C overnight. Then, sections were washed in PBST and 

incubated in species-specific Alexa Fluor 488- or 594- conjugated secondary antibodies 

(ThermoFisher Scientific, 1:500) for 1 hr at room temperature, counterstained with DAPI 

(1 μg/ml), mounted in Prolong Gold Antifade Mountant (ThermoFisher Scientific) and 

imaged using a Zeiss LSM700 confocal microscope equipped with a Plan-Apochromat 

63x/1.40 objective and ZEN software (Carl Zeiss Microscopy). Fluorescence intensity of 

nuclear pSMAD2 labeling was quantified using Fiji (NIH). Briefly, DAPI staining was 

used to create a ROI containing nuclei. Nuclear ROI was then applied to the original 

pSMAD2 labeling images and the mean pixel intensities were recorded and compared 

between genotypes. The number of nuclei in the corneal stroma was quantified by counting 

the number of DAPI positive particles in a 100 μm segment of the central corneal stroma.

Immunolabeling of corneal whole mounts were performed as previously described with 

some modifications [141]. Briefly, mouse corneas were dissected and fixed in 0.5% PFA 

in PBS for 30 min at room temperature. Corneas were blocked in PBS containing 1% 

Triton X-100, 0.1% Tween-20, 10% normal donkey serum and 3% BSA for 1 hr at room 

temperature and incubated with rabbit anti-CDH2 antibody (Cell Signaling #13116, 1:500) 

in blocking buffer for 48 hrs at 4 °C. Following washes in PBS, corneas were incubated in 

species-specific Alexa Fluor 488- or 594- conjugated secondary antibodies (ThermoFisher 

Scientific, 1:1000) and DAPI (0.2 μg/ml) at 4 °C overnight before mounting. Corneas 

were imaged using the Zeiss LSM700 confocal. Z-stack images covering the entire corneal 

endothelium were condensed to two-dimensional images in Fiji using the standard deviation 

method in the Z-projection function.

Western blot analyses

Both anterior segments from one P7 mouse were pooled as one sample. Samples were 

homogenized on ice in T-PER buffer (ThermoFisher Scientific, USA) supplemented with 

Halt Protease and Phosphatase Inhibitor Cocktail (ThermoFisher Scientific), EDTA and 2 
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mM phenylmethylsulfonyl fluoride using a disposable pestle. Total protein concentrations 

were measured using the bicinchoninic acid (BCA) assay kit (ThermoFisher Scientific), and 

6 μg of proteins was separated on Bolt 4–12% Bris Tris Plus gels under reducing conditions 

and transferred onto polyvinylidene difluoride membranes (Bio-Rad). Membranes were 

blocked in 10% BSA or 5% milk in TBST (TBS with 0.1% Tween-20) for 2 hrs at 

room temperature or overnight at 4 °C and incubated with primary antibodies diluted 

in 5% BSA or 2% milk at 4 °C overnight. Dilutions of primary antibodies used in 

this study are as follows: rabbit anti-pSMAD2 (Cell Signaling #3101, 1:1000), rabbit 

anti-SMAD2 (Cell Signaling #5339, 1:1000), rabbit anti-pSMAD3 (Abcam #ab52903, 

1:1000), rabbit anti-SMAD2/3 (Cell Signaling #8685, 1:1000), rabbit anti-pSMAD1/5/9 

(Cell Signaling #13820, 1:1000), rabbit anti-SMAD1/5/9 (Santa Cruz #sc-6031-R, 1:500), 

rabbit anti-pP38 MAPK (Cell Signaling #9211, 1:1000), rabbit anti-P38α MAPK (Cell 

Signaling #9218, 1:1000), rabbit anti-pERK1/2 (Cell Signaling #9101, 1:1000), rabbit 

anti-ERK1/2 (Cell Signaling #4695, 1:1000), rabbit anti-CDH2 (Cell Signaling #13116, 

1:1000) and mouse anti-GAPDH (Millipore #MAB374, 1:100000). Following washes 

in TBST, membranes were incubated with secondary horseradish peroxidase-conjugated 

donkey anti-rabbit (Jackson Immuno Research Laboratories #711–035-152, 1:10000) or 

anti-mouse antibodies (Jackson Immuno Research Laboratories #715–035-150, 1:10000) 

for 1 hr at room temperature. Immunoreactivity was visualized using chemiluminescence 

(ECL or Luminata Forte substrate, ThermoFisher Scientific) and imaged with the ChemiDoc 

MP Imaging System (Bio-Rad) or exposed to X-ray films. Restore Plus Stripping buffer 

(ThermoFisher Scientific) was used to strip membranes that were probed with different 

antibodies raised in the same species. Densitometric analyses were performed on low 

exposure images using the Quantity One software (Bio-Rad).

Luciferase activity assay

Both anterior segments from one P7 mouse were pooled as one sample. Samples were 

homogenized in Glo lysis buffer (Promega, Madison, WI), incubated for 1 hr at 4 °C and 

the supernatant was collected by centrifugation. Luciferase activity was measured using 

the One-Glo Luciferase assay system (Promega) and a Veritas Microplate Luminometer 

(Promega). Total protein concentration was determined using the BCA assay and luciferase 

activity was normalized to total protein concentration.

1D11 TGFβ neutralizing antibody treatment

Timed-pregnant B6 females crossed with Col4a1+/G1344D males were injected 

intraperitoneally with the 1D11 pan-TGFβ neutralizing antibody (clone 1D11.16.8, 

BioXCell, West Lebanon, NH) or IgG1 isotype control antibody (clone MOPC-21, 

BioXCell) diluted in inVivoPure Dilution Buffer (pH 7.0, BioXCell) (20 mg/kg) every other 

day from E8.5 to E16.5 and animals were harvested at E18.5 or P0 for histological and 

molecular analyses, respectively.

4PBA and losartan treatments

Timed-pregnant B6 females crossed with Col4a1+/G1344D males were provided continuously 

with 100 mM 4PBA (Scandinavian Formulas) or 0.6 g/L losartan (Aros Organics or TCI 

America) in drinking water starting from E4.5 and tissues from the progeny were collected 
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at E18.5 for corneal stromal thickness measurement or E19.5/P0 for qPCR analysis, 

respectively.

Statistics

Statistical analyses were performed using GraphPad Prism v8.0 (GraphPad, La Jolla, CA). 

Statistical differences between two groups were determined using two-tailed unpaired 

Student’s t-test or Mann-Whitney test. Multiple-group comparisons were performed using 

one-way ANOVA and Sidak’s multiple comparison test. To evaluate the effect of treatment 

among various genotypes, two-way ANOVA and Tukey’s multiple comparison test were 

used. Differences in distribution were analyzed using Kolmogorov-Smirnov test. Data are 

presented as mean± SD and p values < 0.05 were considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Col4a1 mutant mice have a spectrum of ocular defects including a decrease 

in lens diameter and retinal thickness and increased vitreous chamber depth 

as well as anterior segment dysgenesis characterized by reduced corneal 

thickness and enlarged anterior chamber.

• TGFβ signaling is elevated in developing anterior segments from Col4a1 
mutant mice.

• Genetically reducing TGFβ signaling using heterozygous Tgfb1 or Tgfb2 null 

mutations partially rescue ocular defects in Col4a1 mutant mice.

• Pharmacologically promoting type IV collagen secretion or reducing TGFβ 
signaling ameliorate ocular pathology in Col4a1 mutant mice.

• TGFβ1 and TGFβ2 differentially contribute to the ocular defects observed in 

Col4a1 mutant mice.
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Fig. 1. Col4a1+/Δex41 mice have developmental corneal defects.
(A) Representative images (left) and quantification (right) of E18.5 H&E stained ocular 

sections showing reduced corneal stromal thickness (black bars) in Col4a1+/Δex41 mice. 

Asterisk indicates anterior hyphema. n = 31 Col4a1+/+ and 33 Col4a1+/Δex41 corneas. 

Scale bar = 50 μm. (B) Representative OCT images (left) and quantification (right) of 

anterior segments showing reduced CCT (red bars) in Col4a1+/Δex41 compared to Col4a1+/+ 

mice at 1.6–2.0 months. n = 18 Col4a1+/+ and 14 Col4a1+/Δex41 eyes. (C) Representative 

images (left) and quantification (right) of E18.5 corneas stained with DAPI (blue) showing 

that the number of corneal stromal nuclei was indistinguishable between Col4a1+/+ and 

Col4a1+/Δex41 mice, suggesting that corneal thinning in Col4a1+/Δex41 mice is not caused by 

a reduction in the number of keratocytes. Dashed lines indicate the stromal boundaries. n = 

7 Col4a1+/+ and 15 Col4a1+/Δex41 corneas. Scale bar = 20 μm. (D and E) qPCR analyses 

showing the relative mRNA levels of genes encoding major corneal matrix molecules (D) 

and corneal endothelial markers (E) in P7 anterior segments. n = 5–6 per genotype. Data 

shown as fold expression relative to wildtype. (F) Representative Western blot images (left) 

and quantification (right) showing reduced CDH2 protein levels in P7 anterior segments 

from Col4a1+/Δex41 mice. n = 6 per genotype. Data shown as fold expression relative to 

wildtype. (G) Representative images of P7 corneal flat mounts immunolabeled for CDH2. 

Two out of four Col4a1+/Δex41 corneas examined, showed reduced CDH2 labeling intensity 

compared to their Col4a1+/+ counterparts. Scale bar = 20 μm. n = 4 per group. C, cornea; L, 

lens. Data are presented as mean ± SD. *p < 0.05; **p < 0.01; ****p < 0.0001, Student’s 

t-test.

Mao et al. Page 31

Matrix Biol. Author manuscript; available in PMC 2023 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. TGFβ signaling is increased in developing anterior segment from Col4a1+/Δex41 mice.
(A) qPCR analyses showing increased expression of the TGFβ target genes Ccn2, Cdkn1a, 

and Serpine1 in anterior segments from P7 Col4a1+/Δex41 mice compared to Col4a1+/+ 

littermates. n = 6 per genotype. (B and C) Schematic representation of the breeding 

strategy to generate Col4a1+/+;SBE-Luc and Col4a1+/Δex41;SBE-Luc reporter mice (B) 

and quantification of luciferase activity using an in vitro luciferase assay (C) showing a 

significant increase in TGFβ signaling in P7 anterior segments from Col4a1+/Δex41;SBE-Luc 
mice compared to their Col4a1+/+;SBE-Luc counterparts. n = 11 per genotype. Data shown 

as fold expression relative to Col4a1+/+;SBE-Luc mice. (D) Representative Western blot 

images (left) and quantification (right) showing increased ratio of phosphorylated to total 

SMAD2 (pSMAD:SMAD2) protein levels in P7 anterior segments from Col4a1+/Δex41 mice 

compared to Col4a1+/+ littermates. n = 6 per genotype. Because the pSMAD2 antibody 

recognized two bands, quantification was done separately for each band. (E) Representative 

Western blot images (left) and quantification (right) using antibodies recognizing both 

SMAD2 and SMAD3 showing increased pSMAD2:SMAD2 and pSMAD3:SMAD3 in 

P7 anterior segments from Col4a1+/Δex41 mice compared to Col4a1+/+ littermates. n = 

6 per genotype. Samples used in (D) and (E) were obtained from independent cohorts. 
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(F) Representative images (left) of corneas immunolabeled for pSMAD2 (red) and 

counterstained with DAPI (blue), and quantification of corneal nuclear pSMAD2 labeling 

intensity (right) showing increased pSMAD2 levels in E18.5 Col4a1+/Δex41 mice compared 

to Col4a1+/+ littermates. Scale bar = 20 μm. n = 7 Col4a1+/+ and 15 Col4a1+/Δex41 corneas. 

Data are presented as mean ± SD. *p < 0.05; **p < 0.01, Student’s t-test.
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Fig. 3. Col4a1+/G1344D mice have corneal defects and increased TGFβ signaling.
(A) Representative OCT images of anterior segments (left) and quantification (right) 

showing reduced CCT in Col4a1+/G1344D mice at 1.6–2.0 months of age. n = 13 Col4a1+/+ 

and 12 Col4a1+/G1344D eyes. (B) qPCR analyses showing a trend towards reduced Col15a1 
expression and altered expression of corneal endothelial markers in anterior segments from 

P7 Col4a1+/G1344D mice compared to Col4a1+/+ littermates. n = 11–12 per genotype. (C-D) 

Representative Western blot images (left) and quantification (right) showing reduced CDH2 

protein levels (C) and a trend towards increased pSMAD2/3:SMAD2/3 ratio (D) in anterior 

segments from P7 Col4a1+/G1344D compared to Col4a1+/+ littermates. n = 6 per genotype. 

(E) GSEA of RNA-seq data from P0 Col4a1+/+ and Col4a1+/G1344D anterior segments 

showing positive enrichment of the TGFβ signaling pathway (WP113). NES, normalized 

enrichment score; FDR, false discovery rate. (F) Heatmap of DEGs in the anterior segment 
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from P0 Col4a1+/+ and Col4a1+/G1344D mice contained in the enriched GO biological 

process “Response to transforming growth factor beta” (GO0071559). Colors representing 

high (red), low (blue) or average (white) expression values based on Z score normalized 

FPKM values for each gene. n = 3 Col4a1+/+ and 6 Col4a1+/G1344D P0 anterior segment 

samples. (G) qPCR validation of selected DEGs identified by RNA-seq. n = 5–6 per 

genotype. Data are presented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 

0.0001, Student’s t-test.
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Fig. 4. Genetically reducing Tgfb2, but not Tgfb1, partially rescued corneal thickness in 
Col4a1+/G1344D mice.
(A) Representative OCT images (left) and quantification (right) showing that CCT 

was indistinguishable between Col4a1+/G1344D;Tgfb1+/+ and Col4a1+/G1344D;Tgfb1+/− 

mice. n = 24 Col4a1+/+;Tgfb1+/+, 20 Col4a1+/+;Tgfb1+/−, 35 Col4a1+/G1344D;Tgfb1+/+, 

and 35 Col4a1+/G1344D;Tgfb1+/− eyes. (B) In contrast, OCT analyses revealed that 

genetically reducing Tgfb2 partially prevented CCT reduction in Col4a1+/G1344D mice. 

n=17 Col4a1+/+;Tgfb2+/+, 27 Col4a1+/+;Tgfb2+/−, 20 Col4a1+/G1344D;Tgfb2+/+, and 25 

Col4a1+/G1344D;Tgfb2+/− eyes. (C) qPCR analyses showing increased expression of TGFβ 
target genes in anterior segments from P7 Col4a1+/G1344D mice that was partially prevented 

by genetically reducing Tgfb2 expression. n = 9–12 samples per genotype. Data are 

presented as mean ± SD. *p < 0.05; **p < 0.01; ****p < 0.0001, one-way ANOVA and 

Sidak’s multiple comparison test.
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Fig. 5. 1D11 TGFβ neutralizing antibody increased corneal stromal thickness in Col4a1+/G1344D 

mice.
(A) Schematic illustration of the 1D11 administration paradigm for histological analysis. (B) 

Representative images of H&E stained sections (left) showing whole eyes (top panels) and 

corneas (lower panels) from E18.5 mice and quantification graph (right) showing increased 

corneal stromal thickness in Col4a1+/G1344D mice treated with 1D11 compared to those that 

received the control IgG1 antibody. Scale bars = 200 μm (top) and 50 μm (bottom). n = 

20 and 24 corneas from IgG1- and 1D11-treated Col4a1+/+ mice, and 24 and 30 corneas 

from IgG1- and 1D11-treated Col4a1+/G1344D mice, respectively. (C) Schematic illustration 

of the 1D11 administration paradigm for qPCR analyses. (D) qPCR analyses revealed that 

1D11 treatment partially prevented the increased expression of TGFβ target genes in anterior 

segments from P0 Col4a1+/G1344D mice compared to their IgG1-treated counterparts. n = 

5–6 samples per genotype. Data are presented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 

0.001; and ****p < 0.0001, two-way ANOVA and Tukey’s multiple comparison test.
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Fig. 6. Pharmacological interventions using 4PBA or losartan partially prevented the reduction 
in corneal stromal thickness in Col4a1+/G1344D mice.
(A) Schematic illustration of the 4PBA and losartan treatment paradigms for histological 

analysis. (B) Representative images of H&E stained sections (left) showing whole eyes 

(top panels) and corneas (lower panels) from E18.5 mice and quantification graph (right) 

showing that 4PBA and losartan treatments both increased CCT in Col4a1+/G1344D mice. 

Of note, while losartan had no effect on CCT in Col4a1+/+ mice, 4PBA caused a small 

reduction in CCT in Col4a1+/+ mice. Scale bars = 200 μm (top) and 50 μm (bottom). n = 26, 

17, and 28 corneas from untreated, 4PBA- and losartan-treated Col4a1+/+ mice, respectively, 

and 30, 18, and 28 corneas from untreated, 4PBA- and losartan-treated Col4a1+/G1344D 

mice, respectively. (C) Schematic illustration of the 4PBA or losartan treatment paradigms 

for qPCR analyses. (D) qPCR analyses revealed that 4PBA, but not losartan, partially 

prevented the elevated expression of TGFβ target genes in anterior segments from E19.5 

Col4a1+/G1344D mice. Data are presented as mean ± SD. *p < 0.05; **p < 0.01; ***p < 

0.001; ****p < 0.0001; two-way ANOVA and Tukey’s multiple comparison test.
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