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Abstract

Software to more rapidly and accurately predict protein–ligand binding affinities is of high interest 

for early-stage drug discovery, and physics-based methods are among the most widely used 

technologies for this purpose. The accuracy of these methods depends critically on the accuracy 

of the potential functions they use. Potential functions are typically trained against a combination 

of quantum chemical and experimental data. However, although binding affinities are among 

the most important quantities to predict, experimental binding affinities have not to date been 

integrated into the experimental dataset used to train potential functions. In recent years, the use 

of host–guest complexes as simple and tractable models of binding thermodynamics has gained 

popularity due to their small size and simplicity, relative to protein–ligand systems. Host–guest 

complexes can also avoid ambiguities that arise in protein–ligand systems, such as uncertain 

protonation states. Thus, experimental host–guest binding data are an appealing additional data 

type to integrate into the experimental dataset used to optimize potential functions. Here, we report 

the extension of the Open Force Field Evaluator framework to enable the systematic calculation 

of host–guest binding free energies and their gradients with respect to force field parameters, 

coupled with the curation of 126 host–guest complexes with available experimental binding 

free energies. As an initial application of this novel infrastructure, we optimized generalized 

mgilson@health.ucsd.edu . 
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Born (GB) cavity radii for the OBC2 GB implicit solvent model against experimental data for 

36 host–guest systems. This refitting led to a dramatic improvement in accuracy for both the 

training set and a separate test set with 90 additional host–guest systems. The optimized radii 

also showed encouraging transferability from host–guest systems to 59 protein-ligand systems. 

However, the new radii are significantly smaller than the baseline radii and lead to excessively 

favorable hydration free energies (HFE). Thus, users of the OBC2 GB model currently may 

choose between GB cavity radii that yield more accurate binding affinities or GB cavity radii that 

yield more accurate HFEs. We suspect that achieving good accuracy on both will require more 

far-reaching adjustments to the GB model. We note that binding free energy calculations using 

the OBC2 model in OpenMM gain about a 10x speedup relative to corresponding explicit solvent 

calculations, suggesting a future role for implicit solvent absolute binding free energy (ABFE) 

calculations in virtual compound screening. This study proves the principle of using host–guest 

systems to train potential functions that are transferrable to protein–ligand systems, and provides 

an infrastructure that enables a range of applications.

1 Introduction

Molecular dynamics (MD) simulations with empirical force fields are a valuable tool in the 

field of computational chemistry and biophysics. MD simulations allow us to probe protein–

ligand systems at the molecular level and estimate physical quantities of interest at a lower 

cost than experimentation and more quickly and with better conformational sampling than 

quantum mechanical methods that explicitly treat electronic degrees of freedom. A quantity 

of particular interest in computer-aided drug design (CADD) is the affinity, or binding free 

energy, of a targeted protein with a candidate small molecule ligand. This quantity can 

be computed with MD simulations,1-6 but these calculations remain time-consuming and 

error-prone. The errors can arise from a number of sources, including uncertainties in the 

protonation states of the protein and ligand, both before and after binding; the difficulty 

of establishing a complete and suitable initial protein structure with a sufficiently accurate 

ligand pose; the challenge of achieving adequate numerical convergence of slow protein 

motions; and approximations made by the force field in modeling the potential energy 

surface. This array of error sources makes it difficult to isolate or attribute discrepancies 

from the experiment to any one source. Aqueous host–guest systems embody much the 

same physical chemistry, such as conformational changes upon binding, hydrogen bonding 

between host and guest, and hydrophobic interactions. However, they are much smaller 

and simpler than proteins, enabling faster convergence and posing fewer ambiguities in 

protonation states and structures. For these reasons, host–guest systems have been used 

to test the accuracy of binding affinity calculations in the SAMPL blinded prediction 

challenges7-11 and to evaluate empirical force fields in retrospective studies.12-14

Indeed, the force field is a critical determinant of the accuracy of a binding free energy 

calculation. Empirical force fields are typically tuned to fit quantum mechanical (QM) 

chemical data and/or liquid-state physical properties. There are also recent efforts to 

fit empirical force fields to small molecule crystal structures.15 However, curating the 

experimental data and organizing them into a uniform format for use in testing and 

tuning force fields can be laborious. In addition, it is a non-trivial task to optimize 
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force field parameters to many physical properties simultaneously. The Open Force Field 

(OpenFF) initiative has addressed this challenge by creating OpenFF-Evaluator,16 a software 

framework that provides an automated and highly scalable interface to estimate multiple 

physical properties, such as densities, dielectric constants, enthalpies, and hydration free 

energies (HFE). In addition, OpenFF has curated experimental data for these physical 

properties from the National Institute of Standards and Technology (NIST) ThermoML17 

and FreeSolv18,19 databases. The framework is also designed to integrate well with 

ForceBalance,20-23 which allows the optimization of force field parameters against the 

physical property data. However, even though a key intended application of OpenFF force 

fields is the calculation of protein–ligand affinities in support of structure-based drug 

discovery, binding data have not so far been integrated into the standard force field training 

set.

There is some precedent for using host–guest binding thermodynamics to tune force field 

parameters. For example, experimental binding affinities of octa-acid complexes were 

used to reoptimize the oxygen Lennard-Jones (LJ) parameters of the TIP3P water model, 

resulting in a new water model called Bind3P.24 Bind3P gave a consistent drop in the 

mean signed error in a host–guest test set and improved HFEs of small organic molecules, 

while still providing accurate results for the properties of pure water. In another study, 

selected solute LJ parameters were optimized against experimental cucurbit[n]uril-guest 

binding enthalpies, leading to improved test-set accuracy.25 However, although these trial 

studies yielded favorable results, they did not offer a way of systematizing and automating 

the process of training force fields against host–guest binding thermodynamics. Here, we 

implement this concept by extending the OpenFF-Evaluator framework to estimate host–

guest binding free energies and their gradients with respect to force field parameters, and 

integrating this capability with ForceBalance.

As an initial case study, we use this new capability to optimize the parameters of a 

generalized Born (GB)26 implicit solvent model. There are several advantages to working 

at this stage with an implicit solvent model rather than optimizing, e.g., LJ parameters 

in the context of explicit solvent. Firstly, using continuum electrostatics to approximate 

the interactions of atoms with water reduces the system size from thousands to hundreds 

of atoms, affording a ~10x computational speedup, which allows us to include more host–

guest systems in our training set. Secondly, prior computational studies of cyclodextrin–

guest complexes have proven the applicability of host–guest systems to evaluate implicit 

solvent models.13,27 Thirdly, fewer parameters are involved in optimizing implicit solvent 

models than e.g., nonbonded force field parameters, due to the small number of GB atom 

types, so we have a favorable parameter-to-training data ratio. Finally, we note that the 

greater speed of absolute binding free energy calculations with a GB model means that an 

improved GB model that can reproduce binding affinities accurately would be invaluable for 

high-throughput virtual screening of candidate ligands for targeted proteins. We focus on 

the OBC228 form of the GB model, which was originally optimized to fit energies derived 

from finite difference solutions of the Poisson-Boltzmann (PB) equation.26 Though there are 

more advanced models, such as the GBneck29,30 and R6 effective radii31 approaches, and 

the AGBNP2 model, which adds further interaction terms,32,33 we selected the OBC2 model 

due to its simplicity, speed, and ready availability in the OpenMM simulation package.34
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Here we report the optimization of GB cavity radii used in the OBC2 implicit solvent model 

against a collection of host–guest binding data and the evaluation of the resulting adjusted 

GB model against a larger test set of benchmarks comprising additional host–guest binding 

data, protein–ligand binding data, and small molecule HFEs. We find that the new GB cavity 

radii decrease the accuracy of the HFEs but provide excellent transferability to the test set 

binding free energies. This pattern of results traces to marked reductions in certain GB 

cavity radii by the optimization process. Our extended OpenFF-Evaluator infrastructure and 

the present case study provides a novel foundation for future work integrating host–guest 

binding data into the experimental data sets used to tune empirical force fields. We believe 

this approach will generate force fields that provide increasingly accurate protein–ligand 

binding affinity predictions.

2 Methods

2.1 Optimization of GB Cavity Radii Against Host–Guest Binding Data

The standard OpenFF-Evaluator framework can estimate several condensed-phase physical 

properties, including liquid densities, dielectric constants, enthalpies of mixing, and 

hydration free energies. Here, we extend the OpenFF-Evaluator framework to include a 

workflow that estimates host–guest absolute binding free energies using either explicit 

solvent or generalized Born surface area (GBSA) implicit solvent. We have also modified 

the hydration free energy workflow to work with implicit solvents. The extension to 

the framework is illustrated in Figure 1. Currently, the OpenFF-Toolkit can assign small 

molecule parameters for the HCT35 and the OBC28 implicit solvent models. Here, we 

chose to focus on the OBC2 variant of the OBC model for the implicit solvent, but 

other models can be implemented using the OpenFF-SMIRNOFF plugin (https://github.com/

openforcefield/smirnoff-plugins).

The hydration free energy from the OBC model is given by the following equations

ΔGGB
self = − 1

2
1

ϵsolute
− 1

ϵsolvent
∑
i

qi
2

Ri
,

(1a)

ΔGGB
cross = − 1

2
1

ϵsolute
− 1

ϵsolvent
∑
ij

qiqj
fGB(dij, Ri, Rj) ,

(1b)

ΔGSA = ESA.4π∑
i

(ri + rsolvent)2
ri
Ri

6
.

(1c)
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Here, i and j are atom indices, ϵ is the dielectric constant, qi is the partial charge, dij is the 

distance between atoms i and j, ri is the GB cavity radius for atom i, rsolvent is the radius of 

water in the surface-area term, Ri is the effective GB radius, fGB is the effective interaction 

distance and ESA is the surface area (SA) energy scale (2.26 kJ/mol/nm2). The SA term 

in Eq (1c) is a modified version of Eq (2) from Schaefer et al.36 that is implemented in 

OpenMM, which is different from the SA terms implemented in the AMBER program.37,38 

The effective interaction distance is given by39

fGB = dij
2 + RiRjexp − dij

2

4RiRj

1 ∕ 2
.

(2)

In the OBC model, the GB cavity radius ri is transformed into an effective radius Ri, which 

depends on the configuration of the system via the equation

Ri = 1
ρi

−1 − ri
−1 tanh(αΨi − βΨi

2 + γΨi
3)

,

(3)

where ρi = ri − 0.09 Å is the shifted radius and α = 1.0, β = 0.8, and γ = 4.85 for OBC2. The 

variable Ψi is an integral of van der Waals (vdW) spheres of all atoms multiplied by the 

shifted GB radius

Ψi = ρi
4π∫vdW

θ( ∣ r ∣ − ρi)
1

∣ r ∣ 4d3r,

(4)

where the step function θ(r) excludes the volume of atom i from the integration. We 

optimized the GB cavity radii, ri, using mBondi2 radii28 as the starting point. These are 

based on the Bondi40 radii but provide an increased radius for hydrogen bound to nitrogen 

from 1.2 Å to 1.3 Å (see Table 1).

The baseline OpenFF-Evaluator framework can also estimate the gradients of many physical 

properties with respect to force field parameters. Here, we also implement the gradient 

calculations for host–guest absolute binding free energy (ABFE) into the OpenFF-Evaluator 

framework using the following relation25

∂ΔGd
∂θ = ∂U

∂θ bound
− ∂U

∂θ free
,

(5)

where U is the total potential energy, θ is the force field parameter, and 〈〉bound and 〈〉free

indicate ensemble averages of the host–guest system without any restraining potentials 

included in the bound and unbound (i.e., free) states, respectively. These two states 
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correspond to the first and last windows of the attach–pull–release (APR) calculations (see 

Method 2.2 for details). The restraining potentials in the bound and free states do not alter 

the internal coordinates of the host–guest molecules and, thus, do not contribute to the 

total potential energy. The restraining potentials in the free state keep the host and guest 

molecules far apart; thus, we simulate the free host and free guest in the same system. This 

approach reduces the number of simulations from four to two, as was originally defined by 

Yin et al.25 In practice, the gradient ∂U ∕ ∂θ is estimated using the central difference method 

by re-evaluating the potential energy U with a perturbed θ

dU
dθ ≈ U(θ + ℎ) − U(θ − ℎ)

2ℎ .

(6)

We used a step size of ℎ = θ × 10−4 Å to perturb the GB cavity radii. For host–guest 

complexes with multiple binding poses Nb, as in the case of cyclodextrins, the binding 

free energy gradient is given by the following equation

∂ΔGb
∂θ =

∑i = 1
Nb ∂ΔGi

∂θ exp( − βΔGi)

∑i = 1
Nb exp( − βΔGi)

.

(7)

The equation above is a weighted sum of the gradients over all binding poses with the 

Boltzmann probability of the binding affinities ΔGb as the weights. The force field parameter 

θ optimization is handled with ForceBalance20-23 (https://github.com/leeping/forcebalance), 

and we used a regularized least-squares objective function

L(θ) = ∑
n

N wn
Mn

∑
m

Mn ym
ref − ym(θ )

dn

2
+ ∑

i ∈ θ
∣ Δθi ∣ 2

σi
,

(8)

where N is the number of types of physical properties, Mn is the number of systems for 

each physical property, wn is a weight associated with each property, dn is a scaling factor 

with the same unit as the property, ym
ref is the experimental value, ym is the estimated value 

from simulation, θ  is a vector of parameters being optimized and σi is the prior width 

hyperparameter. In this study, because there is only one property being optimized, N = 1 and 

there is only a single weight w = 1. The scaling factor is set as dn = 1 kcal ∕ mol, and chosen 

based on an order-of-magnitude estimate of the experimental measurement error. Therefore, 

the first term in Eq. 8 is simply the mean squared error of the binding free energy in units of 

(kcal/mol)2.

ForceBalance uses a Gauss-Newton approach to optimize the parameters by using the 

property gradients from Eq (7) to build the gradient and approximate the Hessian of the 

objective function. Here, we optimize θ to fit host–guest experimental binding data. The 
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objective function in Eq (8) includes an L2 regularization penalty, and we use a prior width 

σi of 0.5 Å for all radii.

We implemented the workflow for host–guest ABFE calculations in implicit solvent and 

its gradient with respect to θ in a forked version of OpenFF-Evaluator (https://github.com/

jeff231li/openff-evaluator). A GitHub repository is available online detailing the installation 

of the software, with its dependencies, and a short tutorial on running an optimization 

(https://github.com/jeff231li/HG-GBSA-Optimization).

2.2 Calculation of Host–Guest Absolute Binding Free Energies

We estimate the ABFE, ΔGb, for host–guest complexes using the APR method41,42 

as implemented in version 1.2.0 of the Python package pAPRika (https://github.com/

GilsonLabUCSD/pAPRika), which is integrated into OpenFF-Evaluator. The protocol 

for the host–guest calculations is similar to that of an earlier study of cyclodextrin 

complexes.12,14 Briefly, we apply Boresch-style restraints2 on the host and guest molecules 

to restrain their translational and orientational motion. These restraints consist of bond, 

angle, and dihedral restraints that orient the host–guest complex to pull the guest molecule 

in the z-axis. To aid in defining the Boresch restraints, we include three noninteracting 

dummy atoms in each host–guest complex. Note that the Boresch restraints applied to the 

host molecule do not contribute to the binding free energy. We use a spring constant of 5 

kcal/mol/Å2 for bond restraint and 100 kcal/mol/rad2 for the angle and dihedral restraints. 

To improve convergence in the pull phase calculations, we also apply conformational 

restraints on the host molecules, which is particularly helpful for larger guest molecules that 

tightly bind to the host cavity. For cyclodextrins, we apply two dihedral restraints between 

neighboring glucose units O5n − C1n − O1n − C4n + 1 and C1n − O1n − C4n + 1 − C5n + 1 with a weak 

spring constant of 6 kcal/mol/rad2. For cucurbit[n]urils, we use several distance jack 

restraints placed between amide nitrogen across the portal region to enlarge the opening. The 

jack distance is 13.5 Å and 15.0 Å for CB7 and CB8, respectively, with a spring constant of 

15 kcal/mol/Å2. For octa-acids, we apply jack restraints with a distance of 15 Å on opposite 

atoms across the portal with a spring constant of 25 kcal/mol/Å2. Figure S1 shows the 

different conformational restraints applied to cyclodextrins, cucurbit[n]urils, and octa-acids. 

The attach and release phases include the free energy costs of applying and releasing the 

conformational restraints on the host molecule. The initial structures and definition of the 

anchor atoms and restraints are available in the Taproom repository (see Method 2.5 for 

details). During the attachment phase, we scale the force constant on the restraints across 

15 independent windows [0.0, 0.004, 0.008, 0.016, 0.024, 0.04, 0.055, 0.0865, 0.118, 0.181, 

0.244, 0.37, 0.496, 0.748, 1.0]. We then pull the guest molecule out of the host cavity by 18 

Å over 46 equally-spaced windows. The release phase is separated into two contributions; 

(1) release of the host conformational restraints and (2) release of the guest restraints in 

bulk (i.e., at r = 18 Å). The former is calculated over the same 15 windows as in the attach 

phase but in reverse and without the guest molecule. The latter is calculated analytically, 

including the standard-state correction at 1 M. For cyclodextrin complexes, we perform 

the APR calculations for two binding poses due to the asymmetry of the host molecules. 

The binding poses are defined by the orientation of the guest molecule with respect to the 
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primary/secondary face of the cyclodextrin, and we combine the binding free energies of the 

two poses with42,43

ΔGb = − RT ln[exp( − βΔGp) + exp( − βΔGs)] .

(9)

A brief derivation of this equation is also provided in Section 5. We perform an energy 

minimization for each APR window followed by 1 ns of equilibration and 30 ns of 

the production run. The free energy across the three phases was computed with the 

thermodynamic integration (TI) method, and blocking analysis was used to estimate the 

uncertainty in work done by each restraint in each window. The final SEM in ΔGb is 

obtained from bootstrap resampling (2000 iterations).

2.3 Calculation of Protein–Ligand Absolute Binding Free Energies

For the protein–ligand systems, we chose the alchemical double–decoupling method 

(DDM)1 instead of APR because it is often more challenging to define a suitable 

pulling pathway for a protein–ligand system. The protein–ligand ABFE calculations were 

performed outside of the OpenFF-Evaluator framework, using pAPRika and other Python 

tools, because a workflow to handle protein–ligand ABFE is not yet implemented in the 

framework. The alchemical calculation protocol is similar to those of Aldeghi et al.44,45 and 

Alibay et al.6 First, we annihilate the partial charges on the ligand in the bulk and perform 

the opposite in the binding site. The GBSA interactions are annihilated simultaneously 

with the partial charges, and the nonbonded potentials were alchemically modified with 

openmmtools version 0.21.5 (https://github.com/choderalab/openmmtools). To accomplish 

this, openmmtools introduces the following alchemical attenuation function to the GBSA 

potential

si(λ, ηi) = ληi + (1 − ηi),

(10a)

sij(λ, ηi, ηj) = si(λ, ηi) . sj(λ, ηj),

(10b)

where i and j are atom indices, λ is the alchemical coupling parameter, and η is an 

indicator function that is equal to 1 for atoms in the alchemical region and 0 otherwise. 

The attenuation function above ensures that only interactions involving the ligand atoms 

are perturbed. The GBSA potential within the protein is left unperturbed. Inserting 

the attenuation function of Eq (10) to the GBSA potential in Eqs (1a)-(1c) gives the 

alchemically-modified potential

ΔGGB
self(λ, η) = − 1

2
1

ϵsolute
− 1

ϵsolvent
∑
i

si(λ, ηi)
qi

2

Ri
,
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(11a)

ΔGGB
cross(λ, η) = − 1

2
1

ϵsolute
− 1

ϵsolvent
∑
i, j

sij(λ, ηi, ηj)
qiqj

fGB(dij, Ri, Rj) ,

(11b)

ΔGSA(λ, η) = ESA.4π∑
i

si(λ, ηi)(ri + rsolvent)2
ri
Ri

6
.

(11c)

We perform the annihilation of the electrostatic interactions of the guest in the bulk and 

binding site in separate systems over 11 equally-spaced λ values. The vdW interactions 

between the ligand and the protein are decoupled with the soft-core potential from Pham and 

Shirts46 across 21 equally-spaced λ values. We applied Boresch-style restraints on the ligand 

in reference to the protein to restrict its translational and orientational motion during the 

alchemical transformation. To simplify the procedure, we used the MDRestraintsGenerator 
(https://doi.org/10.5281/zenodo.4570555) Python program to determine the anchor atoms 

automatically from 5 ns of unrestrained MD simulation. The free energy cost of applying 

the Boresch restraints is split across 15 windows, similar to the host–guest attach phase 

calculations. The free energy cost of releasing the restraints with the standard-state 

correction at 1 M is done analytically. We use a force constant of 5 kcal/mol/Å2 and 100 

kcal/mol/rad2 for the distance and angle restraints, respectively. For each ABFE window, 

we performed an energy minimization followed by 2 ns and 20 ns of equilibration and 

production run, respectively. The free energy is recovered using the TI method, and the error 

in ΔGb was estimated with bootstrap resampling similar to the host–guest calculations.

2.4 Calculation of Hydration Free Energies

We compute ΔGsolv alchemically using the Yank program (https://doi.org/10.5281/

zenodo.3534289) through the OpenFF-Evaluator framework. The GBSA potential was 

annihilated simultaneously with the partial charges, as in the protein–ligand calculations. 

Here, the electrostatic interactions are annihilated in both the solution and vacuum 

environments. For the vdW interactions, we decouple the molecule’s interaction only 

in solution, thus removing the need to perform the calculation in vacuum. For both 

electrostatics and vdW interactions, we allow Yank to automatically determine the number 

of λ points with the trailblaze algorithm from Rizzi et al.47 (unpublished). We run Yank with 

Hamiltonian replica exchange over 2000 iterations with a time step of 2 fs. The analysis was 

done using Yank’s analysis framework, which employs the multistate Bennett acceptance 

ratio (MBAR) method48 to recover the free energy from the MD trajectories.

2.5 Training and Test Sets

We curated 126 aqueous host–guest complexes involving cyclodextrin, cucurbit[n]uril, and 

octa-acid hosts. For complexes with cyclodextrins, there are 44 host–guest complexes 
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with either α-cyclodextrin (αCD) or β-cyclodextrin (βCD) hosts. The majority of these 

complexes were obtained from Rekharsky et al.,49 and one complex was curated from 

SAMPL710 (βCD with R-rimantadine50). These cyclodextrin host–guest complexes have 

been studied computationally12,14 and include a series of small molecules containing 

ammonium, carboxylate, and cyclic alcohol groups. For cucurbit[n]urils, we selected 23 

complexes with cucurbit[7]uril (CB7) and 22 complexes with cucurbit[8]uril (CB8). These 

were curated from SAMPL challenges 3,51 4,7 6,9 and 811 and several more CB7 complexes 

were curated from Moghaddam et al.52 and Kim et al.53 We also selected two variants of the 

octa-acid host molecule, octa-acid54 (OA) with 23 complexes and tetra-endo-methyl octa-

acid55 (TEMOA) with 14 complexes. The octa-acid complexes were curated from SAMPL 

challenges 4,7 5,8 and 6.9 All carboxylic acid and amine groups were treated as ionized 

because their expected pKa were far from the neutral pH at which the binding measurements 

were done. We have made the structures of these 126 host–guest complexes available in 

the Taproom repository (https://github.com/slochower/host-guest-benchmarks). In addition 

to the structures, metadata files are also included that are read by OpenFF-Evaluator and 

contain the information necessary to perform APR calculations on these complexes. We 

hand-selected 36 complexes for the training set, six from each host molecule, leaving 90 

complexes for the test set. The host–guest complexes used in the training set are shown in 

Figure 2, and those in the test set are shown in Figures S2-S4.

For the protein–ligand benchmark, we use 59 protein–ligand systems previously investigated 

by Alibay et al.6 because of the wide range of ΔGb (−2.7 to −12.6 kcal/mol) and the 

availability of the bound structures (https://doi.org/10.5281/zenodo.5913469). These systems 

are based on published fragment-based drug designs (FBDD) for four protein targets: 

PWWP1, HSP90, MCL-1, and Cyclophilin D.56-59 The protonation states of all ligands 

were kept the same as the input files in the GitHub repository (https://github.com/bigginlab/

fragment-opt-abfe-benchmark).

For the hydration free energy tests, we focused on non-ionized molecules, thus avoiding 

ambiguity in interpreting the experimental data. The data are drawn from the FreeSolv 

database,18,19 which has been tried and tested in previous studies.60 The FreeSolv database 

currently contains 643 neutral small molecules. We selected 100 molecules containing only 

hydrogen, carbon, nitrogen, and oxygen atoms. With the chosen molecules, the ΔGsolv ranges 

from +3 kcal/mol to −25 kcal/mol. The chemical structures are shown in Figure S13.

2.6 Simulation Details and Force Fields Used

We performed all MD simulations with the OpenMM MD engine version 7.5.1.34 Except 

for the protein–ligand binding calculations, the OpenMM simulations were run through 

the OpenFF-Evaluator framework.16 For the hydration free energy and host–guest binding 

affinity calculations, we use the Sage (OpenFF 2.0.061) force field from OpenFF with 

AM1-BCC62,63 partial charges and ELF10 (electrostatically least-interacting functional) 

conformer selection. Partial charges were assigned to the small molecules with the OpenFF-

Toolkit using OpenEye OEChem (version 2022) as its backend. We ran four sets of 

calculations for each protein–ligand system, the result of testing two AMBER force fields 

for the protein, i.e., ff99SB-ILDN64,65 and ff14SB,66 and two small molecule force fields for 
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the ligands, i.e., Sage and GAFF2.1. With GAFF2.1, we use AM1-BCC partial changes, and 

the AMBER parameters were applied to the protein and ligand using the AmberTools67 

program suite. ParmEd version 3.4.3 (https://github.com/ParmEd/ParmEd) was used to 

combine the ligand parameterized with Sage and the protein with the AMBER force field. 

In all simulations, the temperature was maintained at a constant value of 298.15 K with the 

Langevin thermostat and a 2 fs integration time step.

3 Results and Discussion

3.1 Standard GB Cavity Radii Overestimate Host–Guest Affinities

As shown in Figure 3A and detailed in Table S1, ABFE calculations with the original set 

of GB cavity radii markedly overestimate the affinities of our 36 training-set host–guest 

systems. The RMSE for the whole training set is 21.0 kcal/mol, with a coefficient of 

determination R2 of 0.7. The least accurate results are for the cucurbit[n]uril complexes, 

for which the computed binding free energies range as negative as −68.5 kcal/mol, and 

the worst results are for those involving cucurbit[7]uril (CB7), with an RMSE of 41.2 

kcal/mol (Table S4). We confirmed the robustness of the problematic CB7 results – i.e., 

the gross overestimation of their binding – across force fields and software implementations 

by redoing the runs in AMBER using the GAFF2 force field parameters and the default 

GB cavity radii. The binding affinities are still grossly overestimated, with a mean signed 

error of −35 kcal/mol compared with −40 kcal/mol for Sage in OpenMM; see Table S2 

for details. The results are less problematic for the cyclodextrins and octa-acid systems, 

which give RMSEs of 3.7 and 5.8 kcal/mol, respectively. The mean signed error (MSE) 

for cyclodextrins, octa-acids, and cucurbit[n]urils are −3.3, −3.5, and −34.9 kcal/mol, 

respectively. Thus, on average, ABFE calculations with the baseline OBC2 implicit solvent 

model overestimate the binding free energies of the cucurbit[n]uril complexes ~10 times 

more than the cyclodextrin and octa-acid complexes.

The overestimation of the cucurbit[n]uril affinities observed here traces to excessively 

favorable net electrostatic interactions between cationic guests and the cucurbit[n]urils’ 

rings of electronegative carbonyl atoms. As shown in Figure S6, the electrostatic potentials 

generated by CB7 in vacuo are much stronger than those generated by the cyclodextrins. 

Thus, the overall host-guest electrostatic interaction, which is the sum of the in vacuo 
electrostatic energy and the GB solvation free energy, is highly sensitive to the details 

of the GB model, and there is clearly an imbalance between the direct, Coulombic, in 
vacuo interaction and the solvent-mediated interaction provided by the GB model. It is 

worth noting that calculations of cucurbit[n]uril-guest binding in explicit solvent42 also 

show an overestimation of the binding affinities, though not as severe as the results with 

OBC2 implicit solvent presented here. A previous study by Zhang et al.13 revealed that 

the GB implicit solvent model underestimates the screening of Coulomb interactions in 

cyclodextrins by a factor of three compared to explicit solvent. In summary, the excessively 

negative ΔGb values observed here for cucurbit[n]urils reflect underscreening of strong 

Coulomb interactions by the baseline OBC2 implicit solvent model.
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3.2 Optimized GB Cavity Radii Improve Host–Guest Accuracy for Training and Test Sets

Optimization of the five GB cavity radii (carbon, nitrogen, oxygen, general hydrogen, 

and hydrogen bonded to nitrogen) led to a marked reduction in error for the training set 

(Figure 3B, Table S4) with the overall RMSE falling from 21.0 kcal/mol to 2.9 kcal/mol. 

Improvements were also seen for each separate host class, falling to 2.5 kcal/mol, 1.4 kcal/

mol, and 4.4 kcal/mol for the cucurbit[n]urils, cyclodextrins, and octa-acids, respectively. 

However, the coefficient of determination R2 for the whole training set decreased slightly 

from 0.7 to 0.6 (Figure 3A). The individual analysis reveals that cucurbit[n]urils gained an 

improvement in R2 from 0.2 to 0.4, while cyclodextrin complexes decreased from 0.5 to 0.3 

(Table S4). For the octa-acids, the R2 stayed the same at around 0.2. The MSE for each host 

class also improved significantly to about −1.0 kcal/mol for cucurbit[n]urils and octa-acids 

and −0.1 kcal/mol for cyclodextrins. The evolution of the ForceBalance optimization is 

summarized in Figure S5. The objective function, defined in Eq (8), starts at about 450 and 

drops to 140 after one iteration (Figure S5A). After nine iterations, the objective function 

fluctuates around 8–10, and the convergence criterion is reached at iteration 22.

We also track the GB cavity radii’s evolution over the course of the optimization (Figures 

S5B-F); the initial and final values are listed in Table 1. We will refer to the optimized radii 

as HG-optimized from here on. For all atom types except oxygen, the GB cavity radius 

decreased from its original value, while that of oxygen increased by about 0.13 Å. The 

final radii for hydrogen and nitrogen are unphysically small, with values of 0.71 Å and 

0.53 Å, respectively. As mentioned in the previous section, the observed overestimation in 

ΔGb is due to the weak screening of Coulomb interactions using OBC2 implicit solvent 

with the original radii values. To correct this, ForceBalance shrinks the radius of hydrogen 

and nitrogen to make them more hydrated, effectively increasing the screening of Coulomb 

interactions, which decreases the magnitude of ΔGb. Note that the results of this optimization 

are influenced by the value of the hyperparameter σi in Eq 8, with smaller values leading to 

smaller changes in the radii from their initial values. The sensitivity of the present results to 

σi is considered in Section S4 of the SI.

The trained GB parameters also provide a large improvement in accuracy for the host–guest 

test set, which, with 90 systems, is about three times the size of the training set (Figure 4 

and Table S5). Just as for the training set, the binding free energies are overestimated with 

the original mBondi2 radii, especially for the cucurbit[n]uril complexes, and the new radii 

correct this bias. Going from the original radii to the trained set reduces the overall RMSE 

from 19.5 to 2.1 kcal/mol and the R2 value from 0.5 to 0.8. The cucurbit[n]uril complexes 

improved the most, with RMSE falling from 32.1 to 2.8 kcal/mol. Similarly, cyclodextrin 

complexes improved from 3.4 to 1.2 kcal/mol, while the RMSE stayed roughly the same for 

octa-acids. We see a big improvement in the R2 value for cucurbit[n]urils and octa-acids, but 

the value fell slightly from 0.6 to 0.5 for cyclodextrins.

Interestingly, the HG-optimized radii actually gave better accuracy for the test set than for 

the training set, with RMSE lower by 1.0 kcal/mol and R2 increased by about 0.3. Closer 

examination reveals that the RMSE of the cyclodextrins and cucurbit[n]urils are similar 

between the training and tests, but the RMSE of the octa-acids falls from 4.4 kcal/mol in 
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the training set to 1.8 kcal/mol in the test set. We observed that the octa-acid systems in 

the training set that are overestimated (more negative) by at least 4 kcal/mol when using the 

HG-optimized radii (Figure 3B and Table S1) have guest molecules with cationic nitrogens 

(Figure 2). We suspect that the reduction in the nitrogen GB radius, which greatly improves 

Δ^ for cucurbit[n]urils, slightly worsens the accuracy for octa-acids with ammonium guests, 

and that this may explain the fact that the overall correlation with experiment is better for the 

test set than the training set.

3.3 GB Cavity Radii Tuned for Host–Guest Binding Reduce the RMSE for Protein–Ligand 
Binding Calculations

We hope that training a potential function against host–guest binding data will lead 

to improved accuracy for protein–ligand binding free energies. We therefore ran ABFE 

calculations for 59 protein–ligand systems with the original mBondi2 radii and with our 

HG-optimized radii. We performed these calculations with two AMBER force fields for the 

protein and two small molecule force fields for the ligands. The results for protein force 

field ff14SB are illustrated in Figure 5. As already seen for the host–guest systems, ABFE 

calculations using OBC2 with its standard mBondi2 radii lead to marked overbinding (i.e., 

ΔGb, too negative). The HSP90 complexes are overestimated the most, with an RMSE of 

10 kcal/mol. We suspect this may be related to the importance of an explicit treatment 

of key water molecules in the binding site.6,68 However, further investigation is needed to 

assess this. Very encouragingly, the new GB radii optimized against host–guest binding data, 

generate markedly reduced errors for the protein-ligand systems, with the RMSE falling 

from 7.4 to 2.4 kcal/mol for Sage and from 6.4 to 2.0 kcal/mol for GAFF2. However, the 

value of R2 falls by about a factor of 2 using the optimized radii. Thus, the HG-optimized 

radii transfer reasonably well to protein–ligand systems.

Similar trends are obtained with protein force field ff99SB-ILDN (Figure S12), and the same 

trends are also observed for each of the four proteins individually (Tables S10 and S11). 

Interestingly, our results for ff99SB-ILDN and GAFF2 with the HG-optimized radii give a 

slightly better RMSE than the explicit solvent results from Alibay et al.;6 2.8 kcal/mol in 

explicit solvent and 2.5 kcal/mol in implicit solvent with the HG-optimized radii. However, 

the results in explicit solvent provide a higher correlation with experimental data than in 

implicit solvent, R2 of 0.8 compared to 0.1.

We also examined the consequences of the new GB cavity radii for simple protein 

simulations by performing 100 ns of unrestrained MD for each protein, using ff14SB, 

without any bound ligand, in implicit solvent with the mBondi2 and HG-optimized radii, as 

well with the explicit TIP3P water model. As shown by the RMSD plots in Figure 6, all 

four proteins are stable when simulated with explicit solvent, with the RMSDs fluctuating 

around 1–2 Å. The proteins are also stable when simulated in OBC2 implicit solvent with 

the original mBondi2 radii, with RMSDs similar to TIP3P except for HSP90, where we 

observed excess flexibility in residues 100–124. However, implicit solvent simulations with 

the HG-optimized radii tended to generate greater flexibility, with RMSD values of about 

2–4 Å. PWWP1 remains the most stable, with an average RMSD close to the TIP3P results. 

Inspection of the trajectories reveals that the larger RMSDs with HG-optimized radii are 
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due to increased flexibility in some alpha helices. This makes sense, as the HG-optimized 

shrinks the GB cavity radii for hydrogen and nitrogen atoms, resulting in weaker backbone 

hydrogen bonds along the helix. Superposed representative structures of the four proteins, 

comparing their conformations in TIP3P and OBC2(HG-optimized) solvent, are shown 

in Figure 7. Despite the increased flexibility in some protein regions, all four proteins 

maintained their tertiary structure with the HG-optimized radii. We also note that the ligands 

were stable in their binding pockets during the ABFE calculations.

3.4 HG-Optimized GB Cavity Radii Lead to Excessively Favorable Hydration Free 
Energies

An ideal set of GB cavity radii would provide not only accurate binding free energies but 

also accurate HFEs. We tested this by using both the original (mBondi2) and HG-optimized 

radii to estimate ΔGsolv for 100 neutral small molecules from the FreeSolv database (see 

Methods 2.4), using the Sage small molecule force field. As shown in Figure 8, the original 

mBondi2 radii give good accuracy, with an RMSE of 2.1 kcal/mol and R2 of 0.8. However, 

the HG-optimized radii yield marked overestimation of the magnitudes of the HFEs (Figure 

8B), ΔGsolv, increasing the RMSE to 19.1 kcal/mol and decreasing the R2 to 0.4. Thus, fitting 

GB cavity radii to host–guest ΔGb improves the accuracy of ABFE calculations, but this 

improvement comes at the cost of lower accuracy in ΔGsolv.

To probe this further, we inspected the small molecules in the outlier region, which we 

defined as an absolute error in ΔGsolv ≥ 10 kcal ∕ mol. The chemical structures in Figure S14 

reveal that all but one of these outliers contain at least one nitrogen atom, whose GB cavity 

radius was reduced from 1.55 Å to 0.53 Å during the HG-driven optimization (Table 1). 

Such a reduction of the GB cavity radius increases the atom’s interaction with the solvent, as 

observed for the HFEs, but also weakens the electrostatic interactions of polar solute atoms. 

Since the HG-based optimization is mainly driven by the excessively strong electrostatic 

interactions between the host and guest in the cucurbit[n]uril complexes, ForceBalance 

decreased the nitrogen radius to a very small value to reduce the large negative ΔGb. This, 

however, comes at the cost of increasing the hydration of nitrogen atoms, thus giving the 

excessively favorable ΔGsolv observed here.

4 Conclusions and Outlook

The present study demonstrates the systematic optimization of a potential function against 

host–guest binding free energy data using an automatic and scalable workflow. This advance 

is made possible by our extension of the OpenFF-Evaluator software framework and 

curation of 126 host–guest complexes ready to be used in ABFE calculations. Our initial 

application involves the optimization of GB cavity radii in the OBC2 implicit solvent model, 

but the present technology can also be used to optimize force field parameters against 

binding data in the context of an explicit treatment of solvent.

We find that host–guest binding affinities are grossly overestimated by ABFE calculations 

with the baseline OBC2 model, and that our HG-optimized GB cavity radii dramatically 

improve the accuracy, with excellent transferability to a test set comprising 90 additional 
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host–guest systems. Importantly, the optimized parameters also transfer well to benchmark 

dataset of 59 protein–ligand binding free energies, demonstrating the utility of using host–

guest systems as a model for binding and data for force field development. However, 

optimizing the GB radii to ΔGb resulted in a marked deterioration of the ability of the OBC2 

model to reproduce ΔGsolv. This results from the fact that the optimization against host–guest 

binding data drove a marked reduction of selected GB cavity radii, as needed to weaken the 

excessively attractive host–guest electrostatic interactions, particularly for the cucurbit[n]uril 

cases. However, the artificially small radii lead to excessively favorable HFEs.

From here, one can take different strategies toward further improvement of the implicit 

solvent model — a goal that we believe is well justified, given the 10x speedup of ABFE 

calculations that it affords. We suspect that it will be impossible to accurately fit both 

ABFEs and HFEs with the OBC2 model, but a model optimized for binding and not 

hydration may be of value, since binding affinities are certainly of more practical importance 

than the HFEs of small molecules. Our HG-optimized radii work well for binding already, 

but to improve the model further, one could increase the diversity of the training data to 

include host–guest complexes with other host molecule types and possibly include protein–

ligand binding as well. The former can be done by adding more systems to Taproom, 

while the latter will require extending the Evaluator framework to include a protein–ligand 

binding affinity workflow. Including some protein–ligand binding in the training data would 

avoid the risk of overfitting to host–guest systems and might resolve the excessive protein 

flexibility observed in Figure 7. On the other hand, it may be difficult to arrive at a set of GB 

cavity radii that, when used with the standard OBC2 model, improves not only RMSE but 

also R2 for protein–ligand systems, because changes in hydration are particularly marked for 

protein–ligand binding

Thus, it would be preferable to derive an implicit solvent model that can reproduce both 

ABFEs and HFEs, and we anticipate that such a model could yield further improvement in 

the accuracy of ABFE calculations because hydration certainly contributes to the balance 

of forces that determine the overall binding affinity. To accomplish this, one may need 

to modify the functional forms of the GB model. Accordingly, we are currently looking 

for better alternatives to the traditional GB kernel, fGB in Eq (2) and to the formula used 

to compute the effective radii Ri in Eq (3). The simplest changes to these functional 

forms would retain their radially symmetric character, so that the solvation free energy 

depends explicitly only on interatomic distances, rather than on the angular distributions of 

atoms around each other. Given the directionality of solute-water hydrogen bonds, it may 

ultimately be important to use information about the angular distributions of atoms around 

each other as well.

New functional forms can be implemented through the OpenFF-SMIRNOFF plugin code, 

which integrates seamlessly with the OpenFF infrastructure. The plugin and the Evaluator 

framework may enable one to build a next-generation implicit solvent model from the 

ground up and fit them to physical properties rather than to finite difference PB energies as 

previously done.28
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More broadly, although the work presented here showcases the optimization of an implicit 

solvent model with the OpenFF-Evaluator framework, the same general procedure can be 

applied to other potential functions and force field components. For example, it would be 

of interest to reoptimize Sage’s LJ parameters, in the context of an explicit solvent model, 

against a dataset comprising the original reference data used for Sage and supplemented by 

host–guest binding data. This will be more computationally demanding than the present 

study, but should be well within reach of current computing resources. This will add 

another restraint to the optimization, and the inclusion of host–guest binding affinities to 

the optimization may improve the ability of future force fields to accurately predict protein–

ligand binding affinities.
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5: Appendix: Combining the Binding Free Energies of Multiple Poses

Equation (9) can be simply derived as follows. Consider the binding of a receptor R with a 

ligand L, where the bound state is split into two nonoverlapping sectors of conformational 

space, termed pose 1 and pose 2. The equilibrium constants for the formation of each pose 

from the unbound state are given by69

K1 = 1
C∘e−βΔG1

∘
= C1

CRCL eq

(12)

K2 = 1
C∘e−βΔG2

∘
= C2

CRCL eq

(13)

where C∘ is the standard concentration, C1 and C2 are the concentrations of the complex in 

poses 1 and 2, respectively, CR and CL are the concentrations of the unbound receptor and 

ligand, respectively, and)eq indicates a quantity at equilibrium. The total concentration of 

bound complexes is C1 + C2, so the overall equilibrium constant for binding is

K = C1 + C2
CRCL eq

(14)
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= K1 + K2

(15)

Hence, the overall free energy of binding is given by

ΔG∘ = − RT ln(C∘K)

(16)

= − RT ln (e−βΔG1
∘
+ e−βΔG2

∘
)

(17)

as written in Eq (9).
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Figure 1: 
Workflow of the ForceBalance-Evaluator framework for iterative optimization of force field 

parameters, θ, against physical properties. The baseline OpenFF-Evaluator can estimate and 

optimize force fields to experimental liquid-state properties and HFEs. ForceBalance can 

also interface with quantum mechanical software for the inclusion of quantum chemical 

reference data in the optimization (omitted from the diagram for simplicity). We have 

extended OpenFF-Evaluator to include the host–guest binding affinities, ΔGb, part of the 

workflow. The host–guest system definitions and experimental binding data are stored in 

Taproom, and our pAPRika binding free energy tool computes ΔGb and the gradient with 

respect to a set of force field parameters θi (i.e. ∂ΔGb
∂θi

). OpenFF-Evaluator sends these 

quantities to ForceBalance, which returns updated parameters θi + 1 for a new iteration. In the 

diagram above, we only show OpenFF-Evaluator passing ΔGb and ∂ΔGb
∂θi

 to ForceBalance, 

though this is generalizable to the other properties as well.
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Figure 2: 
Hosts and guests used in the training set. The Taproom names and experimental values are 

summarized in Table S1.
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Figure 3: 
Calculated versus experimental absolute binding free energies of the host–guest training set. 

A: Calculations with the original mBondi2 radii. B: Calculations with the HG-optimized 

radii. The dark and light gray shaded areas represent 1 kcal/mol and 2 kcal/mol deviations 

from the unity line, respectively. Values in square brackets are 95% confidence intervals 

from bootstrapping over the whole data set. The full data and error statistics are available in 

Tables S1 and S4.
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Figure 4: 
Computed versus experimental binding free energies of the host–guest test set. A: 

Calculations with the original mBondi2 radii. B: Calculations with the HG-optimized radii. 

The dark and light gray shaded areas represent 1 kcal/mol and 2 kcal/mol deviations from 

the unity line, respectively. Values in square brackets are 95% confidence intervals from 

bootstrapping over the whole data set. The full data and error statistics are available in 

Tables S3 and S5.
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Figure 5: 
Protein–ligand absolute binding free energy benchmark with the ff14SB protein force field. 

Top row: Sage small molecule force field with the (A) mBondi2 and (B) HG-optimized 

radii set. Bottom row: GAFF2 small molecule force field with the (C) mBondi2 and (D) 

HG-optimized radii set. The statistics on the top left of each graph are for all four proteins. 

The dark and light gray shaded areas represent 1 kcal/mol and 2 kcal/mol deviations from 

the unity line, respectively. Values in square brackets give the 95% confidence intervals from 

bootstrapping over the whole data set. The full data are available in Tables S6 and S7, and 

the error statistics are summarized in Table S10.
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Figure 6: 
RMSD of the four proteins (PWWP1, HSP90, MCL-1, and Cyclophilin D) over 100 ns of 

unrestrained MD simulation without any ligand bound. The proteins are simulated in TIP3P 

(blue), and OBC2 implicit solvent with the mBondi2 (orange) and HG-optimized (green) 

radii sets.
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Figure 7: 
Sample structures of each of the four proteins from our simulations with TIP3P water 

(cyan) and OBC2 implicit solvent with our HG-optimized radii (yellow). Each structure 

was aligned to the respective protein’s initial structure from Alibay et al.6 These 100 ns 

simulations were run without bound ligands, and the sample structure in each case is that 

last frame. We added the ligand molecule from the reference Alibay conformation as a 

reference to show the binding pocket.
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Figure 8: 
Small molecule hydration free energy benchmark with the Sage force field. A: Calculations 

with the original mBondi2 radii. B: Calculations with the HG-optimized radii. The dark and 

light gray shaded areas represent 1 kcal/mol and 2 kcal/mol deviations from the unity line, 

respectively. Values in square brackets give the 95% confidence intervals from bootstrapping 

over the whole data set. The full data and error statistics are summarized in Tables S12 and 

S13.
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Table 1:

GB cavity radii before (mBondi2) and after (HG-optimized) optimization against host–guest binding free 

energies.

Atom Type SMIRKS Description mBondi2 (Å) HG-optimized (Å)

H [#1:1] hydrogen 1.20 0.707

H-N [#1:1]~[#7] hydrogen bound to nitrogen 1.30 1.218

C [#6:1] carbon 1.70 1.663

N [#7:1] nitrogen 1.55 0.533

O [#8:1] oxygen 1.50 1.632
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