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Sparse signal recovery algorithms have significant impact on many fields.

The core of these algorithms is to find a solution to an underdetermined inverse

system of equations, where the solution is expected to be sparse or approximately

sparse. However, most algorithms ignored correlation among nonzero entries of a

solution, which is often encountered in a practical problem. Thus, it is unclear

what role the correlation plays in signal recovery.

This work aims to design algorithms which can exploit a variety of corre-

lation structures in solutions and reveal the impact of these correlation structures

on algorithms’ recovery performance.

First, a block sparse Bayesian learning (BSBL) framework is proposed.

Based on it, a number of sparse Bayesian learning (SBL) algorithms are derived

to exploit intra-block correlation in a block sparse model, temporal correlation in

a multiple measurement vector model, spatiotemporal correlation in a spatiotem-

poral sparse model, and local temporal correlation in a time-varying sparse model.

Several optimization approaches are employed in the algorithm development, such

as the expectation-maximization method, the bound-optimization method, and a

fixed-point method. Experimental results show that these algorithms have superior

performance.

xxii



With these algorithms, we find that different correlation structures affect

the quality of estimated solutions to different degrees. However, if these correla-

tion structures are present and exploited, algorithms’ performance can be largely

improved. Inspired by this, we connect these algorithms to Group-Lasso type al-

gorithms and iterative reweighted `1 and `2 algorithms, and suggest strategies to

modify them to exploit the correlation structures for better performance.

The derived algorithms have been used with considerable success in various

challenging applications such as wireless telemonitoring of raw physiological signals

and prediction of patients’ cognitive levels from their neuroimaging measures. In

the former application, where raw physiological signals are neither sparse in the

time domain nor sparse enough in transformed domains, the derived algorithms

are the only algorithms so far that achieved satisfactory results. In the latter

application, the derived algorithms achieved the highest prediction accuracy on

common datasets, compared to published results around 2011.
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Chapter I

Introduction

1
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Sparse signal recovery is a rapidly evolving field having significant impact

on many fields, such as signal processing, compressed sensing, information theory,

pattern recognition, machine learning, neuroimaging, and bioinformatics. In the

following we first introduce some typical mathematical models of sparse signal

recovery, and then give some practical scenarios where sparse signal recovery plays

an important role.

I.A Models and Algorithms

I.A.1 Single Measurement Vector (SMV) Model

The most basic model in sparse signal recovery is the single measurement

vector (SMV) model, given by [56, 57, 129, 21, 16, 15, 37]

y = Φx + v, (I.1)

where y ∈ RM×1 is an available measurement vector, Φ ∈ RM×N(M � N) is a

known matrix, x ∈ RN×1 is an unknown vector which we want to estimate, and

v ∈ RM×1 is an unknown noise vector. Generally, the matrix Φ is assumed to

satisfy the unique representation property (URP) [57], namely any M columns

of Φ are linearly independent. It has different names in different contexts. For

example, in compressed sensing [37], it is called a sensing matrix or a measurement

matrix (when x is a signal to recover). In signal representation, it is called a basis

matrix or a dictionary matrix.

The problem (I.1) is an underdetermined inverse problem. Generally, there

are infinite solutions. Thus, it is impossible to find the true solution. How-

ever, when the true solution is sufficiently sparse (i.e., only a few entries of x

are nonzero), it is possible to find it with small errors [15], or even exactly in some

cases [16].

In general, finding the sparsest solution (i.e., a solution with minimal ‖x‖0)

to this problem (I.1) requires exhaustive searches over all subsets of columns of Φ.
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However, this approach is NP-hard [97]. Thus, a number of alternative algorithms

were proposed to seek the sparsest solution.

One popular family of algorithms are those based on the convex relaxation.

With some conditions on Φ and x, it can be shown [36, 41, 15] that the true

solution of (I.1) can be found within the noise level by solving the following `1

minimization problem:

min
x

: ‖x‖1

s.t. : ‖y −Φx‖2
2 ≤ δ (I.2)

where δ is a regularizer. Note that there are other equivalent forms, such as the

one using the Lagrange multiplier:

x = arg min
x
‖y −Φx‖2

2 + λ‖x‖1 (I.3)

where λ is another regularizer. There are many solvers to the convex relaxation

problems (I.2) or (I.3), such as Lasso [129] and Basis Pursuit Denoising [21]. One

drawback of these algorithms is that one needs to tune the regularizer δ or λ.

Although there are methods to guide the tuning, such as the L-curve method

[59, 60], cross-validation, and model selection [122, 120], in some applications the

tuning is very difficult or even impossible. Thus, the selection of optimal λ or δ

remains an important topic. Recent progress on this can be found in [130, 126].

Another drawback of these algorithms is that the estimation is generally biased.

In other words, the global minimum generally does not correspond to the sparsest

solution unless strict conditions on Φ and x are satisfied. When compared to

sparse Bayesian learning, they have other drawbacks [155], which will be discussed

later.

Non-convex minimization is another family. Algorithms in this family seek

a solution with minimal `p norm, where 0 < p < 1. Mathematically, they solve the

following non-convex minimization problem 1:

x = min
x
‖y −Φx‖2

2 + λ‖x‖p (0 < p < 1) (I.4)

1For simplicity, we only give the form using the Lagrange multiplier
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where ‖x‖p is defined as

‖x‖p =
(∑

i

|xi|p
)1/p

. (I.5)

Solving this problem generally leads to an iterative reweighted algorithm. The

most famous one may be the FOCUSS algorithm [57, 108] 2, which has been widely

used in Neuromagnetic source localization [55]. These non-convex minimization

algorithms also need to solve the issue of optimal choice of λ.

Another family are algorithms based on smooth approximation of `0 norm

of x [94, 115]. The `0 norm of x is defined as ‖x‖0 =
∑

i I(xi 6= 0), where I(·)

is the indicator function. One advantage of these algorithms is that they have

high speed, and have excellent recovery performance in noiseless scenarios. But

one drawback is they are not robust to noise. Although some variants can be used

for noisy scenarios, their performance is not as impressive as they are in noiseless

scenarios.

Another popular family of algorithms are greedy algorithms [87, 99, 134, 27].

Algorithms in this family have high speed. However, their recovery performance is

strongly affected by the coherence among columns of Φ, and also do not have sat-

isfactory performance in noisy scenarios. These drawbacks limit their applications

to some problems such as source localization and tracking.

The family of message passing algorithms [38, 141, 10] is a young group, but

recently developed algorithms have shown excellent performance in some applica-

tions in terms of both speed and recovery performance. However, most algorithms

cannot be used in the case when columns of Φ are coherent.

Bayesian algorithms are another powerful algorithms. They can be cate-

gorized into two sub-groups. One sub-group are Bayesian counterparts of greedy

algorithms, such as the Bayesian pursuit algorithms [113, 162, 64]. Another sub-

group are sparse Bayesian learning (SBL) algorithms [132, 153, 127, 105, 70, 49, 7].

SBL has many advantages over other families of algorithms. For example, SBL

2However, one should note that FOCUSS can also solve the `1 minimization problem (I.2) or (I.3).
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has good recovery performance in the case when columns of Φ are highly coher-

ent. This property makes it very attractive to the applications such as direction-

of-arrive (DOA) estimation, neuroelectromagnetic source localization, earthquake

detection, and feature selection in bioinformatics. Compared to other families,

another advantage of SBL is that it provides flexibility to model and exploit cor-

relation structures in signals for improved performance [107, 174, 171]. In Section

I.C we will discuss its advantages and disadvantages in detail.

I.A.2 Block Sparse Model

In applications, the signal x generally has additional structures. A widely

studied structure is block/group structure [160, 9, 43, 124, 46]. With this structure,

x can be viewed as a concatenation of blocks, i.e.,

x = [x1, · · · , xd1︸ ︷︷ ︸
xT
1

, · · · , xdg−1+1, · · · , xdg︸ ︷︷ ︸
xT
g

]T (I.6)

where di(∀i) are not necessarily identical. Among these blocks, only a few blocks

are nonzero but their locations are unknown. The SMV model (I.1) with the block

partition (I.6) is called the canonical block sparse model. It is known that exploiting

such block partition can further improve recovery performance.

A number of algorithms have been proposed to recover sparse signals with

the block structure. However, few of them consider intra-block correlation, i.e.,

the correlation among amplitudes of the elements within each block. In practical

applications the intra-block correlation widely exists, such as physiological signals

and images.

In Chapter II we will derive several algorithms that explore and exploit

the intra-block correlation to improve performance. As we will see, the derived

algorithms have superior performance to existing algorithms, and has the unique

ability to recover non-sparse signals directly.
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I.A.3 Multiple Measurement Vector (MMV) Model

The SMV model (I.1) can be used in many applications, such as source

localization, radar detection and other DOA estimation scenarios. But in these

applications, generally a sequence of measurement vectors are available. Thus the

basic SMV model (I.1) can be extended to the following multiple measurement

vector (MMV) model [106, 25],

Y = ΦX + V, (I.7)

where Y , [Y·1, · · · ,Y·L] ∈ RM×L consists of L measurement vectors, X ,

[X·1, · · · ,X·L] ∈ RN×L is the desired solution matrix, and V is an unknown noise

matrix. A key assumption in the MMV model is that the support (i.e. indexes of

nonzero entries) of every column in X is identical (referred as the common sparsity

assumption in literature [25]). In addition, similar to the constraint in the SMV

model, the number of nonzero rows in X has to be below a threshold to ensure a

unique and global solution [25]. This leads to the fact that X has a small number

of nonzero rows. It has been shown that compared to the SMV case, the successful

recovery rate of the support can be greatly improved using multiple measurement

vectors [25, 44, 45, 72].

It is worth pointing out that in practical applications (e.g. source localiza-

tion), there is correlation among the entries in each nonzero row of X. If ignoring

the correlation, it can deteriorates algorithms’ recovery performance. Unfortu-

nately, most existing MMV algorithms ignored the correlation. In Chapter III we

will introduce several SBL algorithms that can exploit the correlation. We will see

by exploiting the temporal correlation we can achieve much better performance

than state-of-the-art MMV algorithms.

I.A.4 Time-Varying Sparse Model

Although the MMV model (I.7) is a popular model for source localization,

one needs to note that under the common sparsity assumption we cannot obtain
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many measurement vectors in practical applications. The main reason is that

the sparsity profile of practical signals is (slowly) time-varying, so the common

sparsity assumption is valid for only a small L in the MMV model. For example,

in EEG/MEG source localization there is considerable evidence [92] that a given

pattern of dipole-source distributions 3 may only exist for 10-20 ms. Since the

EEG/MEG sampling frequency is generally 250 Hz, a dipole-source pattern may

only exist through 5 snapshots (i.e. in the MMV model L = 5). In DOA estimation

[24], directions of targets 4 are continuously changing, and thus the source vectors

that satisfy the common sparsity assumption are few. Of course, one can increase

the measurement vector number at the cost of increasing the source number, but

a larger source number can result in degraded recovery performance. Thus, the

time-varying sparsity model is called for.

The time-varying sparsity model is a natural extension of the MMV model.

It considers the case when the support of each column of X is time-varying. The

transition from the stationary models, assumed so far, to the non-stationary situ-

ation opens up an abundance of options akin to past work on tracking which has

led to adaptive filters, Kalman Filters and so on.

The measurement model in this case is given by

yt = Φxt + vt, t = 0, 1, 2, ... (I.8)

Here, yt ∈ RM×1 is a measurement vector, xt ∈ RN×1 is the sparse signal with

time-varying sparsity, and vt is a noise vector.

To deal with time-varying sparsity, many algorithms have been proposed,

such as algorithms based on Kalman filters [140] or Bayesian estimation/prediction

[161, 114], algorithms based on the sparsity of the unknown part of the support

[139], algorithms based on message passing [177], and algorithms based on ho-

motopy continuation principles [109]. Most of the algorithms [140, 114, 139, 161]

employ SMV algorithms to find the “turn-on” coefficients at each snapshot.
3In this application the set of indexes of nonzero rows in X is called a pattern of dipole-source

distribution.
4In this application the index of a nonzero row in X indicates a direction.



8

However, since the support of xt is changing slowly, we can view such a

time-varying sparsity model as a concatenation of several MMV models [163, 170],

where in each MMV model the support does not change. Thus, MMV algorithms

can be used to solve the time-varying sparse problem. This treatment has several

obvious advantages. One advantage is that the support recovery rate is greatly

improved because of the enhanced support-recovery ability afforded by the MMV

models. The second advantage is that the temporal correlation in each MMV

model can be exploited to further improve the support recovery rate. In Chapter

V we will introduce an SBL algorithm for the time-varying sparse model.

I.A.5 Spatiotemporal Sparse Model

A spatiotemporal sparse model is another MMV model with different as-

sumptions on X. It can be described as:

Y = ΦX + V, (I.9)

where Y ∈ RM×L, Φ ∈ RM×N(M < N), and X ∈ RN×L. What makes the model

different from the previous MMV model is the assumption that the matrix X has

spatiotemporal correlation; the entries in the same nonzero row of X are correlated,

and the nonzero entries in the same column of X are also correlated. Particularly,

we consider the following specific structure of X in this thesis:

X =


X[1]·

X[2]·
...

X[g]·

 (I.10)

where X[i]· ∈ Rdi×L is the i-th block of X, and
∑g

i=1 di = N . For convenience,

{d1, · · · , dg} is called the block partition. Among the g blocks, only a few are

nonzero blocks. The key assumption is that each block X[i]·(∀i) is assumed to

have spatiotemporal correlation. In other words, entries in each column of X[i]·

are correlated (intra-block correlation), and entries in each row of X[i]· are also
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correlated (temporal correlation). Thus, the model can be seen as the combination

of the canonical MMV model and the canonical block sparse model.

There are few algorithms for this spatiotemporal sparse model. In Chapter

IV we will introduce several SBL algorithms for this model, and will show its appli-

cations to feature selection and compressed sensing of multichannel physiological

signals.

I.B Applications

Sparse signal recovery has been successfully deployed in a variety of appli-

cations, including

• EEG/MEG source localization [85, 55, 148]

• adaptive signal processing [6]

• array signal processing [86, 76]

• high-dimensional statistics [47, 91]

• wireless telemonitoring of physiological signals [167, 168, 169, 88]

• wireless sensor networks [62, 39]

• pattern recognition [156]

• rapid MR imaging [82]

• radar imaging [104]

• speech and audio processing [53, 3]

• medical data analysis [143, 125, 164]

• astronomical data analysis [12, 121]

• exploration seismology [63]
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• financial data analysis [48]

• neuroscience [52, 69]

The applications introduced below are just a tip of iceberg. For simplicity,

only the basic SMV model (I.1) is discussed in the following applications. But

one should be aware that many other models can be used in these applications for

better performance.

I.B.1 Data Compression

In this application, x is an original signal, and generally it has sparse rep-

resentation under some orthonormal bases. That is, x = Dz, where D is an

orthonormal basis matrix and z is a sparse vector. The orthonormal basis matri-

ces are often formed from wavelets, noiselets [23], and the discrete cosine transform

(DCT). The signal x is compressed to y according to the SMV model (I.1), i.e.,

y = Φx (I.11)

where Φ ∈ RM×N(M < N) is a sensing matrix incoherent with D. For most

basis matrices, when Φ is a random matrix (e.g. a random Gaussian matrix), it is

largely incoherent with D.

To recover x, a sparse signal recovery algorithm solves the following under-

determined inverse problem:

y = Ωz (I.12)

where Ω , ΦD, which is known. Once have recovered the sparse vector z, the

original signal x can be immediately obtained according to x = Dz.

Compared to traditional data compression approaches, an advantage of

sparse signal recovery is that it can be used in the situations when the sparse basis

D is unknown at the encoder or impractical to implement for data compression

[167, 168].
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For most algorithms, the success of recovery heavily relies on whether the

signal x has sparse representation. Although it was claimed that many signals

are sparse under some bases, careful examination is required in some applications.

For example, in energy-efficient wireless telemonitoring of a physiological signal,

the raw physiological signal is not sparse under various wavelet and DCT bases

[167, 168, 169]; the representation coefficient vector z has a few nonzero coeffi-

cients with significant values and a large number of coefficients with small values.

Although recovering the coefficients with large values is helpful to restore main

characteristics of the original physiological signal x, recovering the coefficients

with small values is important to maintain detailed and local characteristics of x.

These detailed and local characteristics is often more important and meaningful

for clinical diagnosis and other successive signal processing and pattern recognition

[90]. In fact, probably in all the data compression applications, recovering both

the two kinds of coefficients is always desirable: the more coefficients are recovered,

the better the recovery quality is.

However, most algorithms can only recover coefficients with large values.

This drawback was recently alleviated with the use of BSBL algorithms and spa-

tiotemporal SBL algorithms, which will be shown in later chapters.

I.B.2 Feature Selection

Sparse signal recovery algorithms have been widely used for feature selec-

tion in many applications, such as bioinformatics, financial data analysis, speech

processing, and image analysis. Here the application to diagnosis of Alzheimer’s

disease (AD) is discussed [143, 175, 125].

There is a basic question in the diagnosis of AD: which brain areas determine

cognition level of a patient with AD? One can answer the question by setting up

an SMV model connecting the cognition levels and the MRI measures of patients

as follows:

y = Φx + v



12

where:

• y ∈ RM×1 are cognitive scores of all the M subjects, which are given by a

scoring system when they performed a cognitive task;

• Φ is an MRI measure matrix of all the subjects. Each column consists of the

MRI measures on a brain area of all the subjects. Particularly, Φj,k is the

MRI measure of the k-th brain area of the j-th subject.

• x ∈ RN×1 is the regression coefficient vector. A significantly nonzero entry

of x, say xq, means that the MRI measure of the q-th brain area have strong

influence on the cognitive scores of all subjects.

The coefficient vector x is expected to be sparse, since the brain circuitry relevant

to a certain cognition task typically involves a small number of brain areas, and

the MRI measures of these brain areas more or less affect all the cognitive scores

under the task.

Thus, one can use sparse signal recovery algorithms to estimate x, and the

estimated nonzero entries indicate which brain areas are related to the cognition

levels of patients with AD.

I.C Why Choose Sparse Bayesian Learning

Sparse Bayesian learning (SBL) is a powerful Bayesian variable selection

methodology, especially when the number of useful variables is small. It was first

proposed by Tipping [132, 131, 133]. Then it drew much attention in machine

learning [49], mainly viewed as Bayesian support vector machine. Later, it was

introduced to the field of sparse signal recovery by Wipf and Rao [153] as a method

of basis selection for sparse linear regression models. A number of theoretical

results [151, 149, 155, 150] have been obtained by them, showing its advantages

over many popular algorithms. On the other hand, many SBL variants have been

derived for sparse signal recovery and compressed sensing. While most algorithms
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were derived for the basic SMV model [153, 70, 105, 127, 7, 118, 158], there are

several algorithms derived for the MMV model [172, 173, 170, 174, 143, 154], for

the block sparse model [171, 165, 167, 168, 159, 79], for the time-varying sparse

model [107, 170], and for the spatiotemporal sparse model [175, 169].

SBL has drawn much attention in sparse signal recovery and compressed

sensing due to a number of advantages over other algorithms:

1. It provides large flexibility to model and exploit correlation structure in sig-

nals, such as temporal correlation [172, 170, 173, 174, 143], intra-block cor-

relation [171, 165, 167, 168, 79], and spatiotemporal correlation [175, 169].

By exploiting the correlation structures, recovery performance is significantly

improved. Since natural signals (e.g. physiological signals, images, speech

signals, and seismic waves) have always correlation structures, it is not sur-

prising that SBL algorithms achieved top performance in many practical

problems, or even solved some bottlenecks which other sparse signal recov-

ery algorithms cannot solve [167, 168]. Besides, it is interesting to see that

SBL has connections to Lasso-type algortihms [171, 143, 173, 170], therefore,

one can modify existing Lasso-type algorithms or design new Lasso-type al-

gorithms to exploit the correlation structures for better performance.

2. Its recovery performance is robust to the characteristics of the matrix Φ,

while other algorithms are not. For example, it has been shown that when

columns of Φ are highly coherent, SBL still maintains good performance,

while other algorithms such as Lasso or other algorithms based on convex re-

laxation have seriously degraded performance [150]. Experiments also showed

that when Φ is a non-random matrix or a sparse matrix, SBL algorithms

maintain excellent performance, while some algorithms such as some message

passing algorithms have poor performance. This advantage is very attractive

to feature selection in bioinformatics, source localization, and other applica-

tions, since in these applications the matrix Φ is not a random matrix and

its columns are highly correlated.
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3. The recently proposed block sparse Bayesian learning (BSBL) framework

[174, 171] has the ability to find non-sparse true solutions to underdeter-

mined inverse problems with sufficiently small errors, as long as the entries

in solution vectors or solution matrices are correlated [167, 168, 169]. This

is a desired ability, since practical signals are not strictly sparse, and their

representation under some dictionary matrices (e.g. the orthonormal basis of

wavelets) may not be sufficiently sparse. For example, in [167, 168, 169] it is

empirically shown that electroencephalogram signals and electrocardiogram

signals do not have strictly sparse representation under the orthonormal ba-

sis of popular wavelets and discrete cosine transform. Recovering non-sparse

signals is very important to improve the recovery quality of practical signals.

It is worth pointing out that so far there are no other algorithms with the

same ability.

4. SBL has a number of desired advantages over many popular algorithms in

terms of local and global convergence. It can be shown that SBL provides a

sparser solution than Lasso-type algorithms [149]. In particular, in noiseless

situations and under certain conditions, the global minimum of SBL cost

function is unique and corresponds to the true sparsest solution, while the

global minimum of the cost function of Lasso-type algorithms is not neces-

sarily the true sparsest solution [153, 154]. Besides, it can be shown [155]

that in certain settings, Lasso-type algorithms and `p(p < 1) minimization

algorithms always fail, while SBL successes, regardless of Φ and sparsity of

x. These advantages imply that SBL is a better choice in feature selection

[143], EEG/MEG source localization [152, 85], and so on.

5. SBL provides scale-invariant solutions, while Lasso-type algorithms cannot

[155]. Let xSBL be the optimal solution provided by SBL with the sensing

matrix Φ. A scale-invariant solution means that when rescaling Φ with a

diagonal matrix D, i.e., Φ → ΦD, the optimal solution provided by SBL
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becomes DxSBL. In contrast, for Lasso-type algorithms, there is no such

linear relationship between the solutions. For example, the solution to the

problem minx ‖y − Φx‖2
2 + λ‖x‖1 has no such linear relationship with the

solution to the rescaled problem minx ‖y − ΦDx‖2
2 + λ‖x‖1. This analysis

warns that rescaling Φ may be problematic in EEG/MEG source localization

and other regression applications when using Lasso-type algorithms.

Admittedly, SBL is not perfect. The main drawback is that SBL generally

involves large computational load. Some strategies have been used to speed up

SBL. For example, using the marginalized likelihood method [133], several fast

algorithms have been derived [79, 70]. Using the connection between SBL and

Lasso-type algorithms [149, 171, 143, 170], one can obtain optimal SBL solutions

by iteratively performing Lasso-type algorithms several times. Since Lasso-type

algorithms become more efficient year by year, using this iteration strategy also

greatly benefits SBL. However, SBL is still slower than some efficient algorithms,

such as greedy algorithms or message passing algorithms. Thus, new strategies are

desired to speed up SBL, and more efficient SBL algorithms are needed.

Another drawback of SBL is that the estimation of noise variance is not

reliable. Learning rules for the noise variance in most SBL algorithms are not

effective in noisy environments. Thus, most SBL algorithms [70, 153, 154, 152] use

some fixed sub-optimal values, or require users or other algorithms to provide the

value, instead of learning it. Recently, an effective empirical strategy to enhance

these learning rules has been proposed [174, 171], which helps SBL achieve satis-

factory solutions. However, this strategy does not completely solve this problem.

More effective methods and theoretical guidance are called for.

I.D Contributions

The contributions of this work can be summarized as follows:

1. From the perspective of methodologies, the work explores and exploits corre-
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lation structures in sparse signal recovery models. In particular, algorithms

to explore and exploit intra-block correlation in the block sparse model [171,

165], temporal correlation in the canonical MMV model [174, 172, 173, 143],

spatiotemporal correlation in the spatiotemporal sparse model [169, 175], and

temporal correlation in short durations in the time-varying sparse model have

been developed. It has been shown that exploiting the correlation structures

in addition to sparsity can significantly improve recovery performance, and

it is crucial to the recovery of natural signals which are not sparse or have

no sparse representations [167, 168, 169].

2. From the perspective of algorithm frameworks, this work proposes the block

sparse Bayesian learning (BSBL) framework [171, 174]. The BSBL frame-

work is the key to solving inverse problems in the block sparse model, the

MMV model, the spatiotemporal sparse model and the time-varying spar-

sity model. It also provides flexibility to exploit various kinds of correlation

structures in these models. More importantly, it has the ability to recover

signals which are not sparse or have no sparse representations [167, 168, 169].

So far, only the BSBL framework has such ability in the field.

3. From the perspective of algorithms,

• SBL algorithms have been developed for the MMV model [174, 172, 173,

143], the block sparse model [171, 165, 79], the spatiotemporal sparse

model [169, 175], and the time-varying sparse model. Most of them

have the best recovery performance among existing algorithms in the

field. These algorithms largely enrich the SBL family.

• By connecting the derived SBL algorithms to iterative reweighted `1 al-

gorithms [143, 170] and iterative reweighted `2 algorithms [173], a new

family of sparse penalties which exploit correlation have been derived.

By combining these penalties and traditional sparsity-encouraging penal-

ties, one can design new algorithms according to specific tasks or re-
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quirements.

• Motivated by the connection between Group-Lasso-type algorithms and

BSBL algorithms, strategies [171, 143, 173, 170] to modify existing

Group-Lasso-type algorithms and mixed-norm minimization algorithms

to explore and exploit correlation structures have been proposed. With

these modifications, these existing algorithms have significant improved

performance.

• Automatically estimating the regularizer λ (which is modeled as noise

variance) in most SBL algorithms is problematic in practical noisy envi-

ronments. By modifying some quantities in the estimation procedures,

this problem has been solved to a large degree [174, 171]. With this

modification, existing SBL algorithms have improved performance and

do not need users to assign fixed values, which largely relax users’ bur-

den in the tasks of feature selection, source localization and so on.

4. From the perspective of applications, the derived algorithms have achieved

remarkable success in various applications, including compressed sensing

[167, 168, 169], feature selection [143, 175], face recognition [78], wireless

communication, EEG/MEG source localization, brain connectivity analysis,

and earthquake detection, especially in the following two applications.

• The derived BSBL algorithms and spatiotemporal SBL algorithms solved

the bottleneck in compressed sensing of raw ECG and EEG record-

ings for energy-efficient wireless telemonitoring [167, 168, 169]. So far,

no other compressed sensing algorithm can solve this bottleneck, since

these raw recordings are not sparse in the time domain and also not suf-

ficiently sparse in transformed domains (e.g. the wavelet domain and

the DCT domain)

• The derived T-MSBL algorithms and spatiotemporal SBL algorithms

achieved much higher accuracy in predicting patients’ cognition lev-
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els from their MRI measures than traditional and state-of-the-art algo-

rithms [143, 175].
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In Chapter I.A.2 we have introduced the canonical block sparse model. Its

mathematical expression is given by

y = Φx + v, (II.1)

where y ∈ RM×1, Φ ∈ RM×N(M � N), x ∈ RN×1, and v ∈ RM×1. x has the

block structure, i.e.,

x = [x1, · · · , xd1︸ ︷︷ ︸
xT
1

, · · · , xdg−1+1, · · · , xdg︸ ︷︷ ︸
xT
g

]T (II.2)

where di(∀i) are not necessarily identical. Among the g blocks, only k blocks are

nonzero, where k � g. A signal with the block structure is called a block sparse

signal. For a block sparse signal, exploiting its block structure by employing the

block sparse model can achieve better performance than employing the basic SMV

model [124, 9, 43].

There are many algorithms for this model. Typical algorithms include

Model-CoSaMp [9], Block-OMP [43], and Group-Lasso type algorithms such as

the original Group Lasso algorithm [160], Group Basis Pursuit [137], and Mixed

`2/`1 Program [44]. These algorithms require to know the block partition. Other

algorithms do not need to know the block partition, but need to know other a

priori information (e.g. the number of nonzero elements), such as StructOMP [65].

Very recently, CluSS-MCMC [159] and BM-MAP-OMP [101] are proposed, which

require very little a priori knowledge.

However, few of existing algorithms consider intra-block correlation, i.e.,

correlation among amplitudes of elements within each block. But in fact, the intra-

block correlation widely exists in practical signals, such as physiological signals

[167], images, and wavelet coefficients of speech. For example, in the compressed

sensing of an image, each block corresponds to a patch in the image, while in

each individual patch, pixels have very similar tone indicating their amplitudes

are highly correlated (if the image is modeled as a random field).

This chapter derives a number of algorithms that adaptively learn and ex-

ploit the intra-block correlation for better recovery performance. The proposed
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algorithms are the first ones in the category that adaptively learn and exploit the

intra-block correlation for improved recovery performance. Extensive simulations

and experiments on real-world datasets are conducted, showing that the algorithms

significantly outperform competitive algorithms especially when such correlation

is high.

By connecting these algorithms to the Group-Lasso type algorithms, a

promising strategy is proposed to incorporate the intra-block correlation in the

Group-Lasso type algorithms to improve their performance.

Insight into the effect of the intra-block correlation on algorithms’ perfor-

mance is also given. It is generally viewed that an MMV model is a special case of

a block sparse model. But we found the effect of the intra-block correlation on al-

gorithms’ performance is quite different from the effect of the temporal correlation

in an MMV model [174].

For the situation when the block partition (II.2) is unknown, a simple ap-

proximate model and associated algorithms are proposed. These algorithms are

effective especially in noisy environments.

In this chapter bold symbols are reserved for vectors and matrices. For

square matrices A1, · · · ,Ag, diag{A1, · · · ,Ag} denotes a block diagonal matrix

with principal diagonal blocks being A1, · · · ,Ag in turn. Tr(A) denotes the trace

of A. γ � 0 means each element in the vector γ is nonnegative.

II.A Block Sparse Bayesian Learning Framework

For the block sparse model, we proposed a block sparse Bayesian learning

(BSBL) framework [165, 171]. It is an extension of the basic sparse Bayesian

learning (SBL) framework [132, 153]. In this framework, each block xi ∈ Rdi×1 is

assumed to satisfy a parameterized multivariate Gaussian distribution:

p(xi; γi,Bi) ∼ N (0, γiBi) i = 1, · · · , g (II.3)
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with the unknown hyperparameters γi and Bi. Here γi is a nonnegative parameter

controlling the block-sparsity of x. When γi = 0, the i-th block becomes zero.

During the learning procedure most γi tend to be zero, due to the mechanism of

automatic relevance determination [98]. Thus sparsity in the block level is encour-

aged. Bi ∈ Rdi×di is a positive definite matrix, capturing the correlation structure

of the i-th block. Under the assumption that blocks are mutually uncorrelated,

the prior of x is

p(x; {γi,Bi}i) ∼ N (0,Σ0) (II.4)

where Σ0 is a block-diagonal matrix with the i-th principal block given by γiBi,

i.e.,

Σ0 ,


γ1B1

γ2B2

. . .

γgBg

 . (II.5)

Besides, assume the noise vector has the parameterized multivariate Gaussian dis-

tribution

p(v;λ) ∼ N (0, λI) (II.6)

where λ is a positive scalar. Therefore the posterior of x is given by

p(x|y;λ, {γi,Bi}gi=1) = N (µx,Σx) (II.7)

with

µx = Σ0Φ
T
(
λI + ΦΣ0Φ

T
)−1

y (II.8)

Σx = (Σ−1
0 +

1

λ
ΦTΦ)−1 (II.9)

Once the parameters λ, {γi,Bi}gi=1 are estimated, the Maximum-A-Posterior (MAP)

estimate of x, denoted by x̂, can be directly obtained from the mean of the poste-

rior, i.e. x̂ = µx.
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The parameters are generally estimated by the Type II maximum likelihood

procedure [132, 84]. This is equivalent to minimize the following negative log-

likelihood with respect to each parameter

L(Θ) , −2 log

∫
p(y|x;λ)p(x; {γi,Bi}i)dx

= log |λI + ΦΣ0Φ
T |+ yT (λI + ΦΣ0Φ

T )−1y, (II.10)

where Θ denotes all the parameters, i.e., Θ , {λ, {γi,Bi}gi=1}. This framework is

called the BSBL framework [165, 171].

To derive learning rules for these parameters, one can use various optimiza-

tion methods. Different optimization methods result in different SBL algorithms.

Each algorithm includes three learning rules, i.e., the learning rules for γi, Bi, and

λ.

The learning rule for γi is the main body of an algorithm. Different γi

learning rules result in different speed 1, and determine the possible best recovery

performance when optimal values of λ and Bi are given.

The λ learning rule is also important. If one is unable to find an optimal

(or a good suboptimal) value for λ, the recovery performance can be very poor

even if the γi learning rule could potentially lead to perfect recovery performance.

As for Bi(∀i), it can be shown [174] that in noiseless environments the

unique and global minimum of (II.10) always leads to the true sparse solution

regardless of the value of Bi. In other words, Bi only affects the probability to

converge to local minima. Therefore, one can impose various constraints on the

form of Bi to achieve better recovery performance and also prevent overfitting.

II.B Algorithms for the Situation When the Block Parti-

tion is Known

This section presents three algorithms derived from the BSBL framework.

They need to know the block partition. The three algorithms have different char-
1The λ learning rule also affects the speed, but its effect is not dominant.
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acteristics, which will be discussed in Section II.B.4.

II.B.1 BSBL-EM: Use the EM Method

We first use the Expectation-Maximization (EM) method to derive the

learning rules for the parameters. Treating x as hidden variables, we construct

the Q-function

Q(Θ) = Ex|y;Θ(old)

[
log p(y,x; Θ)

]
= Ex|y;Θ(old) [log p(y|x;λ)] + Ex|y;Θ(old)

[
log p(x; {γi,Bi}i)

]
.

Computing the derivatives of Q(Θ) w.r.t. γi and λ and then setting them

to zero, we obtain the learning rules:

γi ←
1

di
Tr
[
B−1
i

(
Σi
x + µix(µ

i
x)
T
)]
, ∀i (II.11)

λ ← ‖y −Φµx‖2
2 + Tr(ΣxΦ

TΦ)

M
. (II.12)

where µix ∈ Rdi×1 is the corresponding i-th block in µx, and Σi
x ∈ Rdi×di is the

corresponding i-th principal diagonal block in Σx. Note that the λ learning rule

(II.12) is not robust in low SNR cases. By numerical study, we empirically find that

one of the reasons is the disturbance caused by the off-block-diagonal elements in

Σx and ΦTΦ. Therefore, we set their off-block-diagonal elements to zero, leading

to the learning rule

λ ← ‖y −Φµx‖2
2 +

∑g
i=1 Tr(Σi

x(Φ
i)TΦi)

M
, (II.13)

where Φi ∈ RM×di is the submatrix of Φ, which corresponds to the i-th block of

x. This λ learning rule is better than (II.12) in generally noisy environments (e.g.,

SNR < 20dB). In noiseless cases there is no need to use any λ learning rules. Just

fixing λ to a small value, e.g., 10−10, can obtain satisfactory performance.

Computing the derivatives of Q(Θ) w.r.t. Bi and setting it to zero, we can

also derive a learning rule for Bi. However, assigning each block with a different

Bi can result in overfitting. When blocks have the same size, an effective strategy
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to avoid overfitting is parameter averaging, i.e. constraining Bi = B(∀i). Using

this constraint, the learning rule for B can be derived as follows:

B← 1

g

g∑
i=1

Σi
x + µix(µ

i
x)
T

γi
. (II.14)

However, the resulting algorithm’s performance can be improved by further con-

straining the matrix B. The idea is to find a positive definite and symmetric

matrix B̂ so that it is determined by one parameter but is close to B especially

along the main diagonal and the main sub-diagonal. Further, we find that for

many applications modeling elements of a block as a first-order Auto-Regressive

(AR) process is sufficient to model the intra-block correlation [172]. In this case,

the corresponding covariance matrix of the block is a Toeplitz matrix with the

following form:

Toeplitz([1, r, · · · , rd−1]) =


1 r · · · rd−1

...
...

rd−1 rd−2 · · · 1

 (II.15)

where r is the AR coefficient and d is the block size. Here we constrain B̂ to have

this form. Instead of estimating r from the BSBL cost function, we empirically

calculate its value by r , m1

m0
, where m0 (res. m1) is the average of the elements

along the main diagonal (res. the main sub-diagonal) of the matrix B in (II.14).

When blocks have different sizes, the above idea can still be used. First,

using the EM method we can derive the rule for each Bi:

Bi ←
1

γi

[
Σi
x + µix(µ

i
x)
T
]
. (II.16)

Then, for each Bi we calculate the averages of the elements along the main diagonal

and the main sub-diagonal, i.e. mi
0 and mi

1, respectively, and average mi
0 and mi

1

for all blocks as follows: m0 ,
∑g

i=1m
i
0 and m1 ,

∑g
i=1m

i
1. Finally, we have

r , m1

m0
, from which we construct B̂i for the i-th block:

B̂i = Toeplitz([1, r, · · · , rdi−1]) ∀i (II.17)

We denote the above algorithm by BSBL-EM.
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II.B.2 BSBL-BO: the Bound-Optimization Method

The derived BSBL-EM has good recovery performance but has slow speed.

This is mainly due to the EM based γi learning rule. For the basic SBL algorithm,

Tipping [132] derived a fixed-point based γi learning rule to replace the EM based

one, which has faster speed but is not robust in some noisy environments. Here

we derive a much fast γi learning rule, which is based on the bound-optimization

method (also known as the Majorization-Minimization method) [42, 123]. The

algorithm adopting this γi learning rule is denoted by BSBL-BO (it uses the

same learning rules for Bi and λ in BSBL-EM). It not only has fast speed, but

also has good performance in noisy environments.

Note that the original cost function (II.10) consists of two terms. The first

term log |λI + ΦΣ0Φ
T | is concave with respect to γ � 0, where γ , [γ1, · · · , γg]T .

The second term yT (λI + ΦΣ0Φ
T )−1y is convex with respect to γ � 0. Since our

goal is to minimize the cost function, we choose to find an upper-bound for the

first item and then minimize the upper-bounded cost function.

We use the supporting hyperplane of the first term as its upper-bound. Let

γ∗ be a given point in the γ-space. We have

log |λI + ΦΣ0Φ
T | ≤ log |λI + ΦΣ∗0Φ

T |+
g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )(γi − γ∗i )

=

g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γi + log |Σ∗y|

−
g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γ∗i (II.18)

where Σ∗y = λI + ΦΣ∗0Φ
T and Σ∗0 = Σ0|γ=γ∗ . Substituting (II.18) into the cost

function (II.10) we have

L(γ) ≤
g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γi + yT (λI + ΦΣ0Φ

T )−1y

+ log |Σ∗y| −
g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γ∗i

, L̃(γ) (II.19)
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The function L̃(γ) is convex over γ, and when γ = γ∗, we have L(γ∗) = L̃(γ∗).

Further, for any γmin which is the minimum point of L̃(γ), we have the follow-

ing relationship: L(γmin) ≤ L̃(γmin) ≤ L̃(γ∗) = L(γ∗). This indicates that when

we minimize the surrogate function L̃(γ) over γ, the resulting minimum point

effectively decreases the original cost function L(γ). We can use any convex op-

timization software to optimize the function (II.19). However, this takes more

time than BSBL-EM and experiments have shown that also leads to poorer recov-

ery performance. Therefore, we consider another surrogate function. Using the

identity:

yT (λI + ΦΣ0Φ
T )−1y ≡ min

x

[1

λ
‖y −Φx‖2

2 + xTΣ−1
0 x
]

(II.20)

where the optimal x is µx, we have

L̃(γ) = min
x

1

λ
‖y −Φx‖2

2 + xTΣ−1
0 x +

g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γi

+ log |Σ∗y| −
g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γ∗i . (II.21)

Then, a new function

G(γ,x) ,
1

λ
‖y −Φx‖2

2 + xTΣ−1
0 x +

g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γi

+ log |Σ∗y| −
g∑
i=1

Tr
(
(Σ∗y)

−1ΦiBi(Φ
i)T )γ∗i (II.22)

is defined, which is the upper-bound of L̃(γ). Note that G(γ,x) is convex in both

γ and x. It can be easily shown that the solution (γ�) of L̃(γ) is the solution

(γ�,x�) of G(γ,x). Thus, G(γ,x) is our final surrogate cost function.

Taking the derivative of G with respect to γi, we can obtain

γi ←

√
xTi B−1

i xi

Tr
(
(Φi)T (Σ∗y)

−1ΦiBi)
(II.23)

Due to this γi learning rule, BSBL-BO takes much fewer iterations than BSBL-EM,

but has almost the same recovery performance as BSBL-EM.



28

II.B.3 BSBL-`1: the Hybrid of BSBL and Group-Lasso Type Algo-

rithms

Since the cost function of BSBL-EM and BSBL-BO is a function of γ, they

essentially operate in the γ-space. In contrast, most existing algorithms for the

block sparse model directly operate in the x-space, minimizing a data fit term

and a penalty which are both functions of x. It is interesting to see the relation

between our BSBL algorithms and those algorithms.

Using the idea we presented in [170], an extension of the duality space anal-

ysis for the basic SBL framework [149], we can transform the BSBL cost function

(II.10) from the γ-space to the x-space. Since λ and Bi(∀i) are regularizers, for

convenience we first treat them as fixed values.

First, using the identity (II.20) we can upper-bound the BSBL cost function

as follows:

L(x,γ) = log |λI + ΦΣ0Φ
T |+ 1

λ
‖y −Φx‖2

2 + xTΣ−1
0 x. (II.24)

By first minimizing over γ and then minimizing over x, we have:

x = arg min
x

{
‖y −Φx‖2

2 + λgc(x)
}
, (II.25)

with the penalty gc(x) given by

gc(x) , min
γ�0

{
xTΣ−1

0 x + log |λI + ΦΣ0Φ
T |
}
. (II.26)

We now look at the concavity of gc(x). Since h(γ) , log |λI + ΦΣ0Φ
T | is concave

and non-decreasing w.r.t.γ � 0, we have

log |λI + ΦΣ0Φ
T | = min

z�0
zTγ − h∗(z) (II.27)

where h∗(z) is the concave conjugate of h(γ) and can be expressed as h∗(z) =

minγ�0 zTγ − log |λI + ΦΣ0Φ
T |. Thus using (II.27) we can express (II.26) as

gc(x) = min
γ,z�0

xTΣ−1
0 x + zTγ − h∗(z)

= min
γ,z�0

∑
i

(xTi B−1
i xi
γi

+ ziγi

)
− h∗(z) (II.28)
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Minimizing (II.28) over γi, we have

γi = z
− 1

2
i

√
xTi B−1

i xi, ∀i (II.29)

Plugging it in (II.28) leads to

gc(x) = min
z�0

∑
i

(
2z

1
2
i

√
xTi B−1

i xi
)
− h∗(z). (II.30)

Using (II.30), the problem (II.25) now becomes:

x = arg min
x
‖y −Φx‖2

2 + λ
[

min
z�0

∑
i

(
2z

1
2
i

√
xTi B−1

i xi
)
− h∗(z)

]
. (II.31)

To further simplify the expression, we now calculate the optimal values

of z
1
2
i . However, we do not need to calculate the optimal values from the above

expression. According to the duality property, from the relation (II.27) we can

directly obtain the optimal value of z
1/2
i as follows:

z
1
2
i =

(∂ log |λI + ΦΣ0Φ
T |

∂γi

) 1
2

=
(

Tr
[
BiΦ

iT
(
λI + ΦΣ0Φ

T )−1Φi
]) 1

2
. (II.32)

Note that zi is a function of γ, while according to (II.29) γi is a function of xi (and

zi). This means that the problem (II.31) should be solved in an iterative way. In

the k-th iteration, once having used the learning rules (II.29) and (II.32) to obtain

(z
(k)
i )1/2, we need to solve the following optimization problem:

x(k+1) = arg min
x
‖y −Φx‖2

2 + λ
∑
i

w
(k)
i

√
xTi B−1

i xi, (II.33)

where w
(k)
i , 2(z

(k)
i )1/2. And the resulting x(k+1) will be used to update γi and zi

for calculating the solution in the next iteration.

The solution to (II.33) can be calculated using any group-Lasso type al-

gorithms. To see this, letting ui , w
(k)
i B

−1/2
i xi, u , [uT1 , · · · ,uTg ]T , and H ,

Φ · diag{B1/2
1 /w

(k)
1 , · · · ,B1/2

g /w
(k)
g }, the problem (II.33) can be transformed to the

following one

u(k+1) = arg min
u
‖y −Hu‖2

2 + λ
∑
i

‖ui‖2. (II.34)
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Clearly, each iteration is a standard group-Lasso type problem, while the whole

algorithm is an iterative reweighted algorithm.

In the above development we did not consider the learning rules for the

regularizers λ and Bi. In fact, their computation greatly benefits from this iterative

reweighted form. Since each iteration is a group-Lasso type problem, the optimal

value of λ can be automatically selected in the group Lasso framework [130]. Also,

since each iteration provides a block-sparse solution, which is close to the true

solution, Bi can be directly calculated from the solution of the previous iteration.

In particular, each non-zero block in the previous solution can be treated as a

segment of AR(1) process, and its AR coefficient is thus estimated. The AR

coefficients associated with all the non-zero blocks are averaged 2, and the average

value, denoted by r̄, is used to construct each B̂i according to (II.17).

The above algorithm is denoted by BSBL-`1. Now we discuss the connec-

tion of BSBL-`1 to existing algorithms. When we do not consider the intra-block

correlation (i.e. setting Bi = I(∀i)) and also do not iterate the algorithm, BSBL-`1

reduces to the canonical group Lasso algorithm [160]. When we iterate the algo-

rithm but ignore the intra-block correlation, the algorithm reduces to the block

version of the iterative reweighted `1 algorithm [17].

In fact, BSBL-`1 can be seen as a hybrid of BSBL algorithms and group-

Lasso type algorithms. From one side, it has the ability to adaptively learn and

exploit the intra-block correlation for better performance, as BSBL-EM and BSBL-

BO. From the other side, since it only takes few iterations (generally about 2 to

5 iterations in noisy environments) and each iteration can be implemented by any

efficient group-Lasso type algorithm, it is much faster and is especially suitable for

large-scale datasets, compared to BSBL-EM and BSBL-BO.

The algorithm also provides insights if we want to equip group-Lasso type

algorithms with the ability to exploit intra-block correlation for better recovery

performance. We can consider this iterative reweighted method and change the `2

2The averaging is necessary. Otherwise, the algorithm may have poor performance.
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norm of xi, i.e., ‖xi‖2, to the Mahalanobis-distance type measure
√

xTi B−1
i xi.

II.B.4 Remarks on BSBL-EM, BSBL-BO, and BSBL-`1

Generally, BSBL-EM has better recovery performance than the other two.

But its speed is slower due to the use of the EM method.

BSBL-`1 is much faster than BSBL-EM due to the use of Group-Lasso type

algorithms. Its speed is determined by a used Group-Lasso type algorithm. Dif-

ferent Group-Lasso type algorithms and software packages [137, 44, 26, 80, 31, 25]

can result in different speed of BSBL-`1. Also, it may inherit some other char-

acteristics of the used Group-Lasso type algorithm. For example, when BSBL-`1

uses the SLEP software [80] or the SPGL1 software [137] to compute Group-Lasso

solutions in noiseless situations, it cannot obtain good recovery performance. In

contrast, using the CVX software [26] in noiseless situations can achieve satisfac-

tory performance, even better than BSBL-EM and BSBL-BO (see Section II.D.1).

Therefore, one needs to be careful when choosing a Group-Lasso type algorithm

for BSBL-`1 in specific applications.

BSBL-BO has a good balance between speed and recovery performance.

It is generally slower than BSBL-`1 but much faster than BSBL-EM, while its

recovery performance is slightly poorer than BSBL-EM but better than BSBL-`1.

Among the three algorithms, BSBL-EM and BSBL-BO has the ability to

directly recover non-sparse signals or signals with non-sparse representation, as

long as the non-sparse signals or the representation coefficients have correlation

structures. Thus, both BSBL-EM and BSBL-BO can be used for compressed

sensing of raw physiological signals for energy-efficient wireless telemonitoring [167,

168, 169]. In contrast, BSBL-`1 does not have satisfactory performance in this

application.

There is another algorithm [79] derived from the framework using a fast

marginal likelihood method [133]. It has slightly poorer recovery performance

than BSBL-EM and BSBL-BO, but has much faster speed.



32

II.C Algorithms for the Situation When the Block Parti-

tion is Unknown

Now we extend the previous framework to derive algorithms when block

partition is unknown. For the algorithm development, we assume that all the

blocks are of equal size h and that the non-zeros blocks are arbitrarily located.

Later we will see that the approximation of equal block-size is not limiting. Note

that though the resulting algorithms are not very sensitive to the choice of h,

algorithmic performance can be further improved if a suitable value of h is selected.

We will comment more on h later.

This model is consistent with communication channel modeling where an

ideal sparse channel consisting of a few specular multi-path components has a

discrete-time, bandlimited, baseband representation, which exhibits a block sparse

structure with the block centers determined by the arbitrary arrival times of the

multi-path components. Since the blocks are arbitrarily located they can overlap

giving rise to larger unequal blocks.

Given the identical block size h, there are p , N − h + 1 possible blocks

in x, which overlap each other. The i-th block starts at the i-th element of x and

ends at the (i + h − 1)-th element. All the nonzero elements of x lie in some of

these blocks. Similar to Section II.B, for the i-th block, we assume it satisfies a

multivariate Gaussian distribution with the mean given by 0 and the covariance

matrix given by γiBi, where Bi ∈ Rh×h. So we have the prior of x as the form:

p(x) ∼ Nx(0,Σ0). Note that due to the overlapping locations of these blocks, Σ0

is no longer a block diagonal matrix. It has the structure that each γiBi lies along

the principal diagonal of Σ0 and overlaps other γjBj in neighbor. Thus, we cannot

directly use the previous BSBL framework and need to make some modifications.

To facilitate the use of the BSBL framework, we expand the covariance

matrix Σ0 as follows:

Σ̃0 = diag{γ1B1, · · · , γpBp} ∈ Rph×ph (II.35)
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Figure II.1 Structures of the original Σ0 and the expanded Σ̃0. Each color block

corresponds to a possible nonzero block in x.

Note that now γiBi does not overlap other γjBj(i 6= j). Figure II.1 shows the

structures of the original Σ0 and the expanded Σ̃0. The Σ̃0 implies the decompo-

sition of x

x =

p∑
i=1

Eizi, (II.36)

where E{zi} = 0, E{zizTj } = δi,jγiBi (δi,j = 1 if i = j; otherwise, δi,j = 0), and

z , [zT1 , · · · , zTp ]T ∼ Nz(0, Σ̃0). Ei ∈ RN×h is a zero matrix except that the part

from its i-th row to (i + h− 1)-th row is replaced by the identity matrix I. Then

the original model (II.1) can be expressed as:

y =

p∑
i=1

ΦEizi + v , Az + v, (II.37)

where A , [A1, · · · ,Ap] with Ai , ΦEi. Now we see the new model (II.37) is

exactly a BSBL model.

Therefore, following the development of BSBL-EM, BSBL-BO, and BSBL-

`1, we can derive algorithms for this expanded model, which are called EBSBL-

EM, EBSBL-BO, and EBSBL-`1, respectively.
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In the above development we assumed that all the blocks have the same

size h, which is known. However, this assumption is not crucial for practical use.

When the size of a non-zero block of x, say xj, is larger or equal to h, it can be

recovered by a set of (overlapped) zi (i ∈ S, S is a non-empty set). When the size

of xj is smaller than h, it can be recovered by a zi for some i. In this case, since zi

is larger, the elements in zi with global locations (i.e., the indexes in x) different

from those of elements in xj are very close to zero. In Section II.D.5, we will see

different values of h lead to similar performance.

The above insight also implies that even if the block partition is unknown,

one can partition a signal into a number of non-overlapping blocks with user-

defined block sizes, and then perform the BSBL algorithms. But generally the

BSBL algorithms are more sensitive to the block sizes than the EBSBL algorithms

when recovering block sparse signals (see Section II.D.6) 3.

Note that our approach using the expanded model in the situation when

block partition is unknown is quite different from existing approaches [159, 65,

101]. An advantage of our approach is that it simplifies the algorithm, which,

in turn, increases robustness in noisy environments, as shown in Section II.D.

Another benefit of this approach is that it facilitates the exploitation of intra-block

correlation. Since the intra-block correlation widely exists in practical signals and

exploiting such correlation can significantly improve performance, our approach is

more competitive than existing approaches.

II.D Simulations

This section presents some representative experimental results based on

computer simulations. Experimental results on real-world data can be found in

later chapters.

Every set of experiment settings consisted of 400 trials. The matrix Φ

3When directly recovering non-sparse signals, the BSBL algorithms are not sensitive to the block sizes
[167].



35

in all the experiments was generated as a zero mean random Gaussian matrix

with columns normalized to unit `2 norm. In noisy experiments the Normal-

ized Mean Square Error (NMSE) was used as a performance index, defined by

‖x̂− xgen‖2
2/‖xgen‖2

2, where x̂ was the estimate of the true signal xgen; in noiseless

experiments the success rate was used as a performance index, defined as the per-

centage of successful trials in the 400 trials (A successful trial was defined as the

one when NMSE ≤ 10−5).

In noiseless experiments, BSBL-`1 chose the Mixed `2/`1 Program (imple-

mented by the CVX toolbox [26])to perform its every iteration; in noisy experi-

ments, it chose the Group Basis Pursuit. For all of our algorithms, when calculating

r, the formula r , sign(m1

m0
) min{|m1

m0
|, 0.99}, instead of the original formula r = m1

m0
,

was used to ensure the calculated r is feasible (not larger than 1 or smaller than

-1). The same modification goes to r̄.

The Matlab codes and demo files of BSBL algorithms and EBSBL algo-

rithms can be downloaded at https://sites.google.com/site/researchbyzhang/bsbl

, or http://dsp.ucsd.edu/∼zhilin/BSBL.html .

II.D.1 Phase Transition

We first examined the empirical phase transitions [34] for our three BSBL al-

gorithms, Block-OMP, Model-CoSaMP, the Mixed `2/`1 Program, and Group Basis

Pursuit when exactly recovering a block sparse signal in noiseless environments.

The phase transition is generally used to illustrate how sparsity level (defined as

ρ = K/M , where K is the number of non-zero elements) and indeterminacy (de-

fined as δ = M/N) affect algorithms’ success in exact recovery of sparse signals.

Each point on the plotted phase transition curve corresponds to the success rate

of an algorithm larger than or equal to 0.99 in 400 trials; above the curve the

algorithm’s success rate sharply drops, while below the curve the success rate is 1.

In the experiment the indeterminacy δ = M/N ran from 0.05 to 0.5 with

N fixed to 1000. For each M and N , a block sparse signal was generated, which
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consisted of 40 blocks with identical block size 25. The number of non-zero blocks

varied from 1 to 20, and thus the number of non-zero elements varied from 25

to 500. Locations of the non-zero blocks were determined randomly. The block

partition was known to the algorithms, but the number of non-zero blocks and their

locations were unknown to the algorithms. Each non-zero block was generated by

a multivariate Gaussian distribution with zero mean and covariance matrix Σgen.

By changing the covariance matrix, thus changing intra-block correlation, we could

study the effect of intra-block correlation on phase transitions of the algorithms.

We first considered the situation when there was no correlation within each

non-zero block (i.e., Σgen = I). The empirical phase transition curves of all the

algorithms are shown in Figure II.2 (a). Clearly, our three BSBL algorithms have

the best performance. It is worth noting that when δ ≥ 0.15, BSBL-`1 exactly

recovers block sparse signals with ρ = 1 with a high success rate (≥ 0.99).

The results become more interesting when intra-block correlation was 0.95

(i.e., Σgen = Toeplitz([1, 0.95, · · · , 0.9524])). The empirical phase transition curves

are shown in Figure II.2 (b), where all the three BSBL algorithms have improved

performance. BSBL-`1 can exactly recover sparse signals with ρ = 1 even δ < 0.15.

And BSBL-EM and BSBL-BO now can exactly recover sparse signals with ρ = 1

when δ ≥ 0.25. Opposite to BSBL algorithms, the compared four algorithms show

little change in performance when the intra-block correlation changes from 0 to

0.95.

These results are very interesting and surprising, since this may be the

first time that an algorithm shows the ability to recover a block sparse signal of

M non-zero elements from M measurements with a high success rate (≥ 0.99).

Obviously, exploiting block structure and intra-block correlation plays a crucial

role here. Further, these results indicate the advantages of the BSBL framework.

Figure II.3 (a) and (b) shows the empirical phase transitions of all the algo-

rithms when elements of each non-zero block satisfy Bimodal Rayleigh distribution

(i.e., |xi| satisfies a Rayleigh distribution with the parameter σ = 3) and Laplacian
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(b) Intra-Block Correlation: 0.95

Figure II.2 Empirical 99% phase transitions of all the algorithms (a) when there

was no correlation within each non-zero block, and (b) when the intra-block corre-

lation was 0.95. Each point on a phase transition curve corresponds to the success

rate larger than or equal to 0.99.

distribution (with zero mean and the scale parameter b = 10), respectively. We

can see that the superiority of the BSBL algorithms is obvious over a wide range

of distributions.

II.D.2 Benefit from Exploiting Intra-Block Correlation

The above results have given some hints on the benefit of exploiting intra-

block correlation. To see this clearer, another noiseless experiment was carried out.

The matrix Φ was of the size 100 × 300. The signal consisted of 75 blocks with

identical size. Only 20 of the blocks were nonzero. All the nonzero blocks had the

same intra-block correlation (generated as in the above subsection), whose value

ranged from -0.99 to 0.99. BSBL-EM, BSBL-BO and BSBL-L1 were performed in

two ways. First, they adaptively learned and exploited the intra-block correlation.

In the second case, they ignored the correlation (i.e. setting Bi = I(∀i)).

The results are shown in Figure II.4 (a). First, we see that exploiting the
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(a) Bimodal Rayleigh
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(b) Laplacian

Figure II.3 Empirical 99% phase transitions of all the algorithms when elements

in each non-zero block satisfied (a) a Bimodal Rayleigh distribution, and (b) a

Laplacian distribution. Each point on a phase transition curve corresponds to the

success rate larger than or equal to 0.99.

intra-block correlation greatly improved the performance of the BSBL algorithms.

Second, when ignoring the intra-block correlation, the performance of the BSBL

algorithms showed no obvious relation to the correlation 4. In other words, no

obvious negative effect is observed if ignoring the intra-block correlation. Note

that the second observation is quite different from the observation on temporal

correlation in MMV models [174], where we found that if temporal correlation

is not exploited, algorithms have poorer performance with increasing temporal

correlation values 5.

In the above experiment all the nonzero blocks had the same intra-block

4This phenomenon can also be observed from the performance of the compared algorithms in Section
II.D.1, where their performance had little change when intra-block correlation dramatically varied.

5The temporal correlation in an MMV model can be viewed as the intra-block correlation in the
vectorized MMV model (which is a block sparse model). However, it should be noted that the sensing
matrix in the vectorized MMV model has the specific structure Φ ⊗ IL [174], where Φ is the sensing
matrix in the original MMV model, ⊗ indicates the Kronecker product, IL is the identity matrix with
the dimension L× L, and L is the number of measurement vectors in the MMV model. This structure
is not present in the block sparsity model considered in this work and is believed to account for the
different behavior with respect to the correlation.
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Figure II.4 (a) shows the benefit from exploiting intra-block correlation. (b) shows

the performance of BSBL-EM in three correlation cases.

correlation. A natural question is: when different non-zero blocks have largely

different intra-block correlation values, can our proposed algorithms still exploit

the correlation to improve performance? To answer it, we considered three corre-

lation cases. In the first case the intra-block correlation of each nonzero block was

uniformly chosen from -1 to 1; in the second case, uniformly chosen from 0 to 1;

and in the third case, uniformly chosen from 0.7 to 1. BSBL-EM was performed

in two ways, i.e. exploiting correlation and ignoring correlation. The averaged

results corresponding to the three cases are shown in Figure II.4 (b), indicated by

‘Case 1’, ‘Case 2’, and ‘Case 3’, respectively. We can see in Case 3 the benefit from

exploiting the correlation is significant, while in Case 1 the benefit disappears (but

exploiting correlation is not harmful). However, note that the Case 1 rarely hap-

pens in practice. In fact, in many practical problems the intra-block correlation of

all nonzero blocks tends to be positive and high, which corresponds to Case 2 and

Case 3.
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Figure II.5 (a) Performance comparison in different noise levels. (b) Speed com-

parison of the three BSBL algorithms in the noisy experiment.

II.D.3 Performance in Noisy Environments

We compared the three BSBL algorithms, Mixed `2/`1 Program, Group

Lasso, and Group Basis Pursuit at different noise levels. In this experiment M =

128 and N = 512. The generated block sparse signal was partitioned into 64

blocks with identical block size 8. Seven blocks were non-zero, generated as in

Section II.D.1. The intra-block correlation of each block varied from 0.8 to 1

randomly. Gaussian white noise was added so that the SNR, defined by SNR(dB) ,

20 log10(‖Φxgen‖2/‖v‖2), stepped from 5 dB to 25 dB for each generated signal. As

a benchmark result, the ‘oracle’ result was calculated, which was the least-square

estimate of xgen given its true support.

The results are shown in Figure II.5 (a), from which we see our algorithms

have much better performance, especially the performance curves of BSBL-EM and

BSBL-BO almost overlap the ‘Oracle’ performance curve. Figure II.5 (b) gives the

speed comparison of the three algorithms in a laptop with 2.8G Hz CPU and 6G

RAM. Clearly, BSBL-`1 was the fastest among the three, due to the use of Group

Basis Pursuit in its every iteration.
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Figure II.6 Performance comparison in noisy environments (SNR=15 dB) when

block partition was unknown.

II.D.4 Performance When Block Partition Is Unknown

We set up a noisy experiment when block partition was unknown and com-

pared all of our algorithms with StructOMP (given the number of non-zero ele-

ments), BM-MAP-OMP (given the true noise variance), and CluSS-MCMC. The

matrix Φ was of the size 192 × 512. The signal xgen had g0 nonzero blocks with

random size and random locations (not overlapping). g0 was varied from 2 to 10.

The total number of nonzero elements in xgen was fixed to 48. The intra-block cor-

relation in each block randomly varied from 0.8 to 1. SNR was 15 dB. As we stated

in Section II.C, h is not crucial for practical use. To see this, we set h = 4 and

h = 8 for our algorithms. But to prevent from being over-crowded when plotting

performance curves, we only display BSBL-EM and EBSBL-BO with h = 4 and

h = 8. We also performed T-MSBL [174] here. Note that when T-MSBL is used in

the block sparse model, it can be viewed as a special case of BSBL-EM with each
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block size being 1. The results are shown in Figure II.6. We see that our algorithms

outperformed StructOMP, CluSS-MCMC, and BM-MAP-OMP, and that for either

BSBL-EM or EBSBL-BO, setting h = 4 or h = 8 led to similar performance.

II.D.5 Effect of h on the Performance of EBSBL Algorithms

To better see the effect of h on the performance of EBSBL algorithms, an-

other experiment was carried out, in which EBSBL-EM, T-MSBL, CluSS-MCMC

and StructOMP were compared.

The matrix Φ was of the size 80 × 256. The number of nonzero elements

in the signal was fixed to 32, which were randomly put into 4 blocks. So each

block had random size and random location. To more clearly see the effectiveness

of our generalization model, we set intra-block correlation to zero. SNR was 25

dB. For EBSBL-EM, we set h to different values ranging from 2 to 10. The result

(Figure II.7) shows that EBSBL-EM had much better performance than other

compared algorithms. Its performance was only slightly changed when h chose

values from 3 to 10.

II.D.6 Compare BSBL and EBSBL in the Situation When the Block

Partition is Unknown

Before we pointed out that in the situation when the block partition is

unknown, we can use both EBSBL algorithms and BSBL algorithms with a user-

defined h. But one should be aware that when recovering a block sparse signal in

this situation, BSBL algorithms are more sensitive to h than EBSBL algorithms,

especially when the number of zero elements between two non-zero blocks is smaller

than h.

To see this, we compared BSBL-EM and EBSBL-EM using the previous

experiment setting. For both algorithms, we set h to different values ranging from

2 to 10. For each value of h, the experiment was repeated 100 trials. The averaged

NMSE of both algorithms was shown in Figure II.8. We can see the performance
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of BSBL-EM changed dramatically when h changed.

II.E Conclusion

Based on the block sparse Bayesian learning framework and its extension,

in this chapter we proposed a number of algorithms to recover block sparse signals

when their block structure is known or is unknown. These algorithms have the abil-

ity to explore and exploit intra-block correlation in signals for better performance.

Experiments showed that these algorithms significantly outperform existing algo-

rithms. The derived algorithms also suggest that the iterative reweighted frame-

work is a promising method for Group-Lasso type algorithms to exploit intra-block

correlation.
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Motivated by many applications such as EEG/MEG source localization and

direction-of-arrival (DOA) estimation, where a sequence of measurement vectors

are available, the basic SMV model (II.1) has been extended to the multiple mea-

surement vector (MMV) model in [106, 25], given by

Y = ΦX + V, (III.1)

where Y , [Y·1, · · · ,Y·L] ∈ RM×L is an available measurement matrix consisting

of L measurement vectors, X , [X·1, · · · ,X·L] ∈ RN×L is an unknown source

matrix (or called a solution matrix) with each row representing a possible source

1, and V is an unknown noise matrix. A key assumption in the MMV model is

that the support (i.e. indexes of nonzero entries) of every column in X is identical

(referred as the common sparsity assumption [25]). In addition, similar to the

constraint in the SMV model, the number of nonzero rows in X has to be below a

threshold to ensure a unique and global solution [25]. This leads to the fact that

X has a small number of nonzero rows.

It has been shown that compared to the SMV case, the successful recovery

rate can be greatly improved using multiple measurement vectors [25, 44, 45, 73].

For example, Cotter and Rao [25] showed that by taking advantage of the MMV

formulation, one can relax the upper bound in the uniqueness condition for the

solution. Tang, Eldar and their colleagues [128, 45] showed that under certain

mild assumptions the recovery rate increases exponentially with the number of

measurement vectors L. Jin and Rao [73, 74] analyzed the benefits of increasing

L by relating the MMV model to the capacity regions of MIMO communication

channels. All these theoretical results reveal the advantages of the MMV model

and support increasing L for better recovery performance.

However, under the common sparsity assumption we cannot obtain many

measurement vectors in practical applications. The main reason is that the sparsity

profile of practical signals is (slowly) time-varying, so the common sparsity assump-

1Here for convenience we call each row in X a source. The term is often used in application-oriented
literature. The i-th source is denoted by Xi·.
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tion is valid for only a small L in the MMV model. For example, in EEG/MEG

source localization there is considerable evidence [92] that a given pattern of dipole-

source distributions 2 may only exist for 10-20 ms. Since the EEG/MEG sampling

frequency is generally 250 Hz, a dipole-source pattern may only exist through 5

snapshots (i.e. in the MMV model L = 5). In DOA estimation [24], directions

of targets 3 are continuously changing, and thus the source vectors that satisfy

the common sparsity assumption are few. Of course, one can increase the mea-

surement vector number at the cost of increasing the source number, but a larger

source number can result in degraded recovery performance.

Thanks to numerous algorithms for the basic SMV model, most MMV al-

gorithms are obtained by straightforward extension of the SMV algorithms; for

example, calculating the `2 norm of each row of X, forming a vector, and then

imposing the sparsity constraint on the vector. These algorithms can be roughly

divided into greedy algorithms [136, 77], algorithms based on mixed norm opti-

mization [100, 135, 8, 66, 115], iterative reweighted algorithms [149, 25], messaging

passing algorithms [178, 116], and Bayesian algorithms [174, 173, 172, 154].

But for tractability purposes, most existing MMV algorithms (and theoret-

ical works) assume that sources are independent and identically distributed (i.i.d.)

processes. This contradicts real-world scenarios, since a practical source often

has strong temporal correlation. For example, waveform smoothness of biomed-

ical signals has been exploited in signal processing for several decades. Besides,

due to high sampling frequency, amplitudes of successive samplings of a source

are strongly correlated. Recently, Zdunek and Cichocki [163] proposed the SOB-

MFOCUSS algorithm, which exploits the waveform smoothness via a pre-defined

smoothness matrix. However, the design of the smoothness matrix is completely

subjective and not data-adaptive. In fact, in the task of sparse signal recovery,

learning temporal correlation of a source is a difficult problem. Generally, such

2In this application the set of indexes of nonzero rows in X is called a pattern of dipole-source
distribution.

3In this application the index of a nonzero row in X indicates a direction.
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structures are learned via a training dataset (which often contains sufficient data

without noise for robust statistical inference) [22, 68]. Although effective for some

specific signals, this method is limited. Having noticed that temporal correla-

tion strongly affects performance of existing algorithms, in [172] we derived the

AR-SBL algorithm, which models each source as a first-order autoregressive (AR)

process and learns AR coefficients from data per se. Although the algorithm has

superior performance compared to MMV algorithms in the presence of temporal

correlation, it is slow, which limits its applications. As such, there is a need for

efficient algorithms that can deal more effectively with temporal correlation.

Noticing the relation between the MMV model and the block sparse model,

we first transform the MMV model into a block sparse model, where temporal

correlation of sources can be easily modeled. Then in the block sparse model, we

derive an SBL algorithm, called T-SBL, which is very effective but is slow due to

its operation in a higher dimensional parameter space resulting from the MMV-

to-SMV transformation. Thus, we make some approximations and derive two fast

versions, called T-MSBL and T-MSBL-FP, respectively. T-MSBL is derived using

the EM method, while T-MSBL-FP is derived using a fixed-point method. Both

algorithms operate in the original parameter space. Similar to T-SBL, T-MSBL

and T-MSBL-FP are also effective but has much lower computational complexity.

Interestingly, when compared to the MSBL algorithm [154], the only change of

T-MSBL is the replacement of ‖Xi·‖2
2 with the Mahalanobis distance measure, i.e.

Xi·B
−1XT

i· , where B is a positive definite matrix estimated from data and can

be partially interpreted as a covariance matrix. We analyze the global minimum

and the local minima of the algorithms’ cost function. One of the key results is

that in the noiseless case the global minimum corresponds to the sparsest solution.

Extensive experiments not only show the superiority of the proposed algorithms,

but also provide some interesting (even counter-intuitive) phenomena that may

motivate future theoretical study.

We introduce the notations used in this chapter:
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• ‖x‖1, ‖x‖2, ‖A‖F denote the `1 norm of the vector x, the `2 norm of x, and

the Frobenius norm of the matrix A, respectively. ‖A‖0 and ‖x‖0 denote the

number of nonzero rows in the matrix A and the number of nonzero elements

in the vector x, respectively;

• Bold symbols are reserved for vectors and matrices. Particularly, IL denotes

the identity matrix with size L×L. When the dimension is evident from the

context, for simplicity, we just use I;

• diag{a1, · · · , aM} denotes a diagonal matrix with principal diagonal ele-

ments being a1, · · · , aM in turn; if A1, · · · ,AM are square matrices, then

diag{A1, · · · ,AM} denotes a block diagonal matrix with principal diagonal

blocks being A1, · · · ,AM in turn;

• For a matrix A, Ai· denotes the i-th row, A·i denotes the i-th column, and

Ai,j denotes the element that lies in the i-th row and the j-th column;

• A ⊗ B represents the Kronecker product of the two matrices A and B.

vec(A) denotes the vectorization of the matrix A formed by stacking its

columns into a single column vector. Tr(A) denotes the trace of A. AT

denotes the transpose of A.

III.A Problem Statement

Most existing works do not deal with temporal correlation of sources. For

many non-Bayesian algorithms, incorporating temporal correlation is not easy due

to the lack of a well defined methodology to modify the diversity measures em-

ployed in the optimization procedure. For example, it is not clear how to best

incorporate correlation in `1 norm based methods. For this reason, we adopt a

probabilistic approach to incorporate correlation structure. Particularly, we have

found it convenient to incorporate correlation into the SBL methodology.
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To exploit temporal correlation, we use the block sparse Bayesian learning

framework stated in the previous chapter. To use this framework, the MMV model

is transformed to a block SMV model. In this way, we can easily model the

temporal correlation of sources and derive new algorithms.

First, we assume all the sources Xi· (∀i) are mutually independent, and the

density of each Xi· is (parameterized) Gaussian, given by

p(Xi·; γi,Bi) ∼ N (0, γiBi), i = 1, · · · ,M

where γi is a nonnegative hyperparameter controlling the row sparsity of X. When

γi = 0, the associated Xi· becomes zeros. Bi is a positive definite matrix that

captures the correlation structure of Xi· and needs to be estimated.

By letting y = vec(YT ) ∈ RML×1, D = Φ ⊗ IL, x = vec(XT ) ∈ RNL×1,

v = vec(VT ), we can transform the MMV model to the following block sparse

model

y = Dx + v. (III.2)

Obviously, x is block-sparse.

Assume elements in the noise vector v are independent and each has a

Gaussian distribution, i.e. p(vi) ∼ N (0, λ), where vi is the i-th element in v and

λ is the variance. For the block model (III.2), the Gaussian likelihood is

p(y|x;λ) ∼ Ny|x(Dx, λI). (III.3)

The prior for x is given by

p(x; γi,Bi,∀i) ∼ Nx(0,Σ0), (III.4)

where Σ0 is

Σ0 =


γ1B1

. . .

γNBN

 . (III.5)
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Using Bayes’ rule we obtain the posterior density of x, which is also Gaussian,

p(x|y;λ, γi,Bi,∀i) = Nx(µx,Σx) (III.6)

with the mean

µx =
1

λ
ΣxD

Ty (III.7)

and the covariance matrix

Σx = (Σ−1
0 +

1

λ
DTD)−1 (III.8)

= Σ0 −Σ0D
T
(
λI + DΣ0D

T
)−1

DΣ0. (III.9)

So given all the parameters λ, γi,Bi,∀i, the MAP estimate of x is given by:

x∗ , µx = (λΣ−1
0 + DTD)−1DTy

= Σ0D
T
(
λI + DΣ0D

T
)−1

y (III.10)

where the last equation follows the matrix identity (I + AB)−1A ≡ A(I + BA)−1,

and Σ0 is the block diagonal matrix given by (III.5) with many diagonal block

matrices being zeros. Clearly, the block sparsity of x∗ is controlled by the γi’s in

Σ0: during the learning procedure, when γk = 0, the associated k-th block in x∗

becomes zeros 4.

To estimate the parameters we can use evidence maximization or Type-II

maximum likelihood [132]. This involves marginalizing over the weights x and

then performing maximum likelihood estimation. Note that the whole framework

including the solution (III.10) and the parameter estimation is the BSBL frame-

work. Note that in contrast to the original SBL framework, the BSBL framework

models the temporal structures of sources in the prior density via the matrices Bi

(i = 1, · · · , N). Different ways to learn the matrices result in different algorithms.

We will discuss the learning of these matrices and other parameters in the following

sections.
4In practice, we judge whether γk is less than a small threshold, e.g. 10−3. If it is, then the associated

dictionary vectors are pruned out from the learning procedure and the associated block in x is set to
zeros.
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III.B Algorithm Development

III.B.1 T-SBL: SBL Exploiting Temporal Correlation

Before estimating the parameters, we note that assigning a different matrix

Bi to each source Xi· will result in overfitting. To avoid the overfitting, we consider

using one positive definite matrix B to model all the source covariance matrices

up to a scalar 5. Thus Eq.(III.5) becomes Σ0 = Γ⊗B with Γ , diag(γ1, · · · , γN).

Although this strategy is equivalent to assuming all the sources have the same

correlation structure, it leads to very good results even if all the sources have

totally different correlation structures (see the simulations in Section III.E). More

importantly, this constraint does not destroy the global minimum property (i.e.

the global unique solution is the sparsest solution) of our algorithms, as shown in

Section III.D.

To find the parameters Θ = {γ1, · · · , γM ,B, λ}, we employ the EM method

to maximize p(y; Θ). This is equivalent to minimizing − log p(y; Θ), yielding the

effective cost function:

L(Θ) , −2 log

∫
p(y|x;λ)p(x; γi,Bi,∀i)dx

= yT (Σy)
−1y + log |Σy|, (III.11)

where Σy , λI + DΣ0D
T . The EM formulation proceeds by treating x as hidden

variables and then maximizing:

Q(Θ) = Ex|y;Θ(old)

[
log p(y,x; Θ)

]
= Ex|y;Θ(old)

[
log p(y|x;λ)

]
+Ex|y;Θ(old)

[
log p(x; γ1, · · · , γN ,B)

]
(III.12)

where Θ(old) denotes the estimated hyperparameters in the previous iteration.

To estimate γ , [γ1, · · · , γN ] and B, we notice that the first term in (III.12)

is unrelated to γ and B. So, the Q function (III.12) can be simplified to:

Q(γ,B) = Ex|y;Θ(old)

[
log p(x;γ,B)

]
. (III.13)

5Note that the covariance matrix in the density of Xi· is γiBi.
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It can be shown that

log p(x;γ,B) ∝ −1

2
log
(
|Γ|L|B|N

)
− 1

2
xT (Γ−1 ⊗B−1)x, (III.14)

which results in

Q(γ,B) ∝ −L
2

log
(
|Γ|
)
− N

2
log
(
|B|
)

−1

2
Tr
[(

Γ−1 ⊗B−1
)(

Σx + µxµ
T
x

)]
, (III.15)

where µx and Σx are evaluated according to (III.7) and (III.9), given the estimated

parameters Θ(old).

The derivative of (III.15) with respect to γi (i = 1, · · · , N) is given by

∂Q

∂γi
= − L

2γi
+

1

2γ2
i

Tr
[
B−1

(
Σi
x + µix(µ

i
x)
T
)]
, (III.16)

where we define (using the MATLAB notations) µix , µx((i− 1)L+ 1 : iL)

Σi
x , Σx((i− 1)L+ 1 : iL , (i− 1)L+ 1 : iL)

(III.17)

So the learning rule for γi (i = 1, · · · , N) is given by

γi ←
Tr
[
B−1

(
Σi
x + µix(µ

i
x)
T
)]

L
, i = 1, · · · ,M (III.18)

On the other hand, the gradient of (III.15) over B is given by

∂Q

∂B
= −N

2
B−1 +

1

2

N∑
i=1

1

γi
B−1

(
Σi
x + µix(µ

i
x)
T
)
B−1. (III.19)

Thus we obtain the learning rule for B:

B← 1

N

N∑
i=1

Σi
x + µix(µ

i
x)
T

γi
. (III.20)
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To estimate λ, the Q function (III.12) can be simplified to

Q(λ) = Ex|y;Θ(old)

[
log p(y|x;λ)

]
∝ −ML

2
log λ− 1

2λ
Ex|y;Θ(old)

[
‖y −Dx‖2

2

]
= −ML

2
log λ− 1

2λ

[
‖y −Dµx‖2

2 + Ex|y;Θ(old)

[
‖D(x− µx)‖2

2

]]
= −ML

2
log λ− 1

2λ

[
‖y −Dµx‖2

2 + Tr
(
ΣxD

TD
)]

= −ML

2
log λ− 1

2λ

[
‖y −Dµx‖2

2 + λ̂Tr
(
Σx(Σ

−1
x −Σ−1

0 )
)]

(III.21)

= −ML

2
log λ− 1

2λ

[
‖y −Dµx‖2

2 + λ̂
[
NL− Tr(ΣxΣ

−1
0 )
]]
, (III.22)

where (III.21) follows from the first equation in (III.9), and λ̂ denotes the estimated

λ in the previous iteration. The λ learning rule is obtained by setting the derivative

of (III.22) over λ to zero, leading to

λ←
‖y −Dµx‖2

2 + λ
[
NL− Tr(ΣxΣ

−1
0 )
]

ML
, (III.23)

where the λ on the right-hand side is the λ̂ in (III.22). There are some challenges

to estimate λ in SMV models. This, however, is alleviated in MMV models when

considering temporal correlation. We elaborate on this next.

In the SBL framework (either for the SMV model or for the MMV model),

many learning rules for λ have been derived [132, 153, 154, 105]. However, in

noisy environments some of the learning rules probably cannot provide an optimal

λ, thus leading to degraded performance. For the basic SBL/MSBL algorithms,

Wipf et al [154] pointed out that the reason is that λ and appropriate M nonzero

parameters γi make an identical contribution to the covariance Σy = λI + ΦΓΦT

in the cost functions of SBL/MSBL. To explain this, they gave an example: let a

dictionary matrix Φ′ = [Φ0, I], where Φ′ ∈ RM×N and Φ0 ∈ RM×(N−M). Then the

λ as well as the M parameters {γN−M+1, · · · , γN} associated with the columns of
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the identity matrix in Φ′ are not identifiable, because

Σy = λI + Φ′ΓΦ′
T

= λI + [Φ0, I]diag{γ1, · · · , γN}[Φ0, I]T

= λI + Φ0diag{γ1, · · · , γN−M}ΦT
0

+diag{γN−M+1, · · · , γN}

indicating a nonzero value of λ and appropriate values of the M nonzero param-

eters, namely γN−M+1, · · · , γN , can make an identical contribution to the covari-

ance matrix Σy. This problem can be worse when the noise covariance matrix is

diag(λ1, · · · , λM) with arbitrary nonzero λi, instead of λI.

However, our learning rule (III.23) does not have such ambiguity problem.

To see this, we now examine the covariance matrix Σy in our cost function (III.11).

Noting that D = Φ′ ⊗ I, we have

Σy = λI + DΣ0D
T

= λI + (Φ′ ⊗ I)
(
diag{γ1, · · · , γN} ⊗B

)
(Φ′ ⊗ I)T

= λI + [Φ0 ⊗ I, I⊗ I]
(
diag{γ1, · · · , γN} ⊗B

)
·[Φ0 ⊗ I, I⊗ I]T

= λI + (Φ0diag{γ1, · · · , γN−M}ΦT
0 )⊗B

+diag{γN−M+1, · · · , γN} ⊗B.

Obviously, since B is not an identity matrix 6, λ and {γN−M+1, · · · , γN} cannot

identically contribute to Σy.

The SBL algorithm using the learning rules (III.9), (III.10), (III.18), (III.20)

and (III.23) is denoted by T-SBL.

6Note that even all the sources are i.i.d. processes, the estimated B in practice is not an exact identity
matrix.
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III.B.2 T-MSBL: An Efficient Algorithm Processing in the Original

Problem Space

The proposed T-SBL algorithm has excellent performance in terms of re-

covery performance. But it is not fast because it learns the parameters in a higher

dimensional space instead of the original problem space. For example, the dictio-

nary matrix is of the size ML×NL in the bSBL framework, while it is only of the

size M × N in the original MMV model. Interestingly, the MSBL developed for

i.i.d. sources has complexity O(M2N) and does not exhibit this drawback [154].

Motivated by this, we make a reasonable approximation and back-map T-SBL to

the original space 7.

For convenience, we first list the MSBL algorithm derived in [154]:

Ξx =
(
Γ−1 +

1

λ
ΦTΦ

)−1
(III.24)

X = ΓΦT
(
λI + ΦΓΦT

)−1
Y (III.25)

γi =
1

L
‖Xi·‖2

2 + (Ξx)ii, ∀i (III.26)

An important observation is the lower dimension of the matrix operations involved

in this algorithm. We attempt to achieve similar complexity for the T-SBL algo-

rithm by adopting the following approximation:

(
λIML + DΣ0D

T
)−1

=
(
λIML + (ΦΓΦT )⊗B

)−1

≈
(
λIM + ΦΓΦT

)−1 ⊗B−1 (III.27)

which is exact when λ = 0 or B = IL. For high SNR or low correlation the approx-

imation is quite reasonable. But experiments show that our algorithm adopting

this approximation performs quite well over a broader range of conditions (see

Section III.E).

Now we use the approximation to simplify the γi learning rule (III.18).

7By back-mapping, we mean we use some approximation to simplify the algorithm such that the
simplified version directly operates in the parameter space of the original MMV model.
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First, we consider the following term in (III.18):

1

L
Tr
(
B−1Σi

x

)
=

1

L
Tr
[
γiIL − γ2

i (φ
T
i ⊗ IL)(λIML +

DΣ0D
T )−1(φi ⊗ IL) ·B

]
(III.28)

≈ γi −
γ2
i

L
Tr
[([
φTi
(
λIM + ΦΓΦT

)−1
φi
]
⊗B−1

)
B
]

= γi −
γ2
i

L
Tr
[(
φTi
(
λIM + ΦΓΦT

)−1
φi

)
IL

]
= γi − γ2

iφ
T
i

(
λIM + ΦΓΦT

)−1
φi

= (Ξx)ii (III.29)

where (III.28) follows the second equation in (III.9), and Ξx is given in (III.24).

Using the same approximation (III.27), the µx in (III.18) can be expressed as

µx ≈ (Γ⊗B)(ΦT ⊗ I) ·
[(
λI + ΦΓΦT

)−1 ⊗B−1
]
vec(YT ) (III.30)

=
[
ΓΦT

(
λI + ΦΓΦT

)−1]⊗ I · vec(YT )

= vec
(
YT
(
λI + ΦΓΦT

)−1
ΦΓ
)

= vec(XT ) (III.31)

where (III.43) follows (III.7) and the approximation (III.27), and X is given in

(III.25). Therefore, based on (III.29) and (III.31), we can transform the γi learning

rule (III.18) to the following form:

γi ←
1

L
Xi·B

−1XT
i· + (Ξx)ii, ∀i (III.32)

To simplify the B learning rule (III.20), we note that

Σx = Σ0 −Σ0D
T (λI + DΣ0D

T )−1DΣ0

= Γ⊗B− (Γ⊗B)(ΦT ⊗ I)(λI + DΣ0D
T )−1(Φ⊗ I)(Γ⊗B)

≈ Γ⊗B−
[
(ΓΦT )⊗B

][
(λI + ΦΓΦT )−1 ⊗B−1

][
(ΦΓ)⊗B

]
(III.33)

=
(
Γ− ΓΦT (λI + ΦΓΦT )−1ΦΓ

)
⊗B

= Ξx ⊗B, (III.34)
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where (III.45) uses the approximation (III.27). Using the definition (III.17), we

have Σi
x = (Ξx)iiB. Therefore, the learning rule (III.20) becomes:

B ←
( 1

N

N∑
i=1

(Ξx)ii
γi

)
B +

1

N

N∑
i=1

XT
i·Xi·

γi
. (III.35)

From the learning rule above, we can directly construct a fixed-point learning rule,

given by

B ← 1

N(1− ρ)

N∑
i=1

XT
i·Xi·

γi
(III.36)

where ρ = 1
N

∑N
i=1 γ

−1
i (Ξx)ii. To increase the robustness, however, we suggest

using the rule below:

B̃ ←
N∑
i=1

XT
i·Xi·

γi
(III.37)

B ← B̃/‖B̃‖F (III.38)

where (III.38) is to remove the ambiguity between B and γi (∀i). This learning

rule performs well in high SNR cases and noiseless cases 8. However, in low or

medium SNR cases (e.g. SNR ≤ 20dB) it is not robust due to errors from the

estimated γi and Xi·. For these cases, we suggest adding a regularization item in

B̃, namely,

B̃ ←
N∑
i=1

XT
i·Xi·

γi
+ ηI (III.39)

where η is a positive scalar. This regularized form (III.39) ensures that B̃ is positive

definite.
8Note that in (III.37) when the number of distinct nonzero rows in X is smaller than the number

of measurement vectors, the matrix B̃ is not invertible. But this case is rarely encountered in practical
problems, since in practice the number of measurement vectors is generally small, as we explained
previously. The presence of noise in practical problems also requires the use of the regularized form
(III.39), which is always invertible.
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Similarly, we simplify the λ learning rule (III.23) as follows:

λ ←
‖y −Dµx‖2

2 + λ
[
NL− Tr(ΣxΣ

−1
0 )
]

ML

=
‖y −Dµx‖2

2 + λTr(Σ0D
TΣ−1

y D)

ML
(III.40)

≈ 1

ML
‖Y −ΦX‖2

F +
λ

ML
Tr
[
(Γ⊗B)(ΦT ⊗ I)

·
(
(λI + ΦΓΦT )−1 ⊗B−1

)
(Φ⊗ I)

]
(III.41)

=
1

ML
‖Y −ΦX‖2

F +
λ

M
Tr
[
ΦΓΦT (λI + ΦΓΦT )−1

]
(III.42)

where in (III.44) we use the first equation in (III.9), and in (III.41) we use the

approximation (III.27). Empirically, we find that setting the off-diagonal elements

of ΦΓΦT to zeros further improves the robustness of the λ learning rule in strongly

noisy cases. In our experiments we will use the modified version when SNR ≤

20dB.

We denote the algorithm using the learning rules (III.24), (III.25), (III.32),

(III.37), (III.38) (or (III.39)), and (III.42) by T-MSBL (the name emphasizes the

algorithm is a temporal extension of MSBL). Note that T-MSBL cannot be derived

by modifying the cost function of MSBL.

Comparing the γi learning rule of T-MSBL (Eq.(III.32)) with the one of

MSBL (Eq.(III.26)), we observe that the only change is the replacement of ‖Xi·‖2
2

with Xi·B
−1XT

i· , which incorporates the temporal correlation of the sources. Hence,

T-MSBL has only extra computational load for calculating the matrix B and the

item Xi·B
−1XT

i·
9. Since the matrix B has a small size and is positive definite and

symmetric, the extra computational load is low.

Note that Xi·B
−1XT

i· is the quadratic Mahalanobis distance between Xi·

and its mean (a vector of zeros). Later we will get more insight into this change.

9Here we do not compare the λ learning rules of both algorithms, since in some cases one can feed
the algorithms with suitable fixed values of λ, instead of using the λ learning rules. However, the
computational load of the simplified λ learning rule of T-MSBL is also not high.
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III.B.3 T-MSBL-FP: A Variant of T-MSBL Based on MacKay’s Fixed-

Point Method

Although T-MSBL is much faster than T-SBL, it is still not fast compared to

other MMV algorithms. Thus, we derive a variant of T-MSBL based on MacKay’s

fixed-point method [83]. This fixed-point method has been used by Tipping [132]

to derive a basic SBL algorithm.

To conveniently derive learning rules, we first simplify L(Θ) (III.11). First,

note that

yT (Σy)
−1y = yT (λI + DΣ0D

T )−1y

= yT
[1

λ
I− 1

λ2
D(Σ−1

0 +
1

λ
DTD)−1DT

]
y

=
1

λ
yT
[
y −D(λΣ−1

0 + DTD)−1DTy
]

=
1

λ
yT
[
y −Dµx

]
(III.43)

=
1

λ

[
‖y −Dµx‖2

2 + µTxDTy − µTxDTDµx
]

=
1

λ
‖y −Dµx‖2

2 + µTx
(
Σ−1
x −

1

λ
DTD

)
µx (III.44)

=
1

λ
‖y −Dµx‖2

2 + µTxΣ−1
0 µx (III.45)

where (III.43) and (III.44) both used the equation (III.7), and (III.45) used the

equation (III.8). Next, using the Sylvester’s Determinant Theorem, we have

log |Σy| = log |λIML + DΣ0D
T |

= log |λIML|+ log
∣∣INL +

1

λ
Σ

1
2
0 DTDΣ

1
2
0

∣∣ (III.46)

= log |λIML|+ log |Σ−1
0 +

1

λ
DTD|+ log |Σ0|. (III.47)

Combining (III.45) and (III.47), the cost function becomes

L(Θ) =
1

λ
‖y −Dµx‖2

2 + µTxΣ−1
0 µx + log |λIML|

+ log
∣∣Σ−1

0 +
1

λ
DTD

∣∣+ log |Σ0|. (III.48)

Now it is convenient to minimize the cost function with respect to each hyperpa-

rameter.



61

The derivative of L(Θ) with respect to γi is

∂L
∂γi

= −(µix)
TB−1µix
γ2
i

−
Tr
(
Σi
xB
−1
)

γ2
i

+
L

γi

where µix and Σi
x have been defined in (III.17). Letting ∂L

∂γi
= 0 and following

MacKay’s fixed-point approach [84, 132], we have

γi ←
(µix)

TB−1µix
L− Tr

(
Σi
xB
−1
)
/γi

, i = 1, · · · , N (III.49)

The learning rules for B and λ can be derived using the EM method, which

are the same as those of T-MSBL:

B ← 1

N

N∑
i=1

µix(µ
i
x)
T + Σi

x

γi
(III.50)

λ ←
‖y −Dµix‖2

2 + λ
[
NL− Tr(ΣxΣ

−1
0 )
]

ML
. (III.51)

The learning rules (III.7), (III.8), (III.49), (III.50), and (III.51) comprise an

algorithm, which, as T-SBL, does not operate in the original MMV model. Thus,

we use the same approximation equation (III.27) to simplify it. Following the

simplification procedure in the previous section, we obtain the simplified algorithm

as follows:

Ξ ←
(
Γ−1 +

1

λ
ΦTΦ

)−1

X ← ΓΦT
(
λI + ΦΓΦT

)−1
Y

γi ←
Xi·B

−1XT
i·

L(1−Ξii/γi)
, ∀i

B ← B̃/‖B̃‖F , with B̃ =
N∑
i=1

XT
i·Xi·

γi
+ ηI

λ ← 1

ML
‖Y −ΦX‖2

F +
λ

M
Tr
[
ΦΓΦT (λI + ΦΓΦT )−1

]
where Ξii is the (i, i)-th element of Ξ. We denote the algorithm by T-MSBL-

FP. Note that the robustness of the λ learning rule in noisy environment can be

improved by setting the off-diagonal elements of ΦΓΦT to zero, as in T-MSBL.
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T-MSBL-FP is much faster than T-MSBL. But more interestingly, from

its cost function (III.11) we can connect it to many well-established algorithms,

providing insights to our algorithm and motivations to design new algorithms. This

will be elaborated in the following.

III.C Connections to Existing Algorithms

Iterative reweighted algorithms for the MMV model can be categorized into

two classes. One is the iterative reweighted `1 algorithms, which have the form

X(k+1) ← arg min
X
‖Y −ΦX‖2

F + λ
∑
i

w
(k)
i ‖Xi·‖q (III.52)

where k indicates the iteration number, and typically q = 2 or q =∞. w
(k)
i is the

weight of Xi·, which depends on the estimates of X in previous iterations. One

can see the widely used Group-Lasso (for the MMV model) is its single iteration.

Another class is the iterative reweighted `2 algorithms, which have the form:

X(k+1) ← arg min
X
‖Y −ΦX‖2

F + λ
∑
i

w
(k)
i (‖Xi·‖q)2 (III.53)

where typically q = 2 or q =∞. When q = 2, (III.53) has the close form:

X(k+1) ←W(k)ΦT
(
λI + ΦW(k)ΦT

)−1
Y (III.54)

where W(k) is a diagonal weighting matrix at the k-th iteration with the i-th

diagonal element being 1/w
(k)
i . The M-FOCUSS algorithm [25] belongs to this

class.

This section builds connections between T-MSBL and the two classes of

iterative reweighted algorithms, and then suggests a strategy to improve exist-

ing iterative reweighted algorithms to incorporate temporal correlation for better

performance. The effectiveness of this strategy is confirmed by two examples.
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III.C.1 Connection to Iterative Reweighted `1 Algorithms

We consider to transform the cost function (III.11). Using the identity

yT (λI+DΣ0D
T )−1y ≡ minx

[
1
λ
‖y−Dx‖2

2 +xTΣ−1
0 x
]

(see Chapter II), the upper-

bound of the cost function is

L(x, γ,B) = log |λI + DΣ0D
T |+ 1

λ
‖y −Dx‖2

2 + xTΣ−1
0 x.

By first minimizing it over γ and B and then minimizing over x, we have:

x = arg min
x

{
‖y −Dx‖2

2 + λgC(x)
}
, (III.55)

with the penalty gC(x) given by

gC(x) , min
γ�0,B�0

{
xTΣ−1

0 x + log |λI + DΣ0D
T |
}
. (III.56)

One may immediately realize that the problem (III.55)-(III.56) is the same as the

one (II.25)-(II.26) in deriving the BSBL-`1 algorithm. Therefore, following the

procedure in deriving the BSBL-`1 algorithm, we obtain

x = arg min
x
‖y −Dx‖2

2 + λ
[

min
z�0,B�0

∑
i

(
2z

1
2
i

√
xTi B−1xi

)
− h∗(z)

]
(III.57)

where z , [z1, · · · , zN ]T , h∗(z) is the conjugate concave function of h(γ) , log |λI+

DΣ0D
T |, i.e.,

h∗(z) = min
γ�0

zTγ − h(γ), (III.58)

and the optimal value of γi is given by

γi = z
− 1

2
i

√
xTi B−1xi, ∀i (III.59)

To obtain the solution x, we need to first calculate the optimal values of B

and zi. The optimal value of B can be obtained from (III.56). Note that:

∂

∂B
[xTΣ−1

0 x + log |λI + DΣ0D
T |] =

∑
i

[
−B−1xix

T
i B−1/γi + γiD

T
i Σ−1

y Di

]
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where Di , Φi ⊗ IL and Φi is the i-th column of Φ. Setting it to zero, we have

B−1
∑
i

xix
T
i

γi
B−1 =

∑
i

γiD
T
i Σ−1

y Di

=
∑
i

γi(Φ
T
i ⊗ I)

(
λINL + (ΦΓΦT )⊗B

)−1
(Φi ⊗ I)

(∗)
≈

∑
i

γi(Φ
T
i ⊗ I)

[
(λIN + ΦΓΦT )−1 ⊗B−1

]
· (Φi ⊗ I)

=
[∑

i

γiΦ
T
i (λI + ΦΓΦT )−1Φi

]
B−1

where (*) used the approximation (III.27). Thus, we obtain the learning rule

B =
1

C

N∑
i=1

xix
T
i

γi
=

1

C

N∑
i=1

XT
i·Xi·

γi
(III.60)

with C ,
∑N

i=1 γiΦ
T
i (λI + ΦΓΦT )−1Φi.

Using the property of conjugate functions [13, Chapter 3.3], from (III.58) we

can directly obtain the optimal zi as follows zi = ∂ log |λI+DΣ0DT |
∂γi

= Tr
[
BDT

i

(
λI +

DΣ0D
T )−1Di

]
. Hence,

z
1
2
i =

(
Tr
[
BDT

i

(
λI + DΣ0D

T )−1Di

]) 1
2

≈
√
LΦT

i (λI + ΦΓΦT )−1Φi, (III.61)

where we used the approximation (III.27) again.

Based on the above development, we see that the optimal values of B and

zi depend on X itself. Thus the whole learning procedure is an iterative algorithm.

In the k-th iteration, once having used the updating rules (III.59) (III.60) and

(III.61) to obtain B(k) and the weight w
(k)
i , 2z

1/2
i , we only need to solve the

following optimization problem:

x(k+1) = arg min
x
‖y −Dx‖2

2 + λ
∑
i

w
(k)
i

√
xTi (B(k))−1xi.

Hence, from the cost function (III.11) we obtain the iterative reweighted `1

algorithm,

X(k+1) ← arg min
X
‖Y −ΦX‖2

F + λ
∑
i

wi

√
Xi·B−1XT

i· (III.62)
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with the weights given by

wi ← 2
√
LΦT

i (λI + ΦΓΦT )−1Φi, ∀i

γi ←
√

Xi·B−1XT
i·√

LΦT
i (λI + ΦΓΦT )−1Φi

, ∀i

B ← 1

C

N∑
i=1

XT
i·Xi·

γi

with C ,
∑N

i=1 γiΦ
T
i (λI + ΦΓΦT )−1Φi.

Now we draw the connection to existing algorithms. From (III.62) we can

see our penalty is a temporal-correlation-aware penalty, and the temporal correla-

tion structure is adaptively learned from data. This is entirely different from the

penalties used in Group-Lasso type algorithms (for the MMV model) and most

iterative reweighted `1 algorithms (III.52), which are blind to the temporal corre-

lation.

In fact, the matrix B in our penalty can be viewed as a data-adaptive

kernel. This is different from the non-adaptive kernels used in some existing mixed

`2,1-norm penalties [157, 176, 163], which generally need users to design kernels

according to some a priori knowledge or by cross-validation. Note that the data-

adaptive kernel is advantageous over the user-defined kernels, because in some

applications such as our application, a priori knowledge may not be available.

Also, user-designed kernels cannot accurately capture the correlation structure of

data, which is a serious problem for regression.

Clearly, the algorithm (III.62) is an MMV-model based iterative reweighted

`1 minimization algorithm, since its weights wi depends on the estimate of X in

previous iterations. In contrast, the Group-Lasso type algorithms are just a single

iteration of it (with B = I). It is known that iterative reweighted algorithms

have better performance than their non-iterative-reweighted counterparts and can

provide more sparse solutions [17, 149].

The above observations motivate us to improve existing Group-Lasso type

algorithms and iterative reweighted `1 algorithms by adaptively learning the cor-
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relation structure of data. The details are given in the next subsection.

III.C.2 Improve Existing Iterative Reweighted `1 Algorithms by Ex-

ploiting Temporal Correlation

The connection between (III.62) and the canonical iterative reweighted `1

algorithms (III.52) suggests a strategy to incorporate correlation structure into the

latter by replacing ‖Xi·‖q with the Mahalanobis-distance type measure
√

Xi·B−1XT
i·

while the kernel B is adaptively learned from data.

Below we give an example to show how to do this. A canonical iterative

reweighted `1 is given below

X(k+1) = arg min
X
‖Y −ΦX‖2

F + λ
∑
i

w
(k)
i ‖Xi·‖2

w
(k)
i =

(
‖X(k)

i· ‖2 + ε
)−1

where ε is a constant. This algorithm is an MMV form of the one in [17]. We

modify its weights as follows

w
(k)
i =

(√
X

(k)
i· (B(k))−1(X

(k)
i· )T + ε

)−1

, (III.63)

where B(k) can be estimated from the estimate of X in the previous iteration (the

estimation method is similar to the one in BSBL-`1).

To see the improvement using the new weight (III.63), a noiseless experi-

ment was carried out. In the experiment the Gaussian random matrix Φ was of the

size 25× 125. The number of measurement vectors was 4. The number of nonzero

rows of X was 12. Each nonzero row was generated as an AR(1) process with

the AR coefficient being 0.9. The `2-norm of each nonzero row was uniformed

distributed in [0.3, 1]. To clearly see the advantage of the new weights, we set

B(k) (∀k) to be the true value, i.e. B(k) = Toeplitz([1, 0.9, 0.92, 0.93]).

In addition to the comparison between the canonical iterative reweighted

`1 algorithm and the modified one, we also compared the iterative reweighted `1
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Figure III.1 Performance comparison between the two iterative reweighted `1

algorithms and their improved counterparts.

form of T-MSBL (III.62) with the iterative reweighted `1 form of M-SBL in [149].

The two only differs in B. In the latter, B(k) = I(∀k).

The averaged results over 100 trials are shown in Figure III.1, where we can

see the modified iterative reweighted `1 had improved performance, compared to

the original one. Besides, the iterative reweighted `1 form of T-MSBL (III.62) had

better performance than the iterative reweighted `1 form of M-SBL. These results

imply that the strategy to improve existing iterative reweighted `1 by incorporating

temporal correlation into the weights (and/or the penalties) is promising. However,

more theoretical studies are required along this line.

III.C.3 Connection to Iterative Reweighted `2 Algorithms

Now we connect T-MSBL (and T-MSBL-FP) to the iterative reweighted `2

algorithms (III.53).
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As in Section III.C.1, we can transform the cost function (III.11) to

x = arg min
x
‖y −Dx‖2

2 + λgC(x), (III.64)

where the penalty gC(x) is defined by

gC(x) , min
γ�0,B�0

xTΣ−1
0 x + log |λI + DΣ0D

T |. (III.65)

Note that

gC(x) ≤ xTΣ−1
0 x + log |λI + DΣ0D

T |

= xTΣ−1
0 x + log |Σ0|+ log |1

λ
DTD + Σ−1

0 |+ML log λ

≤ xTΣ−1
0 x + log |Σ0|+ zTγ−1 − f ∗(z) +ML log λ

where in the last inequality we have used the conjugate relation

f(γ−1) , log
∣∣∣1
λ

DTD + Σ−1
0

∣∣∣ = min
z�0

zTγ−1 − f ∗(z). (III.66)

Here we denote γ−1 , [γ−1
1 , · · · , γ−1

N ]T , z , [z1, · · · , zN ]T , and f ∗(z) is concave

conjugate of f(γ−1). Finally, reminding of Σ0 = Γ⊗B, we have

gC(x) ≤ML log λ− f ∗(z) +N log |B|+
N∑
i=1

[xTi B−1xi + zi
γi

+ L log γi

]
.(III.67)

Therefore, to solve the problem (III.64) with (III.67), we can perform the coordi-

nate descent method over x,B, z and γ, i.e,

min
x,B,z�0,γ�0

‖y −Dx‖2
2 + λ

[ N∑
i=1

(xTi B−1xi + zi
γi

+ L log γi

)
+N log |B| − f ∗(z)

]
.

(III.68)

Compared to the iterative reweighted `2 framework (III.53), 1/γi can be seen as

the weight for the corresponding xTi B−1xi. But instead of applying `q norm on xi

(i.e. the i-th row of X) as done in existing iterative reweighted `2 algorithms, our

algorithm computes xTi B−1xi, i.e. the quadratic Mahalanobis-distance measure of

xi.
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By minimizing (III.68) over x, the updating rule for x is given by

x(k+1) = Σ0D
T (λI + DΣ0D

T )−1y. (III.69)

Similar to the previous section, using the conjugate property of (III.66), the

optimal z is directly given by

zi =
∂ log | 1

λ
DTD + Σ−1

0 |
∂(γ−1

i )

= Lγi − γ2
i Tr
[
BDT

i

(
λI + DΣ0D

T
)−1

Di

]
, ∀i (III.70)

From (III.68) the optimal γi for fixed x, z,B is given by γi = 1
L

[xTi B−1xi +

zi]. Substituting Eq.(III.70) into it, we have

γ
(k+1)
i =

xTi B−1xi
L

+ γi −
γ2
i

L
Tr
[
BDT

i

(
λI + DΣ0D

T
)−1

Di

]
, ∀i (III.71)

By minimizing (III.68) over B, the updating rule for B is given by

B(k+1) = B/‖B‖F , with B =
N∑
i=1

xix
T
i

γi
. (III.72)

The updating rules (III.69) (III.71) and (III.72) are our iterative reweighted

`2 algorithm minimizing the penalty based on quadratic Mahalanobis distance of

xi.

Similar to the back-mapping from T-SBL to T-MSBL, we use the approxi-

mation formula (III.27) to derive a simplified version.

Using the approximation (III.27), the updating rule (III.69) can be trans-

formed to

X(k+1) = WΦT
(
λI + ΦWΦT

)−1
Y, (III.73)

where W , diag([1/w1, · · · , 1/wN ]) with wi , 1/γi. Using the same approxima-

tion, the last term in (III.71) becomes

Tr
[
BDT

i

(
λIML + DΣ0D

T
)−1

Di

]
≈ Tr

[
B(ΦT

i ⊗ I)
[
(λIM + ΦWΦT )−1 ⊗B−1

]
(Φi ⊗ I)

]
= LΦT

i (λIM + ΦWΦT )−1Φi.
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Therefore, from the updating rule of γi in (III.71) we have

w
(k+1)
i =

[ 1

L
Xi·B

−1XT
i· + {(W−1 +

1

λ
ΦTΦ)−1}ii

]−1

. (III.74)

Accordingly, the updating rule for B becomes

B(k+1) = B/‖B‖F , with B =
N∑
i=1

wiX
T
i·Xi·. (III.75)

To estimate the regularization parameter λ, many methods have been pro-

posed, such as those widely used for iterative reweighted `2 algorithms. But we can

follow the EM method in the development of T-MSBL and use the approximation

(III.27) to derive the following rule:

λ(k+1) =
1

ML
‖Y −ΦX‖2

F +
λ

M
Tr
[
ΦWΦT (λI + ΦWΦT )−1

]
. (III.76)

The updating rules (III.73) (III.74) (III.75) and (III.76) compose the sim-

plified version of the iterative reweighted `2 algorithm.

It is interesting to see that in this iterative reweighted `2 form, the weight

(III.74) is completely different from the weight in the iterative reweighted `1 form.

Another observation is that the matrix B affects the solution via the weight

(III.74). When B(k) = I(∀k), i.e., ignoring the temporal correlation, the iterative

reweighted `2 form reduces to the `2 form of M-SBL [149]. In other words, to

improve the iterative reweighted `2 form of M-SBL, one can just replace the ‖Xi·‖2
F

in the weight with the Mahalanobis-distance measure Xi·B
−1XT

i· .

III.C.4 Improve Existing Iterative Reweighted `2 Algorithms by Ex-

ploiting Temporal Correlation

Motivated by the above observation, here we give an example to show how

to improve existing iterative reweighted `2 algorithms by exploiting the temporal

correlation.

The regularized M-FOCUSS [25] is a typical iterative reweighted `2 algo-

rithm, which solves a reweighted `2 minimization with weights w
(k)
i = (‖X(k)

i· ‖2
2)p/2−1
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Figure III.2 Performance comparison of tMFOCUSS and M-FOCUSS at different

SNR. Each nonzero row of X was generated as an AR(1) process with the AR

coefficient 0.9.

in each iteration. The algorithm is given by

X(k+1) = W(k)ΦT
(
λI + ΦW(k)ΦT

)−1
Y (III.77)

W(k) = diag{[1/w(k)
1 , · · · , 1/w(k)

M ]}

w
(k)
i =

(
‖X(k)

i· ‖2
2

)p/2−1
, p ∈ [0, 2], ∀i (III.78)

We can modify the algorithm by changing the weight (III.78) to the following one:

w
(k)
i =

(
X

(k)
i· (B(k))−1(X

(k)
i· )T

)p/2−1
, p ∈ [0, 2],∀i (III.79)

The matrix B can be calculated using the learning rule (III.75). We denote the

modified algorithm by tMFOCUSS.

To show the improvement, we carried out the following experiment. In this

experiment the matrix Φ was a random Gaussian matrix with the size 50×200. The

number of measurement vectors was 4. The number of nonzero rows of X was 20.

Each nonzero row was generated as an AR(1) process with the AR coefficient being

0.9. We considered two SNR cases: one was 15 dB and the other was 25 dB. The

original M-FOCUSS and the tMFOCUSS were performed 10. Their regularization

10Matlab codes can be downloaded at: http://dsp.ucsd.edu/∼zhilin/tMFOCUSS code.zip .
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parameter λ was swept from 10−6 to 10−1, and their performance changing with

different values of λ was plotted (in this way we can remove the disturbance from

non-optimal values of λ).

The results averaged over 40 trials are shown in Figure III.2, where we

can see that tMFOCUSS outperformed the original M-FOCUSS especially in the

higher SNR case. It is worthy noticing that tMFOCUSS is simply obtained by

replacing ‖Xi·‖2
F in the weight of M-FOCUSS with the Xi·B

−1XT
i· .

Other examples on the modification of existing iterative reweighted `2 al-

gorithms can be found in [173].

III.D Analysis of Global Minimum and Local Minima

Due to the equivalence of the original MMV model (III.1) and the trans-

formed block sparsity model (III.2), in the following discussions we use (III.1) or

(III.2) interchangeably and per convenience.

Throughout our analysis, the true source matrix is denoted by Xgen, which

is the sparsest solution among all the possible solutions. The number of nonzero

rows in Xgen is denoted by K0. We assume that Xgen is full column-rank, the

dictionary matrix Φ satisfies the URP condition [57], and the matrix B (or Bi,∀i)

and its estimate are positive definite.

III.D.1 Analysis of the Global Minimum

We have the following result on the global minimum of the cost function

(III.11) 11:

Theorem 1. In the limit as λ → 0, assuming K0 < (M + L)/2 , for the cost

function (III.11) the unique global minimum γ̂ , [γ̂1, · · · , γ̂M ] produces a source

estimate X̂ that equals to Xgen irrespective of the estimated B̂i, ∀i, where X̂ is

obtained from vec(X̂T ) = x̂ and x̂ is computed using Eq.(III.10).

11For convenience, in this theorem we consider the cost function with Σ0 given by (III.5), i.e. the one
before we use our strategy to avoid the overfitting.
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The proof is given in the Appendix of this chapter.

If we change the condition K0 < (M + L)/2 to K0 < M , then we have

the conclusion that the source estimate X̂ equals to Xgen with probability 1, ir-

respective of B̂i (∀i). This is due to the result in [41] that if K0 < M the above

conclusion still holds for all X except on a set with zero measure.

Note that γ̂ is a function of the estimated B̂i (∀i). However, the theorem

implies that even when the estimated B̂i is different from the true Bi, the estimated

sources are the true sources at the global minimum of the cost function. As a re-

minder, in deriving our algorithms, we assumed Bi = B (∀i) to avoid overfitting.

The theorem ensures our algorithms using this strategy also have the global min-

imum property. Also, the theorem explains why MSBL has the ability to exactly

recover true sources in noiseless cases even when sources are temporally correlated.

But we hasten to add that this does not mean B is not important for the perfor-

mance of the algorithms. For instance, MSBL is more frequently attracted to local

minima than our proposed algorithms, as experiments show later.

III.D.2 Analysis of the Local Minima

Now we discuss the local minimum property of the cost function L in (III.11)

with respect to γ , [γ1, · · · , γN ], in which Σ0 = Γ ⊗ B for fixed B. Before

presenting our results, we provide two lemmas needed to prove the results.

Lemma 1. log |Σy| , log |λI + DΣ0D
T | is concave with respect to γ.

This can be shown using the composition property of concave functions [13].

Lemma 2. yTΣ−1
y y equals a constant C when γ satisfies the linear constraints

A · (γ ⊗ 1L) = b (III.80)

with

b , y − λu (III.81)

A , (Φ⊗B)diag(DTu) (III.82)
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where A is full row rank, 1L is an L× 1 vector of ones, and u is any fixed vector

such that yTu = C.

The proof is given in the Appendix of this chapter.

According to the definition of basic feasible solution (BFS) [81], we know

that if γ satisfies Eq.(III.80), then it is a BFS to (III.80) if ‖γ‖0 ≤ ML, or a

degenerate BFS to (III.80) if ‖γ‖0 < ML. Now we give the following result:

Theorem 2. Every local minimum of the cost function L with respect to γ is

achieved at a solution with ‖γ̂‖0 ≤ML, regardless of the values of λ and B.

The proof is given in the Appendix of this chapter.

Admittedly, the bound on the local minima ‖γ̂‖0 is loose, and it is not

meaningful when ML > N . However, it is empirically found that ‖γ̂‖0 is very

smaller than ML, typically smaller than M .

Now we calculate the local minima of the cost function L. The result can

provide some insights to the role of B. Particularly, we are more interested in the

local minima satisfying ‖γ̂‖0 ≤M , since the global minimum satisfies ‖γ̂‖0 < M .

For these local minima, we have the following result:

Lemma 3. In noiseless cases (λ→ 0), for every local minimum of L that satisfies

‖γ̂‖0 , K ≤ M , its i-th nonzero element is given by γ̂(i) = 1
L
X̃i·B

−1X̃T
i· (i =

1, · · · , K), where X̃i· is the i-th nonzero row of X̂ and X̂ is the basic feasible

solution to Y = ΦX.

The proof is given in the Appendix of this chapter.

From this lemma we immediately have the closed form of the global mini-

mum.

B actually plays a role of temporally whitening the sources during the learn-

ing of γ. To see this, assume all the sources have the same correlation structure,

i.e. share the same matrix B. Let Zi· , X̃i·B
−1/2. From Lemma 3, at the global

minimum we have γ̂(i) = 1
L
Zi·Z

T
i· (i = 1, · · · , K0). On the other hand, in the case
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of i.i.d. sources, at the global minimum we have γ̂(i) = 1
L
X̃i·X̃

T
i· (i = 1, · · · , K0).

So the results for the two cases have the same form. Since E{ZT
i·Zi·} = γiI, we

can see in the learning of γ, B plays the role of whitening each source. This gives

us a motivation to facilitate estimation procedures in solving the spatiotemporal

sparse model (I.9), as shown in Chapter IV.

III.E Simulations

Extensive computer simulations have been conducted and a few represen-

tative and informative results are presented. All the simulations consisted of 1000

independent trials. In each trial a dictionary matrix Φ ∈ RM×N was created

with columns uniformly drawn from the surface of a unit hypersphere (except

the last simulation), as advocated by Donoho et al [35]. And the source matrix

Xgen ∈ RN×L was randomly generated with K nonzero rows (i.e. sources). In

each trial the indexes of the sources were randomly chosen. In most experiments

(except to the experiment in Section III.E.4) each source was generated as AR(1)

process. Thus the AR coefficient of the i-th source, denoted by βi, indicated its

temporal correlation. As done in [136, 8], for noiseless cases, the `2 norm of each

source was rescaled to be uniformly distributed between 1/3 and 1; for noisy cases,

rescaled to be unit norm. Finally, the measurement matrix Y was constructed

by Y = ΦXgen + V where V was a zero-mean homoscedastic Gaussian noise ma-

trix with variance adjusted to have a desired value of SNR, which is defined by

SNR(dB) , 20 log10(‖ΦXgen‖F/‖V‖F).

We used two performance measures. One was the Failure Rate defined in

[154], which indicated the percentage of failed trials in the total trials. In noiseless

cases, a failed trial was recognized if the indexes of estimated sources were not

the same as the true indexes. In noisy cases, since any algorithm cannot recover

Xgen exactly in these cases, a failed trial was recognized if the indexes of estimated

sources with the K largest `2 norms were not the same as the true indexes. In
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noisy cases, the mean square error (MSE) was also used as a performance measure,

defined by ‖X̂−Xgen‖2
F/‖Xgen‖2

F , where X̂ was the estimated source matrix.

In our experiments we compared our T-SBL and T-MSBL with the following

algorithms:

• MSBL, proposed in [154] 12;

• MFOCUSS, the regularized M-FOCUSS proposed in [25]. In all the experi-

ments, we set its p-norm p = 0.8, as suggested by the authors 13;

• SOB-MFOCUSS, a smoothness constrained M-FOCUSS proposed in [163].

In all the experiments, we set its p-norm p = 0.8. For its smoothness matrix,

we chose the identity matrix when L ≤ 2, and a second-order smoothness

matrix when L ≥ 3, as suggested by the authors. Since in our experiments

L is small, no overlap blocks were used 14;

• ISL0, an improved smooth `0 algorithm for the MMV model which was pro-

posed in [66]. The regularization parameters were chosen according to the

authors’ suggestions 15;

• Reweighted `1/`2, an iterative reweighted `1/`2 algorithm suggested in [149].

It is an MMV extension of the iterative reweighted `1 algorithm [17] via the

mixed `1/`2 norm. The algorithm is given by

1. Set the iteration count k to zero and w
(0)
i = 1 (i = 1, · · · , N)

2. Solve the weighted MMV `1 minimization problem

X(k) = arg min
N∑
i=1

w
(k)
i ‖Xi·‖2 s.t. Y = ΦX

12The MATLAB code was downloaded at http://dsp.ucsd.edu/∼zhilin/MSBL code.zip .
13The MATLAB code was downloaded at http://dsp.ucsd.edu/∼zhilin/MFOCUSS.m .
14The MATLAB code was provided by the first author of [163] in personal communication. In the

code the second-order smoothness matrix S was defined as (in MATLAB notations): S = eye(L)−0.25∗
(diag(e(1 : L− 1),−1) + diag(e(1 : L− 1), 1) + (diag(e(1 : L− 2),−2) + diag(e(1 : L− 2), 2))), where e
is an L× 1 vector with ones.

15The MATLAB code was provided by the first author of [66] in personal communication.
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3. Update the weights for each i = 1, · · · , N

w
(k+1)
i =

1

‖X(k)
i· ‖2 + ε(k)

where ε(k) is adaptively adjusted as in [17];

4. Terminate on convergence or when k attains a specified maximum num-

ber of iterations kmax. Otherwise, increment k and go to Step 2).

For noisy cases, Step 2) is modified to

X(k) = arg min
N∑
i=1

w
(k)
i ‖Xi·‖2 s.t. ‖Y −ΦX‖F ≤ δ

Throughout our experiments, kmax = 5. We implemented it using the CVX

optimization toolbox 16.

In noisy cases, we chose the optimal values for the regularization parameter λ

in MFOCUSS and the parameter δ in Reweighted `1/`2 by exhaustive search.

Practically, we used a set of candidate parameter values and for each value we ran

an algorithm for 50 trials, and then picked up the one which gave the smallest

averaged failure rate. By comparing enough number of candidate values we could

ensure a nearly optimal value of the regularization parameter for this algorithm.

For T-MSBL, T-SBL and MSBL, we fixed λ = 10−9 for noiseless cases, and used

their λ learning rules for noisy cases. Besides, for T-MSBL we chose the learning

rule (III.39) with η = 2 to estimate B when SNR ≤ 15dB.

For reproducibility, the experiment codes can be downloaded at http://

dsp.ucsd.edu/∼zhilin/TSBL code.zip .

III.E.1 Benefit from Multiple Measurement Vectors at Different Tem-

poral Correlation Levels

In this simulation we study how algorithms benefit from multiple measure-

ment vectors and how the benefit is discounted by the temporal correlation of

16The toolbox was downloaded at: http://cvxr.com/cvx/.
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sources. The dictionary matrix Φ was of the size 25 × 125 and the number of

sources K = 12. The number of measurement vectors L varied from 1 to 4. No

noise was added. All the sources were AR(1) processes with the common AR co-

efficient β, such that we could easily observe the relationship between temporal

correlation and algorithm performance. Note that for small L, modeling sources as

AR(1) processes, instead of AR(p) processes with p > 1, is sufficient to cover wide

ranges of temporal structure. We compared algorithms at six different temporal

correlation levels, i.e. β = −0.9, −0.5, 0, 0.5, 0.9, 0.99.

Figure III.3 shows that with L increasing, all the algorithms had better

performance. But as |β| → 1, for all the compared algorithms the benefit from

multiple measurement vectors diminished. One surprising observation is that our

T-MSBL and T-SBL had excellent performance in all cases, no matter what the

temporal correlation was. Notice that even sources had no temporal correlation

(β = 0), T-MSBL and T-SBL still had better performance than MSBL.

Next we compare all the algorithms in noisy environments. We set SNR =

25dB while kept other experimental settings unchanged. The behaviors of all the

algorithms were similar to the noiseless case. To save space, we only present the

cases of β = 0.7 and β = 0.9 in Figure III.4.

Since the performance of all the algorithms at a given correlation level β

is the same as their performance at the correlation level −β, in the following we

mainly show their performance at positive correlation levels.

III.E.2 Recovered Source Number at Different Temporal Correlation

Levels

In this simulation we study the effects of temporal correlation on the number

of accurately recovered sources in a noiseless case. The dictionary matrix Φ was of

the size 25× 125. L was 4. K varied from 10 to 18. The sources were generated in

the same manner as before. Algorithms were compared at four different temporal

correlation levels, i.e. β = 0, 0.5, 0.9, and 0.99. Results (Figure III.5) show that T-
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(f) β = 0.99

Figure III.3 Performance of all the algorithms at different temporal correlation

levels when L varied from 1 to 4.
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(d) β = 0.9

Figure III.4 The failure rate and the MSE of all the algorithms at different tem-

poral correlation levels when L varied from 1 to 4 and SNR was 25 dB.
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Figure III.5 Failure rates of all the algorithms when K varied from 10 to 18 at

different temporal correlation levels.

MSBL and T-SBL accurately recovered much more sources than other algorithms,

especially at high temporal correlation levels. This indicates that our proposed

algorithms are very advantageous in the cases when the source number is large.

III.E.3 Ability to Handle Highly Underdetermined Problem

Most published works only compared algorithms in mildly underdetermined

cases, namely, the ratio of N/M was about 2 ∼ 5. However, in some applications
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Figure III.6 Performance comparison in highly underdetermined cases when SNR

was 25 dB.

such as neuroimaging, one can easily have M ≈ 100 and N ≈ 100000. Thus, in

this simulation we compared the algorithms in the highly underdetermined cases

when M was fixed at 25 and N/M varied from 1 to 25. The source number K was

12, and the measurement vector number L was 4. SNR was 25 dB. Different to

previous simulations, all the sources were AR(1) processes but with different AR

coefficients. Their AR coefficients were uniformly chosen from (0.5, 1) at random.

Results are presented in Figure III.6, from which we can see that when N/M ≥ 10,

all the compared algorithms had large errors. In contrast, our proposed algorithms

had much lower errors. Note that due to the performance trade-off between M

and N , if one increases M , algorithms can keep the same recovery performance for

larger N/M .

III.E.4 Recovery Performance for Different Kinds of Sources

In previous simulations all the sources were AR(1) processes. Although

we have pointed out that for small L modeling sources by AR(1) processes is
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sufficient, here we carry out an experiment to show our algorithms maintaining

the same superiority for various time series. Since from previous experiments we

have seen that T-SBL has similar performance to T-MSBL, and that MSBL has

the best performance among the compared algorithms, in this experiment we only

compare T-MSBL with MSBL.

The dictionary matrix was of the size 25 × 125. L was 4. K was 14.

SNR was 25dB. First we generated sources as three kinds of AR processes, i.e.

AR(p) (p = 1, 2, 3). All the AR coefficients were randomly uniformly chosen

from the feasible regions such that the processes were stable. We examined the

algorithms’ performance as a function of the AR order p. Results are given in

Figure III.7, showing that T-MSBL again outperformed MSBL. With large p,

the performance gap between the two algorithms increased. We repeated the

previous experiment with the same experiment settings except that we replaced

the AR(p) sources by moving-averaging sources MA(p) (p = 1, 2, 3). The MA

coefficients were uniformly chosen from (0, 1] at random. Again, we obtained the

same results. These results imply that our algorithms maintain their superiority

for various temporally structured sources, not only AR processes.

III.E.5 Recovery Ability at Different Noise Levels

From previous experiments we have seen that the proposed algorithms sig-

nificantly outperformed all the compared algorithms in noiseless scenarios and

mildly noisy cases, even though to derive T-MSBL we used the approximation

(III.27) which takes the equal sign only when B = I (no temporal correlation) or

λ = 0 (no noise). Some natural questions may be raised: What is the performance

of T-SBL and T-MSBL in strongly noisy cases? Is it still beneficial to exploit

temporal correlation in these cases? To answer these questions, we carry out the

following experiment.

The dictionary matrix was of the size 25×125. The number of measurement

vectors L was 4. The source number K was 7. All the sources were AR(1) processes
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Figure III.7 Performance of T-MSBL and MSBL for different AR(p) sources and

different MA(p) sources measured in terms of MSE and failure rates.

5 7.5 10 12.5 15
10

−2

10
−1

10
0

SNR(dB)

M
S

E

 

 

(a)

5 7.5 10 12.5 15
10

−3

10
−2

10
−1

10
0

SNR(dB)

F
ai

lu
re

 R
at

e

 

 

T−MSBL
T−MSBL(use λ rule)
T−SBL
MSBL
MSBL(use λ rule)
MFOCUSS
Reweighted L1/L2

(b)

Figure III.8 Performance comparison at different noise levels. (a) shows the results

in terms of MSE. (b) shows the results in terms of failure rates.

and the temporal correlation of each source was 0.8. SNR varied from 5 dB to 15

dB. The experiment was repeated 2000 trials. We compared the proposed T-

SBL, T-MSBL with three representative algorithms, i.e. MSBL, MFOCUSS, and

Reweighted `1/`2.
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Note that in low SNR cases, the estimated B of T-SBL and T-MSBL can

include large errors, and thus the estimated amplitudes of sources are distorted.

To reduce the distortion, we set B = I once the number of nonzero γi was less than

N during the learning procedure. The reason is that the role of B is to prevent T-

SBL/T-MSBL from arriving at local minima; once the algorithms approach global

minima very closely, B is no longer useful.

Also note that the λ learning rules of T-SBL, T-MSBL and MSBL may not

lead to optimal performance in low SNR cases. To avoid the potential disturbance

of these λ learning rules, we provided the three SBL algorithms with the optimal

λ∗’s, which were obtained by the exhaustive search method stated previously.

Figure III.8 shows that T-SBL and T-MSBL outperformed other algorithms

in all the noise levels. This implies that even in low SNR cases exploiting temporal

correlation of sources is beneficial.

But we want to emphasize that although the λ learning rules of the three

SBL algorithms may not be optimal in low SNR cases, our proposed λ learning

rules can lead to near-optimal performance, compared to the one of MSBL. To see

this, we ran T-MSBL and MSBL again, but this time both algorithms used their λ

learning rules. T-MSBL used the modified version of the λ learning rule (III.42),

i.e. setting the off-diagonal elements of ΦΓΦT to zeros. The results (Figure III.8)

show that MSBL had very poor performance when using its λ learning rule. In

contrast, T-MSBL’s performance was very close to its performance when using its

optimal λ∗ 17. The results indicate our proposed algorithms are advantageous in

practical applications, since in practice the optimal λ∗’s are difficult to obtain, if

not impossible.

III.E.6 Temporal Correlation: Beneficial or Detrimental?

From previous experiments one may think that temporal correlation is al-

ways harmful to algorithms’ performance, at least not helpful. However, in this

17T-SBL had the same behavior. But for clarity we do not present its performance curve.
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experiment we will show that when SNR is high, the performance of our proposed

algorithms increases with increasing temporal correlation.

We set M = 25, L = 4, K = 14, and SNR = 50dB. The underdeterminacy

ratio N/M varied from 5 to 20. Sources were generated as AR(1) processes with

the common AR coefficient β. We considered the performance of T-MSBL and

MSBL in three cases, i.e. the temporal correlation β was 0, 0.5, and 0.9, respec-

tively. Results are shown in Figure III.9. As expected, the performance of MSBL

deteriorated with increasing temporal correlation. But the behavior of T-MSBL

was rather counterintuitive. It is surprising that the best performance of T-MSBL

was not achieved at β = 0, but at β = 0.9. Clearly, high temporal correlation

enabled T-MSBL to handle more highly underdetermined problems. For example,

its performance at N/M = 20 with β = 0.9 was better than that at N/M = 15

with β = 0.5 or β = 0. The same phenomenon was observed in noiseless cases as

well, and was observed for T-SBL.

The results indicating that temporal correlation is helpful may appear coun-

terintuitive at first glance. A closer examination of the sparse recovery problems

indicates a plausible explanation. There are two elements to the sparse recovery

task; one is the location of the nonzero entries and the other is the value for the

nonzero entries. Both tasks interact and combine to determine the overall per-

formance. Correlation helps the estimation of the values for the nonzero entries

and this may be important for the problem when dealing with finite matrices and

may be lost when dealing with limiting results as the matrix dimension go to infin-

ity. A more rigorous study of the interplay between estimation of the values and

estimation of the locations is an interesting topic.

III.E.7 An Extreme Experiment on the Importance of Exploiting Tem-

poral Correlation

It may be natural to take for granted that in noiseless cases, when source

vectors are almost identical, algorithms have almost the same performance as in
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Figure III.9 Behaviors of MSBL and T-MSBL at different temporal correlation

levels when SNR = 50dB.
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Figure III.10 (a) The performance and (b) the condition numbers of the submatrix

formed by sources when the temporal correlation approximated to 1. The temporal

correlation β = sign(C)(1−10−|C|), where C was the correlation index varying from

-10 to 10.
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the case when only one measurement vector is available. In the following we show

that it is not the case.

We designed a noiseless experiment. First, we generated a Hadamard ma-

trix of the size 128×128. From the matrix, 40 rows were randomly selected in each

trial and formed a dictionary matrix of the size 40×128. The source number K was

12, and the measurement vector number L was 3. Sources were generated as AR(1)

processes with the common AR coefficient β, where β = sign(C)(1 − 10−|C|). We

varied C from -10 to 10 in order to see how algorithms behaved when the absolute

temporal correlation, |β|, approximated to 1.

Figure III.10 (a) shows the performance curves of T-MSBL and MSBL

when |β| → 1, and also shows the performance curve of MSBL when β = 1. We

observe an interesting phenomenon. First, as |β| → 1, MSBL’s performance closely

approximated to its performance in the case of β = 1. It seems to make sense,

because when |β| → 1, every source vector provides almost the same information on

locations and amplitudes of nonzero elements. Counter-intuitively, no matter how

close |β| was to 1, the performance of T-MSBL did not change. Figure III.10 (b)

shows the averaged condition numbers of the submatrix formed by the sources (i.e.

nonzero rows in Xgen) at different correlation levels. We can see that the condition

numbers increased with the increasing temporal correlation. This suggests that T-

MSBL was not sensitive to the ill-condition issue in the source matrix, while MSBL

is very sensitive. Although not shown here, we found that T-SBL had the same

behavior as T-MSBL, while other MMV algorithms had the same behaviors as

MSBL. The phenomenon was also observed when using other dictionary matrices,

such as random Gaussian matrices.

These results emphasize the importance of exploiting the temporal correla-

tion, and also motivate future theoretical studies on the temporal correlation and

the ill-condition issue of source matrices.
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III.F Discussions

Although there are a few works trying to exploit temporal correlation in the

MMV model, based on our knowledge no works have explicitly studied the effects

of temporal correlation, and no existing algorithms are effective in the presence

of such correlation. Our work is a starting point in the direction of considering

temporal correlation in the MMV model. However, there are many issues that are

unclear so far. In this section we discuss some of them.

III.F.1 The Matrix B: Trade-off Between Accurately Modeling and

Preventing Overfitting

In our algorithm development we used one single matrix B as the covariance

matrix (up to a scalar) for each source model in order to avoid overfitting. Mathe-

matically, it is straightforward to extend our algorithms to use multiple matrices to

capture the covariance structures of sources. For example, one can classify sources

into several groups, say G groups, and the sources in a group are all assigned by

a common matrix Bi (i = 1, · · · , G, G � M) as the covariance matrix (up to a

scalar). It seems that this extension can better capture the covariance structures

of sources while still avoiding overfitting. However, we find that this extension

(even for G = 2) has much poorer performance than our proposed algorithms and

MSBL. One possible reason is that during the early stage of the learning proce-

dure of our algorithms, the estimated sources from each iteration are far from the

true sources, and thus grouping them based on their covariance structures is dif-

ficult, if not impossible. The grouping error may cause avalanche effect, leading

to the noted poor performance. Reducing the grouping error and more accurately

capturing the temporal correlation structures is an area for future work.

However, as we have stated, B plays a role of whitening each source. In

our recent work [173, 170] we found that the operation Xi·B
−1XT

i· (∀i) can replace

the row-norms (such as the `2 norm and the `∞ norm) in iterative reweighted
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`2 and `1 algorithms for the MMV model, functioning as a row regularization.

This indicates that using one single matrix B may be a better method than using

multiple matrices B1, · · · ,BG.

On the other hand, there may be many ways to parameterize and estimate

B. In this work we provide a general method to estimate B. In [172] we proposed

a method to parameterize B by a hyperparameter β, i.e.,

B =


1 β · · · βL−1

β 1 · · · βL−2

...
...

. . .
...

βL−1 βL−2 · · · 1


which equivalently assumes the sources are AR(1) processes with the common AR

coefficient β. The resulting algorithms have good performance as well. Also, for

low SNR cases in our experiments, we added an identity matrix (with a scalar)

to the estimated B in T-MSBL, and achieved satisfying performance. All these

imply that B could have many forms. Finding the forms that are advantageous in

strongly noisy environments is an important issue and needs further study.

III.F.2 The Parameter λ: Noise Variance or Regularization Parame-

ter?

In our algorithms the covariance matrix of the multi-channel noise V·i (i =

1, · · · , L) is λIM with the implicit assumption that each channel noise has the same

variance λ. It is straightforward to extend our algorithms to consider the general

noise covariance matrix diag([λ1, · · · , λM ]), i.e. assuming different channel noise

have different variance. However, this largely increases parameters to estimate, and

thus we may once again encounter an overfitting problem (similar to the overfitting

problem in learning the matrix Bi).

Some works [152, 105] considered alternative noise covariance models. In

[105] the authors assumed that the covariance matrix of multi-channel noise is λC,

instead of λIN , where C is a known positive definite and symmetric matrix and λ
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is an unknown noise-variance parameter. This model may better capture the noise

covariance structures, but generally one does not know the exact value of C. Thus

there is no clear benefit from this covariance model. In [152], instead of deriving

a learning rule for the noise covariance inside the SBL framework, the authors

estimated the noise covariance by a method independent of the SBL framework.

But this method is based on a large number of measurement vectors, and has a

high computational load.

On the other hand, due to the works in [155, 149], which connected SBL

algorithms to traditional convex relaxation methods such as Lasso [129] and Basis

Pursuit Denoising [21], it was found that λ is functionally the same as the regu-

larization parameters of those convex relaxation algorithms. This suggests the use

of methods such as the modified L-curve procedure [108] or the cross-validation

[129, 21] to choose λ especially in strongly noisy environments. It is also interesting

to see that SBL algorithms could adopt the continuation strategies [11, 58], used

in Lasso-type algorithms, to adjust the value of λ for better recovery performance

or faster speed.

However, if some channels contain very large noise (e.g. outliers) and the

number of such channels is very small, then as suggested in [156], we can extend

the dictionary matrix Φ to [Φ, I] and perform any sparse signal recovery algo-

rithms without modification. The estimated ‘sources’ associated with the identity

dictionary matrix are these large noise components.

III.F.3 Connections to Other Models

The time-varying sparsity model [140, 179] is another related model. Dif-

ferent to our MMV model that assumes the support of each source vector is the

same, the time-varying sparsity model assumes the support is slowly time-varying.

It is interesting to note that this model can be approximated by concatenation of

several MMV models, where in each MMV model the support does not change.

Thus our proposed T-SBL and T-MSBL can be used for this model. The results
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are appealing, as shown in our recent work [170].

It should be noted that the proposed algorithms can be directly used for

the SMV model. In this case the matrix B reduces to a scalar, and the γi learning

rules are the same as the one in the basic SBL algorithm [153]. But due to the

effective λ learning rules, our algorithms are superior to the basic SBL algorithm,

especially in noisy cases.

III.G Conclusion

In this chapter, we addressed a multiple measurement vector (MMV) model

in practical scenarios, where the source vectors are temporally correlated and the

number of measurement vectors is small due to the common sparsity constraint.

We showed that existing algorithms have poor performance when temporal cor-

relation is present, and thus they have limited ability in practice. To solve this

problem, we adopted the block sparse Bayesian learning framework, proposed in

the previous chapter, which allows for easily modeling the temporal correlation

and incorporating this information into derived algorithms. Based on this frame-

work, we derived three algorithms, namely, T-SBL, T-MSBL, and T-MSBL-FP.

The latter two can be seen as an extension of MSBL by replacing the `2 norm

imposed on each source with a Mahalanobis distance measure. We connected the

proposed algorithms to existing iterative reweighted `1 algorithms and iterative

reweighted `2 algorithms. Motivated by this connection, we suggested a strategy

to improve these iterative reweighted algorithms such that they can exploit the

temporal correlation for better performance. Extensive experiments have shown

that the proposed algorithms have superior performance to many state-of-the-art

algorithms. Theoretical analysis also has shown that the proposed algorithms have

desirable global and local minimum properties.
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III.I Appendix

III.I.1 Outline of the Proof of Theorem 1

Since the proof is a generalization of the Theorem 1 in [152], we only give

an outline.

For convenience we consider the equivalent model (III.2). Let x̂ be com-

puted using x̂ = (λΣ̂−1
0 + DTD)−1DTy with Σ̂0 = diag{γ̂1B̂1, · · · , γ̂NB̂N}, and

γ̂ , [γ̂1, · · · , γ̂N ] is obtained by globally minimizing the cost function for given

B̂i (∀i) 18:

L(γi) = yTΣ−1
y y + log |Σy|.

It can be shown [152] that when λ → 0 (noiseless case), the above problem is

18In the proof we fix B̂i because we will see B̂i has no effect on the global minimum property.
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equivalent to

min : g(x) , min
γ

[
xTΣ−1

0 x + log |Σy|
]

(III.83)

s.t. : y = Dx (III.84)

So we only need to show the global minimizer of (III.83) satisfies the property

stated in the theorem.

Assume in the noiseless problem Y = ΦX, Φ satisfies the URP condition

[57]. For its any solution X̂, denote the number of nonzero rows by K. Thus

following the method in [152], we can show the above g(x) satisfies

g(x) = O(1) +
(
ML−min[ML,KL]

)
log λ, (III.85)

providing B̂i is full rank. Here we adopt the notation f(s) = O(1) to indicate that

|f(s)| < C1 for all s < C2, with C1 and C2 constants independent of s. Therefore,

by globally minimizing (III.85), i.e. globally minimizing (III.83), K will achieve

its minimum value, which will be shown to be K0, the number of nonzero rows in

Xgen.

According to the result in [25, 36], if Xgen satisfies

K0 <
M + L

2

then there is no other solution (with K nonzero rows) such that Y = ΦX with

K < M+L
2

. So, K ≥ K0, i.e. the minimum value of K is K0. Once K achieves its

minimum, we have X̂ = Xgen.

In summary, the global minimum solution γ̂ leads to the solution that equals

to the unique sparsest solution Xgen. And we can see, providing B̂i is full rank, it

does not affect the conclusion.

III.I.2 Proof of Lemma 2

Re-write the equation yTΣ−1
y y = C by yTu = C, where u , Σ−1

y y =
(
λI+

DΣ0D
T
)−1

y, from which we have y−λu = DΣ0D
Tu = D(Γ⊗B)DTu = D(IN⊗
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B)(Γ⊗IL)DTu = D(IN⊗B)diag(DTu)diag(Γ⊗IL) = (Φ⊗B)diag(DTu)(γ⊗1L).

It can be seen that the matrix A , (Φ⊗B)diag(DTu) is full row rank.

III.I.3 Proof of Theorem 2

The proof follows along the lines of Theorem 2 in [153] using our Lemma 1

and Lemma 2. Consider the optimization problem:
min : f(γ) , log |λI + DΣ0D

T |

s.t. : A · (γ ⊗ 1L) = b

γ � 0

(III.86)

where A and b are defined in Lemma 2. From Lemma 1 and Lemma 2 we can see

the optimization problem (III.86) is optimizing a concave function over a closed,

bounded convex polytope. Obviously, any local minimum of L, e.g. γ∗, must

also be a local minimum of the above optimization problem with C = yT
(
λI +

D(Γ∗ ⊗ B)DT
)−1

y, where Γ∗ , diag(γ∗). Based on the Theorem 6.5.3 in [81]

the minimum of (III.86) is achieved at an extreme point. Further, based on the

Theorem in Chapter 2.5 of [81] the extreme point is a BFS to A · (γ ⊗ 1L) = b

γ � 0

which indicates ‖γ‖0 ≤ML.

III.I.4 Proof of Lemma 3

For convenience we first consider the case of K = M . Let γ̃ be the vector

consisting of nonzero elements in γ̂, and Φ̃ be a matrix consisting of the columns of

Φ whose indexes are the same as those of nonzero elements in γ̂. Thus, the equation

Y = ΦX̂ can be rewritten as Y = Φ̃X̃. By transferring it to its equivalent block

sparse Bayesian learning model, we have y = D̃x̃, where y , vec(YT ), D̃ , Φ̃⊗IL,

and x̃ , vec(X̃T ). Since D̃ is a square matrix with full rank, we have x̃ = D̃−1y.
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For convenience, let x̃i , x̃[(i−1)L+1:iL], i.e. x̃i consists of elements of x̃ with indexes

from (i− 1)L+ 1 to iL. Now consider the cost function L, which becomes

L(γ) =
N∑
i=1

( x̃Ti B−1x̃i
γ̃i

+ L log γ̃i

)
+M log |B|

+2 log |D̃|.

Letting ∂L(γ)
∂γ̃i

= 0 gives

γ̃i =
1

L
x̃Ti B−1x̃i, i = 1, · · · , K

The second derivative of L at γ̃i = 1
L
x̃Ti B−1x̃i is given by

∂2L(γ)

∂γ̃2
i

∣∣∣
γ̃i=x̃T

i B−1x̃i

=
x̃Ti B−1x̃i

γ̃3
i

.

Since B is positive definite and x̃i 6= 0,
x̃T
i B−1x̃i

γ̃3i
> 0. So γ̃i = 1

L
x̃Ti B̂−1x̃i (i =

1, · · · , K) is a local minimum.

If ‖γ̂‖0 , K < M , which implies there exists x̃ ∈ RKL×1 such that y = D̃x̃,

then we can expand the matrix D̃ to a full-rank square matrix [D̃,De] by adding

an arbitrary full column-rank matrix De. And we expand x̃ to [x̃T , εT ]T , where

ε ∈ R(M−K)L×1 and ε→ 0. Therefore, [D̃,De][x̃
T , εT ]T → D̃x̃ = y. Similarly, we

also expand γ̃ to [γ̃T , ζT ]T with ζ → 0. Then, following the above steps, we can

obtain the same result. Therefore, we finish the proof.
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Sparse Bayesian Learning

Exploiting Spatio-Temporal

Correlation
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In Chapter I we have introduced the spatiotemporal sparse model:

Y = ΦX + V, (IV.1)

where Y ∈ RM×L, Φ ∈ RM×N(M < N), and X ∈ RN×L. Further, the matrix X is

assumed to have the following structure:

X =


X[1]·

X[2]·
...

X[g]·

 (IV.2)

where X[i]· ∈ Rdi×L is the i-th block of X, and
∑g

i=1 di = N . {d1, · · · , dg} is

the block partition. Among the g blocks, only a few are nonzero blocks. The

key assumption is that each block X[i]·(∀i) is assumed to have spatiotemporal

correlation. In other words, entries in each column of X[i]· are correlated (intra-

block correlation), and entries in each row of X[i]· are also correlated (temporal

correlation).

In the following we derive several SBL algorithms for the spatiotemporal

sparse model.

Some specific notations are needed to pay attention to. For a matrix A,

Ai· denotes the i-th row, and A·j denotes the j-th column. A[i]j denotes the i-th

block in the j-th column. Ai[j] denotes the j-th block in the i-th row. A[i]· denotes

the i-th block of all the columns, while A·[j] denotes the j-th block of all the rows.

A[k] denotes the k-th diagonal block in A.

IV.A Spatiotemporal SBL Model

Now we describe the spatiotemporal sparse model from a Bayesian per-

spective. To facilitate the algorithm development, we make the same assumptions

as in the standard multivariate Bayesian variable selection model [14] (or called

the conjugate multivariate linear regression model [32]). The i-th block X[i]· is
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assumed to have the parameterized Gaussian distribution p(vec(XT
[i]·); γi,B,Ai) =

N (0, (γiAi)⊗B). Here B ∈ RL×L is an unknown positive definite matrix capturing

the correlation structure in each row of X[i]·. The matrix Ai ∈ Rdi×di is an un-

known positive definite matrix capturing the correlation structure in each column

of X[i]·. γi is an unknown nonnegative scalar determining whether the i-th block

is a zero block or not. Assuming the blocks {X[i]·}gi=1 are mutually independent,

the distribution of the matrix X can be expressed as

p(vec(XT ); B, {γi,Ai}i) = N (0,Π⊗B) (IV.3)

with

Π ,


γ1A1

γ2A2

. . .

γgAg

 . (IV.4)

Further, each row of the noise matrix V has the distribution p(Vi·;λ,B) =

N (0, λB), where λ is an unknown scalar. Assuming the rows are mutually inde-

pendent, the distribution of V can be expressed as

p(vec(VT );λ,B) = N (0, λI⊗B). (IV.5)

Remark 1: The model is a combination of our previous works on the MMV

model exploiting temporal correlation [174] and on the SMV model exploiting

spatial intra-block correlation [171]. Thus the proposed model (IV.1) with the

associated assumptions and the probability modelings is called the spatiotemporal

sparse Bayesian learning (STSBL) model. The following section will present an

algorithm which alternatively operates in the temporal domain and in the spatial

domain.

Remark 2: The block partition {d1, d2, · · · , dg} in (IV.2) is determined by

users. To recover non-sparse signals as in the applications of compressed sensing

of physiological signals (see Chapter VII), the design of the block partition could
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be rather arbitrary, while the recovery performance is almost not affected. This

property has been shown in [167] on the BSBL framework. The reason is that in

our models (both the BSBL model and the STSBL model), the block partition is a

kind of regularization, which helps estimate the covariance matrix of each column

of X, which, as a result, helps improve the estimate of X.

Remark 3: Note that X and V share the common matrix B for modeling

the correlation structure of each row. This is a widely used setting in Bayesian

variable selection models [14].

IV.B STSBL-EM: Spatiotemporal SBL Algorithm Based

on the EM Method

Motivated by the MMV work in Chapter III, where the matrix B can be

viewed as a temporal whitening matrix, reducing the negative effect caused by tem-

poral correlation, we propose a switching-learning approach, where the parameters

{γi,Ai}gi=1 and λ are estimated from a temporally whitened model, and the pa-

rameter B is estimated from a spatially whitened model. The resulting algorithm

switches the estimation between the two models until convergence.

IV.B.1 Learning in the Temporally Whitened Model

To facilitate algorithm development, we first assume B is known. Letting

Ỹ , YB−
1
2 , X̃ , XB−

1
2 , and Ṽ , VB−

1
2 , the original STSBL model (IV.1)

becomes

Ỹ = ΦX̃ + Ṽ, (IV.6)

where the columns of X̃ are independent, and so does Ṽ. Thus, the algorithm

development becomes easier.
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First, we have the prior for p(X̃; Π) and p(Ṽ;λ):

p(X̃; Π) =
L∏
i=1

p(X̃·i) ∼
∏
i

N (0,Π) (IV.7)

p(Ṽ;λ) =
L∏
i=1

p(Ṽ·i) ∼
∏
i

N (0, λI) (IV.8)

Then we have the likelihood:

p(Ỹ·i|X̃·i;λ) = N (ΦX̃·i, λI) ∀i (IV.9)

Thus, we obtain the posterior:

p(X̃·i|Ỹ·i;λ,Π) = N (µ·i,Σ) ∀i (IV.10)

with the mean µ·i and the covariance matrix Σ given by

µ·i = ΠΦT (λI + ΦΠΦT )−1Ỹ·i ∀i (IV.11)

Σ = (Π−1 +
1

λ
ΦTΦ)−1 (IV.12)

= Π−ΠΦT (λI + ΦΠΦT )−1ΦΠ (IV.13)

Once the parameters Π and λ are estimated, the MAP estimate of X̃ is directly

given by the mean of the posterior, i.e.,

X̃← ΠΦT (λI + ΦΠΦT )−1Ỹ, (IV.14)

and the solution matrix X in the original STSBL model (IV.1) can be obtained:

X← X̃B
1
2 . (IV.15)

Thus, estimating the parameters Π and λ is crucial to the algorithm. We

use the the expectation maximization (EM) method to estimate them. In the EM

method, X̃ is treated as hidden variable. The Q-function for estimating {γi}i and
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{Ai}i is

Q(Π) , EX̃|Ỹ;Θ(old)

[
log p(X̃; {γi}i, {Ai}i)

]
= −L

2
log |Π| − 1

2

L∑
i=1

EX̃|Ỹ;Θ(old)

[
X̃T
·iΠ

−1X̃·i
]

= −L
2

g∑
i=1

log |γiAi| −
1

2

L∑
l=1

Tr
[
Π−1

(
Σ + µ·lµ

T
·l
)]

= −L
2

g∑
i=1

di log γi −
L

2

g∑
i=1

log |Ai|

−1

2

L∑
l=1

g∑
j=1

1

γj
Tr
[
A−1
j

(
Σ[j] + µ[j]lµ

T
[j]l

)]
, (IV.16)

where Θ(old) denotes all the parameters estimated in the previous iteration, Σ[j]

denotes the j-th diagonal block in Σ which corresponds to the j-th block in X̃,

and µ[j]l denotes the j-th block in the l-th column of µ.

Setting to zero the derivative of (IV.16) w.r.t. γi, we obtain the updating

rule for γi:

γi ←
1

Ldi

L∑
l=1

Tr
[
A−1
i

(
Σ[i] + µ[i]lµ

T
[i]l

)]
. (IV.17)

Setting to zero the derivative of (IV.16) w.r.t. Ai, we obtain the updating

rule for Ai:

Ai ←
1

L

L∑
l=1

Σ[i] + µ[i]lµ
T
[i]l

γi
. (IV.18)

Note that one can further regularize the estimate as shown later.
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To estimate λ, the Q-function is given by

Q(λ) = EX̃|Ỹ;Θ(old)

[
log p(Ỹ|X̃;λ)

]
∝ −ML

2
log λ− 1

2λ
EX̃|Ỹ;Θ(old)

[ L∑
l=1

‖Ỹ·l −ΦX̃·l‖2
2

]
= −ML

2
log λ− 1

2λ

L∑
l=1

[
‖Ỹ·l −Φµ·l‖2

2

+EX̃|Ỹ;Θ(old)

[
‖Φ(X̃·l − µ·l)‖2

2

]]
= −ML

2
log λ− 1

2λ
‖Ỹ −Φµ‖2

F −
L

2λ
Tr
(
ΣΦTΦ

)
. (IV.19)

Setting its derivative to zero, we have

λ← 1

ML
‖Ỹ −Φµ‖2

F +
1

M
Tr
(
ΣΦTΦ

)
. (IV.20)

Similar as in [171], at low SNR cases the above updating rule should be modified

to

λ← 1

ML
‖Ỹ −Φµ‖2

F +
1

M

g∑
i=1

Tr
(
Σ[i]Φ

T
·[i]Φ·[i]

)
, (IV.21)

where Φ·[i] denotes the consecutive columns in Φ which correspond to the i-th

block in X̃. In noiseless scenarios one can simply set λ = 10−10 or other small

values, instead of performing the above updating rules.

In the above development we have assumed that B is given. This parameter

can be estimated in a spatially whitened model discussed below.

IV.B.2 Learning in the Spatially Whitened Model

To estimate the matrix B, we consider the following equivalent form of the

original model (IV.1):

Y = Φ ·X + V (IV.22)

where Φ , ΦA
1
2 and X , A−

1
2 X. In this model, X maintains the same block

structure as X, but its each block has no intra-block correlation due to the spatially

whitening effect from A−
1
2 . Thus, in this model estimating B becomes easier.
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Following the approach to derive the T-MSBL algorithm [174] and assuming

X, {γi}i and {Ai}i have been obtained from the temporally whitened model, we

have the following updating rule for the matrix B:

B̌ ←
g∑
i=1

γ−1
i X

T

[i]·X[i]· + λ−1(Y −ΦX)T (Y −ΦX)

=

g∑
i=1

XT
[i]·A

−1
i X[i]·

γi
+

(Y −ΦX)T (Y −ΦX)

λ
(IV.23)

B ← B̌/‖B̌‖F (IV.24)

where X[i]· ∈ Rdi×L is the i-th block in X, and X[i]· , A
− 1

2
i X[i]·. Note that in

noisy scenarios one must regularize the estimate as in [171]. However, for the task

considered here the regularization is not needed.

We denote the above algorithm by STSBL-EM. Due to limited data, the

estimates of B and {Ai}i are needed to be regularized. This issue will be discussed

in Chapter IV.D.

IV.C STSBL-BO: Spatiotemporal SBL Algorithm Based

on the Bound-Optimization Method

In the previous section we have derived an EM based method. As we

have known, the EM optimization method is slow. Thus, here we derive another

algorithm based on the bound optimization method [42, 123]. We have used this

optimization method to derive a block SBL algorithm in Chapter II.

We can use the switching-learning procedure to derive the algorithm. But

here we choose to directly derive it from its cost function.

We first transform the original STSBL model to the following block sparse

model

y = Dx + v (IV.25)

where y = vec(YT ) ∈ RML×1, D = Φ ⊗ IL, x = vec(XT ) ∈ RNL×1, and

v = vec(VT ). Based on the probability models (IV.3) and (IV.5), we obtain
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the posterior

p(x|y; Θ) = N (µ,Σ) (IV.26)

where Θ denotes all the parameters {γi,Ai}i,B, λ. The covariance matrix Σ is

given by

Σ =
(
(Π⊗B)−1 + DT (λI⊗B)−1D

)−1
(IV.27)

=
[
Π−ΠΦT (λI + ΦΠΦT )−1ΦΠ

]
⊗B

and the mean µ is given by

µ = ΣDT (λI⊗B)−1y (IV.28)

= (Π⊗B)DT
(
λI⊗B + D(Π⊗B)DT

)−1
y (IV.29)

= vec
(
YT (λI + ΦΠΦT )−1ΦΠ

)
Therefore, once all the parameters Θ are estimated, the MAP estimate of X is

given by the posterior mean:

X = ΠΦT (λI + ΦΠΦT )−1Y (IV.30)

To estimate these parameters Θ, we use the Type II maximum likelihood

[132], which leads to the following cost function

L(Θ) = −2 log

∫
p(y|x;λ)p(x; {γi,Ai},B)dx

= yTΣ−1
y y + log |Σy| (IV.31)

where Σy = λI⊗B+D(Π⊗B)DT . Now we derive learning rules for each of these

parameters.

IV.C.1 Learning rule for γi

Note that the first term in the cost function (IV.31) is convex with respect

to γ, and the second term in the cost function is concave with respect to γ. Since
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the goal is to minimize the cost function, we consider an upper-bound for the

second term, and then minimize the upper-bound of the cost function.

An upper-bound for the second term is its supporting hyperplane. Let γ∗

be a given point in the γ-space. We have

log |Σy| ≤
g∑
i=1

Tr
(
(Σ∗y)−1D·[i](Ai ⊗B)DT

·[i])(γi − γ∗i ) + log |Σ∗y| (IV.32)

where Σ∗y = Σy|γ=γ∗ , and D·[i] = Φ·[i] ⊗ IL, and Φ·[i] is the i-th block of Φ

corresponding to X[i]·. Besides, notice:

yT (λI⊗B + D(Π⊗B)DT )−1y

(∗)
= λ−1yT

{
I⊗B−1

−(I⊗B−1)D
[
λ−1DT

(
I⊗B−1

)
D + Π−1 ⊗B−1

]−1
DT (I⊗B−1)λ−1

}
y

(∗∗)
= λ−1yT (I⊗B−1)(y −Dµ)

= (y −Dµ)T (λI⊗B)−1(y −Dµ) + µTDT (λI⊗B)−1y

−µTDT (λI⊗B)−1Dµ

(∗∗∗)
= (y −Dµ)T (λI⊗B)−1(y −Dµ) + µT

(
Σ−1 −DT (λI⊗B)−1D

)
µ

(∗∗∗∗)
= (y −Dµ)T (λI⊗B)−1(y −Dµ) + µT (Π⊗B)−1µ (IV.33)

where (*) used the matrix inversion lemma, (**) used (IV.28) and (IV.27), (***)

used (IV.28), and (****) used (IV.27).

Substituting (IV.32) and (IV.33) into the cost function (IV.31), we obtain

the upper bound:

G({γi}i) =
1

λ
(y −Dµ)T (I⊗B)−1(y −Dµ)

+

g∑
i=1

Tr
(
(Σ∗y)−1D·[i](Ai ⊗B)DT

·[i])(γi − γ∗i )

+ µT (Π⊗B)−1µ+ log |Σ∗y|. (IV.34)

Taking the derivative of G({γi}i) with respect to γi, we finally obtain the following
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learning rule

γi ←

√√√√ µT[i](A
−1
i ⊗B−1)µ[i]

Tr
(
(Σy)−1D·[i](Ai ⊗B)DT

·[i]
) (IV.35)

where µ[i] ∈ RdiL×1, and the quantity Σ∗y in (IV.34) is replaced with Σy, keeping

in mind that Σy is calculated using the estimated parameters in the previous

iteration. Note that the rule (IV.35) can be rewritten as

γi ←

√√√√ L−1Tr
(
X[i]·B−1XT

[i]·A
−1
i

)
Tr
(
(λI + ΦΠΦT )−1Φ·[i]AiΦT

·[i]
) (IV.36)

where X is estimated by (IV.30).

IV.C.2 Learning Rule for B

This learning rule can be easily obtained by noting that

log |Σy| = L log |λI + ΦΠΦT |+M log |B|

and using the result in (IV.33). Thus, the cost function (IV.31) becomes

L(B) = L log |λI + ΦΠΦT |+M log |B|

+(y −Dµ)T (λI⊗B)−1(y −Dµ) + µT (Π⊗B)−1µ. (IV.37)

Note that

∂µT (Π⊗B)−1µ

∂B
= −

g∑
i=1

γ−1
i B−1XT

[i]·A
−1
i X[i]·B

−1

and

∂

∂B
(y −Dµ)T (λI⊗B)−1(y −Dµ) = −λ−1B−1(Y −ΦX)T (Y −ΦX)B−1.

Thus, we obtain the learning rule:

B̌ ←
g∑
i=1

XT
[i]·A

−1
i X[i]·

γi
+

(Y −ΦX)T (Y −ΦX)

λ
(IV.38)

B ← B̌/‖B̌‖F (IV.39)
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where the goal of (IV.39) is to avoid the ambiguity among Ai, γi and B. In (IV.38)

the first term is data-related, while the second term is noise-related. When the

noise is very small, or does not exist (i.e., λ→ 0), the second term can be removed

for robustness. Alternatively, the estimate B̌ can be further regularized, which will

be discussed in Section IV.D. Note that the learning rule is the same as the one

in STSBL-EM.

IV.C.3 Learning Rule for Ai

From the original cost function (IV.31) or the equivalent one (IV.37), one

can derive a learning rule for Ai(∀i) as long as the condition L ≥ max{d1, · · · , dg}

holds. Or, one can derive a learning rule for general situations, but it takes large

computational load due to the coupling with B. Thus, we consider to estimate Ai

in the temporally whitened model as we have done in the development of STSBL-

EM.

Assume B has been estimated. Letting Ỹ , YB−
1
2 , X̃ , XB−

1
2 , and

Ṽ , VB−
1
2 , the original model (IV.1) becomes

Ỹ = ΦX̃ + Ṽ, (IV.40)

where the columns of X̃ are independent, and so does Ṽ. Now the model is a block

sparse Bayesian learning model [171] with multiple measurement vectors.

Following the EM method in [171, 174], we can easily derive the learning

rule for Ai(∀i):

Ai ←
1

L

L∑
l=1

Σ̃[i] + µ̃[i]lµ̃
T
[i]l

γi
, (IV.41)

where

Σ̃ = Π−ΠΦT (λI + ΦΠΦT )−1ΦΠ

µ̃ = ΠΦT (λI + ΦΠΦT )−1YB−
1
2 .

For better results, the estimated Ai(∀i) can be further regularized, which will be

discussed in Chapter IV.D.
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IV.C.4 Learning rule for λ

From the equivalent model (IV.40) we can derive the learning rule for λ

using the EM method, as we have done for STSBL-EM. The learning rule is the

same as the one in STSBL-EM.

IV.D Regularization

In our underdetermined spatiotemporal model the number of unknown pa-

rameters is much larger than the number of available data. Thus, regularization to

the learning of the matrices B and {Ai}i is very important. Suitable regularization

helps to overcome the learning difficulty resulting from the very limited data.

As in [174], we can regularize the B̌ in (IV.23) by

B̌←
g∑
i=1

γ−1
i XT

[i]·A
−1
i X[i]· + ηI (IV.42)

where η is a positive scalar. This regularization is shown empirically to increase

robustness in noisy environments. In noiseless environments, this regularization is

not needed.

To regularize the estimates of {Ai}i, we use the strategy in [171], i.e.,

modeling each column in X[i]· as an AR(1) process with the common AR coefficient

r for all i. The strategy can be summarized as follows.

• Step 1: Obtain the AR coefficient ri from each Ai:

ri ←
mi

1

mi
0

, ∀i

where mi
0 is the average of entries in the main diagonal of Ai and mi

1 is the

average of entries in the main sub-diagonal of Ai. Note that due to some

numerical problems,
mi

1

mi
0

may be out of the feasible range (−1, 1), and thus fur-

ther constrain may be imposed; for example, ri ← sign(
mi

1

mi
0
) min{|m

i
1

mi
0
|, 0.99};

• Step 2: Average:

r ← 1

g

g∑
i=1

ri
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• Step 3: Reconstruct the regularized Ai:

Ai ←


1 r · · · rdi−1

...
...

...

rdi−1 rdi−2 · · · 1

 ∀i

This method can be viewed as a simplified version of the one used in [172], where

a gradient-descent method was used to estimate the AR coefficient, which results

in huge computational load.

Note that the parameter-averaging strategy has been widely used in artifi-

cial neural network and the machine learning communities to overcome overfitting.

Experiments showed they helped further improve the algorithm’s perfor-

mance. In fact, denoting the true sparse solution by Xgen and the number of

nonzero rows in Xgen by K0, we have the following theorem:

Theorem 1: In the limit as λ→ 0, assuming K0 < (M +L)/2 , the global

minimum of the cost function (IV.31) is unique and produces an estimate which is

equal to Xgen, irrespective of the estimates of B and {Ai}i.

It can be proved by straightforwardly following the Theorem 1 in Chapter

III. This theorem implies that in noiseless situations the regularization strategies

to Ai and B do not affect the global minimum of our algorithm in the sense that

the global minimum corresponds to the true sparse solution. Thus, regulariza-

tion strategies only affect the probability of our algorithm to converge to its local

minima.

IV.E Experiment

This section gives an experiment on recovery of a compressed audio signal.

More experiments can be found in Chapter VII and Chapter IX.

The length of the audio signal, x, was 81920 data points, which was par-

titioned into T segments {xi}Ti=1 of length N . Each segment xi was compressed
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Table IV.1 Performance comparison in terms of NMSE and runtime at different

segment length N . The number in a parenthesis is runtime (in seconds), while the

number outside a parenthesis is NMSE (in dB).

N = 512 N = 1024 N = 2048 N = 4096 N = 8192

STSBL-EM -22.6 (30.2 s) - - - -

SL0 -15.0 (16.6 s) -16.2 (42.1 s) -17.5 (129.7 s) -20.4 (625.0 s) -21.0 (2725 s)

EM-BG-AMP -14.3 (50.2 s) -16.0 (114.8 s) -16.8 (172.0 s) -19.3 (426.9 s) -20.2 (1108 s)

SPGL-1 -13.7 (97.3 s) -13.8 (89.9 s) -16.5 (199.3 s) -19.0 (510.1 s) -19.8 (1541 s)

BCS -13.0 (52.0 s) -14.7 (68.4 s) -16.0 (144.5 s) -18.9 (422.8 s) -18.4 (2270 s)

OMP -12.4 (5.8 s) -14.5 (19.4 s) -14.7 (109.0 s) -18.0 (521.6 s) -

SP -12.5 (31.7 s) -14.2 (85.3 s) -15.2 (308.0 s) -17.5 (1325 s) -

into N/2 samples, denoted by yi. The sensing matrix Φ was a Gaussian random

matrix.

Rather than directly recovering xi from yi and Φ, we considered to use

the DCT to help recover. Namely, we first recovered the DCT coefficients of each

segment via

yi = ΦDθi

where D was the orthonormal basis of the DCT such that xi = Dθi and θi was

the DCT coefficients. Then we recovered xi according to xi = Dθi.

In this experiment, we set N = 512, 1024, 2048, 4096, 8192, which corre-

sponded to T = 160, 80, 40, 20, 10 segments, respectively. And then we performed

six state-of-the-art algorithms. They were SL0 [94], EM-BG-AMP [141], SPGL-1

[137], BCS [70], OMP [134], and Subspace Pursuit (SP) [27]. Their NMSE and

total runtime at different N are summarized in Table Table IV.1.

From the Table, we can see if we want to obtain good quality, we need

to increase the segment length N . However, the cost is that the recovery time is

significantly increased. For example, to achieve the quality of NMSE = -21dB, SL0

needed to choose a large segment length, which was 8192, but the total recovery

time was 2725 seconds!
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Figure IV.1 The waveforms of the original audio signal and of the recovered audio

signal by STSBL-EM.

Next we performed the proposed STSBL-EM algorithm. We considered to

jointly recover 8 segments of the length 512 at the same time (i.e., L = 8 and

N = 512 in the spatiotemporal sparse model). The block size in the user-defined

block partition was 16 (i.e., di = 16(∀i)). The maximum number of iterations was

set to 40. The resulting NMSE and total runtime are also summarized in Table

IV.1. The recovered waveform and the original waveform are shown in Figure IV.1.

Clearly, STSBL-EM had the higher recovery quality with NMSE = -22.6 dB, but

only cost 30.2 seconds.

IV.F Conclusion

Spatiotemporal sparse model is a specific multiple measurement vector

model, which can be viewed as a combination of the canonical block sparse model

(see Chapter II) and the canonical multiple measurement vector model (see Chap-

ter III). In this chapter, we proposed two spatiotemporal sparse Bayesian learning
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algorithms for this model, which exploit the spatiotemporal correlation. The per-

formance is confirmed by an experiment on recovery of a compressed audio signal.

More experiments on real-world data can be found in Chapter VII and Chapter

IX.
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This chapter considers the time-varying sparse model, which is expressed

as follows

y(t) = Φx(t) + v(t), t = 1, 2, · · · , L (V.1)

where Φ ∈ RM×N(M � N) is a known matrix with columns assumed to satisfy

certain conditions such as the Unique Representation Property (URP) condition

[57]. Depending on applications, Φ could be a random incoherent matrix (e.g. in

MRI compression) or a deterministic coherent matrix (e.g. source localization).

y(t) ∈ RM×1 is the available measurement vector at time point t. x(t) is the

unknown solution vector at time t. The number of nonzero entries in x(t) (∀t)

has to be less than a threshold to ensure a unique global solution [36]. v(t) is the

unknown noise vector at time t. In source localization, y(t) is the received signals

by array sensors at time t, and x(t) is the source vector whose nonzero entries

indicate active source signals at associated locations (or directions). In the model

(V.1) a key characteristics is that the support of x(t) (i.e. indexes of nonzero

entries in x(t)) changes along time t.

If the support of x(t) does not change all the time, then the model (V.1)

becomes the MMV model 1. This may be the favorite case, since it has been proved

that the failure probability of support recovery of x(t)(t = 1, · · · , L) decreases

exponentially with L, and many effective algorithms have been proposed for this

model. However, when the support of x(ti) is totally different from x(tj)(∀i 6= j),

the model can be only treated as L separate basic SMV models. This may be

the worst case, since in this case we cannot benefit from jointly exploiting multiple

measurement vectors. Fortunately, in most applications the support of x(t) changes

slowly. Such property can be exploited for better performance than treating the

model (V.1) as L separate SMV models.

1Recall that in an MMV model, the matrix X , [x(1), · · · ,x(L)] is called the source matrix, and each
row of X is called a source.
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V.A Literature Review

A number of algorithms have been proposed [161, 114, 138, 139, 109] ex-

ploiting the property of slowly changing support. For example, in [138] a so-called

LS-CS algorithm was proposed, which applies an SMV algorithm on the least

squares residual computed using the estimate of the support from the previous

time. A similar method was later proposed in [139], which uses the support es-

timate from the previous time and then finds the source vector at current time

which satisfies the data constraint and is sparsest outside of that support. These

algorithms all adopt an SMV algorithm to estimate current source vector. This

may not ensure the estimation quality. Also, they heavily rely on estimates in

the previous time. Once large errors occur in the previous time, these errors can

propagate to the future estimation.

On the other hand, some people implicitly or explicitly exploited the MMV

model by using the fact that several successive source vectors may have the com-

mon sparsity pattern [170, 163, 5]. In addition to the common sparsity pattern (see

Chapter III), other properties can also be used, such as the amplitude smoothness

of successive source vectors [163, 5]. Unfortunately, these algorithms blindly divide

the whole data stream into a number of segments, each segment being treated as an

MMV model. Also, they use deterministic ways to exploit the amplitude smooth-

ness, such as defining a deterministic smoothness matrix or evaluating the total

variation. These deterministic ways are not data-adaptive, and are empirically

proved to be poor [174].

In the following we derive an online algorithm, called Slide-TMSBL, which

exploits the common sparsity profile of successive source vectors. But different to

existing algorithms, the algorithm also exploits temporal correlation of sources.

In addition, it can automatically divide the data stream into segments such that

each segment satisfies an MMV model, functioning like a change-point detection

algorithm operating in the x-space.
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V.B The Slide-TMSBL Algorithm

In [170] we viewed the time-varying model (V.1) as a concatenation of

several equal-length segments; each segment is treated as an MMV model. Then

we performed T-MSBL on each segment. For convenience, we denote this method

by Segment-TMSBL. Segment-SBL has been shown to have better performance

than some state-of-the-art algorithms, such as LS-CS [138]. However, its main

drawback is that the segment partition is blindly decided, which is inconsistent

with the true partition. The simulation in [170] showed that different partitions

lead to different performance.

To overcome this drawback, we propose the following algorithm. The basic

idea is to slide a varying-length time-window over the measurement vector stream

step by step along time. A decision-making mechanism ensures the source vectors

in the time-window have the same support. The ending of the time-window is

denoted by t0, while its beginning is current time t (t ≥ t0). The procedure is

described as follows. After the time-window is updated (thus the source vectors in

the time-window have the same support), T-MSBL is performed on measurement

vectors in the time-window to obtain robust estimates of the source vectors, which

fully benefits from the MMV model. Next, the time-window extends its beginning

from t to t+ 1. Then the decision-making mechanism decides whether the support

of the coming source vector x(t+ 1) changes or not. If not, the ending of the time-

window, t0, does not change; otherwise, t0 is set to current time, i.e. t0 ← t + 1.

Thereafter, the time-window is updated, and the procedure continues to the next

time.

The basic flow of the algorithm is summarized in Algorithm 1. Some re-

marks are given in order:

(1) As shown in Chapter III, T-MSBL has a robust learning rule for λ.

Generally, its estimate, λ̂, is three to five times larger than the true noise variance.

So we set η = λ̂/4 such that η is close to the true noise variance. The denominator
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Algorithm 1 Basic Flow
Input: measurement vectors y(1),y(2), · · · ; dictionary matrix Φ; initial time-window length

Lini ≥ 1

Output: estimates of source vectors x̂(1), x̂(2), · · ·

Initialization: Apply T-MSBL on the measurement vectors in the initial time-window

y(1), · · · ,y(tLini), obtaining the estimates of sources vectors x̂(1), · · · , x̂(tLini) and saving them.

Set t0 = 1.

for t = tLini
+ 1, tLini

+ 2, · · · do

(1) Apply T-MSBL on the segment y(t0), · · · ,y(t), obtaining the results x̂(t0), · · · , x̂(t) and

the estimate of λ, λ̂.

(2) Calculate the residual at time t: r = y(t)−Φx̂(t) and its variance var(r).

(3) Set the threshold η = λ̂/4.

if var(r) < η then

(4) Save x̂(t0), · · · , x̂(t).

else

(5) Apply T-MSBL on y(t), obtaining the estimate x̂(t) and save it.

(6) Set t0 = t

end if

end for

4 is not crucial. Other values from 3 to 5 lead to similar performance.

(2) To find whether the support of the coming source vector x(t+1) changes

or not, a natural strategy is to compare the support of x̂(t + 1) to that of x̂(t).

However, this strategy is not robust. Due to noise disturbance, even if the supports

of x(t+ 1) and x(t) are the same, the estimates x̂(t+ 1) and x̂(t) can have slightly

different supports. So we use the strategy presented in Step (1)-(2), which is based

on the following observation. If x(t + 1) has the same support as x(t0), · · · ,x(t),

then the joint estimation of x(t0), · · · ,x(t+1) can achieve higher accuracy, since the

failure probability of recover decreases exponentially with the increasing number of

measurement vectors. Thus the variance var(r) should be still below the threshold

η. However, if x(t + 1) has some nonzero elements whose locations outside of the

support of x(t0), · · · ,x(t), then the joint estimation of x(t0), · · · ,x(t + 1) results

in poorer estimate of x(t + 1) (and other source vectors). This is because the
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locations of the extra nonzero elements in x(t+1) equivalently increase the nonzero

rows in the solution matrix [x(t0), · · · ,x(t + 1)], which T-MSBL tries to jointly

recover. Increased nonzero rows in the solution matrix makes the recovery task

more difficult [25]. Consequently, the recovery quality of x(t+ 1) deteriorates, and

thus the variance var(r) exceeds the threshold η.

(3) Although in Step (1) T-MSBL is performed on the segment from y(t0)

to y(t), the computational load is much close to the case when performed on only

y(t). This is because T-MSBL can adopt the same strategies (SVD decomposition

and the equivalent transformation of measurement vectors) as in [154] to reduce

computational load.

(4) Note that the estimated value of λ is always updated at each time. One

advantage of this is that the algorithm can be also used to the case when noise

variance is time-varying. Based on our knowledge, no existing algorithms consider

this case. However, if we know that the noise variance does not change, we can fix

it to some value, such as an estimated value from a suitable time-window.

However, the algorithm has a flaw. When the algorithm finds the support

of x(t) changes, it will perform T-MSBL only on y(t) (Step (5)). This corresponds

to an SMV model, and the estimate of x(t) may have large errors. When a new

measurement vector y(t+ 1) is available, the joint estimation of x(t) and x(t+ 1)

may also have large errors (since in this case the corresponding MMV model only

contains two measurement vectors). As a result, it probably determines x(t + 1)

has different support to x(t). Therefore, it again uses T-MSBL on only y(t+ 1) to

estimate x(t+1), which, again, results in large errors in x̂(t+1). This vicious circle

may continue for a long time. Note that this issue widely exists in the algorithms

using SMV algorithms as their core, such as LS-CS [138] and modified-CS [139].

To solve this issue, we make some modifications. We use indicators, de-

noted by chanegPt(t), to record change points of the supports of estimated source

vector series. If the time t is a change point, set changePt(t) = 1; otherwise, set

changePt(t) = 0. When h0(h0 ≥ 1) successive change points are detected, the
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algorithm applies T-MSBL on the measurement vectors corresponding to these

change points. The estimated source vectors are stored as final estimates (replac-

ing the previous estimates). The reason that T-MSBL is used here is that several

successive change points indicate the estimates at these change points contain large

errors (remind that the true support of source vectors changes slowly). The large

errors are due to the use of SMV models at each change point. Thus, T-MSBL is

used to jointly estimate these source vectors at these change points. This corre-

sponds to an MMV model with h0 measurement vectors, and the estimation error

of each source vector is reduced largely. However, h0 should not be too large.

This is because in this case successive h0 change points may not occur. Also, an

MMV model with too many measurement vectors is at the risk of containing many

nonzero rows in the solution matrix, which instead reduces the estimation quality.

In our experiments we set h0 = 4.

The algorithm, called Slide-TMSBL, is given in Algorithm 2. Advantages

of Slide-TMSBL are summarized as follows.

(1) It largely exploits the advantages of the MMV model. By exploring the

local stationarity of the supports of source vector series, it uses the MMV model

to gain better recovery performance. This is one of the reasons that the Slide-

TMSBL outperforms other algorithms which do not exploit the MMV model, such

as LS-CS [138] and Modified-CS [139].

(2) Slide-TMSBL can automatically detect the change points of supports,

dividing the data stream into segments such that each segment satisfies an MMV

model. This ability ensures that it can better benefit from advantages of the MMV

model.

(3) By applied T-MSBL to each segment, Slide-TMSBL can exploit tem-

poral correlation of sources. In contrast, SOB-MFOCUSS [163] and some Lasso

variants in [5] need users to design some penalty functions, which are not data-

adaptive. It is found that adaptively learning temporal correlation can achieve

better performance (see Chapter III). This is another reason that Slide-TMSBL
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Algorithm 2 Slide-TMSBL
Input: measurement vectors y(1),y(2), · · · ; dictionary matrix Φ; initial time-window length

Lini ≥ 1; user-defined parameter h0 ≥ 1

Output: estimates of source vectors x̂(1), x̂(2), · · · ; change-point indicators

changePt(1), changePt(2), · · ·

Initialization: Apply T-MSBL on the measurement vectors in the initial time-window

y(1), · · · ,y(tLini
), obtaining the estimates of sources vectors x̂(1), · · · , x̂(tLini

) and saving them.

Set t0 = 1. Set changePt(1), · · · , changePt(tLini
) to zeros.

for t = tLini + 1, tLini + 2, · · · do

(1) Apply T-MSBL on the segment y(t0), · · · ,y(t), obtaining the results x̂(t0), · · · , x̂(t) and

the estimate λ̂.

(2) Calculate the residual at time t: r = y(t)−Φx̂(t) and its variance var(r).

(3) Set the threshold η = λ̂/4.

if var(r) < η then

(4) Save x̂(t0), · · · , x̂(t).

(5) Set changePt(t0 + 1), · · · , changePt(t) to zeros

else

(6) Apply T-MSBL on y(t), obtaining the estimate x̂(t) and saving it

(7) Set changePt(t) = 1

if changePt(t− 1) = 0 then

(8) Set t0 = t

else

if changePt(t− h0), · · · , changePt(t− 1) are all ones then

(9) Save x̂(t0), · · · , x̂(t)

(10) Set changePt(t0 + 1), · · · , changePt(t) to zeros.

(11) Set t0 = t

end if

end if

end if

end for
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has superiority to other algorithms.

(4) The fourth advantage comes from T-MSBL itself. Extensive experimen-

tal results (see Chapter III) have shown that T-MSBL outperforms most existing

MMV algorithms.

(5) Slide-TMSBL is not sensitive to the initial estimation. However, some

algorithms such as LS-CS and Modified-CS require higher accuracy in the initial

estimation; otherwise, these algorithms may not provide reliable estimation after

some time.

(6) Slide-TMSBL can reduce the errors caused in previous estimations. To

see this, suppose Slide-TMSBL has jointly estimated the source vectors from t0 to t.

Denote the estimates by X̂pre. At time t+1, Slide-TMSBL jointly estimates source

vectors from t0 to t+ 1 together. Denote the estimates by X̂new. If Slide-TMSBL

decides that the support does not change at time t+1, then the estimates X̂new will

be saved as final estimates. Note that, since the estimation performance increases

with increasing number of measurement vectors, the estimates x(t0), · · · ,x(t) in

X̂new have less estimation errors than their counterparts in X̂pre.

V.C Simulation

A computer simulation was carried out. The matrix Φ was a random Gaus-

sian matrix with the size 50×300. The number of snapshots was 60. The standard

variance of noise was 0.008, which resulted in about 15 dB SNR. New sources were

appeared at the 12-th, the 28-th and the 46-th snapshot. Existing sources dis-

appeared at the 28-th and the 37-th snapshot. Figure V.1 shows the number of

active sources along time.

Four algorithms were compared: the proposed Slide-TMSBL algorithm, the

Segment-TMSBL algorithm [170], the Modified CS algorithm [139] with the ini-

tialization by T-MSBL, and the SOB-FOCUSS algorithm [163]. Figure V.2 shows

the results averaged over 100 trials, where we can see Slide-TMSBL outperformed
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Figure V.1 Source activity pattern and active source number along time. In (a)

each red line shows an active source. In (b) the total number of active sources is

plotted as a function of the snapshot.

other algorithms.

V.D Conclusion

In this chapter, we proposed an online algorithm for the time-varying sparse

model. This algorithm is based on our previously proposed T-MSBL algorithm. It

automatically divides data stream into segments such that each segment satisfies

a multiple measurement vector (MMV) model. Then it applies T-MSBL to each

MMV model, exploiting the common sparsity property and temporal correlation

in each MMV model. Thus, the algorithm largely benefits from MMV models.
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In this chapter we apply the proposed BSBL algorithms (see Chapter II)

to the compressed sensing of raw ECG recordings for energy-efficient wireless tele-

monitoring. As an example, we mainly consider the compressed sensing of raw

fetal ECG (FECG) recordings.

It is worthy emphasizing that the successes of BSBL algorithms in this

application clearly show their unique ability to recover non-sparse signals, which

existing compressed sensing algorithms do not have. The unique ability also has

interesting mathematical meanings, which will be discussed later.

VI.A Background

Noninvasive monitoring of FECG is an important approach to monitor the

health of fetuses. The characteristic parameters of an FECG, such as heart beat

rates, morphology, and dynamic behaviors, can be used for diagnosis of fetal de-

velopment and disease. Among these parameters, the heart beat rate is the main

index of fetal assessment for high-risk pregnancies [119]. For example, abnormal

patterns (decelerations, loss of high-frequency variability, and pseudo-sinusoidal)

of fetal heart beat rates are generally indicative of fetal asphyxia [61].

However, noninvasive acquisition of clean FECGs from maternal abdom-

inal recordings is not an easy problem. This is because FECGs are very weak,

and often embedded in strong noise and interference, such as maternal ECGs

(MECGs), instrumental noise, and artifacts caused by muscles. Further, the ges-

tational age and the position of fetuses also affect the strength of FECGs. Up to

now various signal processing and machine learning methods have been proposed

to obtain FECGs, such as adaptive filtering, wavelet analysis, and blind source

separation (BSS)/independent component analysis (ICA). For example, the prob-

lem of extracting clean FECGs from raw FECG recordings can be well modeled

as an instantaneous ICA mixture model, in which the raw recordings are viewed

as the linear mixture of a number of independent (or uncorrelated) sources includ-
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ing FECG components, MECG components, and various noise components [29].

Interested readers can refer to [61, 2, 110] for good surveys on these techniques.

Traditionally, pregnant women are required to frequently visit hospitals

to get resting FECG monitoring. Now, the trend and desire is to allow pregnant

women to receive ambulatory monitoring of FECGs. For example, pregnant women

can stay at home, where FECGs are collected through wireless telemonitoring. In

such a telemonitoring system, a wireless body-area network (WBAN) [1] integrates

a number of sensors attached on a patient’s skin, and uses ultra-low-power short-

haul radios (e.g., Bluetooth) in conjunction with nearby smart-phones or handheld

devices to communicate via the Internet with the health care provider in a remote

terminal. Telemonitoring is a convenient way for patients to avoid frequent hospital

visits and save lots of time and medical expenses [19].

Among many constraints in WBAN-based telemonitoring systems [18], the

energy consumption is a primary design constraint [93]. It is necessary to reduce

energy consumption as much as possible, since a WBAN is often battery-operated.

This has to be done in several ways. One way is that on-sensor computation

should be minimum. Another is that data should be compressed before transmis-

sion (the compressed data will be used to reconstruct the original data in remote

terminals). Unfortunately, most conventional data compression techniques such as

wavelet-based algorithms dissipate lots of energy [88]. Therefore, new compression

techniques are needed urgently.

Compressed sensing (CS) is a promising tool to cater to the two constraints.

It uses a simple linear transform (i.e., a sensing matrix) to compress a signal, and

then reconstructs it by exploiting its sparsity. The sparsity refers to the character-

istics that most entries of the signal are zero. When CS is used in WBAN-based

telemonitoring systems, the compression stage is completed on data acquisition

module before transmission, while the reconstruction stage is completed on work-

stations/computers at remote receiving terminals. Based on a real-time ECG tele-

monitoring system, Mamaghanian et al. [88] showed that when using a sparse
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binary matrix as the sensing matrix, CS can greatly extend sensor lifetime and

reduce energy consumption while achieving competitive compression ratio, com-

pared to a wavelet-based compression method. They also pointed out that when

the data collection and the compression are implemented together by analog de-

vices before analog-to-digital converter (ADC), the energy consumption can be

further reduced.

Although CS has achieved some successes in adult ECG telemonitoring

[88, 33], it encounters difficulties in FECG telemonitoring. These difficulties es-

sentially come from the conflict between more strict energy constraint in FECG

telemonitoring systems and non-sparsity of raw FECG recordings.

The energy constraint is more strict in FECG telemonitoring systems due

to the large number of sensors deployed. Generally, the number of sensors to

receive raw FECG recordings ranges from 8 to 16, and sometimes extra sensors

are needed to record maternal physiological signals (e.g., blood pressure, MECG,

and temperature). The large number of sensors indicates large energy dissipated in

on-sensor computation. Given limited energy, this requires the systems to perform

as little on-sensor computation as possible. For example, filtering before data

compression may be prohibited. For CS algorithms, this means that they are

required to directly compress raw FECG recordings with none or minimum pre-

processing.

However, raw FECG recordings are non-sparse, which seriously deteriorates

reconstruction quality of CS algorithms. Raw FECG recordings differ from adult

ECG recordings in that they are unavoidably contaminated by a number of strong

noise and interference, as discussed previously. Most CS algorithms have difficulty

in directly reconstructing such non-sparse signals. Although some strategies have

been proposed to deal with non-sparse signals, they may not be helpful in this

application.

In this chapter we will apply a proposed BSBL algorithm to the compressed

sensing of FECG recordings. We will see the BSBL algorithm achieves satisfactory
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results.

VI.B Currently Used Models

This section discusses currently used CS models in the compressed sensing

of physiological signals. As in the ‘digital CS ’ paradigm in [88], we assume signals

have passed through the analog-to-digital converter (ADC).

The widely used CS model is the basic noiseless SMV model, expressed as

y = Φx, (VI.1)

where x ∈ RN×1 is the original signal with length N . Φ ∈ RM×N(M � N) is

a designed sensing matrix which linearly compresses x. In this application x is

a segment from a raw FECG recording, y is the compressed data which will be

transmitted via a WBAN to a remote terminal.

In the remote terminal, using the designed sensing matrix Φ, a CS algorithm

reconstructs x from the compressed data y.

In many applications the signal x is not sparse, but sparse in some trans-

formed domains such as the wavelet domain. This means, x can be expressed

as x = Ψθ, where Ψ ∈ RN×N is an orthonormal basis matrix of a transformed

domain and θ is the representation coefficient vector which is sparse. Thus the

model (VI.1) becomes

y = ΦΨθ = Ωθ, (VI.2)

where Ω , ΦΨ. Since θ is sparse, a CS algorithm can first reconstruct θ using y

and Ω, and then reconstruct x by x = Ψθ. This method is useful for some kinds

of signals. But as shown in our experiments later, this method still cannot help

existing CS algorithms to reconstruct raw FECG recordings.

Sometimes the original signal x itself contains noise (called ‘signal noise’).

That is, x = u + n, where u is the clean signal and n is the signal noise. Thus the
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model (VI.1) becomes

y = Φx = Φ(u + n) = Φu + Φn = Φu + w, (VI.3)

where w , Φn is a new noise vector. This model can be viewed as a basic noisy

SMV model.

VI.C Compressed Sensing of ECG Recordings via BSBL

Algorithms

In fact, one can observe FECG recordings have rich structure. An obvious

structure is the block structure as stated in Chapter II. The associated block

sparse model is

y = Φx (VI.4)

with

x = [x1, · · · , xh1︸ ︷︷ ︸
xT
1

, · · · , xhg−1+1, · · · , xhg︸ ︷︷ ︸
xT
g

]T (VI.5)

A raw FECG recording can be roughly viewed as a block sparse signal contami-

nated by signal noise.

Figure VI.1 (a) plots a segment of a raw FECG recording. In this segment

the parts from 20 to 60, from 85 to 95, and from 200 to 250 time points can

be viewed as three significant non-zero blocks. Other parts can be viewed as

concatenations of zero blocks. And the whole segment can be viewed as a clean

signal contaminated by signal noise. Note that although the block partition can

be roughly determined by observing the raw recording, it is unknown in practical

FECG telemonitoring. Hence, a raw FECG recording can be modeled as a block

sparse signal with unknown block partition and unknown signal noise in a noiseless

environment.

Reconstructing x while exploiting its unknown block partition is very diffi-

cult. Up to now only several CS algorithms have been proposed for this purpose
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Figure VI.1 (a) A segment of an FECG recording. (b) A sub-segment containing

a QRS complex of the MECG. (c) A sub-segment containing a QRS complex of the

FECG. (d) A sub-segment showing a QRS complex of the FECG contaminated by

a QRS complex of the MECG.

[65, 159, 101], but none of them can handle the case when the signal noise is

presented.

In the following we will use a BSBL algorithm to compress/recover the

FECG recordings. Particularly, we choose the BSBL-BO algorithm as an illustra-

tion (the BSBL-EM algorithm can also perform well). Although BSBL-BO needs

users to define the block partition, the user-defined block partition is not needed

to be the same as the true block partition. Later we will see this much clearer.

Since in wireless telemonitoring filtering and other preprocessing are not

encouraged, we treat the original signal and the signal noise as a whole, i.e., com-

pressing/recovering the signal and the signal noise together. That means, the

BSBL algorithm must recover non-sparse signals. The reconstruction of non-sparse

signals can be achieved by setting their γi-pruning threshold to a small value. The

threshold is used to prune out small γi during learning procedures. Since in this

application the signal to recover is non-sparse, we can simply set the threshold to

0, i.e., disabling the pruning mechanism.
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VI.D Experiments on Real-world Datasets

Experiments were carried out using two real-world raw FECG datasets 1.

Both datasets are widely used in the FECG community. In the first dataset, the

FECG is barely visible, while in the second dataset the FECG is invisible. Thus

the two datasets provide a good diversity of FECG recordings to verify the efficacy

of our algorithm under various situations.

For algorithm comparison, this study chooses ten representative CS algo-

rithms. Each of them represents a family of algorithms and has top-tier perfor-

mance in its family. Thus, the comparison conclusions could be generalized to

other related CS algorithms.

In each experiment, all the CS algorithms used the same sensing matrix to

compress FECG recordings. Thus the energy consumption of each CS algorithm

was the same 2. Therefore we only present reconstruction results.

In adult ECG telemonitoring or other applications, reconstruction perfor-

mance is generally measured by comparing reconstructed recordings with original

recordings using the mean square error (MSE) as a performance index. However,

in our application reconstructing raw FECG recordings is not the final goal; the

reconstructed recordings are further processed to extract a clean FECG by other

advanced signal processing techniques such as BSS/ICA and nonlinear filtering.

Due to the infidelity of MSE for structured signals [146], it is hard to see how the

final FECG extraction is affected by errors in reconstructed recordings measured

by MSE. Thus, a more direct measure is to compare the extracted FECG from

the reconstructed recordings with the extracted one from the original recordings.

This study used BSS/ICA algorithms to extract a clean FECG from reconstructed

recordings and a clean FECG from original recordings, and then calculated the

Pearson correlation between the two extracted FECGs.
1Experiment codes can be downloaded at http://dsp.ucsd.edu/∼zhilin/BSBL.html , or https://sites.

google.com/site/researchbyzhang/bsbl .
2Reconstruction of FECG recordings is done by software in remote terminals and thus it does not

cost energy of WBANs.
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VI.D.1 DaISy Dataset

Figure VI.1 shows a segment from the DaISy dataset [96]. Two QRS com-

plexes of the MECG can be clearly seen from this segment, and two QRS complexes

of the FECG can be seen but not very clearly. We can clearly see that the segment

is far from sparse; its every entry is non-zero. This brings a difficulty to existing

CS algorithms to reconstruct it.

To compress the data we used a randomly generated sparse binary sensing

matrix of the size 125 × 250. Its each column contained 15 entries of 1s, while

other entries were zero.

For the BSBL-BO algorithm, we defined its block partition according to

(VI.5) with h1 = · · · = hg = 25. Section VI.E will show that the algorithm is not

sensitive to the block partition. The algorithm was employed in two ways. The

first way was allowing it to adaptively learn and exploit intra-block correlation.

The second way was preventing it from exploiting intra-block correlation, i.e. by

fixing the matrices Bi(∀i) to identity matrices.

The results are shown in Figure VI.2, from which we can see that exploiting

intra-block correlation allowed the algorithm to reconstruct the segment with high

quality. When the correlation was not exploited, the reconstruction quality was

very poor; for example, the first QRS complex of the FECG was missing in the

reconstructed segment (Figure VI.2 (c)).

Then we employed two groups of CS algorithms. One group was the algo-

rithms based on the basic CS model (VI.1), which do not exploit block structure

of signals. They were CoSaMP [99], Elastic-Net [180], Basis Pursuit [137], SL0

[94], and EM-GM-AMP [141] (with the ‘heavy-tailed’ mode). They are represen-

tative of greedy algorithms, of algorithms minimizing the combination of `1 and `2

norms, of algorithms minimizing `1 norm, of algorithms minimizing `0 norm, and

of message passing algorithms, respectively. Note that the Basis Pursuit algorithm

was the one used in [88] to reconstruct adult ECG recordings. Their reconstruction
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Figure VI.2 (a) The original FECG segment. (b) The reconstructed segment by

BSBL-BO when exploiting intra-block correlation. (c) The reconstructed segment

by BSBL-BO when not exploiting intra-block correlation. The arrows indicate

QRS complexes of the FECG.

results are shown in Figure VI.3 (a)-(e) 3.

The second group was the algorithms exploiting structure of signals. They

were Block-OMP [43], Block Basis Pursuit [137], CluSS-MCMC [159], StructOMP

[65], and BM-MAP-OMP [101]. Block-OMP and Block Basis Pursuit need a priori

knowledge of the block partition. We used the block partition (VI.5) with h1 =

· · · = hg = h, and h varied from 2 to 50. However, no block sizes yielded meaningful

results. Figure VI.3 (f)-(g) display their results when h = 25. Figure VI.3 (h)

shows the reconstruction result of CluSS-MCMC. StructOMP requires a priori

knowledge of the sparsity (i.e. the number of nonzero entries in the segment).

Since we did not know the sparsity exactly, we set the sparsity from 50 to 250.

However, no sparsity value led to a good result. Figure VI.3 (i) shows the result

with the sparsity set to 125. Figure VI.3 (j) shows the result of BM-MAP-OMP.

3The free parameters of these algorithms were tuned by trial and error. But no values were found to
give meaningful results.
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Figure VI.3 Recovery results of compared algorithms. From (a) to (j), they are the

results by (a) Elastic Net, (b) CoSaMP, (c) Basis Pursuit, (d) SL0, (e) EM-GM-

AMP, (f) Block-OMP, (g) Block Basis Pursuit, (h) CluSS-MCMC, (i) StructOMP,

and (j) BM-MAP-OMP, respectively.

Comparing all the results we can see only the BSBL-BO algorithm, if al-

lowed to exploit intra-block correlation, reconstructed the segment with satisfac-

tory quality.

To further verify the ability of BSBL-BO, we used the same sensing matrix

to compress the whole DaISy dataset, and then used BSBL-BO to reconstruct it.

Figure VI.4 (a) shows the whole dataset. The most obvious activity is the

MECG, which can be seen in all the recordings. The FECG is very weak, which

is nearly discernible in the first five recordings. The fourth recording is dominated

by a baseline wander probably caused by maternal respiration.

The reconstruction result by BSBL-BO is shown in Figure VI.4 (b). All the

recordings were reconstructed well. Visually, we do not observe any distortions in

the reconstructed dataset.

Admittedly, the reconstructed recordings contained small errors. Since

the final goal in our application is to extract clean FECGs from reconstructed

FECG recordings using advanced signal processing techniques such as BSS/ICA,
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Figure VI.4 (a) The original dataset. (b) The reconstructed dataset by BSBL-BO.

(c) The extracted FECG from the original dataset. (d) The extracted FECG from

the dataset reconstructed by BSBL-BO.

we should study whether the reconstruction errors deteriorate the performance of

these techniques when extracting FECGs. Here, we examined whether the errors

affected the performance of BSS/ICA. We used the eigBSE algorithm, a BSS algo-

rithm proposed in [166], to extract a clean FECG from the reconstructed record-

ings. The algorithm exploits quasi-periodic characteristics of FECGs. Thus, if the

quasi-periodic structure of FECGs and the ICA mixing structure of the recordings

are distorted, the extracted FECG will have poor quality.

Figure VI.4 (d) shows the extraction result. We can see the FECG was

clearly extracted without losing any QRS complexes or containing residual noise.
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For comparison, we performed the eigBSE algorithm on the original recordings to

extract the FECG. The result is shown in Figure VI.4 (c). Obviously, the two

extracted FECGs were almost the same. In fact, their Pearson correlation was

0.931.

VI.D.2 OSET Database

Generally in raw FECG recordings there are many strong baseline wanders,

and FECGs are very weak and are buried by noise or MECGs. To test the abil-

ity of BSBL-BO in these worse scenarios, we used the dataset ‘signal01’ in the

Open-Source Electrophysiological Toolbox (OSET) [112]. The database consists

of eight abdominal recordings sampled at 1000 Hz. We first downsampled the

dataset to 250 Hz, since in WBAN-based telemonitoring the sampling frequency

rarely exceeds 500 Hz. For illustration, we selected the first 12800 time points of

each downsampled recording as the dataset used in our experiment. Figure VI.5

(a) shows the studied dataset, where in every recording the baseline wander is

significant. Figure VI.5 (b) shows the first 1000 time points of the recordings,

where the QRS complexes of the MECG and various kinds of noise dominate the

recordings and the FECG is completely buried by them.

We used another randomly generated sparse binary sensing matrix of the

size 256×512 with each column consisting of 12 entries of 1s with random locations,

while other entries were all zero. The sensing matrix is exactly the one used in

[88].

For BSBL-BO, we set the block partition h1 = · · · = h16 = 32. The

recovered dataset by BSBL-BO is shown in Figure VI.6 (a), and the first 1000

time points of the recovered recordings are shown in Figure VI.6 (b). Visually, the

recovered dataset was the same as the original dataset, even the baseline wanders

were recovered well.

The previous ten CS algorithms were used to reconstruct the dataset.

Again, they all failed. To save space, only the results by CluSS-MCMC and BM-
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Figure VI.5 The downsampled dataset from the OSET Database. (a) The whole

dataset, which contains strong baseline wanders. (b) The close-up of the first 1000

time points of the recordings, where only the QRS complexes of the MECG can

be observed. The QRS complexes of the FECG are not visible.

MAP-OMP are presented (Figure VI.7).

Similar to the previous subsection, we used BSS/ICA to extract the FECG

and then compared it to the one extracted from the original dataset. Here we used

another ICA algorithm, the FastICA algorithm [67].

First, the reconstructed dataset was band-passed from 1.75 Hz to 100 Hz

(note that in telemonitoring, it is done in the reconstruction stage in remote ter-

minals). Then, FastICA was performed in the ‘deflation’ mode. Six independent

components (ICs) with significant non-Gaussianity were extracted, as shown in

Figure VI.8 (a), where the fourth IC is the FECG.

Then FastICA was performed on the original dataset. The ICs are shown

in Figure VI.8 (b). Comparing Figure VI.8 (a) with Figure VI.8 (b) we can see

the distortion was very small, which obviously did not affect clinical diagnosis.
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Figure VI.6 The recovered dataset by BSBL-BO. (a) The recovered whole dataset.

(b) The first 1000 time points of the recovered dataset.

VI.D.3 Reconstruction in the Wavelet Domain

To reconstruct non-sparse signals, a conventional approach in the CS field is

to adopt the model (VI.2), namely, first reconstructing θ using the received data y

and the known matrix Ω, and then calculating x by x = Ψθ. To test whether this

approach is helpful for existing CS algorithms to reconstruct raw FECG recordings,

in the following we repeated the experiment in Section VI.D.2 using the previous

ten CS algorithms and this approach.

Since it is suggested [40] that Daubechies-4 wavelet can yield very sparse

representation of ECG, we set Ψ to be the orthonormal basis of Daubechies-4

wavelet. The sensing matrix was the one used in Section VI.D.2.

Unfortunately, all these CS algorithms failed again. The FECG was not ex-

tracted from the dataset reconstructed by any of these CS algorithms. Figure VI.9

(a) shows the ICs extracted from the dataset reconstructed by SL0 based on the

wavelet basis. Obviously, the FECG was not extracted.
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Figure VI.7 The whole datasets recovered by (a) CluSS-MCMC and (b) BM-

MAP-OMP, respectively.

Therefore, using the wavelet transform is still not helpful for these CS algo-

rithms. The reason is that to ensure the FECG can be extracted by ICA with high

fidelity, the ICA mixing structure should be maintained well in the reconstructed

dataset. This requires that wavelet coefficients with small amplitudes in addition

to those with large amplitudes are all recovered well. However, for a raw FECG

recording the number of wavelet coefficients with small amplitudes is very large.

To recover these coefficients is difficult for the CS algorithms.

As an example, the top two panels in Figure VI.9 (b) show a segment of a

raw recording and its wavelet coefficients, respectively. The bottom two panels in

Figure VI.9 (b) show the recovered segment and the recovered wavelet coefficients

by SL0, respectively. We can see the coefficients with large amplitudes were re-

covered well. However, it failed to recover the coefficients with small amplitudes,

which resulted in the failure of ICA to extract the FECG.
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(a) ICA of the Reconstructed Dataset

100 200 300 400 500 600 700 800 900 1000
−2

0
2
4

Time Points

100 200 300 400 500 600 700 800 900 1000
−4
−2

0
2
4

100 200 300 400 500 600 700 800 900 1000
−2

0
2
4

100 200 300 400 500 600 700 800 900 1000
−5

0
5

100 200 300 400 500 600 700 800 900 1000
−15
−10
−5

0
5

100 200 300 400 500 600 700 800 900 1000
−6
−4
−2

0
2
4

(b) ICA of the Original Dataset

Figure VI.8 ICA decomposition on the original dataset and the recovered dataset

by BSBL-BO. (a) The ICs of the recovered dataset. (b) The ICs of the origi-

nal dataset. The fourth ICs in (a) and (b) are the extracted FECGs from the

reconstructed dataset and the original dataset, respectively.

VI.E Performance Issues When Using BSBL Algorithms

in This Application

This section explores how the performance of BSBL-BO is affected by var-

ious experimental factors.

VI.E.1 Effects of Signal-to-Interference-and-Noise Ratio

We have tested BSBL-BO’s performance using two typical datasets. The

two datasets contain MECGs and noise with certain strength. It is natural to

ask whether BSBL-BO can be used for other datasets containing MECGs and

noise with different strength. This question is very important, since different fetus

positions, different pregnancy weeks, and random muscle movements can result



142

100 200 300 400 500 600 700 800 900 1000
−2

0
2
4

Time Points

100 200 300 400 500 600 700 800 900 1000
−4
−2

0
2
4

100 200 300 400 500 600 700 800 900 1000
−2

0
2
4

100 200 300 400 500 600 700 800 900 1000
−5

0
5

100 200 300 400 500 600 700 800 900 1000
−15
−10
−5

0
5

100 200 300 400 500 600 700 800 900 1000
−6
−4
−2

0
2
4

(a)

50 100 150 200 250 300 350 400 450 500
−50

0
50

100

An Original Segment

Time Points

50 100 150 200 250 300 350 400 450 500
−200

−100

0

100
Associated Wavelet Coefficients

50 100 150 200 250 300 350 400 450 500
−50

0
50

100

Recovered Segment by SL0

Time Points

50 100 150 200 250 300 350 400 450 500
−200

−100

0

100
Recovered Wavelet Coefficients by SL0

(b)

Figure VI.9 Reconstruction result by SL0 with the aid of the wavelet transform.

(a) The ICs from the recovered dataset by SL0. (b) From top to bottom are a

segment of the original dataset, the associated wavelet coefficients, the recovered

segment by SL0, and the recovered wavelet coefficients by SL0.

in dramatic changes in correlation structure of raw recordings, while BSBL-BO

exploits the correlation structure to improve performance.

Therefore, we carried out Monte Carlo simulations with different strength

of FECGs, MECGs, and other noise, as in [111]. The raw multichannel record-

ings were modeled as the summation of a multichannel FECG, a multichannel

MECG, and multichannel noise. The multichannel MECG was generated by a

three-dimentional dipole which projects cardiac potentials to eight sensors. The

multichannel FECG was generated in the same way with half period of the MECG.

The angle between the two dipoles generating the FECG potential and the MECG

potential was 41◦. The noise was a combination of randomly selected real-world

baseline wanders, muscle artifacts, and electrode movement artifacts from the Noise

Stress Test Database (NSTDB) [95]. Details on the simulation design can be found
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Figure VI.10 The Pearson correlation (averaged over 20 trials) between the ex-

tracted FECG from the original dataset and the one from the recovered dataset

at different SINRs. The error bar gives the standard variance.

in [111, Sec. V.A]. The generated raw recordings were downsampled to 250 Hz.

Each recording finally contained 7680 time points.

As in [111], the ratio of the power of the multichannel FECG to the power

of the multichannel MECG was defined as the Signal-to-Interference Ratio (SIR).

The ratio of the power of the multichannel FECG to the power of the multichannel

noise was defined as the Signal-to-Noise Ratio (SNR). And the ratio of the power

of the FECG to the combined power of the MECG and the noise was defined as

the Signal-to-Interference-and-Noise Ratio (SINR). In the simulation, the strength

of the FECG, the MECG and the noise were adjusted such that SNR = SIR +

10dB, and SINR was swept in the range of -35dB to -15dB. Note that in the

experiment the SINR range was intentionally made more challenging, since for

most raw recordings the SINR varies only from -5dB to -25dB [117]. For each

value of the SINR, the simulation was repeated 20 times, each time with different

signals and noise.

The sensing matrix and the block partition of BSBL-BO were the same as

in Section VI.D.2. The result presented in Figure VI.10 clearly shows the high

recovery quality of BSBL-BO even in the worst scenarios. Figure VI.11 shows a

generated dataset when SINR=-35dB, and the extracted FECGs from the gener-
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Figure VI.11 A synthesized dataset and the extraction result at SINR=-35dB.

(a) The synthesized dataset. (b) The comparison between the extracted FECG

from the synthesized dataset and the one from the corresponding recovered dataset

(only their first 1000 time points are shown).

ated dataset and from the recovered dataset. We can see the noise was very strong,

but the extracted FECG from the recovered dataset still maintained high fidelity.

VI.E.2 Effects of the Block Partition

In all the previous experiments we used certain block partitions. Another

question is, “Is the performance of BSBL-BO sensitive to the block partition?”

To examine this, we used the dataset in Section VI.D.2. The block partition was

designed as follows: the location of the first entry of each block was 1, 1 + h, 1 +

2h, · · · , respectively, where the block size h ranged from 4 to 90. The sensing

matrix was a sparse binary matrix of the size 128×256. Its each column contained

12 nonzero entries of 1s with random locations. The experiment was repeated 20

times. In each time the sensing matrix was different.

The averaged results are shown in Figure VI.12, from which we can see that
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Figure VI.12 Effects of the block size h on the reconstruction quality, measured by

the correlation between the extracted FECG from the reconstructed dataset and

the extracted one from the original dataset (upper panel), and by the MSE of the

reconstructed dataset (bottom panel).

the extraction quality was almost the same over a broad range of h.

VI.E.3 Effect of Compression Ratio

Next, we investigated the effect of compression ratio (CR) on the quality of

extracted FECGs from reconstructed recordings. The compression ratio is defined

as

CR =
N −M
N

× 100 (VI.6)

where N is the length of the original signal and M is the length of the compressed

signal. The used sparse binary sensing matrix was of the size M × N , where N

was fixed to 512 and M varied such that CR ranged from 20 to 65. Regardless

of the size, its each column contained 12 entries of 1s. For each value of M ,

we repeated the experiment 20 times, and in each time the sensing matrix was

randomly generated. The dataset and the block partition for BSBL-BO were the

same as in Section VI.D.2.

The averaged results for each value of CR are shown in Figure VI.13 (a).
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Figure VI.13 (a) Effect of CR on the quality of extracted FECGs from recon-

structed datasets (measured by the Pearson correlation) when N = 512 and

N = 256. (b) Extracted FECG from the original dataset and from the recov-

ered dataset when CR=60 and N = 512 (only first 1000 time points are shown).

We found that when CR ≤ 60, the quality of extracted FECGs was satisfactory

and could be used for clinical diagnosis. For example, Figure VI.13 (b) shows

the extracted FECG from a reconstructed dataset when CR=60. Compared to

the FECG extracted from the original dataset, the FECG from the reconstructed

dataset did not have significant distortion. Especially, when using the ‘PeakDetec-

tion’ program in the OSET toolbox to detect peaks of R-waves in both extracted

FECGs, the results were almost the same, as shown in Figure VI.13 (b), where red

circles indicate the detected peaks of R-waves in both FECGs.

We repeated the experiment using a smaller sparse binary matrix with

N = 256. Each column also contained 12 entries of 1s. The block size in the block

partition for BSBL-BO did not change. The result (Figure VI.13 (a)) shows that

the quality of extracted FECGs was slightly better than the case of N = 512.

Note that a significant advantage of using a smaller sensing matrix is that

the reconstruction is accelerated. Figure VI.14 (a) compares the averaged time

in reconstructing a segment of 512 time points when using two sensing matrices
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Figure VI.14 (a) Comparison of averaged time in reconstructing a segment of 512

time points from the dataset shown in Figure VI.5 when using two sensing matrices

(N = 256 and N = 512). (b) Comparison of MSE in reconstructing the dataset

when using the two sensing matrices.

(N = 256 and N = 512) at different values of CR. Clearly, using a small sensing

matrix speeded up the reconstruction 4, making it possible to build a near real-

time telemonitoring system. For example, BSBL-BO took less than 1.4 seconds

to recover the segment in a laptop with 2.8G CPU and 6G RAM if using the big

sensing matrix (N = 512), but took less than 0.6 seconds if using the small sensing

matrix (N = 256).

It is worth noting that when fixing CR, using a smaller sensing matrix gen-

erally results in higher MSE of reconstructed recordings, as shown in Figure VI.14

(b). But this does not mean the quality of extracted FECGs is poorer accordingly,

as shown in Figure VI.13 (a).

4The maximum iteration of BSBL-BO using the two sensing matrices was fixed to 25.
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Figure VI.15 Effect of d on recovery quality. The recovery quality is measured by

the correlation between the extracted FECG from the reconstructed dataset and

the FECG from the original dataset (a), and by MSE of the reconstructed dataset

(b). The error bar gives the standard variance.

VI.E.4 Study on the Number of Nonzero Entries in Each Column of

the Sensing Matrix

In most experiments we used a 256× 512 sensing matrix, and each column

contained 12 entries of 1s with random locations. This number of nonzero entries in

each column was chosen by Mamaghanian et al in [88]. To study how the number

of nonzero entries in each column affects the performance of BSBL-BO, we carried

out a similar experiment as in [88].

The sparse binary sensing matrix was of the size 256 × 512. Each column

contained d entries of 1s, where d varied from 2 to 14. The experiment was repeated

20 times for each value of d. In each time the locations of the nonzero entries were

randomly chosen (but the generated sensing matrix was always full row-rank). The

dataset and the block partition were the same as in Section VI.D.2.

Figure VI.15 (a) shows the Pearson correlation between the extracted FECG

from the reconstructed dataset and the extracted FECG from the original dataset
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at different values of d. Figure VI.15 (b) shows the quality of reconstructed datasets

measured by the MSE. Both figures show that the results were not affected by d.

This is different from the results in [88], where a basic `1 CS algorithm was used

and its performance was very sensitive to d.

The robustness to d is another advantage of BSBL-BO, which is important

to energy saving, as discussed in Section VI.F.3.

VI.F Further Discussions on the Use of BSBL Algorithms

for this Application

VI.F.1 Block Partition in the BSBL Framework

The problem of reconstructing a raw FECG recording can be cast as a

block sparse model with unknown block partition and unknown signal noise in

a noiseless environment. To exploit the unknown block structure, our algorithm

is based on a very simple and even counter-intuitive strategy. That is, the user-

defined block partition can be rather arbitrary, which is not required to be the same

as the true block structure of the FECG recording. This strategy is completely

different from the strategies used by many CS algorithms to deal with unknown

block structure, which try to find the true block structure as accurately as possible

[159, 101]. In fact, the block partition in the BSBL framework is a regularization

for better estimation of the covariance matrix of x in a high-dimensional parameter

space. Theoretically explaining the empirical strategy in the BSBL framework is

an important topic in the future.

VI.F.2 Reconstruction of Non-Sparse Signals

Most raw physiological signals are not sparse, especially when contaminated

by various noise. To reconstruct these non-sparse signals, there are two popular

strategies.

One is using thresholding [33] to set entries of small amplitudes to zero.
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However, these thresholding methods cannot be used for FECG recordings. As we

have seen, the amplitudes of FECGs are very small and even invisible. Thus it is

difficult or even impossible to choose an optimal threshold value. What’s worse

is that the thresholding methods can destroy interdependence structure among

multichannel recordings, such as the ICA mixing structure.

Another strategy widely used by CS algorithms is reconstructing signals

first in transformed domains, as expressed in (VI.2). The success of this strategy

strongly depends on the sparsity level of the representation coefficients θ. Un-

fortunately, for most raw physiological signals, the representation coefficients θ

are still not sparse enough; although coefficients of large amplitudes are few, the

number of coefficients of small amplitudes is very large. When reconstructed sig-

nals are going to be further processed by other signal processing/machine learning

techniques, reconstructing these coefficients of small amplitudes is important. As

shown here, the failure to reconstruct these coefficients resulted in the failure of

ICA to extract FECGs.

The BSBL-BO algorithm, unlike existing algorithms, directly reconstructs

non-sparse signals without resorting to the above two strategies. Its reconstruction

with high quality allows further signal processing or pattern recognition for clinical

diagnosis. Clearly, exploiting block structure and intra-block correlation plays a

crucial role in the reconstruction.

VI.F.3 Energy-Saving by the BSBL Framework

This work focuses on algorithms for wireless FECG telemonitoring. It does

not involve the analysis of energy consumption, such as the comparison between

BSBL-BO and wavelet compression. However, this issue actually has been ad-

dressed in the work by Mamaghanian et al. [88]. According to their ‘digital CS’

paradigm, if two CS algorithms use the same sensing matrix, their energy con-

sumption is the same. Since in most experiments we used the same sparse binary

matrix as theirs (12 entries of 1s in each column of Φ), their analysis on the en-
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ergy consumption and their comparison between their CS algorithm and wavelet

compression are applicable to BSBL-BO.

But BSBL-BO can further reduce the energy consumption while maintain-

ing the same reconstruction performance. In Section VI.E.4 we have shown that

BSBL-BO has the same performance regardless of the values of d (d is the number

of entries of 1s in each column of Φ). Thus we can use a sparse binary sensing

matrix with d = 2 to save more energy.

For example, when compressing a signal of 512 time points to 256 time

points, using a sparse binary sensing matrix with d = 2 only needs about 768

additions, while using a sparse binary sensing matrix with d = 12 requires about

5888 additions. Thus, using the sparse binary matrix with d = 2 can greatly reduce

code execution in CPU, thus reducing energy consumption. Note that when using a

Daubechies-4 Wavelet to compress the signal, it requires 11784 multiplications and

11272 additions. In addition, the seeking of wavelet coefficients of large amplitudes

also costs extra energy.

It should be noted that it seems that only BSBL-BO (and other algorithms

derived from the BSBL framework) can use such a sparse binary sensing matrix

with d = 2 to compress signals. Our experiments on adult ECGs 5 showed that

other CS algorithms failed to reconstruct or had degraded reconstruction quality

when using this sensing matrix. In [88] it is also shown that the basis pursuit

algorithm was very sensitive to d; when d decreased from 12 to 2, the reconstruction

performance measured by output SNR decreased from 20 dB to 7 dB (when the

sensing matrix was of the size 256× 512).

VI.F.4 Significance of the BSBL Framework

The ability of the BSBL framework to recover non-sparse signals has inter-

esting mathematical implications. By linear algebra, there are infinite solutions to

the underdetermined problem (VI.1). When the true solution xtrue is sparse, using

5Since the compared ten CS algorithms failed to reconstruct FECG recordings, we used adult ECGs
without noise in the experiments. Due to space limit the results are omitted here.
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CS algorithms it is possible to find it. But when the true solution xtrue is non-

sparse, finding it is more challenging and new constraints/assumptions are called

for. This work shows that when exploiting the block structure and the intra-block

correlation of xtrue, it is possible to find a solution x̂ which is very close to the

true solution xtrue. These findings raise new and interesting possibilities for signal

compression as well as theoretical questions in the subject of sparse and non-sparse

signal recovery from a small number of measurements (i.e., the compressed data

y).

VI.G Conclusion

FECG telemonitoring via wireless body-area networks with low-energy con-

straint is a challenge for CS algorithms. This chapter showed that the block sparse

Bayesian learning framework can be successfully employed in this application. Its

success relies on two unique abilities; one is the ability to reconstruct non-sparse

structured signals, and the other is the ability to explore and exploit correlation

structure of signals to improve performance. Although the focus is the wireless

FECG telemonitoring, the proposed framework and associated algorithms can be

used to many other telemedicine applications, such as telemonitoring of adult ECG,

wireless electroencephalogram, and electromyography.
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In the previous chapter we applied a BSBL algorithm to the compressed

sensing (CS) of raw FECG recordings, and achieved successes. However, BSBL

was designed for recovering single-channel signals. When recovering multichannel

recordings, BSBL has to recover the signals channel by channel, which costs lots of

time and thus is not suitable for real-time telemonitoring. Furthermore, for many

kinds of physiological signals such as multichannel ECG recordings and multichan-

nel EEG recordings, there is strong correlation among different channel recordings.

Exploiting this correlation can greatly improve algorithms’ performance. However,

BSBL does not exploit it.

In this chapter we apply the spatiotemporal sparse Bayesian learning frame-

work, developed in Chapter IV, to the CS of raw multichannel ECG recordings

(including fetal ECG recordings and adult ECG recordings). It not only exploits

the correlation structure in each channel signal as BSBL, but also exploits the

correlation among signals of different channels. Therefore it has better recovery

performance than BSBL. Besides, due to the ability to jointly recover multichannel

signals, it has much faster speed than BSBL. In this sense, the proposed framework

is more attractive to real-time telemonitoring of multichannel signals.

VII.A Literature Review on CS of ECG Recordings

In CS of physiological signals such as ECG and EEG, the widely used

model is the basic SMV model. A lot of works have been done using this model.

For example, Dixon et al. [33] compared the SMV-model-based CS framework

with some conventional and adaptive sampling techniques, and considered several

system-level design issues when using the CS framework. Chen et al. [20] proposed

an energy-efficient digital implementation of the CS architecture for data compres-

sion in wireless sensors. Using a real-time wireless body sensor network system,

Mamaghanian et al. [88] compared a basic SMV algorithm with state-of-the-art

wavelet compression methods, showing that the SMV algorithm can largely save
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energy and extend sensor lifetime, while achieving competitive compression ratios

compared to the wavelet compression methods.

Although most work on the CS of physiological signals considered the basic

SMV algorithms, recently people have noticed that the structure information in

natural signals can be exploited to improve recovery quality. For example, when

ECG is represented by wavelet basis functions, the wavelet coefficients have some

kinds of interdependence structure. Thus several groups proposed to use tree-

structure based recovery algorithms to recover ECG, which achieved better results

than using basic SMV algorithms [89, 102]. In the previous chapter we proposed

to use the BSBL algorithms to recover signals via exploiting correlation among

successive sampling points of signals.

In addition to the SVM model, another widely used model is the MMV

model. It can be expressed as follows:

Y = ΦX + V, (VII.1)

where Y ∈ RM×L, X ∈ RN×L, and V ∈ RM×L. A key assumption in the MMV

model is that the support of each column of X is identical. In [103] Polania et al.

used the T-MSBL algorithm to recover single-channel ECG recordings. They first

detected R peaks in an ECG recording, thus obtaining each ECG cycle. Then the

cycles were normalized to identical length and formed columns of X. Next, X was

compressed and sent to a remote terminal for recovery by T-MSBL.

But note that a lot of works may not be suitable for energy-efficient wire-

less telemonitoring. This is because wireless telemonitoring has its own specific

challenges [167], namely the sharp conflict between energy constraint and the non-

sparsity of raw physiological signals. This has been discussed in the previous

chapter.

To solve this challenge, we proposed to use the BSBL framework for CS of

non-sparse physiological signals, and achieved successes. However, BSBL was de-

signed for recovering single-channel signals. When recovering multichannel record-

ings, BSBL has to recover the signals channel by channel, which costs lots of
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time and thus is not suitable for real-time telemonitoring. Furthermore, for many

kinds of physiological signals such as multichannel ECG recordings and multichan-

nel EEG recordings, there is strong correlation among different channel recordings.

Exploiting this correlation can greatly improve algorithms’ performance. However,

BSBL does not exploit it.

In the following we use the STSBL framework (see Chapter IV) to jointly

recover multichannel physiological signals. STSBL not only exploits the correlation

structure in each channel signal as BSBL, but also exploits the correlation among

signals of different channels. Therefore it has better recovery performance than

BSBL. In other words, it can achieve larger compression ratio than BSBL when

their recovery quality is the same. Besides, due to the ability to jointly recover

multichannel signals, it has much faster speed than BSBL. Therefore, STSBL is

more attractive to real-time telemonitoring of multichannel signals.

VII.B Issues When Use STSBL for this Application

Several issues should be noticed when using the STSBL framework for the

CS of multichannel physiological signals. For convenience, we first write the spa-

tiotemporal sparse model below

Y = ΦX + V, (VII.2)

where X has the block structure

X =


X[1]·

X[2]·
...

X[g]·

 (VII.3)

When applying the spatiotemporal model (VII.2) to the compressed sensing

of multichannel physiological signals, the l-th column of X is an original signal

segment in the l-th channel. The l-th column of Y is the corresponding compressed

signal segment in this channel.
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Figure VII.1 The physical meanings of the coordinates of X in different contexts.

See the text for details.

One needs to notice the difference between the coordinate meanings of our

model/algorithm and their physical meanings in the application context. As il-

lustrated in Figure VII.1 (left), when we describe our model and the associated

algorithm, the lateral axis of the matrix X refers to the temporal domain, while

the vertical axis refers to the spatial domain 1. When we apply the algorithm to

the compressed sensing of multichannel signals, the lateral axis refers to the chan-

nel index, and the vertical axis refers to the entry index in a signal, as shown in

Figure VII.1 (right).

For illustration, we choose STSBL-EM to perform all the experiments. Be-

low we discuss some specific settings when applying STSBL-EM to the application,

where the signals to recover are non-sparse.

First, notice the algorithm requires users to set the block partition (VII.3).

To recover non-sparse signals, the setting of the block partition could be rather

arbitrary, since the recovery performance of our algorithm is robust to the block

partition. This property has been shown in [167] for BSBL algorithms. In fact,

in both the BSBL model and the STSBL model the block partition is a kind of

regularization, which helps estimate the covariance matrix of each column of X.

1These descriptions are consistent with the majority of literature in various applications, particularly
our works on the exploitation of temporal correlation [174] and the exploitation on spatial correlation
[171].
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Algorithm 3 STSBL-EM For Noiseless Scenarios

Input: Y, Φ, and the block partition {d1, · · · , dg}.

Output: X

Initialization: X is assigned by the Least Square solution; Ai = Idi(∀i); γi =

1(∀i); λ = 10−10

while not satisfy convergence criterion do

B̌←
∑g

i=1 γ
−1
i XT

[i]·A
−1
i X[i]·

B← B̌/‖B̌‖F
µ← ΠΦT (λI + ΦΠΦT )−1YB−

1
2

Σ← Π−ΠΦT (λI + ΦΠΦT )−1ΦΠ

γi ← 1
Ldi

∑L
l=1 Tr

[
A−1
i

(
Σ[i] + µ[i]lµ

T
[i]l

)]
, (∀i)

Ai ← 1
L

∑L
l=1

Σ[i]+µ[i]lµ
T
[i]l

γi
, (∀i) or adopting the regularization strategy in Sec-

tion IV.D

X← µB
1
2

end while

In practice most SBL algorithms adopt a γi-pruning mechanism [174, 171,

118, 132, 154]. The mechanism forces γi of small values to zero, thus encouraging

solutions to be sparse in the level of blocks [171], rows [174], or entries [132].

For example, in our model when γi was set to zero, the estimate of the block X[i]·

becomes a zero block. However, since in our application the signals are non-sparse,

a suitable strategy is to disable the γi-pruning mechanism.

Since in our application the noise V can be ignored, the parameter λ can

be simply set to a very small value. In our experiments we set λ = 10−10. And to

improve the estimation robustness for B, we remove the second term in (IV.23).

Algorithm 3 summarizes the STSBL-EM algorithm when used in noiseless

scenarios.
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VII.C Experiments on Multichannel Fetal ECG Record-

ings

In the previous chapter ten state-of-the-art CS algorithms based on the

SMV model were performed and all failed; only BSBL-BO succeeded. Thus, this

study puts emphasis on the comparison between BSBL-BO and STSBL-EM, and

the comparison between STSBL-EM and CS algorithms based on the MMV model.

CS algorithms based on the SMV model are not compared any more. The details

of the compared algorithms are as follows.

• The BSBL-BO algorithm [171], which was used in [167] for compressed sens-

ing of single-channel fetal ECG.

• The Champagne algorithm [152], which is a SBL algorithm. It does not

exploits the temporal correlation and has limited ability to exploit the spatial

correlation.

• The ISL0 algorithm [66], which is an MMV algorithm smoothly minimizing

the penalty
∑M

i=1 I(‖Xi·‖2) where I(a) = 1 if a 6= 0, or I(a) = 0 if a = 0. It

is based on the assumption that X is row-sparse (i.e., only a few rows of X

are nonzero).

• The SA-MUSIC algorithm [77], which is a greedy MMV algorithm. As ISL0,

it assumes that X is row-sparse. It requires users to determine how many

nonzero rows in X. But this is impossible for our applications. So we set

this number to each integer ranging from N/4 to N , and only reported the

one associated with the smallest measure square error in the estimate of X.

For the three SBL algorithms, i.e., STSBL-EM, BSBL-BO, and Champagne,

λ was set to 10−10, and their γi-pruning mechanisms were all disabled.

Since ISL0 and SA-MUSIC both assume that X is row-sparse, while in our

applications X is not row-sparse, they are not suitable to recover signals directly
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according to the MMV model. Alternatively, we considered the following recovery

model:

Y = ΩZ + V (VII.4)

where Ω , ΦD. D is a dictionary matrix such that each column of X can be

sparsely represented under D. That is to say, for all l, X·l = DZ·l where Z·l

is a sparse vector. If each column of X has the similar waveform, under suitably

selected dictionary matrix D, the nonzero rows of Z would not be too many. There-

fore, to recover X, ISL0 and SA-MUSIC first recovered Z and then obtained the

estimate of X by X = DZ. In our experiments D was formed by the orthonormal

basis of various kinds of wavelets and DCT. Besides, since in our applications V

could be ignored, they were performed in the noiseless mode.

To measure the recovery performance, we considered three performance

indexes. One is the empirical mean square error (EMSE), defined as EMSE =

1
CT

∑C
c=1

∑T
t=1 ‖Ŝ[t]c − S[t]c‖2

2/‖S[t]c‖2
2, where Ŝ[t]c was the estimate of S[t]c at the

t-th epoch and c-th channel. Note that each S[t]c (∀t, ∀c) corresponds to the matrix

X in the MMV model or the STSBL model.

The second index, used for the CS of fetal ECG, is the Pearson correlation

between the extracted fetal ECG from the recovered dataset and the extracted one

from the original dataset by using the same independent component analysis (ICA)

algorithm with the same initialization. This performance index was proposed in

[167, 168] to better detect small recovery errors for structured signals.

The third index is the speed, measured as the averaged running time for

recovering an S[t]c (∀t, ∀c) on a computer with 2.8 GHz CPU and 6 G RAM.

VII.C.1 The OSET Fetal ECG Database

As stated in [167], recovery of raw fetal ECG recordings is extremely difficult

for current CS algorithms. This is because the raw recordings are non-sparse and

are contaminated by strong noise and artifacts, while the energy constraint of

telemonitoring systems require little preprocessing on the raw recordings.
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Thus, we first evaluate the performance of all the algorithms on typical raw

multichannel fetal ECG datasets. Here we used the dataset ‘signal01’ in the Open-

Source Electrophysiological Toolbox (OSET) [112]. It consists of eight abdominal

recordings sampled at 1000 Hz. We first downsampled the dataset to 250 Hz,

since in wireless telemonitoring the sampling frequency rarely exceeds 500 Hz. For

illustration, we selected the first 12800 time points of each of the downsampled

eight-channel recordings to form the dataset for our experiment. This dataset

was the exact one used in our previous work [167]. Figure VII.2 (a) shows the

dataset. Clearly, the eight-channel signals contain strong noise and artifacts. The

spikes in each signal are the QRS complexes of the maternal ECG. The fetal ECG

is invisible. Thus, to extract the weak fetal ECG, one needs to use ICA or other

signal processing approaches. This requires the recovery quality is high. Otherwise,

the extracted fetal ECG is distorted.

In [168] BSBL-BO was used for compressed sensing of the dataset. However,

due to the mathematical model from which BSBL-BO is derived, it had to recover

each channel signal one by one. In other words, it could not jointly recover the

multichannel signals at the same time. Thus, during the recovery stage, the BSBL-

BO algorithm was used to recover the signals channel by channel.

Here we applied STSBL-EM, which recovered the multichannel signals jointly.

The sensing matrix Φ was a sparse binary sensing matrix of the size 256 × 512.

Its each column consisted of 12 entries of 1s with random locations, while other

entries were zero. The sensing matrix is exactly the one used in [171, 88]. The

block partition was {d1 = · · · = d32 = 16}. Its maximum iterations were set to 25.

Figure VII.2 (b) shows the recovered dataset, which was visually the same as the

original dataset.

To see the importance of exploiting spatiotemporal correlation, STSBL-EM

was performed again but without exploiting spatiotemporal correlation (i.e., we set

B = I and Ai = I,∀i). The recovered dataset is shown in Figure VII.3 (a). Clearly,

the quality was poor if not exploiting spatiotemporal correlation.
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Figure VII.2 Comparison between the original dataset and the recovered dataset

by STSBL-EM. (a) The original dataset. (b) The recovered dataset.

Then, we performed the Champagne algorithm. The result is shown in

Figure VII.3 (b). The recovery quality was poor as well. This is probably due

to its limited ability to exploit spatial correlation and complete ignorance of the

interdependence among signals of different channels.

To further examine the recovery quality of our algorithm, similar as [167],

we used the FastICA algorithm [67] to extract the fetal ECG from the recovered

dataset, and then compared it to the one extracted from the original dataset.

First, the recovered dataset was band-passed from 1.75 Hz to 100 Hz. Then,

FastICA was performed in the ‘deflation’ mode. Five independent components

(ICs) with significant non-Gaussianity were extracted, as shown in Figure VII.4 (b),

where the fourth IC is the extracted fetal ECG. Then the FastICA was performed

on the original dataset. The ICs are shown in Figure VII.4 (a). Comparing the two

ICA decompositions in Figure VII.4 (a) and (b), we can see the ICA decomposition

on the recovered dataset had high fidelity, showing the recovery quality of STSBL-
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(a) By STSBL-EM ignoring correlation

2000 4000 6000 8000 10000 12000
0

200

Time Points

2000 4000 6000 8000 10000 12000

0

200
2000 4000 6000 8000 10000 12000

0
1000

2000 4000 6000 8000 10000 12000

0

400
2000 4000 6000 8000 10000 12000

0
200

2000 4000 6000 8000 10000 12000

0

1000

2000 4000 6000 8000 10000 12000

−400
0

2000 4000 6000 8000 10000 12000
−400

0
400

(b) By Champagne

Figure VII.3 (a) The recovered dataset by STSBL-EM without exploiting spa-

tiotemporal correlation and (b) the recovered dataset by Champagne.

EM was satisfactory.

The same procedure was performed on the recovered datasets by STSBL-

EM without exploiting spatiotemporal correlation and the Champagne algorithm,

but the fetal ECG was not extracted (the results are omitted).

Next, ISL0 and SA-MUSIC were used to recover the dataset employing the

model (VII.4), where D was formed by the orthonormal basis of the Daubechies-4

wavelet. Then FastICA was performed on the recovered datasets. The extracted

ICs by SA-MUSIC and ISL0 are shown in Figure VII.5 (a) and (b), respectively.

One can see the two ICA decompositions were significantly distorted, and the fetal

ECG was not extracted.

As shown in [167], for this dataset BSBL-BO also achieved successes. Thus

the following compared BSBL-BO with STSBL-EM in terms of recovery quality

(of extracted fetal ECGs) and speed at different values of compression ratio (CR).
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(b) ICA after STSBL-EM

Figure VII.4 (a) ICA decomposition of the original dataset. (b) ICA decomposition

of the recovered dataset by STSBL-EM. The fourth ICs indicated by the red color

are the extracted fetal ECGs. Visually, there was no difference between the two

ICA decompositions.

The CR is defined as

CR =
M −N
M

× 100. (VII.5)

The used sparse binary sensing matrix Φ was of the size N×M with M fixed to 256,

while N varied such that the CR ranged from 20 to 70. Regardless of the size, each

column of Φ contained 12 entries of 1s with random locations. For each value of N ,

we repeated the experiment 20 trials. In each trial the sensing matrix was generated

again. The block partition for both algorithms was {d1 = · · · = d16 = 16}. The

maximum iterations of both algorithms were set to 25.

Figure VII.6 (a) shows the Pearson correlation for both algorithms at dif-

ferent values of CR. Clearly, STSBL-EM outperformed BSBL-BO in all the CR

range, especially at larger CR. This illustrates the benefit of exploiting the interde-

pendence among signals of different channels. Figure VII.6 (b) shows the averaged

running time of both algorithms recovering the eight-channel signals of an epoch
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(a) ICA after SA-MUSIC on Wavelet
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(b) ICA after ISL0 on Wavelet

Figure VII.5 (a) ICA decomposition of the recovered dataset by SA-MUSIC.

(b) ICA decomposition of the recovered dataset by ISL0. Both algorithms first

recovered the wavelet coefficients and then recovered the original dataset.

(i.e., 1.024 seconds). The speed of STSBL-EM was about eight times faster than

BSBL-BO. This is because STSBL-EM jointly recovered the eight-channel signals,

while BSBL-BO had to recover the signals channel by channel 2.

We repeated the same experiment on another dataset, i.e. the dataset

‘signal02’ in OSET. All the experiment settings were the same as before. The

results are shown in Figure VII.7. Again, STSBL-EM achieved better recover

quality and had much faster recovery speed.

VII.C.2 The Abdominal and Direct Fetal ECG Database

In the CS community a widely used approach to recover non-sparse signals

is to resort to a dictionary matrix, as described in the model (VII.4). However,

we argue that this approach so far is not effective for recovering raw physiological

signals in telemonitoring scenarios. With this goal, we performed SA-MUSIC and

2Note that the running time of BSBL-BO in [167] was calculated on the recovery of a single-channel
signal of an epoch.
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Figure VII.6 Effects of CR on (a) quality of extracted fetal ECGs from recon-

structed datasets, and on (b) recovery time. The results are obtained on the

dataset ‘signal01’.
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Figure VII.7 Effects of CR on (a) quality of extracted fetal ECGs from recon-

structed datasets, and on (b) recovery time. The results are obtained on the

dataset ‘signal02’. When CR = 55, the fetal ECG could not be extracted from the

recovered dataset by BSBL-BO. Thus, we only plot its results when CR = 20 ∼ 50.
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ISL0 to recover the compressed signals according to the model (VII.4), where five

types of dictionary matrices D were considered, namely D was formed by the

orthonormal basis of the Daubechies-4 wavelet, the Daubechies-12 wavelet, the

Symmlet-8 wavelet, the Coiflet-4 wavelet, and the DCT. The sensing matrix Φ

was the same as the previous experiment. For comparison, our algorithm STSBL-

EM was also performed with the same settings as before.

Since we have seen SA-MUSIC and ISL0 had poor performance on the

datasets in the OSET Database, we changed to use another dataset. We performed

the two algorithms on the ‘r04-edfm’ dataset in the Abdominal and Direct Fetal

ECG Database [54]. This dataset contains recordings of six channels, but only four

recordings are abdominal recordings. Since in typical telemonitoring scenarios only

the abdominal recordings are available, we used the four abdominal recordings. As

before, we downsampled the recordings to 250 Hz. For illustration, we selected the

four recordings of the first 20.48 seconds to form the dataset for our experiment.

Figure VII.8 shows the four recordings of the first 2500 time points. Clearly, the

dataset contains strong noise and artifacts.

We performed SA-MUSIC, ISL0, and STSBL-EM at different values of CR

(ranging from 20 to 70). At each value of CR, the experiment repeated 10 inde-

pendent trials. The averaged EMSE of each algorithm is shown in Figure VII.9.

Again we see STSBL-EM significantly outperformed SA-MUSIC and ISL0.

We observe that all of the used dictionary matrices were not helpful for SA-MUSIC

and ISL0 to achieve high recovery performance. This is due to the fact that these

raw recordings cannot be perfectly sparsely represented in the wavelet domain and

the DCT domain. As stated in [167], although there are only a few coefficients

of very large values in the wavelet domain, there are many wavelet coefficients of

small values. Recovering these coefficients of small values is very important to the

recovery quality.
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Figure VII.8 Used dataset of the first 2500 time points, which is downsampled

from the dataset ‘r04-edfm’. The large peaks are QRS complexes of the maternal

ECG, while small peaks are QRS complexes of the fetal ECG.

VII.D Experiments on Multichannel ECG Recordings with

Atrial Fibrillation

As a final example, we evaluated algorithms’ performance on the dataset

‘04908’ in the MIT-BIH Atrial Fibrillation Database [54]. This dataset contains

ECG recordings of two channels, sampled at 250Hz. For illustration, in this experi-

ment only 10240 time points of each recording were used, where the characteristics

of atrial fibrillation was clearly presented (i.e., absence of P waves and irregular

R-R intervals). Figure VII.10 shows the first 2000 time points of each recording.

Similar as the previous experiment, SA-MUSIC and ISL0 recovered the

dataset using the Daubechies-4 wavelet, the Symmlet-8 wavelet, the Coiflet-4

wavelet, and DCT, while STSBL-EM recovered the dataset directly. The sens-
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Figure VII.9 Recovery quality (measured in terms of empirical MSE) of STSBL-

EM, SA-MUSIC, and ISLO. Note that SA-MUSIC and ISL0 recovered the dataset

via the model (VII.4).

ing matrix was the same as the previous experiment. Note that the dataset is

very clean with little noise, which is a favorite scenario of SA-MUSIC and ISL0.

However, the results in Figure VII.11 show that STSBL-EM still had much better

performance than the compared algorithms.

Furthermore, Figure VII.12 and Figure VII.13 show the recovered record-

ings by STSBL-EM and ISL0 (using the Symmlet-8 wavelet) at CR=70, respec-

tively. Clearly, at this compression ratio, the recovery quality of STSBL-EM is still

satisfactory; the recovered recordings can be used for diagnosis of atrial fibrillation.

In contrast, the recovered recordings by ISL0 cannot be used for diagnosis, since

there are lots of artifacts in the recordings and it is not clear whether the P waves,

an important characteristics used for the diagnosis, exist or not.
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Figure VII.10 Used dataset of the first 2000 time points. The characteristics of

atrial fibrillation, such as absence of P waves and irregular R-R intervals, is clearly

presented.

VII.E Conclusion

In the previous chapter we applied BSBL algorithms to the compressed

sensing of physiological signals. However, BSBL algorithms are designed for re-

covering single-channel signals, and cannot recover multichannel signals simulta-

neously. Thus, it may not be used in some real-time wireless telemonitoring sys-

tems, especially when the channel number is large. In this chapter, we applied a

spatiotemporal sparse Bayesian learning algorithm (proposed in Chapter IV) for

the compressed sensing of multichannel non-sparse physiological signals. Different

from current compressed sensing algorithms, it not only exploits the correlation

structure in a signal itself, but also exploits the correlation structure among signals

of different channels. Experimental results showed that it not only has the best

recovery performance but also has much faster speed than BSBL algorithms. Al-
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Figure VII.11 Recovery quality (measured in terms of empirical MSE) of STSBL-

EM, SA-MUSIC, and ISLO. SA-MUSIC and ISL0 recovered the dataset via the

model (VII.4).

though in this chapter the algorithm was only applied to the compressed sensing

of multichannel ECG recordings, it can also be used to telemonitoring of other

multichannel physiological signals and data collection in wireless sensor networks.
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Figure VII.13 Recovered ECG recordings by ISL0 (using the Symmelet-8 wavelet)

at CR=70. They cannot be used for diagnosis, since one cannot ensure whether

the P waves exist or not.
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In the previous two chapters we applied BSBL algorithms and STSBL al-

gorithms to the compressed sensing of ECG recordings with successes. They re-

covered ECG recordings directly, without sorting to the help of any transformed

domains. For example, when BSBL algorithms recovered ECG recordings, they

adopted the following model:

y = Φx, (VIII.1)

where y is the compressed data, Φ is the sensing matrix, and x is the original ECG

recording. The successes of BSBL algorithms mainly due to the ability to exploit

the correlation structure in ECG signals.

For EEG signals, exploiting the correlation structure in the time domain

does not bring large benefit, probably due to serious contamination of noise (for

EEG signals, the SNR is generally below 0 dB). So we consider the following model

(for BSBL):

y = ΦDz (VIII.2)

where the original EEG signal x is represented as x = Dz, and D is a orthonormal

basis matrix of a transform domain, such as the wavelet domain or the DCT

domain. Hopefully, z can be somewhat sparser than the original signal x, and thus

the recovery problem becomes easier than in the model (VIII.1).

The following experiments compared BSBL-BO with some representative

CS algorithms in terms of recovery quality. Because all the CS algorithms adopted

the same sensing matrix, they had equal energy consumption. Thus, the compar-

ison of energy consumption is excluded.

Two performance indexes were used to measure recovery quality. One was

the Normalized Mean Square Error (NMSE), defined as ‖x̂ − x‖2
2/‖x‖2

2, where x̂

was the estimate of the true signal x. The second was the Structural SIMilarity

index (SSIM) [146] for one-dimensional signals (the length of the sliding window

was 100). SSIM measures the similarity between the recovered signal and the
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Figure VIII.1 (a) An EEG epoch, and its DCT coefficients. (b) The recovery

results by BSBL-BO, `1, and Model-CoSaMP when using the model (VIII.2).

original signal, which is a better performance index than the NMSE for structured

signals. Higher SSIM means better recovery quality. When the recovered signal is

the same as the original signal, SSIM = 1.

In the first experiment D was the orthonormal basis of the DCT, and thus z

(z = D−1x) are DCT coefficients. In the second experiment D was the orthonormal

basis of the Daubechies-20 Wavelet Transform (WT) matrix, which was suggested

in [51] for compressing EEG. In both experiments the sensing matrices Φ were

sparse binary matrices, in which every column contained 15 entries equal to 1 with

random locations while other entries were zeros. For BSBL-BO, we defined a block

partition, where the starting location of each block was incremented by 24 (i.e.,

1, 25, 49, · · · ). The maximum number of iterations for BSBL-BO was set to seven.

VIII.A Compressed Sensing with DCT

This example used a common dataset (‘eeglab data.set’) in the EEGLab [30]

to mimic the telemonitoring scenario by first compressing it and then recovering
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it. This dataset contains EEG signals of 32 channels with sequence length of 30720

data points, and each channel signal contains 80 epochs each containing 384 points.

Artifacts caused by muscle movement are also contained in the signals.

To compress the signals epoch by epoch, we used a 192× 384 sparse binary

matrix as the sensing matrix Φ, and a 384 × 384 inverse DCT matrix as the

dictionary matrix D.

Two representative CS algorithms were compared in this experiment. One

was the Model-CoSaMP [9], which has high performance for signals with known

block structure. Here it used the same block partition as BSBL-BO. The second

was an `1 algorithm used in [51] to recover EEG. The parameters of the two

algorithms were tuned for optimal results.

Figure VIII.1(a) shows an EEG epoch and its DCT coefficients. Clearly,

the DCT coefficients were not sparse and had no block structure. Figure VIII.1(b)

shows the recovery results of the three algorithms. Only BSBL-BO recovered

the epoch with good quality; characteristic EEG peaks/troughs and oscillatory

activities were accurately presented in the recovered signal. Table VIII.1 shows

the averaged NMSE and SSIM of the three algorithms on the whole dataset. It

also lists the results when BSBL-BO directly recovered the signals without using

the dictionary matrix (i.e., using the model (VIII.1)). The DCT-based BSBL-

BO evidently had the best performance, and it took 0.105 second per epoch on

average on a computer with 2.8G CPU and 6G RAM. BSBL-BO without using

the dictionary matrix took 0.271 second per epoch on average.

In EEG analysis, a regular methodology is performing Independent Com-

ponent Analysis (ICA) on scalp EEG data and then analyzing single-trial ERPs

for each Independent Component (IC) [75]. Therefore, it is important to examine

whether the obtained ICs from the recovered EEG dataset by BSBL-BO are the

same as those from the original dataset1.

This study performed ICA decomposition on the original EEG dataset and

1We only need to pay attention to the ICs with large energy, since in regular ICA analysis of EEG,
ICs with large energy are reliable and meaningful.
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Figure VIII.2 An IC with focal back-projected scalp distribution derived (a) from

the original EEG dataset and (b) from the recovered dataset. Another IC with

dispersive scalp distribution derived (c) from the original EEG dataset and (d)

from the recovered dataset.
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Table VIII.1 Averaged NMSE and SSIM of the compared algorithms when they

first recovered the DCT coefficients and then recovered the original signals. The

results of BSBL-BO when directly recovered the original signals are also given.

NMSE (mean ± std) SSIM (mean ± std)

DCT-based BSBL-BO 0.078 ± 0.046 0.85 ± 0.08

BSBL-BO without DCT 0.116 ± 0.066 0.81 ± 0.09

DCT-based `1 0.493 ± 0.121 0.48 ± 0.11

DCT-based Block-CoSaMP 0.434 ± 0.070 0.45 ± 0.10

the recovered EEG dataset by BSBL-BO, respectively, using the Extended-Infomax

algorithm with the same initialization, which is a build-in program in the EEGLab

[30]. Then, we calculated the back-projected scalp map, the ERP image [75],

and the averaged ERP of each IC from the original dataset and the reconstructed

dataset.

Figure VIII.2 shows the results of two typical ICs (with large energy) from

the recovered dataset (Figure VIII.2 (b)(d)), and the results of corresponding ICs

from the original dataset (Figure VIII.2 (a)(c)). Each subfigure shows the back-

projected scalp map, the ERP image, and the averaged ERP of an IC. Comparing

Figure VIII.2 (a) with (b) and Figure VIII.2 (c) with (d) reveals that there is

little difference in terms of scalp maps, ERP images, and averaged ERPs. This

implies that BSBL-BO can recover EEG signals with satisfactory quality, ensuring

subsequent signal analysis with high fidelity.

VIII.B Compressed Sensing with WT

The second experiment used the dataset in [145]. It consists of multiple

channel signals, each channel signal containing 250 epochs for each of two events

(‘left direction’ and ‘right direction’). Each epoch consists of 256 sampling points.

The goal in [145] is to differentiate the averaged ERP for the ‘left direction’ with
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Figure VIII.3 The ERPs corresponding to two event conditions (‘left’ and ‘right’)

averaged (a) from the recovered epochs by the `1 algorithm, (b) from the recovered

epochs by BSBL-BO, and (c) from the original dataset.
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the averaged ERP for the ‘right direction’. For simplicity, we randomly chose a

channel signal from the left parietal area. BSBL-BO and the previous `1 algorithm

were compared. The sensing matrix Φ had the size of 128×256, and the dictionary

matrix D had the size of 256× 256.

For each event, we calculated the ERP by averaging the associated 250

recovered epochs. Figure VIII.3 (a) shows the ERP for the ‘left direction’ and

the ERP for the ‘right direction’ averaged from the dataset recovered by the `1

algorithm. Figure VIII.3 (b) shows the two ERPs averaged from the recovered

dataset by BSBL-BO. Figure VIII.3 (c) shows the averaged ERPs from the original

dataset (called genuine ERPs). Clearly, the resulting ERPs by the `1 algorithm

were noisy. Although they maintained the main peaks of both genuine ERPs, they

did not maintain other details of the genuine ERPs. Particularly, the difference

between the two resulting ERPs from the 160th to the 250th time points was not

clear. Besides, we found there were many brief oscillatory bursts in the recovered

epochs by the `1 algorithm (due to space limit we omit the results here). In

contrast, the ERPs averaged from the recovered epochs by BSBL-BO maintained

all the details of the genuine ERPs with high fidelity.

The SSIM and the NMSE of the resulting ERPs by the `1 algorithm were

0.92 and 0.044, respectively. In contrast, the SSIM and the NMSE of the resulting

ERPs by BSBL-BO were 0.97 and 0.008, respectively. In the experiment BSBL-BO

took 0.06 second per epoch on average on the previous computer.

VIII.C Conclusion

Compressing EEG for telemonitoring is extremely difficult for current CS

algorithms, because EEG is not sparse in the time domain nor sparse in trans-

formed domains. To alleviate the problem, we adopt the BSBL framework, which

has superior performance to other existing CS algorithms in recovering non-sparse

signals. Experimental results showed that it recovered EEG signals with satisfac-
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tory quality, ensuring subsequent signal analysis had high fidelity.

VIII.D Acknowledgements

The text of Chapter VIII, in full, is based on the material as it appears

in: Zhilin Zhang, Tzyy-Ping Jung, Scott Makeig, Bhaskar D. Rao, “Compressed

Sensing of EEG for Wireless Telemonitoring with Low Energy Consumption and

Inexpensive Hardware”, to appear in IEEE Trans. on Biomedical Engineering,

2013. The dissertation author was a primary researcher and author of the cited

paper.



Chapter IX

Application: Feature Selection for

Predicting Patients’ Cognitive

Levels from Their Neuroimaging

Measures

182



183

Alzhiemer’s disease (AD) is a neurodegenerative disorder characterized by

progressive impairment of memory and other cognitive functions. Substantial at-

tention has recently been given to identifying neuroimaging predictors for cognitive

decline in AD in the fields of medical image analysis and pattern recognition. Re-

gression models have been investigated to predict patients’ cognitive levels from

individual magnetic resonance imaging (MRI) and/or positron emission tomogra-

phy (PET) scans [125, 142, 144, 164]. In [142], stepwise regression was performed

in a univariate, pairwise fashion to relate each imaging measure to each cognitive

score. In [125], using relevance vector regression, morphometric features of the

entire brain were jointly analyzed to predict each selected cognitive score. Two

most recent studies [144, 164] employed multi-task learning strategies and aimed

to select features that could predict all or most cognitive scores, using `2,1-norm

coupled with `1-norm [144] and multi-task feature selection coupled with support

vector machine [164]. Both methods used a simple concatenation to bundle mul-

tiple cognitive scores together without learning their dependence relation.

In this chapter we apply T-MSBL and ST-SBL to this application. The

used algorithms are evaluated in empirical studies using the MRI and cognitive

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [147].

These SBL algorithms not only demonstrate superior performance over a number

of state-of-the-art competing methods, but also identify cognition-relevant imaging

biomarkers that are consistent with prior knowledge.

IX.A Problem Statement and Model Description

The goal of this practical problem is to predict subjects’ cognitive scores in

a number of neuropsychological assessments using their MRI measures across the

entire brain. Each assessment typically yields multiple evaluation scores from a

set of relevant cognitive tasks, and thus these scores are inherently correlated. It

is hypothesized that only a subset of brain regions are relevant to each assessment.
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To achieve the goal, there are two steps. First, using the training dataset,

a multivariate regression model is adopted to connect the cognitive scores of all

subjects to their MRI measures, and estimate the regression coefficient matrix.

The significantly nonzero entries in the coefficient matrix indicate relevant brain

regions (or imaging biomarkers). The second step is to predict the cognitive scores

of a new subject (in the testing dataset) using his/her MRI measures and the

estimated regression coefficient matrix, and evaluate the accuracy.

The multivariate regression model is expressed as follows:

Y = ΦX + V

=


Φ1,1 Φ1,2 · · · Φ1,N

Φ2,1 Φ2,2 · · · Φ2,N

...
. . .

ΦM,1 ΦM,2 · · · ΦM,N

X + V (IX.1)

where Y , [Y·1, · · · ,Y·L] ∈ RM×L, X , [X·1, · · · ,X·L] ∈ RN×L, and V ,

[V·1, · · · ,V·L]. Here Y·l ∈ RM×1 is the cognitive scores of all the M subjects

when performing the l-th cognitive task. Φj,k is the MRI measure of the k-th brain

area of the j-th subject. X·l is the regression coefficient vector under the l-th task.

A significantly nonzero entry of X·l, say Xq,l, means that the MRI measures of the

q-th brain area have strong influence on the cognitive scores of all subjects under

the l-th task.

In this model (IX.1), there are two specific structures in X based on some

basic neuroscience observations.

One is the row-sparse structure. Since the multiple tasks have inherent

connections, when a subject performs a certain cognitive task, if a brain region

is relevant, its corresponding MRI measure not only has impact on the cognitive

score under this task, but also has more or less influence on the cognitive scores

under other tasks. This can be better understood from the expression for the i-th

subject:

Yi· = Φi,1X1· + Φi,2X2· + · · ·+ Φi,NXN · + Vi·.
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Further, since all the tasks are relevant to only a few common brain regions, X

has only a few nonzero rows. These row-sparse structure has been exploited in a

number of published studies.

The second is the correlation among entries of the same row in X.

From the above observation, the entries in the same nonzero row of X do not

necessarily have the same value, but their values are highly correlated.

After the MAP estimate of X, denoted by X̂MAP, is obtained, the cognitive

scores of a new subject under the same cognitive tasks can be predicted by ϕX̂MAP,

where ϕ is a row vector consisting of the subject’s MRI measures of all the brain

areas.

IX.B Use of T-MSBL: Exploiting Correlation Within Co-

efficient Rows

In this section we use T-MSBL and T-MSBL-FP to solve this problem. As

we have seen in Chapter III, the two algorithms can exploit correlation within

coefficient rows for better performance.

IX.B.1 Datasets

Data used in the preparation of this article were obtained from the ADNI

database ( adni.loni.ucla.edu ). One goal of ADNI has been to test whether serial

MRI, PET, other biological markers, and clinical and neuropsychological assess-

ment can be combined to measure the progression of mild cognitive impairment

(MCI) and early AD. All the healthy control (HC) and AD participants with no

missing cognitive and MRI measures were included in this study. Their character-

istics are summarized in Table IX.1.

For one baseline scan of each participant, FreeSurfer V4 was employed to

automatically label cortical and subcortical tissue classes [28, 50] and to extract

target region volume and cortical thickness, as well as to extract total intracranial
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Table IX.1 Participant characteristics including gender, handedness, age, and

education.
Category HC AD p-value

Gender (M/F) 114/108 86/85 0.835

Handedness (R/L) 205/17 161/10 0.482

Baseline Age (years) 75.93± 5.08 75.67± 7.36 0.680

Education (years) 15.97± 2.84 14.74± 3.08 < 0.001

Table IX.2 Description of MMSE, RAVLT (‘TOTAL’, ’T30’, and ‘RECOG’), and

TRAILS (‘TRAILSA’, ‘TRAILSB’ and ‘TR(B-A)’).

Score Description

MMSE MMSE total score

TOTAL Total score of the first 5 different trials

T30 30 minute delay total number of words recalled

RECOG 30 minute delay recognition score

TRAILSA Trail making A score

TRAILSB Trail making B score

TR(B-A) TRAILSB-TRAILSA

volume (ICV). For each hemisphere, thickness measures of 34 cortical regions of

interest (ROIs) and volume measures of 15 cortical and subcortical ROIs were in-

cluded in this study. Three sets of baseline cognitive scores [4] were employed to

test the proposed methods: Mini-Mental State Exam (MMSE), Rey Auditory Ver-

bal Learning Test (RAVLT), and Trail Making (TRAILS). RAVLT includes three

dependent scores: ‘TOTAL’, ’T30’, and ‘RECOG’. And TRAILS also includes

three dependent scores: ‘TRAILSA’, ‘TRAILSB’ and ‘TR(B-A)’. Details about

these scores are available in the ADNI procedure manuals ( www.adni-info.org ).

Table IX.2 summarizes these cognitive scores. Using the regression coefficients de-

rived from the healthy participants, all the FreeSurfer measures were adjusted for

the baseline age, gender, education, handedness, and ICV, and all the cognitive

measures were adjusted for the baseline age, gender, education and handedness.
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Table IX.3 Comparison of cross-validation prediction performances measured by

correlation coefficients
Score T-MSBL-FP T-MSBL MFOCUSS Mixed `2/`1 SOMP RIDGE MT-CS

MMSE 0.735 0.735 0.690 0.689 0.721 0.685 0.680

TOTAL 0.634 0.617 0.589 0.586 0.604 0.570 0.579

T30 0.586 0.572 0.550 0.543 0.545 0.486 0.512

RECOG 0.561 0.559 0.526 0.501 0.539 0.504 0.509

TRAILA 0.467 0.450 0.391 0.380 0.400 0.312 0.344

TRAILB 0.565 0.555 0.491 0.461 0.508 0.464 0.476

TR(B-A) 0.488 0.464 0.401 0.351 0.409 0.336 0.355

IX.B.2 Algorithms in the Comparison

In this experiment we used both the T-MSBL algorithm and the T-MSBL-

FP algorithm. To show their superior performance, we also selected several state-

of-the-art or classical algorithms for comparison. Each algorithm represents a

group of methods using different frameworks. They are the Mixed `2/`1 Program

[44], MFOCUSS [25], Simultaneous Orthogonal Matching Pursuit (SOMP) [136],

Multi-Task Compressive Sensing (MT-CS) [71], and Ridge Regression. Among

these algorithm, MT-CS treats the model (IX.1) as L dependent single measure-

ment vector (SMV) models, i.e., Y·i = ΦX·i + V·i (i = 1, · · · , L), where every

X·i(∀i) shares a common prior. This model is an alternative one to the MMV

model in multi-task learning. Ridge Regression is a traditional regression ap-

proach for an SMV model. To use it in our problem, we applied it to each

Y·i = ΦX·i + V·i (i = 1, · · · , L) independently.

IX.B.3 Results of Prediction

Regression was performed separately on each cognitive task (MMSE, RAVLT,

or TRAILS) using the MRI measures as predictors, where the proposed T-MSBL-

FP method and all the competing methods (T-MSBL, MFOCUSS, Mixed `2/`1,

SOMP, RIDGE, MT-CS) were evaluated. Similar to prior studies [125, 164], in each

experiment, Pearson’s correlation coefficients r between the actual and predicted
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cognitive scores were computed to measure the prediction performance. Using a

5-fold cross-validation strategy, the testing samples across five trials were pulled

together to obtain an unbiased estimate of these correlation coefficients.

Shown in Table IX.3 is the performance comparison among all seven meth-

ods. Both T-MSBL-FP and T-MSBL outperformed the other five competing al-

gorithms in all three prediction cases.

In particular, using T-MSBL-FP, the MRI measures could predict the MMSE

score the best, with a correlation coefficient r = 0.7352. This result is better than

or competitive to a few prior prediction results on the MMSE score: r = 0.504

using MRI only in [164], r = 0.697 using MRI, PET and CSF jointly in [164],

and r = 0.70 using MRI in [125]. Relatively high prediction performance has also

been achieved for RAVLT scores (i.e., the TOTAL, T30, and RECOG scores),

from r = 0.561 to r = 0.634. In [125], a different, but relevant RAVLT score was

predicted using MRI, with r = 0.13 only.

IX.B.4 Results of Biomarker Identification

Both T-MSBL-FP and T-MSBL are based on the sparse model that are

able to identify a compact set of relevant neuroimaging biomarkers and to explain

the underlying brain structural changes related to cognitive status. Shown in

Figure IX.1 are the heat maps of the regression weights (or coefficients) of the

MRI measures for each cognitive score calculated by T-MSBL-FP, T-MSBL, and

the Mixed `2/`1 Program (for illustration only the heatmap from the Mixed `2/`1

Program is shown here). In the picture, results for volume measures are shown

in top 15 rows, and those for thickness measures are shown in bottom 34 rows;

results for left (L) and right (R) hemispheres are shown in separate panels. Blue

indicates negative correlation, while red indicates positive correlation. The bigger

the magnitude of an coefficient is, the more important its MRI measure is in

predicting the corresponding cognitive score.

T-MSBL-FP and T-MSBL clearly yielded a much sparser pattern than the
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(a) T−MSBL−FP (b) T−MSBL (c) Mixed L2/L1

Figure IX.1 Heat maps of average regression coefficients of 5-fold cross-validation

trials for (a) T-MSBL-FP, (b) T-MSBL, and (c) Mixed `2/`1. Each row corresponds

to an MRI measure and each column to a cognitive score.
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Figure IX.2 Regression coefficients mapped onto brain: Each row corresponds to

one cognitive score. Each column corresponds to a specific view of the brain.

Mixed `2/`1 (Figure IX.1), making the results easier to interpret. The patterns

obtained by T-MSBL-FP and T-MSBL were also much sparser and cleaner than

those obtained by other algorithms (not shown here).

Figure IX.2 shows these regression coefficients mapped on the brain, where
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each row corresponds to one cognitive score and each column corresponds to a

specific view of the brain.

The imaging biomarkers identified by T-MSBL-FP yielded promising pat-

terns (Figure IX.2) that are expected based on prior knowledge on neuroimaging

and cognition. MMSE measures overall cognitive impairment; and thus its result

includes important AD-relevant imaging markers such as hippocampal volume,

amygdala volume, and entorhinal cortex thickness. RAVLT measures verbal learn-

ing memory; and thus its result includes regions relevant to learning and memory,

such as hippocampus, entorhinal cortex, and middle temporal gyri. TRAILS mea-

sures a combination of visual, motor and executive functions; and thus its result

includes regions in sensory-motor cortex (e.g., paracentral lobule), parietal lobe

(relevant to visual processing), and frontal lobe (relevant to executive function).

All the above results have demonstrated that the proposed T-MSBL-FP

method not only yields superior performance on prediction accuracy and compu-

tational time, but also is a powerful tool for discovering a small set of imaging

biomarkers that predict cognitive performance. These results provide important

information for understanding brain structural changes related to cognitive status

and can potentially help characterize the progression of AD.

IX.C Use of STSBL: Exploiting both Correlation and Non-

linear Relationship

In the previous section we use T-MSBL and T-MSBL-FP to solve this

problem. The model they are based on is an MMV model. However, one possible

limitation in this model is that a subject’s cognitive score under a task is modeled

as a linear function of his/her MRI measures. For example, for the m-th subject,

the cognitive score under the l-th task is modeled as

Ym,l = Φm,1X1,l + Φm,2X2,l + · · ·+ Φm,NXN,l + Vm,l.
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A linear model might have limited flexibility in capturing the complex relationship

between Ym,l and Φm,n.

A more powerful model is to consider a nonlinear relationship between Ym,l

and Φm,n. To achieve this, we use polynomials to model the nonlinear relationship

as follows:

Ym,l = Φm,1Z1,l + Φ2
m,1Z2,l + · · ·+ Φd1

m,1Zd1,l

+ · · ·+ Φm,NZc+1,l + Φ2
m,NZc+2,l

+ · · ·+ Φ
dg
m,NZc+dg ,l + Vm,l (IX.2)

where c =
∑g−1

i=1 di. Note that if the MRI measure Φm,1 has influence on the

subject’s cognitive scores, the associated coefficients Z1,l, Z2,l, · · · , Zd1,l tend to be

nonzero together (but with different amplitudes), and thus they are correlated.

This correlation is in fact the intra-block correlation stated before. The same

holds for other MRI measures Φm,j(j = 2, · · · , N).

Writing the relation (IX.2) for all m, l, we obtain the following model in

matrix form:

Y =


Φ1,1 · · · Φd1

1,1 · · · Φ
dg−1
1,N Φ

dg
1,N

Φ2,1 · · · Φd1
2,1 · · · Φ

dg−1
2,N Φ

dg
2,N

...
...

... · · · ...
...

ΦM,1 · · · Φd1
M,1 · · · Φ

dg−1
M,N Φ

dg
M,N

Z + V (IX.3)

where the (i, j)-th entry of Z is Zi,j. Note that Z has the block structure as

in (IV.2), and has the intra-block correlation. Z also has the correlation within

coefficient rows (which is inherited from the model (IX.1)). Therefore, the model

(IX.3) is exactly the spatiotemporal sparse model (IV.1), and thus both STSBL-

BO and STSBL-EM can be directly used.

In the model (IX.3) one can use other nonlinear functions instead of the

polynomials. A future direction is to explore various choices of nonlinear functions.

It is worth noting that although the nonlinear relationship between cognitive scores
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Table IX.4 Comparison of prediction performance measured by mean of the cor-

relation coefficients.
Score STSBL-BO T-MSBL-FP MFOCUSS Mixed `2/`1 SOMP RIDGE MT-CS

ADAS 0.767 0.753 0.749 0.740 0.760 0.746 0.746

MMSE 0.758 0.740 0.733 0.718 0.725 0.731 0.726

TOTAL 0.633 0.617 0.597 0.608 0.612 0.606 0.611

T30 0.608 0.586 0.571 0.569 0.575 0.545 0.556

RECOG 0.598 0.567 0.545 0.549 0.543 0.551 0.544

TRAILA 0.562 0.504 0.487 0.488 0.502 0.476 0.477

TRAILB 0.607 0.573 0.575 0.550 0.541 0.537 0.542

TR(B-A) 0.525 0.502 0.512 0.472 0.457 0.427 0.439

and MRI measures has been studied in other models, it is the first time that this

relationship is exploited in sparse models.

In the following experiment, we used the third-order polynomial in (IX.3),

i.e., d1 = d2 = · · · = dg = 3. The dataset was almost the same as in the previous

section, and we also added another set of cognitive scores and associated MRI

measures, namely the Alzheimer’s Disease Assessment Scale (ADAS). Algorithms

compared were also the same.

IX.C.1 Results of Prediction

All the algorithms were applied to predicting the cognitive scores using the

MRI measures. For each set of scores (i.e., ADAS, MMSE, RAVLT, and TRAILS),

five-fold cross-validation was used to obtain the mean of r. The results (Table

IX.4) showed that STSBL-BO outperformed all the compared algorithms for all

four sets of scores. Furthermore, comparing STSBL-BO to T-MSBL-FP, we see

the prediction accuracy was improved significantly. Since the linear model used

by T-MSBL-FP is a special case of the nonlinear model used by STSBL-BO when

d1 = · · · = dg = 1, we can see the nonlinear model, with the ability to exploit the

intra-block correlation, can better capture the relation between the predictors (the

MRI measures) and the responses (the cognitive scores) than the linear model.
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(c) Mixed L2/L1(a) STSBL−BO (b) T−MSBL-FP

Figure IX.3 Heat maps of regression coefficients of the 5-fold cross-validation

trials for (a) STSBL-BO, (b) T-MSBL-FP, and (c) the mixed `2/`1 minimization

algorithm. Results for volume measures are shown in top 15 rows, and those for

thickness measures in bottom 34 rows.

IX.C.2 Results of Biomarker Identification

Figure IX.3 shows the heat maps of the regression coefficients calculated

by STSBL-BO, T-MSBL-FP, and the mixed `2/`1 minimization algorithm for all

the cognitive tasks in the four sets. In the heat maps, every five columns form a

column block to represent the regression coefficients in the five-fold cross valida-

tion. In Figure IX.3 (b) and (c), each row corresponds to an MRI measure, and

each column block correspond to a cognitive task. In Figure IX.3 (a), since we

adopted the nonlinear model using the third-order polynomial, every three column

blocks correspond to a cognitive task, representing the regression coefficients corre-

sponding to the 1st, the 2nd, and the 3rd order of the polynomial, respectively. In

addition, the blue color indicates negative correlation while the red indicates pos-

itive correlation and the green indicates zero correlation. The larger the value of

the coefficient, the more important its corresponding MRI measure is in predicting
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the corresponding cognitive score.

The pattern obtained by STSBL-BO is more sparse than those obtained

by T-MSBL-FP, Mixed `2/`1 and other compared algorithms (not shown due to

space constraint), making the results easier to interpret. The imaging biomark-

ers identified by STSBL-BO yielded promising patterns (Figure IX.3) that are

expected from prior knowledge on neuroimaging and cognition. The tasks in

ADAS and MMSE aimed to reflect overall cognitive impairment, while the result

of STSBL-BO showed important AD-relevant imaging biomarkers such as hip-

pocampal volume (HippVol), amygdala volume (AmygVol), and entorhinal cortex

thickness (EntCtx). The tasks in RAVLT (i.e., TOTAL, T30 and RECOG) aimed

to test verbal learning memory, while the result of STSBL-BO highlighted regions

relevant to learning and memory, such as hippocampus (HippVol) and entorhinal

cortex (EntCtx). The tasks in TRAILS (i.e., TRAILSA, TRAILSB, TR(B-A))

aimed to test a combination of visual, motor and executive functions, while the

result of STSBL-BO showed regions in temporal lobe (EntCtx, Fusiform), parietal

lobe (InfParietal), and ventricle (InfLatVent).

All the above results demonstrated that the proposed STSBL-BO algorithm

not only yields higher prediction accuracy, but also has a desired ability to discover

a small set of imaging biomarkers that are easier to interpret and are consistent with

prior neuroscience knowledge. The algorithm can provide important information

for understanding brain structural changes related to cognitive status, and can

potentially help characterize the progression of AD.

IX.D Conclusion

In this chapter, we applied three algorithms to predict cognitive scores

of subjects from their MRI measures. They were T-MSBL, T-MSBL-FP, and

STSBL-BO. Since the first two algorithms are based on the canonical multiple

measurement vector model, they only exploited correlation within each row of the
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solution matrix. The third algorithm is based on the spatiotemporal sparse model

studied in Chapter IV. Thus, it not only exploited correlation within each row

of the solution matrix, but also exploited intra-block correlation in each column

of the solution matrix. Besides, due to the construction of the predictor matrix,

it also exploited the nonlinear relationship between response variables and predic-

tor variables. Compared to state-of-the-art algorithms, the three algorithm not

only showed the highest prediction accuracy, but also demonstrated the ability to

accurately identify imaging biomarkers that are consistent with prior knowledge.

It is worth highlighting that the used algorithms can be applied to many other

domains, such as variable selection in high dimensional space, compressed sensing,

and spatiotemporal data mining.
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A trend in sparse signal recovery is to exploit more information in addition

to sparsity in signals to achieve better performance. In many applications, signals

are not independent and identically distributed, but have rich structures. Recently

developed algorithms have considered a variety of structures such as group struc-

tures, tree structures, low-rank structures and so on. However, few works seriously

considered correlation among amplitudes of signals. Thus, it is unclear what role

the correlation plays in signal recovery.

In this dissertation, we first proposed a block sparse Bayesian learning

(BSBL) framework. Based on this framework, we derived a number of algorithms

which exploit intra-block correlation in a canonical block sparse model, tempo-

ral correlation in a canonical multiple measurement vector model, spatiotemporal

correlation in a spatiotemporal sparse model, and local temporal correlation in a

time-varying sparse model. Further, by connecting these algorithms to popular al-

gorithms including Group-Lasso type algorithms and iterative reweighted `1 and `2

algorithms, we suggested a procedure for modifying these algorithms such that they

can also exploit the correlation structure for better performance. These algorithms

largely enrich the family of sparse signal recovery algorithms. More importantly,

these algorithms demonstrate effective ways (using the Bayesian framework or us-

ing the iterative reweighted framework) to exploit the correlation structure, and

motivate more studies on this topic.

The benefit of exploiting the correlation structure is not only shown through

computer simulations, but also shown in several challenging practical problems.

One is compressed sensing of raw physiological signals for energy-efficient wireless

telemonitoring. In this application, signals are not sparse and also not sufficiently

sparse in any transformed domain. Consequently, existing compressed sensing

algorithms are unable to achieve satisfactory results. But using the derived algo-

rithms, we have achieved satisfactory results for clinical diagnosis. Another prac-

tical problem is identification of neuroimaging markers for prediction of patients’

cognition levels, which is a challenging feature selection problem in medical image
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analysis. For this problem, we have achieved much higher prediction accuracy

than reported results on some common datasets, and the identified neuroimaging

markers are consistent with prior knowledge in neuroscience.

However, our work indicates there are some trade-offs involved while try-

ing to exploit the correlation. When exploiting correlation, one has to address

the conflict between limited data and accurate modeling of correlation matrices.

Learning correlation matrices means significantly increased number of unknown

parameters, which potentially increases the difficulty in recovery of sparse signals.

Therefore, regularization is required. This issue is more important in highly noisy

environments. Poorly selected regularization strategies could result in worse re-

covery performance than methods that do not exploit correlation.
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