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  Abstract

Word count: 202

 

Soil nitrous oxide (N2O) emissions are an important driver of climate change and are a major mechanism of labile nitrogen (N) loss
from terrestrial ecosystems. Evidence increasingly suggests that locations on the landscape that experience biogeochemical fluxes
disproportionate to the surrounding matrix (hot spots) and time periods that show disproportionately high fluxes relative to the
background (hot moments) strongly influence landscape-scale soil N2O emissions. However, substantial uncertainties remain
regarding how to measure, model and predict where and when these extreme soil N2O fluxes occur.  High-frequency datasets of
soil N2O fluxes are newly possible due to advancements in field-ready instrumentation that uses cavity ring-down spectroscopy
(CRDS).  Here, we outline the opportunities and challenges that are provided by the deployment of this field-based instrumentation
and the collection of high-frequency soil N2O flux datasets.  While there are substantial challenges associated with automated CRDS
systems, there are also opportunities to utilize these near-continuous data to constrain our understanding of dynamics of the
terrestrial N cycle across space and time. Finally, we propose future research directions exploring the influence of hot moments of
N2O emissions on the N cycle, particularly considering the gaps surrounding how global change forces are likely to alter N dynamics
in the future.
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Abstract 37 
 38 
Soil nitrous oxide (N2O) emissions are an important driver of climate change and are a major mechanism 39 
of labile nitrogen (N) loss from terrestrial ecosystems. Evidence increasingly suggests that locations on 40 
the landscape that experience biogeochemical fluxes disproportionate to the surrounding matrix (hot 41 
spots) and time periods that show disproportionately high fluxes relative to the background (hot 42 
moments) strongly influence landscape-scale soil N2O emissions. However, substantial uncertainties 43 
remain regarding how to measure and model where and when these extreme soil N2O fluxes occur.  High-44 
frequency datasets of soil N2O fluxes are newly possible due to advancements in field-ready 45 
instrumentation that uses cavity ring-down spectroscopy (CRDS).  Here, we outline the opportunities and 46 
challenges that are provided by the deployment of this field-based instrumentation and the collection of 47 
high-frequency soil N2O flux datasets. While there are substantial challenges associated with automated 48 
CRDS systems, there are also opportunities to utilize these near-continuous data to constrain our 49 
understanding of dynamics of the terrestrial N cycle across space and time. Finally, we propose future 50 
research directions exploring the influence of hot moments of N2O emissions on the N cycle, particularly 51 
considering the gaps surrounding how global change forces are likely to alter N dynamics in the future. 52 
 53 
 54 
 55 
Introduction 56 
 57 

Globally, soils are the largest source of nitrous oxide (N2O) to the atmosphere (Tian et al. 2020) 58 
and soil N2O emissions have substantial influence over both the nitrogen (N) cycle and landscape-level 59 
greenhouse gas (GHG) emissions (Groffman et al. 2009).  Fluxes of N2O at the soil-atmosphere boundary 60 
tend to be episodic in nature due to short-lived peak emissions (a.k.a., “hot moments”) resulting from 61 
pulse events associated with natural (e.g., storm events, freeze-thaw cycles) and anthropogenic (e.g., 62 
fertilization in agricultural soils, flood irrigation) factors (Molodovskaya et al. 2012; Wagner-Riddle et al. 63 
2017; 2020).  Additionally, a small proportion of landscape locations can be predisposed to 64 
biogeochemical fluxes disproportionate to the surrounding matrix (a.k.a., “hot spots”), also as a result of 65 
natural (e.g., hydrologic, redox dynamics, aggregate microsites) and anthropogenic factors (e.g., 66 
landscape management decisions) (Silver et al. 1999; Groffman et al. 2009; Bernhardt et al. 2017; 67 
Barcellos et al. 2018).   68 
 69 

Measurements at discrete time points (e.g., bi-weekly or monthly) or with limited replication 70 
across a landscape in traditional field campaigns can miss these critical hot spots and hot moments. 71 
Missing these hot moments or under-observing hot spots can result in large uncertainties in national and 72 
global inventories (Tian et al. 2020). To that end, researchers have attempted to identify optimum 73 
sampling frequency (daily to weekly) or time (e.g., mid-morning to mid-day, late evening) that can 74 
increase precision and reduce disparities in terrestrial N2O budget estimates (Smith and Dobbie 2001; 75 
Parkin 2008; Reeves and Wang 2015; Barton et al. 2015).  However, there remain open questions about 76 
how best to measure, model and predict hot spots and hot moments of soil N2O fluxes.  It is therefore 77 
imperative that we develop both robust methodologies for observing patterns of hot spots and hot 78 
moments of soil N2O emissions and, at the same time, models that can aid in predicting and scaling them. 79 
 80 

Over the past decade, several optical techniques, including cavity ring-down spectroscopy 81 
(CRDS), have been developed and deployed in the field (Figure 1) to measure ecosystem trace gas fluxes 82 
(Rapson and Dacres 2014). The major advantage of these techniques is their ability to carry out high 83 
frequency measurements of a number of trace gases simultaneously. With CRDS, spectra can be obtained 84 
roughly every two seconds (Christiansen et al. 2015), generating 15-30 times more data points per flux 85 
measurement than traditional “manual” chamber-based flux measurements. The simultaneous 86 
development of automated chambers, which allow for continuous and unmonitored operation via 87 
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chamber-management software (such as EosAnalyze-AC, Eosense, Nova Scotia, Canada or SoilFluxPro, 88 
LI-COR Biosciences, Nebraska, USA), has created the ability to conduct pseudo-continuous in-situ flux 89 
measurements capable of five or more individual N2O flux measurements per hour (Diefenderfer et al. 90 
2018; Hemes et al. 2019). Other recent technologies utilized in ecosystem-scale applications 91 
include continuous wave quantum cascade laser (QCL) N2O gas analyzers (Savage et al. 2014; Cowan et 92 
al. 2020), eddy covariance (Tallec et al. 2019), and flux gradient (Wagner-Riddle et al. 2017) methods. 93 
Among these techniques, CRDS systems combined with automatic soil chambers provide the ability to 94 
capture the spatial and temporal heterogeneity of N2O fluxes at the plot scale needed to better constrain N 95 
cycle processes and controls.   96 
 97 

The emergence of field-ready, automated GHG instrumentation that can measure soil N2O 98 
emissions has made studying hot spots and hot moments of soil N2O fluxes more tractable.  However, 99 
there remain numerous challenges to implementing these systems in the field, as well as challenges 100 
associated with analyzing these new high-frequency datasets and incorporating these findings into 101 
process-based ecosystem and Earth system models.  High-frequency data on soil N2O emissions is 102 
quickly becoming available as more automated CRDS systems are deployed.  Here, we outline challenges 103 
and opportunities associated with novel field and data exploration methods that explore the hot moments 104 
present in high-frequency soil N2O data.  We discuss the advantages, disadvantages and applications of 105 
automated CRDS flux systems.  We additionally outline strategies for analyzing and scaling high-106 
frequency soil N2O emissions data.  Finally, we suggest areas for future research that leverage these 107 
emerging methods and experimental design paradigms to improve our understanding of N cycle processes 108 
and regional or global N2O budgets. 109 
 110 
 111 
Field instrumentation: Cavity ring-down spectroscopy for ecosystem science applications 112 
 113 
Pioneer research advancement on automated chambers for greenhouse gas flux measurements 114 
 115 
The first automated system for measuring GHG fluxes was designed by Silvola et al. (1992).  This 116 
method consisted of six chambers with pneumatic open and close valves. When GHG fluxes were 117 
measured, the selected chamber closed, a pump circulated air through the chamber and to a mobile lab 118 
located 50 meters away. An aliquot of the chamber air was injected to a gas chromatograph (GC) at five-119 
minute intervals for the 20 minute of chamber closure. The GC included thermal conductivity, electron 120 
capture and flame ionization detectors for measuring CO2, N2O and CH4 concentrations, respectively.  121 
Also during that time, flux gradient measurements by Fourier Transform Infrared spectroscopy (FTIR) 122 
showed that CO2, N2O and CH4 could be measured at large scale from agricultural land (Griffith and 123 
Galle, 2000). The increased frequency of measurements obtained by pioneer automated chamber research 124 
(Table 1) allowed the capture of diurnal variations and enhanced both our understanding of microbial 125 
processes responsible for soil GHG fluxes and the physicochemical variables related to them. 126 

Advantages and disadvantages of automated and manual chamber systems 127 

The deployment of automated chambers using fast response spectroscopic methods (i.e. CRDS, FTIR, 128 
among others) further increases the potential frequency of soil GHG fluxes.  These methods also have a 129 
number of advantages over manual GC flux measurements (Christiansen et al., 2015; Brannon et al., 130 
2016; Lebegue et al., 2016; Keane et al., 2018, Barba et al., 2019; Courtois et al., 2019, O’Connell et al 131 
2018, Anthony and Silver 2021). Current CRDS automated chamber system flux measurement time is 132 
about 10 min, at least a third shorter than previous automated chamber systems (Table 1). Additionally, 133 
manual chambers are highly labor intensive, limiting the number of individual flux measurements 134 
possible (Pattey et al. 2007; Görres et al. 2016), and they have much lower temporal sensitivity given the 135 
significantly longer sampling times required (> 30 min/flux).  This infrequent sampling also has the 136 
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potential to overlook event-based, diurnal and day-to-day variability (Reeves et al. 2016). Many manual 137 
chamber flux measurements are taken weekly or monthly (Teh et al. 2011; Matson et al. 2017; Krichels 138 
and Yang 2019); infrequent measurements can miss or underestimate hot moments of N2O flux (Barton et 139 
al. 2015; Reeves et al. 2016). 140 

However, manual chamber measurements also have a number of advantages in comparison to 141 
automated chamber systems.  These include the ability for widespread deployment across soil conditions 142 
and simpler deployment in remote ecosystems. They also have the ability to sample a large spatial area 143 
over a short period of time and have a comparatively low analyzer costs (one central GC for subsequent 144 
sample analysis vs. an individual CRDS analyzer needed per field site) (Pattey et al. 2007; Rapson and 145 
Dacres 2014; Görres et al. 2016; Grace et al. 2020).  Additionally, to overcome the underestimations 146 
related to hot moments of N2O flux, strategic sampling integrating process modeling and statistical 147 
methods can substantially improve cumulative flux estimation accuracy using infrequent chamber-based 148 
methods (Saha et al. 2017). 149 
 150 

The most important advantage of CRDS analyzers is the combination of high precision, resulting 151 
in a lower minimum detectable flux, with high measurement frequency, that allows for real-time flux 152 
determination. In conjunction with automated chambers, CRDS analyzers can continuously measure 153 
fluxes at a relatively high temporal frequency (Rapson and Dacres 2014; Harris et al. 2020). Increasing 154 
the number of flux measurements enables capture of short-term N2O pulses, which can generate the bulk 155 
of environmentally-relevant net N2O emissions to the atmosphere (Butterbach-Bahl et al. 2013; Savage et 156 
al. 2014). Automation also provides the ability to more accurately determine the magnitude and duration 157 
of N2O fluxes following N fertilization, irrigation, or other environmental disturbances (Grace et al. 158 
2020). This is particularly important in ecosystems where manual chambers would be difficult to access 159 
or cause soil disturbances, which can be an issue with repeated manual sampling events during hot 160 
moments of significant N2O flux, including flooding or freeze-thaw events. 161 

 162 
Further advancements in CRDS technology have also allowed for the measurement of stable 163 

isotope ratios and site preference in N2O molecules (Yoshida and Toyoda 2000; Harris et al. 2020).  164 
Isotopic N2O and site-preference measurements can provide important information about the 165 
environmental sources of N2O production (e.g., nitrification vs. denitrification, soil N sources) (Decock 166 
and Six 2013; Heil et al. 2014; Winther et al. 2018). With CRDS analyzers, these measurements can now 167 
be performed in-situ, as some of these instruments can analyze the N2O isotopic composition in gaseous 168 
mixtures, providing real-time data with minimal sample pretreatment. These measurements can be used to 169 
better resolve the drivers of N2O production and consumption, previously impossible with non-optical 170 
measurement techniques. 171 

 172 
The largest disadvantage of automated CRDS systems is the need for a stable, continuous power 173 

supply and the system’s significant energy demand (~1 kWh), although energy-efficient portable CRDS 174 
analyzers have been developed to measure other trace gases (Jeffrey et al. 2019; Brachmann et al. 2020). 175 
This electrical demand limits the ability to continuously deploy these systems in remote locations. 176 
Generators or solar power have been used with CRDS in remote locations (e.g., savannah woodlands and 177 
tropical rainforests (Livesley et al. 2011; O’Connell et al. 2018; Courtois et al. 2019)), but continuous 178 
deployment involves significant labor and/or travel costs needed to maintain instrumentation 179 
functionality. Deployment of CRDS technology is also hindered by instrumentation costs (systems are 180 
generally greater than $85k USD), equipment sensitivity to environmental conditions (e.g. high 181 
temperatures or humidity), and the difficulty of automated chamber deployment in complex, heterogenous 182 
field environments (Reeves et al. 2016; Grace et al. 2020). Additionally, the deployment of automated 183 
CRDS systems can be challenging when spectral interferences with other atmospheric constituents, 184 
particularly H2O, occur (Harris et al. 2020). Such interferences increase the challenges CRDS systems 185 
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face in further constraining measurements of the soil N cycle (Kim et al. 2012), but can also be 186 
minimized with installation of in-line water traps (Erler et al. 2015; Murray et al. 2018) (Figure 1).  187 

 188 
Some of the other disadvantages to automated systems can be overcome by the simultaneous 189 

utilization of manual chamber measurements (Savage and Davidson 2003). Manual chambers can help 190 
increase the extent of sampling across space during important flux measurement periods, increasing the 191 
ability to detect spatiotemporal variability. This combination can also be a useful approach in experiments 192 
where it is necessary to compare a large number of treatments, because the number of automated 193 
chambers per CRDS system is limited (Savage et al. 2014; Grace et al. 2020).  To aid future experimental 194 
design, we provide a potential road map for the selection of appropriate methods. Manual chambers are 195 
recommended when budget, large number of treatments, remoteness, and access of land power are a 196 
constraint. If these constraints are overcome, automated chambers with spectroscopic methods are 197 
advisable. To capture hot spots of N2O emissions it may be necessary to combine manual measurements 198 
with an automated chamber system (Savage and Davidson 2003).  We recommend that automated 199 
chambers be placed in locations that are likely to capture hot moments of emissions (e.g., areas with 200 
fluctuating redox, high plant activity, or where fertilizer is applied heavily) with a similar number of 201 
automated chambers being placed in areas not expected to be predisposed to hot moments, in order to 202 
avoid biasing the overall dataset.  Manual chambers, in contrast, could be used in likely hot spots (e.g., 203 
low lying areas and areas with soil compaction, poor diffusion or slow water infiltration) with, again, a 204 
similar number placed in areas suspected to not be hot spots.  Further, it is common for automatic 205 
chambers to be deployed and remain in a fixed location throughout a field campaign, which can lead to 206 
bias in which micro-scale abiotic conditions are favored within a dataset.  When field access is not 207 
limited, one solution to this potential bias would be to relocate automated stationary chambers at periodic 208 
intervals, though that comes with the disadvantage of losing data continuity in a given chamber location.  209 
We recommend a priori decisions about how often and where to move chambers (e.g., to a random set of 210 
sub-plot quadrats, seasonally, or quarterly) so as to avoid inserting bias towards within the captured data 211 
(e.g., by moving a chamber after a hot spot appears to “resolve” and thus skewing emissions data 212 
upwards). 213 

 214 
Applications of automated CRDS flux systems 215 

 216 
In general, the high temporal frequency of automated measurements greatly improves the ability 217 

to measure (and predict) the effects of soil management decisions or other environmentally relevant 218 
events. The increasing availability of automated CRDS systems has allowed for measurement of N2O 219 
fluxes and the ability to capture hot moments in mangrove forests (Murray et al. 2018), tropical 220 
rainforests (Courtois et al. 2019), desert (Eberwein et al. 2020), and during freeze-thaw cycles (Ruan and 221 
Robertson 2016; Wagner-Riddle et al. 2017), drought events (O’Connell et al. 2018), soil rewetting 222 
events (Liang et al. 2016; Hemes et al. 2019; Liu et al. 2019), and fertilization application in 223 
agroecosystems (Savage et al. 2014; Cowan et al. 2020). Increased application of automated flux 224 
measurements using CRDS instrumentation may also increase observations of other short-term (hourly to 225 
multi-day) hot moments previously undetected from less frequent flux measurement techniques, including 226 
for other GHGs.  For instance, correlation on hourly scales between soil temperature/moisture and GHG 227 
fluxes could constrain microbial mechanisms of soil GHG production, with implications for ecosystem-228 
level estimates (i.e., Martin et al. 2012).  Net ecosystem exchange (NEE) is affected by seasonal 229 
variability in plant activity (e.g., variability in root respiration and exudate production) (Curiel Yuste et 230 
al. 2007).  Forest canopy photosynthesis affects ecosystem respiration but the timing of links between 231 
canopy photosynthesis and ecosystem respiration is not well understood (Mencuccini and Holtta 2010). In 232 
these two examples, high frequency soil CO2 fluxes could aid in accounting for the relative contribution 233 
of soil GHG fluxes to NEE.  Future deployments of high-frequency systems, in combination with 234 
continuous ecosystem-scale eddy covariance flux measurements (Wagner-Riddle et al. 2017), may further 235 
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constrain the specific importance of hot spots and/or hot moments on net ecosystem N2O (and other 236 
GHG) fluxes.  237 
 238 
Data applications: Leveraging high-frequency soil N2O emissions data  239 
 240 
Constraining N cycle uncertainties  241 
 242 

High-frequency soil N2O datasets require different data management strategies than those 243 
designed for traditional manual chamber experimental designs, due to both the large size of these datasets 244 
and the structure of the time-series data itself.  Numerical modeling approaches have been developed to 245 
improve the precision of measured soil GHG fluxes in automated CRDS systems (Creelman et al. 2013).  246 
Increased precision combined with the improved temporal coverage of high-frequency data can 247 
substantially improve our understanding of N-cycling processes and budgets. 248 

 249 
Year-round measurements of high-frequency N2O emissions can improve gap-filling methods by 250 

accounting for concurrent changes in multiple covariates (Dorich et al. 2020).  For example, a recent 251 
study demonstrated that ignoring winter emissions from croplands subjected to freeze-thaw cycles can 252 
significantly underestimate global agricultural emissions (Wagner-Riddle et al. 2017).  The use of a near-253 
continuous flux gradient method, made possible by using a tunable-diode-laser (TDL) trace gas analyser 254 
(Grace et al. 2020), was central to this finding: N2O data collection during winter using manual chambers 255 
was previously impractical or would highly perturb soil conditions. Edge season emissions associated 256 
with microbial decomposition of crop residues in intensive agricultural systems can also increase 257 
agricultural N2O emission (Scheer et al. 2017). During the growing season, fertilizer-derived N2O 258 
emissions can increase exponentially instead of the generally assumed linear functions conventionally 259 
used in the Intergovernmental Panel on Climate Change reports (Shcherbak et al. 2014; Gerber et al. 260 
2016). Accurately accounting for these agricultural N2O emissions using high-frequency data can help 261 
close the global N budget and guide mitigation strategies (Mosier et al. 1998; Syakila and Kroeze 2011). 262 

 263 
High-precision pseudo-continuous measurement technologies also improve confidence in field 264 

measurements that observe net consumption of atmospheric N2O in soils.  These observations, which 265 
have been seen in soils ranging from poorly-drained wetlands to well-drained upland soils, could, in 266 
traditional methods, be discarded as measurement error or experimental noise (Chapuis-Lardy et al. 2007; 267 
Eugster et al. 2007; Goldberg and Gebauer 2009; Schlesinger 2013; Savage et al. 2014). The occurrence 268 
of net N2O reduction in well-drained soils warrants an improved understanding of spatial heterogeneity of 269 
anaerobic microsites where N2O can get reduced to N2 via biological denitrification (Parkin 1987). 270 
Representation of spatial heterogeneity is crucial for upscaling mechanistic processes related to N2O 271 
production and consumption occurring at the aggregate scale to landscape, regional, and global scales 272 
(Ebrahimi and Or 2018; Sihi et al. 2019). Mechanistic representations in process-based land-surface 273 
models of varying complexity (Tian et al. 2018; 2020), an alternative of statistical extrapolation of field 274 
measurements, is a widely used bottom-up approach to quantify global N2O sources and sinks, which also 275 
rely on the availability and quality of open-source data. 276 

 277 
Big data approaches and model integration 278 
 279 

Several statistical strategies have been successful at integrating high-frequency soil N2O datasets 280 
into investigations at the regional, continental or global scales. The use of simple statistical models has 281 
led to contrasting and disparate national and global N2O budgets (Gerber et al. 2016). In contrast, 282 
Bayesian Markov Chain Monte Carlo algorithms offer the potential to unravel multiple confounding 283 
factors and improve predictions of high-frequency soil N2O fluxes by process-based biogeochemical 284 
models (Myrgiotis et al. 2018; Sihi et al. 2019). Alternatively, process-based models coupled with 285 
machine-learning approaches can be used to evaluate N2O dynamics and driver-response relationships in 286 
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long-term high-frequency N2O data (Saha et al. 2021). Inequality indicators (e.g., Lorenz curve and Gini 287 
coefficient) have also been used to assess hot or cold spots or moments in soil N2O fluxes from high-288 
frequency data collected from heterogeneous landscapes (Saha et al. 2018). Statistical methods used for 289 
hot-moment analysis of other time-series soil flux data, i.e., wavelet analysis, can also be used for 290 
identifying hot-moments in soil N2O fluxes (Liptzin et al. 2010; Vargas et al. 2018).  These strategies 291 
have different computational demands, need differing levels and types of input data, operate either within 292 
or independently from process-based modeling frameworks, and have different levels of predictive 293 
power; determining the appropriate statistical approach for a given application can include assessing the 294 
quality of input data and considering the tractability of various statistical methods (Figure 2). 295 
 296 

The Global N2O Database (https://ecoapps.nrel.colostate.edu/global_n2o/; (Dorich et al. 2020)) 297 
holds promise to lower uncertainty in annual N2O estimates.  It provides ample opportunities for future 298 
analysis and in-depth comparisons among different methods, crop types, and management practices (e.g., 299 
irrigation, tillage). Harmonization with other high-frequency open-source soil flux data like COntinuous 300 
SOil REspiration (COSORE, (Bond Lamberty et al. 2020)) data and collaboration with well-established 301 
ecosystem flux communities like AmeriFlux (https://ameriflux.lbl.gov) and FluxNet (https://fluxnet.org) 302 
can potentially increase the user pool of the Global N2O Database and improve the flux processing 303 
pipelines and gap-filling algorithms. Institutional back-up, built-in analytical and statistical tools, 304 
availability of analysis scripts using open-source software, and an interactive web interface further 305 
encourage researchers to conduct advanced statistical analysis with long-term, high-frequency N2O data. 306 
 307 
 308 
Future directions 309 
 310 
Rethinking nitrogen cycle processes and budgets 311 
 312 
 Hot spots and hot moments of soil N2O emissions can account for large proportions of total 313 
ecosystem N2O flux, with the proportion varying widely across systems and contexts (Groffman et al. 314 
2009; Turner et al. 2016; Bernhardt et al. 2017).  CRDS systems can be deployed alongside high-315 
frequency sensors that measure abiotic soil variables (e.g., soil moisture, temperature and oxygen (O2), 316 
Figure 1).  Such designs can quantify the importance of soil N2O hot moments and what abiotic 317 
conditions correlate with those fluxes: in a Northern California grassland system, >80% of the emitted 318 
N2O occurs during “hot moments” (Anthony and Silver, 2021).  These studies thus far are uncommon, 319 
geographically biased, and not always conducted in biomes and regions shown to be globally important 320 
sources of N2O emissions (Bond Lamberty et al. 2020; Dorich et al. 2020).  There is a critical need to 321 
deploy automated CRDS systems under more field conditions and across ecosystems to better quantify 322 
the importance of hot moments within the N cycle. 323 
 324 

Measuring high N2O flux events in situ provides an excellent template to explore the molecular 325 
and microbial dynamics of N2O production and consumption in soils. With the proliferation of high-326 
frequency soil N2O emissions data, laboratory incubation experiments (using natural abundance stable 327 
isotopes or 13C or 15N labeled substrates) would allow us to better understand the microbial processes 328 
associated with these high fluxes (Kuzyakov and Blagodatskaya 2015). For example, pool dilution 329 
techniques allow for the determination of gross rates of N2O production and consumption under simulated 330 
field conditions (Yang et al. 2012) which would help produce better estimates of denitrification-derived 331 
N2 fluxes to the atmosphere.  Tools from microbial ecology and bioinformatics may also be able to 332 
improve experimental design and guide the deployment of automated chambers (Kuzyakov and 333 
Blagodatskaya 2015). Finally, metagenomic and other high-resolution techniques can be useful to identify 334 
microbial functional types associated with the spatial or temporal configuration of N2O fluxes. 335 
 336 
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 This work is especially critical in agricultural systems.  Anthropogenic global N2O sources 337 
related to fertilizer applications are responsible for 30% of the tropospheric N2O concentration increase in 338 
the past 4 decades (Tian et al. 2020). Measurements of the isotopic composition of N2O in the global 339 
atmosphere combined with knowledge of the “isotopic fingerprints” of N2O sources (e.g., soils, 340 
freshwater and oceans) and sinks (e.g., stratospheric photolysis and photooxidation) have been used in 341 
both “bottom up” and “top down” approaches to explain the current increase in global tropospheric N2O 342 
concentrations (Pérez et al. 2001; Park et al. 2012; Snider et al. 2015; Prokopiou et al. 2018). Changes 343 
over time show increased atmospheric N2O is largely due to increased fertilizer use in agriculture, as 344 
expected (Pérez et al. 2001; Park et al. 2012; Prokopiou et al. 2018). Continuous CRDS measurements of 345 
N2O isotopic composition from agricultural systems can capture the N2O isotopic fingerprint of high flux 346 
events, which can constrain the relative contribution of fertilizer-derived N2O from background emissions 347 
rates. 348 
 349 
Pairing high-frequency data collection with modeling approaches 350 
 351 
 Numerous opportunities exist to improve input data for models.  High-frequency soil N2O flux 352 
data can be used to better validate modeled GHG fluxes predictions from natural or agricultural systems. 353 
Available models (e.g., Daycent, DNDC and EPIC) often use static chamber soil GHG measurements as 354 
validation data, which can lead to underestimation of landscape N2O fluxes, likely due to an 355 
underestimation of the magnitude of peak daily fluxes (Gaillard et al. 2018).  High-frequency data with 356 
better estimates of peak daily fluxes can improve estimates of N2O emissions; improved N2O emissions 357 
data can also improve the underlying statistical relationships upon which these models rely (Bond 358 
Lamberty et al. 2020; Dorich et al. 2020). 359 
 360 

Recent advances in machine learning (ML) models for predicting N2O soil fluxes have been 361 
shown to improve outputs derived from process-based modeling (Saha et al. 2021). However, when 362 
comparing classical regression, shallow learning, and deep learning ML model performances, only the 363 
heavy computational deep neural network Long Short-Term Memory (LSTP) model is successful in 364 
predicting N2O fluxes from agriculture using a static chamber data time series as the input (Hamrani et al. 365 
2020).  The low performance of the other ML algorithms could be related to the intrinsic characteristic of 366 
the method. As an example, random forest machine learning applied to a dataset that had both automated 367 
chambers and continuous measurements of soil volumetric content gave the same generalized validation 368 
(R2 =0.38) (Saha et al. 2021) as one obtained by other studies that had both static chamber N2O fluxes 369 
and discrete soil physicochemical measurements (R2 values between 0.37 to 0.39, Hamrani et al. 2020, 370 
Glenn et al. 2021). Therefore, to better assess N2O flux prediction robustness of available models (ML 371 
algorithms, statistical, process-based and Bayesian modeling approaches) high frequency data of both 372 
N2O fluxes and measured variables (physicochemical, micro and macro-meteorological, spectral, etc.) 373 
would be required. This could be more achievable as new high frequency technology for measuring 374 
physicochemical variables such as pH, NH4

+ and NO3
- become available (Figure 2). 375 

 376 
 High frequency measurements of driving variables are needed as inputs to ML models. Moisture, 377 
temperature, and O2 sensors with sufficient capacity are widely available and have been used in a large 378 
number of studies (i.e., O’Connell et al. 2018, Anthony and Silver 2021).  The high cost of environmental 379 
sensors currently limits their widespread adoption and use. CRDS systems typically cost over $85k USD 380 
and automated chambers can be ~$3-10k USD each depending on their features. Soil sensors (e.g., O2, 381 
moisture, temperature) also tend to be costly, often several hundred dollars per sensor with high spatial 382 
replication needed to capture plot-scale variability. New printable sensor technology has the potential to 383 
make advances not only in the variables mentioned above, but also in measurements of inorganic nitrogen 384 
species (i.e., substrates for N2O production in nitrification and denitrification processes). They have the 385 
potential to drastically lower costs and increase replication in the future (Sui et al. 2021). 386 
 387 
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Broadly, increasing the accuracy, precision and temporal coverage of soil N2O flux estimates 388 
along with other relevant variables across time and ecosystems will be crucial for scaling observational 389 
work and incorporating climate feedbacks into global models.  Global change will likely alter soil N2O 390 
emissions in intersectional ways, both as climate and agricultural management change (Griffis et al. 391 
2017).  Novel field and data exploration methods that can better observe hot moments of soil N2O flux 392 
can be leveraged to constrain our understanding of the N cycle as well as improve our ability to predict 393 
landscape-level GHG feedbacks under global change conditions. 394 
 395 
 396 
Conclusions 397 
 398 

Utilizing novel field and data exploration methods to explore hot spots and especially hot moments in 399 
high-frequency soil GHG data has the potential to transform our ability to measure, analyze and predict 400 
patterns of soil greenhouse gas, and especially N2O, emissions from terrestrial ecosystems.  While there 401 
are currently substantial challenges involved, this technology is rapidly evolving.  Future research should 402 
seek to further constrain our understanding of N cycling dynamics via high-frequency data collection 403 
across ecosystem type, region, disturbance regime, and under global change scenarios.  These efforts are 404 
crucial to test and validate ecosystem modeling approaches, to improve the geographic representation of 405 
field-based datasets of soil N2O emissions, and to enhance our understanding of the processes and 406 
patterns that underlie the terrestrial N cycle. 407 
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Figures/Tables 447 
 448 

 449 
Figure 1. (a) Sampling configuration for continuous soil GHG emissions by CRDS and applicable soil 450 
physicochemical variables (in this case, e.g., soil moisture, temperature, and oxygen sensors).  A 451 
circulating pump draws air after chamber enclosure. The air passes through a multiplexer where is 452 
directed to the CRDS for pseudo-continuous GHG concentration measurements. (b-f) Field deployment 453 
of automated CRDS systems including in tropical high-rainfall ecosystem (Luquillo Experimental Forest, 454 
Puerto Rico (c)), in flooded soils (California, USA (b, d)) and agricultural systems (California, USA (e, 455 
f)). 456 
 457 
 458 
  459 
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 460 

 461 
Figure 2. Diagram for testing effectiveness of available models to predict GHG fluxes. High frequency 462 
data of measured variables are required to test methods and rank them according to predictive power and 463 
computational cost. 464 
 465 
 466 

467 
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Table 1. Pioneer methods for automated greenhouse gas fluxes measurements. 468 

Method Greenhouse 

Gas 

Number of chambers Flux 

measurement 

time (min) 

Reference 

Gas chromatography CH4, CO2, 

N2O 

6 48 Silvola et al 

(1992) 

Gas chromatography N2O 8 35 Crill et al 

(2000) 

Gas chromatography CH4, N2O 5 24 Butemback 

Ball et al 

(1998) 

Gas chromatography N2O 6 30 Akiyama et 

al (2000) 

Non-dispersive infrared 

spectroscopy 

CO2 10 18 Goulden and 

Crill (1997) 

Non-dispersive infrared 

spectroscopy, gas 

chromatography 

CH4, CO2, 

N2O 

6 30 Nishimura et 

al (2005) 

Fourier Transform Infrared 

Spectroscopy 

CH4, CO2, 

N2O 

N/A N/A Griffith and 

Galle 

(2000)* 

(*) Flux-gradient technique 469 

 470 

  471 
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