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Efficient Transition Probability Computation for Continuous-Time
Branching Processes via Compressed Sensing

By Jason Xu∗, Vladimir Minin∗,†
∗Department of Statistics, University of Washington
†Department of Biology, University of Washington

Abstract

Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiqui-
tous applications. A general difficulty in statistical inference under partially observed CTMC
models arises in computing transition probabilities when the discrete state space is large or un-
countable. Classical methods such as matrix exponentiation are infeasible for large or countably
infinite state spaces, and sampling-based alternatives are computationally intensive, requiring a
large integration step to impute over all possible hidden events. Recent work has successfully
applied generating function techniques to computing transition probabilities for linear multi-
type branching processes. While these techniques often require significantly fewer computations
than matrix exponentiation, they also become prohibitive in applications with large popula-
tions. We propose a compressed sensing framework that significantly accelerates the generating
function method, decreasing computational cost up to a logarithmic factor by only assuming the
probability mass of transitions is sparse. We demonstrate accurate and efficient transition prob-
ability computations in branching process models for hematopoiesis and transposable element
evolution.

1 Introduction

Continuous-time branching processes are widely used in stochastic modeling of population dynam-
ics, with applications including biology, genetics, epidemiology, quantum optics, and nuclear fission
[Renshaw, 2011]. With the exception of the well-studied class of birth-death processes, which have
known expressions for many quantities relevant to probabilistic inference [Crawford et al., 2014],
branching processes pose significant inferential challenges. In particular, closed forms for finite-time
transition probabilities, the conditional probability that a trajectory ends at a given state, given a
starting state and time interval, are unavailable. These transition probabilities are crucial in many
inferential approaches, comprising the observed likelihood function when data from the process are
available at a set of discrete times. The likelihood function is of central importance in frequentist
and Bayesian methods, and any statistical framework involving observed data likelihood evaluation
requires transition probability computations. Without the ability to fully leverage the branching
structure, studies must rely on general CTMC estimation techniques or model approximations
[Rosenberg et al., 2003, Golinelli et al., 2006, El-Hay et al., 2006].

Computation of transition probabilities is the usual bottleneck in model-based inference us-
ing CTMCs [Hajiaghayi et al., 2014], requiring a marginalization over the infinite set of possible
end-point conditioned paths. Classically, this marginalization is accomplished by computing the
matrix exponential of the infinitesimal generator of the CTMC. However, this procedure has cubic
runtime complexity in the size of the state space, becoming prohibitive even for state spaces of
moderate sizes. Alternatives also have their shortcomings: uniformization methods use a discrete-
time “skeleton” chain to approximate the CTMC but rely on a restrictive assumption that there is
a uniform bound on all rates [Grassmann, 1977, Rao and Teh, 2011]. Typically, practitioners resort
to sampling-based approaches via Markov chain Monte Carlo (MCMC). Specifically, particle-based
methods such as sequential Monte Carlo (SMC) and particle MCMC [Doucet et al., 2000, Andrieu
et al., 2010] offer a complementary approach whose runtime depends on the number of imputed
transitions rather than the size of the state space. However, these SMC methods have several
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limitations— in many applications, a prohibitively large number of particles is required to impute
waiting times and events between transitions, and degeneracy issues are a common occurrence,
especially in longer time series. A method by Hajiaghayi et al. [2014] accelerates particle-based
methods by marginalizing holding times analytically, but has cubic runtime complexity in the num-
ber of imputed jumps between observations and is recommended for applications with fewer than
one thousand events occurring between observations.

Recent work by Xu et al. [2014] has extended techniques for computing transition probabilities in
birth-death models to linear multi-type branching processes. This approach involves expanding the
probability generating function (PGF) of the process as a Fourier series, and applying a Riemann
sum approximation to its inversion formula. This technique has been used to compute numerical
transition probabilities within a maximum likelihood estimation (MLE) framework, and has also
been applied within Expectation Maximization (EM) algorithms [Doss et al., 2013, Xu et al.,
2014]. While this method provides a powerful alternative to simulation and avoids costly matrix
operations, the Riemann approximation to the Fourier inversion formula requires O(N b) PGF
evaluations, where b is the number of particle types and N is the largest population size at endpoints
of desired transition probabilities. This complexity is no worse than linear in the size of the state
space, but can also be restrictive: a two-type process in which each population can take values in
the thousands would require millions of PGF evaluations to produce transition probabilities over an
observation interval. This can amount to hours of computation in standard computing architectures,
because evaluating PGFs for multitype branching processes involves numerically solving systems
of ordinary differential equations (ODEs). Such computations become infeasible within iterative
algorithms.

In this paper, we focus our attention on the efficient computation of transition probabilities
in the presence of sparsity, presenting a novel compressed sensing generating function (CSGF)
algorithm that dramatically reduces the computational cost of inverting the PGF. We apply our
algorithm to a branching process model used to study hematopoiesis as well as a birth-death-shift
process with applications to molecular epidemiology, and see that the sparsity assumption is valid
for scientifically realistic rates of the processes obtained in previous statistical studies. We compare
performance of CSGF to transition probability computations without taking advantage of sparsity,
demonstrating a high degree of accuracy while achieving significant improvements in runtime.

2 Markov Branching Processes

A linear multitype branching process follows a population of independently acting particles that
reproduce and die. The random vector X(t) takes values in a discrete state space Ω at time t,
with Xi(t) denoting the number of type i particles present at time t. For exposition and notational
simplicity, we will focus on the two-type case. In the continuous-time setting, each type i particle
produces k type 1 particles and l type 2 particles with instantaneous rates aj(k, l), and the rates
of no event occurring are defined as

α1 := a1(1, 0) = −
∑

(k,l)6=(1,0)

a1(k, l),

α2 := a2(0, 1) = −
∑

(k,l)6=(0,1)

a2(k, l)

so that
∑

k,l ai(k, l) = 0 for i = 1, 2. Offspring of each particle evolve according to the same set
of instantaneous rates, and these rates aj(k, l) do not depend on t so that the process is time-
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homogeneous. These assumptions imply that each type i particle has exponentially distributed
lifespan with rate −αi, and X(t) evolves over time as a CTMC [Guttorp, 1995].

2.1 Transition probabilities

Dynamics of a CTMC are determined by its transition function

px,y(t) = Pr(X(t+ s) = y|X(s) = x), (1)

where time-homogeneity implies independence of the value of s on the right hand side. When the
state space Ω is small, one can exponentiate the |Ω| by |Ω| infinitesimal generator or rate matrix
Q =

{
qx,y

}
x,y∈Ω

, where the entries qx,y denote the instantaneous rates of jumping from state x to
y, to compute transition probabilities:

P(t) :=
{
px,y(t)

}
x,y∈Ω

= eQt =
∞∑
k=0

(Qt)k

k!
. (2)

These transition probabilities are fundamental quantities in statistical inference for data generated
from CTMCs. For instance, if X(t) is observed at times t1, . . . , tJ and D represents the 2 by J
matrix containing the observed data, the observed log-likelihood is given by

`o(D;θ) =
J−1∑
j=1

log pX(tj),X(tj+1)(tj+1 − tj ;θ) (3)

where the vector θ parametrizes the rates aj(k, l). Maximum likelihood inference that seeks to find

the value θ̂ that optimizes (3) as well as Bayesian methods where likelihood calculations arise in
working with the posterior density (up to a proportionality constant) fundamentally rely on the
ability to calculate transition probabilities. Having established their importance in probabilistic
inference, we focus our discussion in this paper to computing these transition probabilities in a
continuous-time branching process.

2.2 Generating function methods

Matrix exponentiation is cubic in |Ω| and thus prohibitive in many applications, but we may take
an alternate approach by exploiting properties of the branching process. Xu et al. [2014] extend a
generating function technique used to compute transition probabilities in birth-death processes to
the multi-type branching process setting. The probability generating function (PGF) for a two-type
process is defined

φjk(t, s1, s2;θ) = Eθ(s
X1(t)
1 s

X2(t)
2 |X1(0) = j,X2(0) = k)

=

∞∑
l=0

∞∑
m=0

p(jk),(lm)(t;θ)sl1s
m
2 ; (4)

this definition extends analogously for any m-type process. We suppress dependence on θ for no-
tational convenience. Bailey [1964] provides a general technique to derive a system of differential
equations governing φjk using the Kolmogorov forward or backward equations given the instan-
taneous rates aj(k, l). It is often possible to solve these systems analytically for φjk, and even
when closed forms are unavailable, numerical solutions can be efficiently obtained using standard
algorithms such as Runge-Kutta methods [Butcher, 1987].
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With φjk available, transition probabilities are related to the PGF (4) via differentiation:

p(jk),(lm)(t) =
∂l

∂s1

∂m

∂s2
φjk(t)

∣∣∣∣
s1=s2=0

. (5)

This repeated differentiation is computationally intensive and numerically unstable for large l,m,
but following Lange [1982], we can map the domain s1, s2 ∈ [0, 1] × [0, 1] to the boundary of the
complex unit circle, instead setting s1 = e2πiw1 , s2 = e2πiw2 . The generating function becomes a
Fourier series whose coefficients are the desired transition probabilities

φjk(t, e
2πiw1 , e2πiw2) =

∞∑
l,m=0

p(jk),(lm)(t)e
2πilw1e2πimw2

Applying a Riemann sum approximation to the Fourier inversion formula, we can now compute the
transition probabilities via integration instead of differentiation:

p(jk),(lm)(t) =

∫ 1

0

∫ 1

0
φjk(t, e

2πiw1 , e2πiw2)e−2πilw1

× e−2πimw2dw1dw2

≈ 1

N2

N−1∑
u=0

N−1∑
v=0

φjk(t, e
2πiu/N , e2πiv/N )

× e−2πilu/Ne−2πimv/N .

(6)

In practice, the set of transition probabilities S = {p(jk),(lm)(t)} for all l,m = 0, . . . , N , given
initial values of (j, k), can be obtained via the Fast Fourier Transform (FFT), described in Section
4. It is necessary to choose N > l,m, since exponentiating the roots of unity can yield at most N
distinct values

e−2πimv/N = e−2πi(mv modN)/N ;

this is related to the Shannon-Nyquist criterion [Shannon, 2001], which dictates that the number
of samples required to recover a signal must match its highest frequency. Thus, calculating “high
frequency” coefficients— when l,m take large values—requires O(N2) numerical ODE solutions,
which becomes computationally expensive for large N .

Sparsity: Given an initial state X(0) = (j, k), the support of transition probabilities is often
concentrated over a small range of (l,m) values. For example, if X(t) = (800, 800), then the
probability that the entire process becomes extinct, X(t + s) = (0, 0), is effectively zero unless
particle death rates are very high or s is a very long time interval. In many realistic applications,
p(800,800),(l,m)(s) has non-negligible mass on a small support, for instance only over l,m values
between 770 and 820. While their values can be computed using Equation (6) for a choice of
N > 820, requiring N2 ODE evaluations toward computing only (820−770)2 nonzero probabilities
seems wasteful. To exploit the sparsity information in such a setting, we bridge aforementioned
branching process techniques to the literature of compressed sensing.

3 Compressed Sensing

Originally developed in an information theoretic setting, the principle of compressed sensing (CS)
states that an unknown sparse signal can be recovered accurately and often perfectly from signif-
icantly fewer samples than dictated by the Shannon-Nyquist rate at the cost of solving a convex
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optimization problem [Donoho, 2006, Candès, 2006]. CS is a robust tool to collect high-dimensional
sparse data from a low-dimensional set of measurements and has been applied to a plethora of fields,
leading to dramatic reductions in the necessary number of measurements, samples, or computa-
tions. In our setting, the transition probabilities play the role of a target sparse signal of Fourier
coefficients. The data reduction made possible via CS then translates to reducing computations to
a random subsample of PGF evaluations, which play the role of measurements used to recover the
signal.

3.1 Overview

In the CS framework, the unknown signal is a vector x ∈ CN observed through a measurement
b = Vx ∈ CM with M << N . Here V denotes an M × N measurement matrix or sensing
matrix. Since M < N , the system is underdetermined and inversion is highly ill-posed—the space
of solutions is an infinite affine subspace, but CS theory shows that recovery can be accomplished
under certain assumptions by seeking the sparsest solution. Let ψ be an orthonormal basis of CN
that allows a K-sparse representation of x: that is, x = ψs where s is a sparse vector of coefficients
such that ||s||0 < K. Candès [2006] proves that recovery can then be accurately accomplished by
finding the sparsest solution

ŝ = argmin
s
||s||0 s.t. As = b (7)

where A = Vψ is the composition of the measurement and sparsifying matrices. In practice, this
non-convex objective is combinatorially intractable to solve exactly, and is instead solved by proxy
via `1-relaxation, resulting in a convex optimization program. In place of Equation (7), we optimize
the unconstrained penalized objective

ŝ = argmin
s

1

2
||As− b||22 + λ||s||1 (8)

where λ is a regularization parameter enforcing sparsity of s. The signal x, or equivalently s, can be
recovered perfectly using only M = CK logN measurements for some constant C when A satisfies
the Restricted Isometry Property (RIP) [Candès and Tao, 2005, Candès, 2008]—briefly, this requires
that V and ψ to be incoherent so that rows of V cannot sparsely represent the columns of ψ and
vice versa. Coherence between V,ψ is defined as

µ(V,ψ) =
√
nmax

i,j
|〈V,ψj〉|,

and low coherence pairs are desirable. It has been shown that choosing random measurements V
satisfies RIP with overwhelming probability [Candès, 2008]. Further, given ψ, it is often possible
to choose a known ideal distribution from which to sample elements in V such that V and ψ are
maximally incoherent.

3.2 Higher dimensions

CS theory extends naturally to higher-dimensional signals [Candès, 2006]. In the 2D case which
will arise in our applications (Section 5), the sparse solution S ∈ CN×N and measurement

B = ASAT ∈ CM×M (9)

are matrices rather than vectors, and we solve

Ŝ = argmin
S

1

2
||ASAT −B||22 + λ||S||1. (10)
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This can always be equivalently represented in the vector-valued framework: vectorizing

vec(S) = s̃ ∈ CN
2
, vec(B) = b̃ ∈ CM

2
,

we now seek b̃ = Ãs̃ as in Equations (7), (8), where Ã = A⊗A is the Kronecker product of A with
itself. In practice, it can be preferable to solve (10), since the number of entries in Ã grows rapidly
and thus the vectorized problem requires a costly construction of Ã and can be cumbersome in
terms of memory.

4 CSGF Method

We propose an algorithm that allows for efficient PGF inversion within a compressed sensing
framework. We focus our exposition on two-type models: linear complexity in |Ω| is less often
a bottleneck in single-type problems, and all generating function methods as well as compressed
sensing techniques we describe extend to higher dimensional settings.

We wish to compute the transition probabilities pjk,lm(t) given any t > 0 and X(0) = (j, k).
These probabilities can be arranged in a matrix S ∈ RN×N with entries{

S
}
l,m

= pjk,lm(t).

Without the CS framework, these probabilities are obtained following Equation (6) by first com-
puting an equally sized matrix of PGF solutions

B̃ =
{
φjk(t, e

2πiu/N , e2πiv/N )
}N−1

u,v=0
∈ CN×N . (11)

For large N , obtaining B̃ is computationally expensive, and our method seeks to bypass this
step. When B̃ is computed, transition probabilities are then recovered by taking the fast Fourier
transform S = fft(B̃). To better understand how this fits into the CS framework, we can equivalently

write the fast Fourier transform in terms of matrix operations S = FB̃F
T

, where F ∈ CN×N denotes
the discrete Fourier transform matrix (see Supplement). Thus, the sparsifying basis ψ is the Inverse
Discrete Fourier Transform (IDFT) matrix ψ = F∗ given by the conjugate transpose of F, and we
have B̃ = ψSψT .

When the solution matrix S is expected to have a sparse representation, our CSGF method seeks
to recover S without computing the full matrix B̃, instead beginning with a much smaller set of
PGF evaluations B ∈ CM×M corresponding to random entries of B̃ selected uniformly at random.
Denoting randomly sampled indices I, this smaller matrix is a projection B = ASAT in the form
of Equation (9) where A ∈ CM×N is obtained by selecting a subset of rows of ψ corresponding to
I. Uniform sampling of rows corresponds to multiplying by a measurement matrix encoding the
spike basis (or standard basis): formally, this fits into the framework described in Section 3.1 as
A = Vψ, with measurement matrix rows Vj(l) = δ(j − l). The spike and Fourier bases are known
to be maximally incoherent in any dimension, so uniformly sampling indices I is optimal in our
setting.

Now in the compressed sensing framework, computing the reduced matrix B only requires a
logarithmic proportion |B| ∝ K log |B̃| of PGF evaluations necessary in Equation (11). Computing
transition probabilities in S is thus reduced to a signal recovery problem, solved by optimizing the
objective in Equation (10).
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4.1 Solving the `1 problem

There has been extensive research on algorithms for solving the `1 regularization objective in
Equation (8) and related problems [Tibshirani, 1996, Beck and Teboulle, 2009a]. As mentioned
previously, vectorizing the problem so that it can be represented in the form (8) requires wasteful
extra memory; instead we choose to solve the objective in Equation (10) using a proximal gradient
descent (PGD) algorithm.

PGD is useful for solving minimization problems with objective of the form f(x) = g(x) + h(x)
with g convex and differentiable, and h convex but not necessarily differentiable. Letting

g(S) =
1

2
||ASAT −B||22, h(S) = λ||S||1,

we see that Equation (10) satisfies these conditions. A form of generalized gradient descent, PGD
iterates toward a solution with

xk+1 = argmin
z

[g(xk) +∇g(xk)
T (z − xk) (12)

+
1

2Lk
||z − xk||22 + h(z)],

where Lk is a step size that is either fixed or determined via line-search. This minimization has
known closed-form solution

xk+1 = softh(xk − Lk∇g(xk), Lkλ), (13)

where softh is the soft-thresholding operator

[softh(x, α)]i = sgn(xi) max(|xi| − α, 0). (14)

Alternating between these steps results in an iterative soft-thresholding algorithm that solves the
convex problem (10) with rate of convergence O(1/k) when Lk is fixed. The softh() operation is
simple and computationally negligible, so that the main computational cost is in evaluating ∇g(xk).
We derive a closed form expression for the gradient in our setting

∇g(S) = −A∗(B−ASAT )A, (15)

where A,A∗ denote complex conjugate and conjugate transpose of A respectively. In practice, the
inner term ASAT is obtained as a subset of the inverse fast Fourier transform of S rather than
by explicit matrix multiplication. The computational effort in computing ∇g(S) therefore involves
only the two outer matrix multiplications.

We implement a fast variant of PGD using momentum terms [Beck and Teboulle, 2009b] based
on an algorithm introduced by Nesterov, and select step sizes Lk via a simple line-search subroutine
[Beck and Teboulle, 2009a]. The accelerated version includes an extrapolation step, where the soft-
thresholding operator is applied to a momentum term

yk+1 = xk + ωk(xk − xk−1)

rather than to xk; here ωk is an extrapolation parameter for the momentum term. Remarkably,
the accelerated method still only requires one gradient evaluation at each step as yk+1 is a simple
linear combination of previously computed points, and has been proven to achieve the optimal
worst-case rate of convergence O(1/k2) among first order methods [Nesterov, 1983]. Similarly, the
line-search procedure involves evaluating a bound that also only requires one evaluation of ∇g (see
Supplement).

Algorithm 1 provides a summary of the CSGF method in pseudocode.
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Algorithm 1 CSGF algorithm.

1: Input: initial sizes X1 = j,X2 = k, time interval t, branching rates θ, signal size N > j, k,
measurement size M , penalization constant λ > 0, line-search parameters L, c.

2: Uniformly sample M indices I ⊂ [0, . . . N − 1] /N
3: Compute B =

{
φjk(t, e

2πiu/N , e2πiv/N )
}
u,v∈I×I

4: Define A = ψI· the I rows of IDFT matrix ψ
5: Initialize: S1 = Y1 = 0
6: for k = 1, 2, . . . , {max iterations} do
7: Choose Lk = line-search(L, c,Yk)
8: Update extrapolation parameter ωk = k

k+3
9: Update momentum Yk+1 = Sk + ωk(Sk − Sk−1)

10: Compute ∇g(Yk+1) according to (15)
11: Update Sk+1 = softh(Sk − Lk∇g(Yk+1), Lkλ)
12: end for
13: return Ŝ = Sk+1

5 Examples

We will examine the performance of CSGF in two applications: a stochastic two-compartment
model used in statistical studies of hematopoiesis, the process of blood cell production, and a
birth-death-shift model that has been used to study the evolution of transposons, mobile genetic
elements.

5.1 Two-compartment hematopoiesis model

Hematopoiesis is the process in which self-sustaining primitive hematopoietic stem cells (HSCs)
specialize, or differentiate, into progenitor cells, which further specialize to eventually produce
mature blood cells. In addition to far-reaching clinical implications — stem cell transplantation is
a mainstay of cancer therapy — understanding hematopoietic dynamics is biologically interesting,
and provides critical insights of general relevance to other areas of stem cell biology [Orkin and
Zon, 2008]. The stochastic model, depicted in Figure 1, has enabled estimation of hematopoietic
rates in mammals from data in several studies [Catlin et al., 2001, Golinelli et al., 2006, Fong et al.,
2009]. Without the ability to compute transition probabilities, an estimating equation approach by
Catlin et al. [2001] is statistically inefficient, resulting in uncertain estimated parameters with very
wide confidence intervals. Nonetheless, biologically sensible rates are inferred. Golinelli et al. [2006]
observe that transition probabilities are unknown for a linear birth-death process (compartment
1) coupled with an inhomogeneous immigration-death process (compartment 2), motivating their
computationally intensive reversible jump MCMC implementation.

However, we can equivalently view the model as a two-type branching process. Under such a
representation, it becomes possible to compute transition probabilities via Equation (6). The type
one particle population X1 corresponds to hematopoietic stem cells (HSCs), and X2 represents
progenitor cells. With parameters as denoted in Figure 1, the nonzero instantaneous rates defining
the process are

a1(2, 0) = ρ a1(0, 1) = ν a1(1, 0) = −(ρ+ ν)

a2(0, 0) = µ a2(0, 1) = −µ. (16)
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Figure 1: HSCs can self-renew,
producing new HSCs at rate ρ, or
differentiate into progenitor cells
at rate ν. Further progenitor dif-
ferentiation is modeled by rate µ.

Having specified the two-type branching process, we derive solutions for its PGF, defined in
Equation (4), with details in the Supplement:

Proposition 5.1 The generating function for the two-type model described in (16) is given by
φjk = φj1,0φ

k
0,1, where

φ0,1(t, s1, s2) = 1 + (s2 − 1)e−µt

d
dtφ1,0(t, s1, s2) = ρφ2

1,0(t, s1, s2)− (ρ+ ν)φ1,0(t, s1, s2)

+νφ0,1(t, s1, s2).

(17)

We see that φ0,1 has closed form solution so that evaluating φjk only requires solving one ODE
numerically, and with the ability to compute φjk, we may obtain transition probabilities using
Equation (6). In this application, cell populations can easily reach thousands, motivating the
CSGF approach to accelerate transition probability computations.

5.2 Birth-death-shift model for transposons

Our second application examines the birth-death-shift (BDS) process proposed by Rosenberg et al.
[2003] to model evolutionary dynamics of transposable elements or transposons, genomic mobile
sequence elements. Each transposon can (1) duplicate, with the new copy moving to a new genomic
location; (2) shift to a different location; or (3) be removed and lost from the genome, independently
of all other transposons. These respective birth, shift, and death events occur at per-particle
instantaneous rates β, σ, δ, with overall rates proportional to the total number of transposons.
Transposons thus evolve according to a linear birth-death-shift Markov process in continuous time.
In practice, genotyping technologies allow for this process to be discretely monitored, necessitating
computation of finite-time transition probabilities.

Rosenberg et al. [2003] estimate evolutionary rates of the IS6110 transposon in the Mycobac-
terium tuberculosis genome from a San Francisco community study dataset [Cattamanchi et al.,
2006]. Without transition probabilities, the authors maximize an approximate likelihood by assum-
ing at most one event occurs per observation interval, a rigid assumption that severely limits the
range of applications. Doss et al. [2013] revisit their application, inferring similar rates of IS6110
evolution using a one-dimensional birth-death model that ignores shift events. Xu et al. [2014] show
that the BDS model over any finite observation interval can be modeled as a two-type branching
process, where X1 denotes the number of initially occupied genomic locations and X2 denotes the
number of newly occupied locations (see figure in Supplement). In this representation, full dy-
namics of the BDS model can be captured, and generating function techniques admit transition
probabilities, leading to rate estimation via MLE and EM algorithms. Transposon counts in the
tuberculosis dataset are low, so that Equation (6) can be computed easily, but their method does
not scale well to applications with high counts in the data.

9



 0 5101520253035

0.
00

0.
02

0.
04

0.
06

0.
08

 0
 5

10
15

20
25

30
35

k, number of progenitors

j, 
nu

m
be

r 
of

 H
S

C
s

Tr
an

si
tio

n 
pr

ob
ab

ili
ty

●

●

True probabilities
CSGF recovered probabilities

Figure 2: Illustrative example of recovered transition probabilities in hematopoiesis model described
in Section 5. Beginning with 15 HSCs and 5 progenitors over a time period of one week, the CSGF
solution Ŝ =

{
p̂(15,5),(j,k)(1)

}
, j, k = 0, . . . , 31, perfectly recovers transition probabilities S, using

fewer than half the measurements.

The nonzero rates defining the two-type branching process representation of the BDS model
are given by

a1(1, 1) = β, a1(0, 1) = σ, a1(0, 0) = δ,

a1(1, 0) = −(β + σ + δ), a2(0, 2) = β,

a2(0, 1) = −(β + δ), a2(0, 0) = δ. (18)

and its PGF is governed by the following system derived in [Xu et al., 2014]:φ0,1(t, s1, s2) = 1 +
[

β
δ−β + ( 1

s2−1 + β
β−δ )e(δ−β)t

]−1

d
dtφ1,0(t, s1, s2) = βφ1,0φ2 + σφ0,1 + δ − (β + σ + δ)s1,

(19)

again with φjk = φj1,0φ
k
0,1 by particle independence.

5.3 Results

To compare the performance of CSGF to the computation of Equation (6) without considering
sparsity, we first compute sets of transition probabilities S of the hematopoiesis model using the
full set of PGF solution measurements B̃ as described in Equation (11). These “true signals”
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are compared to the signals computed using CSGF Ŝ, recovered using only a random subset of
measurements B following Algorithm 1. Figure 2 provides an illustrative example with small cell
populations for visual clarity— we see that the support of transition probabilities is concentrated
(sparse), and the set of recovered probabilities Ŝ is visually identical to the true signal.

In each of the aforementioned applications, we calculate transition probabilities S ∈ RN×N for
maximum populations N = 27, 28, . . . 212, given rate parameters θ, initial population X(0), and
time intervals t. Each computation of S requires N2 numerical evaluations of the ODE systems
(17), (19). For each value of N , we repeat this procedure beginning with ten randomly chosen sets
of initial populations X(0) each with total size less than N . We compare the recovered signals Ŝ
computed using CSGF to true signals S, and report median runtimes and measures of accuracy
over the ten trials, with details in the following sections.

Transition probability recovery comparison, BDS model
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Figure 3: Randomly selected probabilities and largest probabilities recovered using CSGF are
nearly identical to their true values. Probabilities displayed here correspond to a randomly selected
BDS model trial with N=512; transition probabilities Ŝ via CSGF are recovered from a sample B
requiring fewer than 2% of ODE computations used to compute S = fft(B̃).

Parameter settings: In the hematopoiesis example, we set per-week rates θhema = (0.125, 0.104, 0.147)
and observation time t = 1 week based on biologically sensible rates and observation time scales
of data from previous studies of hematopoiesis in mammals [Catlin et al., 2001, Golinelli et al., 2006,
Fong et al., 2009]. For the BDS application, we set per-year event rates θbds = (0.0156, 0.00426, 0.0187)
estimated in [Xu et al., 2014], and t = .35 years, the average length between observations in the
San Francisco tuberculosis dataset [Cattamanchi et al., 2006].

In each case, we computed M2 = 3K logN2 total random measurements to obtain B for CSGF,
and we set the regularization parameters λhsc =

√
logM , λbds = logM , with more regularization

in the BDS application as lower rates and a shorter observation interval leads us to expect more
sparsity. While careful case-by-case tuning to choose λ,M would lead to optimal results, we set
them in this simple manner across all trials to demonstrate a degree of robustness, still yielding
promising performance results. In practice one may apply standard cross-validation procedures to
select λ,M , and because the target solution is a set of transition probabilities, checking that entries
in the recovered solution Ŝ sum close to 1 offers a simpler available heuristic. Finally, though one
may expedite convergence of PGD by supplying an informed initial guess with positive values near
values X(0) in practice, we initialize PGD with an uninformative initial value S1 = 0 in all cases.
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Table 1: Runtimes and error, birth-death-shift model.

N M

Time (sec),

B̃ ∈ CN×N
Time (sec),

B ∈ CM×M
Time (sec),

PGD
εmax =

|p̂ij,kl − pij,kl|max

εrel =
εmax/|pij,kl|max

128 25 39.7 2.3 1.0 5.27× 10−3 2.77× 10−2

256 33 150.2 3.8 7.8 4.86× 10−3 4.71× 10−2

512 45 895.8 7.8 25.3 2.71× 10−3 4.68× 10−2

1024 68 2508.9 18.6 58.2 1.41× 10−3 5.12× 10−2

2048 101 9788.3 26.1 528.3 8.10× 10−4 4.81× 10−2

4096 150 40732.7 57.4 2234.7 4.01× 10−4 5.32× 10−2

Table 2: Runtimes and error, hematopoiesis model

N M

Time (sec),

B̃ ∈ CN×N
Time (sec),

B ∈ CM×M
Time (sec),

PGD
εmax =

|p̂ij,kl − pij,kl|max

εrel =
εmax/|pij,kl|max

128 43 108.6 9.3 0.64 9.41× 10−4 2.25× 10−2

256 65 368.9 22.1 2.1 9.44× 10−4 4.73× 10−2

512 99 922.1 44.8 8.5 3.23× 10−4 3.60× 10−2

1024 147 5740.1 118.1 41.9 2.27× 10−4 5.01× 10−2

2048 217 12754.8 145.0 390.0 1.29× 10−4 5.10× 10−2

4096 322 58797.3 310.7 2920.3 9.43× 10−5 6.13× 10−2

Accuracy: In both models and for all values of N , each signal was reconstructed very accurately.
Errors are reported in Tables 1 and 2 for the BDS and hematopoiesis models respectively. Maximum
absolute errors for each CSGF recovery

εmax = max
kl
|{Ŝ}kl − {S}kl | = max

kl
|p̂ij,kl(t)− pij,kl(t)|

are on the order of 10−3 at worst. We also report a measure of relative error, and because εmax

is typically attained at large probabilities, we include the maximum absolute error relative to the
largest transition probability

εrel =
εmax

maxkl {S}kl
,

providing a more conservative measure of accuracy. We still see that εrel is on the order of 10−2 in
all cases. Visually, the accuracy of CSGF is stark: Figure 3 provides a side-by-side comparison of
randomly selected transition probabilities recovered in the BDS model for N = 29.

Running Times: Tables 1 and 2 show dramatic improvements in runtime using CSGF, reducing
the number of ODE computations logarithmically. For instance, with N = 4096, we see the time
spent on PGF evaluations necessary for CSGF is less than 0.1% of the time required to compute S in
the BDS model, and around 0.5% of computational cost in the less sparse hematopoiesis application.
Including the time required for solving Equation (10) via PGD, we see that computing Ŝ using CSGF
reduces runtime by two orders of magnitude, requiring less than 6% of total computational time
spent toward computing S in the worst case. We remark that ODE solutions are computed using a C
implementation of efficient solvers via package deSolve, while we employ a naive R implementation
of PGD. We emphasize the logarithmic reduction in required numerical ODE solutions; an optimized
implementation of PGD reducing R overhead will yield further real-time efficiency gains.

12



6 Discussion

We have presented a novel adaptation of recent generating function techniques to compute branch-
ing process transition probabilities within the compressed sensing paradigm. While generating
function approaches bypass costly matrix exponentiation and simulation-based techniques by ex-
ploiting mathematical properties in the branching structure, our contribution now makes these
techniques scalable by additionally harnessing the available sparsity structure. We show that when
sparsity is present in the set of transition probabilities, computational cost can be reduced up to a
logarithmic factor over existing methods. Note that sparsity is the only additional assumption nec-
essary to apply our CSGF method—no prior knowledge about where transition probabilities have
support is necessary. Many real-world applications of branching process modeling feature such
sparsity, and we have seen that CSGF achieves accurate results with significant efficiency gains in
two such examples with realistic parameter settings from the scientific literature. Transition prob-
abilities are often important, interpretable quantities in their own right, and are necessary within
any likelihood-based probabilistic framework for partially observed CTMCs. Their tractability us-
ing CSGF opens doors to applying many Bayesian and frequentist tools to settings in which such
methods were previously infeasible. Finally, we note that other statistically relevant quantities
such as expectations of particle dwell times and restricted moments can be computed using sim-
ilar generating function techniques [Minin and Suchard, 2008], and the CSGF framework applies
analogously when sparsity is present.
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Supplement

Discrete Fourier matrix

The N by N discrete Fourier transform matrix FN has entries

{FN}j,k =
1√
N

(ω)jk

with j, k = 0, 1, . . . , N−1 and ω = ei2π/N , and as we mention in the main paper, the inverse Fourier
transform matrix ψ is given by its conjugate transpose. The partial M by N IDFT matrices A
necessary in Algorithm 1 is obtained by only computing and stacking a subset of M random rows
from ψ.

Line search subroutine

We select step sizes with a simple line search algorithm summarized in the pseudocode below that
works by evaluating an easily computed upper bound f̂ on the objective f :

f̂L(Z, Y ) := f(Y ) +∇f(Y )T (Z − Y ) +
L

2
||Z − Y ||22. (A-1)

We follow Beck and Teboulle [2009], who provide further details. In implementation, we select
L = .000005 and c = .5, and reuse the gradient computed in line-search for step 10 of Algorithm
1 in the main paper.

Derivation for hematopoiesis process PGF

Given a two-type branching process defined by instantaneous rates ai(k, l), denote the following
pseudo-generating functions for i = 1, 2:

ui(s1, s2) =
∑
k

∑
l

ai(k, l)s
k
1s
l
2
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Algorithm 2 line-search procedure.

1: Input: initial step size L, shrinking factor c, matrices Yk,∇g(Yk).
2: Set Z = softh(Yk − L∇g(Yk))
3: while g(Z) > f̂L(Z, Yk) do
4: Update L = cL
5: end while
6: return Lk = L

We may expand the probability generating functions in the following form:

φ10(t, s1, s2) = E(s
X1(t)
1 s

X2(t)
2 |X1(0) = 1, X2(0) = 0)

=

∞∑
k=0

∞∑
l=0

P(1,0),(k,l)(t)s
k
1s
l
2

=

∞∑
k=0

∞∑
l=0

(1k=1,l=0 + a1(k, l)t+ o(t))sk1s
l
2

= s1 + u1(s1, s2)t+ o(t).

Of course we have an analogous expression for φ01(t, s1, s2) beginning with one particle of type
2 instead of type 1. For short, we will write φ10 := φ1, φ01 := φ2.

Thus we have the following relation between the functions φ and u:

dφ1

dt
(t, s1, s2)|t=0 = u1(s1, s2)

dφ2

dt
(t, s1, s2)|t=0 = u2(s1, s2)

To derive the backwards and forward equations, Chapman-Kolmogorov arguments yield the
symmetric relations

φ1(t+ h, s1, s2) = φ1(t, φ1(h, s1, s2), φ2(h, s1, s2)) (A-2)

= φ1(h, φ1(t, s1, s2), φ2(t, s1, s2)) (A-3)

First, we derive the backward equations by expanding around t and applying (2):

φ1(t+ h, s1, s2) = φ1(t, s1, s2) +
dφ1

dh
(t+ h, s1, s2)|h=0h+ o(h)

= φ1(t, s1, s2) +
dφ1

dh
(h, φ1(t, s1, s2), φ2(t, s1, s2)|h=0h+ o(h)

= φ1(t, s1, s2) + u1(φ1(t, s1, s2), φ2(t, s1, s2)h+ o(h))

Since an analogous argument applies for φ2, we arrive at the system{
d
dtφ1(t, s1, s2) = u1(φ1(t, s1, s2), φ2(t, s1, s2))
d
dtφ2(t, s1, s2) = u2(φ1(t, s1, s2), φ2(t, s1, s2))

with initial conditions φ1(0, s1, s2) = s1, φ2(0, s1, s2) = s2.
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Recall the rates defining the two-compartment hematopoiesis model are given by

a1(2, 0) = ρ a1(0, 1) = ν a1(1, 0) = −(ρ+ ν)

a2(0, 0) = µ a2(0, 1) = −µ

Thus, the pseudo-generating functions are

u1(s1, s2) = ρs2
1 + νs2 − (ρ+ ν)s1

u2(s1, s2) = µ− µs2 = µ(1− s2)

Plugging into the backward equations, we obtain

d

dt
φ1(t, s1, s2) = ρφ2

1(t, s1, s2) + νφ2(t, s1, s2)− (ρ+ ν)φ1(t, s1, s2)

and
d

dt
φ2(t, s1, s2) = µ− µφ2(t, s1, s2).

The φ2 differential equation corresponds to a pure death process and is immediately solvable:
suppressing the arguments of φ2 for notational convenience, we obtain

d

dt
φ2 = µ− µφ2

d

dt
φ2(

1

1− φ2
) = µ

ln(1− φ2) = −µt+ C

φ2 = 1− exp(−µt+ C)

Pluggin in φ2(0, s1, s2) = s2, we obtain C = ln(1− s2), and we arrive at

φ2(t, s1, s2) = 1 + (s2 − 1) exp(−µt) (A-4)

Plugging this solution into the other backward equation, we obtain

d

dt
φ1(t, s1, s2) = ρφ2

1(t, s1, s2)− (ρ+ ν)φ1(t, s1, s2) + ν(1 + (s2 − 1) exp(−µt)) (A-5)

This ordinary differential equation can be solved numerically given rates and values for the
three arguments, allowing computation of φi,j = φi1φ

j
2 which holds by particle independence.

BDS model diagram

The branching process components X(t) = (xold, xnew) represent the number of originally occupied
and newly occupied sites at the end of each observation interval. As an example, assume six
particles (transposons) are present initially at time t0, and a shift and a birth occur before the
first observation t1, and a death occurs before a second observation at t2. When considering
the first observation interval [t0, t1), we have {X(t0) = (6, 0),X(t1) = (5, 2)}. When computing
the next transition probability over [t1, t2), we now have {X(t1) = (7, 0),X(t2) = (6, 0)}, since all
seven of the particles at t1, now the left endpoint of the observation interval, now become the initial
population. Even with data over time, this seeming inconsistency at the endpoints does not become
a problem because transition probability computations occur separately over disjoint observation
intervals. See Xu et al. [2014] for further details.
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Figure C-4: Illustration of the three types of transposition—birth, death, shift—along a genome,
represented by circles [Rosenberg et al., 2003]. Transposons are depicted by rectangles occupying
locations along the circles/genomes. On the right set of diagrams, a birth event keeps the number
of type 1 particles intact and increments the number of type 2 particles by one, a death event
changes the number of type 1 particles from five to four and keeps the number of type 2 particles
at zero, and finally a shift event decreases the number of type 1 particles by one and increases the
number of type 2 particles by one.
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