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Abstract

Optical Coherence Tomography (OCT) is a powerful technique for non-invasive 3D imaging of 

biological tissues at high resolution that has revolutionized retinal imaging. A major challenge in 

OCT imaging is the motion artifacts introduced by involuntary eye movements. In this paper, we 

propose a convolutional neural network that learns to correct axial motion in OCT based on a 

single volumetric scan. The proposed method is able to correct large motion, while preserving the 

overall curvature of the retina. The experimental results show significant improvements in visual 

quality as well as overall error compared to the conventional methods in both normal and disease 

cases.

Index Terms—

Motion correction; optical coherence tomography; eye movement; deep learning; retinal imaging

1. INTRODUCTION

Optical Coherence Tomography (OCT) is a powerful technique for non-invasive 3D imaging 

of biological tissues at μm resolution that has become one of the most important diagnostic 

modality in retinal imaging [1, 2, 3]. In OCT imaging, the sample is probed with a low-

coherent infrared beam and the magnitude of the reflected or backscattered light along 

the beam axis (A-scan, Z axis of Fig. 1) is measured at different depth by interference. 

Sequential cross-sectional images (B-scan, XZ plane of Fig. 1) are acquired by raster-

scanning the infrared beam transversely through the sample and a 3D volume can be formed 

by stacking the cross-sectional images as illustrated in Fig. 1 (a) and (b). The direction 

in which each B-scan is acquired is also called fast scanning axis, whereas the orthogonal 

direction where B-scans are stacked is called the slow scanning axis. The plane spanned by 

the two axes is called the coronal or en-face plane.

A major challenge in OCT imaging is the axial and horizontal motion artifacts introduced 

by involuntary eye movements. Even when the patient fixates upon a fixed object, the eye 

still carries out small and rapid movements including rapid microsaccades, high frequency 

tremors, and slow drifts with various frequency and magnitude [4]. However, even with 

high-speed Spectral Domain-OCT (SD-OCT) devices that can acquire more than 300,000 
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A-scans per second [5], it typically takes several seconds to acquire a 3D volume [6]. 

Therefore, artifacts due to the fixational eye movements are almost inevitable [4]. These 

involuntary eye movements would introduce both axial and coronal distortion, which leads 

to discontinuity in display and visualization of the 3D OCT data as shown in Fig. 1 (a), 

where the motion artifacts cause discontinuity pointed by red arrows. It has also been 

shown that eye motion artifacts compromises subsequent analysis including retinal layer 

segmentation, OCT-Angiography (OCT-A) imaging, and detection of retinal diseases [7].

Existing motion correction approaches include both prospective hardware eye tracking 

systems that compensate for motion [8, 9], and retrospective software solutions that use 

image registration techniques to align each 2D B-scan [5, 10, 11]. Even though hardware 

solutions may yield more accurate correction results, they are unfortunately not available 

for every OCT device. Existing software solutions either create overly smoothed output that 

flattens the true curvature of retina based on a single volume [12, 10], or rely on multiple 

OCT volumes or multimodal reference images [5, 11] which adds extra burden for clinical 

tests.

In this paper, we propose a convolutional neural network that corrects axial motion in OCT 

based on a single volume, while recovering the overall curvature of the retina. Since OCT 

is the most important imaging modality in most retinal diseases [2, 3], the proposed method 

will significantly improve the accuracy of many down-stream tasks such as retina disease 

classification, detection, and segmentation [7]. To the best of our knowledge, this is the first 

deep learning based method applied to the OCT motion correction problem, and experiment 

results show significant improvement compared with conventional methods in both normal 

and disease cases.

2. RELATED WORKS

Even though involuntary eye motion is a major problem in OCT imaging, the motion 

correction problem has not been fully resolved based on current literature. Two review 

papers published in 2017 [14] and 2019 [4] extensively discussed and summarized existing 

works on the OCT motion correction problem. The fast B-scans are often considered 

artifact-free as the frame acquisition rate of modern devices is faster than the expected 

motion in the retina [4]. Therefore, most works correct axial and coronal movement by 

treating fast B-scans as rigid bodies. Since axial movement is often more significant 

compared to coronal movement in magnitude [5], we only focus on axial motion correction 

in this paper.

Most approaches fall in two major categories: prospective approaches and retrospective 
approaches [4]. Prospective approaches are mostly hardware-based solution. By using 

additional eye tracking devices [8, 9], these hardware solutions often yield more accurate 

alignment results [14]. Some other approaches are highly dependent on special scanning 

patterns [15] and signal acquisition techniques [16] to recover a motion-free OCT volume, 

yet they are difficult to implement and cannot correct eye movements in regular OCT scans. 

The retrospective approaches are mostly software-based solutions. Potsaid et al. proposed 

a method that corrects axial motion using orthogonal OCT scans to both horizontal and 
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vertical directions [5]. Kraus et al. [11, 17] proposed another method using orthogonal scans, 

which can correct both axial and coronal motion in two stages, and has been widely used 

as a standard correction in OCT-A imaging [4]. Since these methods require more than one 

OCT volumes, they increase (double) the time needed for clinical examinations and add 

extra burden to limited medical resources.

Some other methods aim to correct eye motion based on a single OCT volume. Antony 

et al. [12] utilized segmentation of the retinal pigment epithelium (RPE) layer based on 

thin-plate spline fitting. However, the method flattens the natural curvature of the retina, 

which is undesirable for observing diseases that alters the RPE layer. Xu et al. proposed a 

method based on particle filter [10], but the method also tended to flatten the retina and was 

validated only on synthetic motions within 2–10 pixel range. The algorithm of Montuoro et 

al. [6] can maintain the curvature of the retina to some extend based on a local symmetry 

assumption of the segmented RPE but the assumption does not always hold for retina with 

diseases. Fu et al. [18] proposed a saliency-based method to correct the axial and coronal 

motion, but the authors only tested the coronal correction on synthetic data with motion 

fewer than 15 pixels.

3. PROPOSED METHOD

It is crucial to develop a motion correction algorithm that does not depend on auxiliary 

hardware and operates on a single OCT volume. Furthermore, the algorithm should be 

robust to diseases and large motion artifacts, while preserving the overall curvature of the 

retina. We propose a convolutional neural network to correct motion artifacts in OCT retinal 

imaging so that it requires a single OCT volume and retrieves a smooth and anatomically 

correct 3D representation.

We adopt a U-Net [13] like structure with residual blocks to predict a displacement map 

based on a single OCT volume. The proposed method operates on the 3D OCT volume 

V ∈ ℝH × W × N formed by stacking 2D B-scans, where H and W are the width and height 

of each B-scan and N is the number of B-scans. As shown in Fig. 2, the Z axis of the 

input OCT volume is treated as channels, while the X, Y axes are considered as spatial 

dimensions. The output is a displacement map D ∈ ℝW × N where each pixel contains a 

displacement value to Z axis. Negative displacement shifts the A-scan upwards and positive 

displacement shifts it downwards. The magnitude of displacement denotes the number of 

pixel to be shifted divided by a normalization factor Znorm for better numerical stability. 

Finally, the motion corrected OCT volume Vout can be obtained by

Vout(z, x, y) = V z − ZnormD(x, y), x, y . (1)

As illustrated in Fig. 2, 1 × 1 convolution is applied at the first layer to compress the number 

of channels and the other convolutions are 3 × 3. Instance normalization (IN) is applied after 

convolutions in order to normalize over the spatial dimensions without being influenced by 

other volumes in the same batch. For the three down sampling blocks denoted by red arrows, 

2 × 1 convolution with stride 2 × 1 is adopted to downsample the X dimension by 2, while 
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keeping the resolution on the Y dimension unchanged, because the number of B-scans N in 

our dataset is significantly smaller than the width of B-scans W. Similarly, 2 × 1 transposed 

convolution with stride 2 × 1 is used to upsample X dimension by 2 in three upsampling 

blocks which are indicated by purple arrows.

We also include the segmentation of the inner limiting membrane (ILM) and the retinal 

pigment epithelium (RPE) layer for better performance. As shown in Fig. 2, we first 

normalize two segmentation boundaries and concatenate them with the output of the 

network of Fig. 2, and then apply two additional layers with 1 × 1 convolution to 

get the final displacement prediction. Denoting the two segmentation boundaries with 

B ∈ ℝ2 × W × N where B(0, x, y) and B(1, x, y) entries denote Z coordinates of the ILM 

and RPE layers at pixel (x, y). The overall retinal curvature P ∈ ℝ2 × W × N is first computed 

by

P(z, x, y) = B(z, x, 0) + B(z, x, N − 1) − B(z, x, 0)
N − 1 y (2)

where z ∈ {0, 1} and (x, y) ∈ [0, W − 1] × [0, N − 1]. Then, the normalized boundaries B′ 
can be obtained by

B′ = (P − B)/Znorm . (3)

The loss function includes a displacement L1 loss and a smoothness loss. Denoting 

the predicted displacement D and the ground truth displacement DGT ∈ ℝW × N, the 

displacement L1 loss is given by

ℒdisp D; DGT = mean
x, y

M(x, y) D(x, y) − DGT(x, y) , (4)

where | · | denotes absolute value and M ∈ ℝW × N is a predefined mask in [0,1] to assign 

more weight at the center and less weight to the boundary of the OCT volume, since the 

region of interest is often placed at the center in clinical practice. The second term is a 

smoothness loss to enforce smoothness along the fast-scanning axis, defined by

ℒsmooth(D) = ∑
s = 1, 2

mean
x, y

Ds(x + 1, y) − Ds(x, y) , (5)

where D1 denotes the displacement at original resolution, and D2 denotes the displacement 

downscaled by 2 to the X axis. Let λsmooth be a weighting factor and the total loss is a 

weighted sum of the two terms

ℒ = ℒdisp D; DGT + λsmoothℒsmooth(D) (6)

In order to obtain ground truth (artifacts-free) volumes and corresponding displacement 

maps, pairs of horizontal and vertical 3D OCT volumes with motion artifacts are collected, 

and each volume is corrected with its orthogonal reference using the motion correction 
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algorithm in [5], as illustrated in Fig. 3. Note that we only use horizontal and vertical pair 

volumes for ground truth but the proposed network takes only one single (horizontal or 

vertical) 3D OCT volume as input.

We augment training data with random flipping on X and Y axis of the input OCT volume 

and segmentation boundaries to prevent over-fitting. We also add random displacement 

for augmentation on top of the existing eye motion. An N-dimensional Gaussian random 

vector following N(0, 1) is first generated, and its cumulated sum is computed and 

normalized to get the Y dimensional augmentation NY ∈ ℝW  where NY(0) = NY(1) = 0, 

as shown in Fig. 4 (a). The augmentation for X dimension is generated by interpolating 

between 0 and a random number drawn from N(0, 1), as shown Fig. 4 (b). Finally, the 

total augmentation N = 1W NY
T + NX1N

T  is applied to the input OCT volume and the Y 

augmentation is subtracted from the ground truth displacement, DGT′ = DGT − 1W NY
T  where 

1n denotes a n-dimensional vector of ones.

At inference time, a linear function is fitted to the X axis of the predicted displacement D 
via linear least squares as a post-processing step in order to guarantee that the resulting fast 

B-scans in Vout have no distortion except shearing.

4. EXPERIMENTAL RESULTS

In the experiment, we compare the motion correction performance of our proposed network 

to that of three other methods [6, 12, 18] which operates on a single OCT volume. We 

evaluate the performance of motion correction algorithms on our dataset collected by 

Jacobs Retina Center. The dataset of 55 eyes contains paired horizontal and vertical OCT 

volumes which are obtained by Heidelberg Spectralis in an imaging volume of 1.9 × 

5.8 × 5.8 (mm3) with 20 degree field of view. All the volumes come with instrument’s 

segmentation boundaries of 11 retinal layers. Among 55 horizontal and 55 vertical volumes, 

the dimensions of 9 volumes are 496 × 512 × 25, while those of the remaining 101 volumes 

are 496 × 512 × 49. 55×horizontal and 55 vertical OCT volumes in total 110 are divided into 

75, 10, 25 for training, validation, and test, respectively. The dataset includes both healthy 

subjects as well as patients with a variety of diseases such as wet and dry AMD (age-related 

macular degeneration), ERM (epi-retinal membrane), macular edema, diabetic retinopathy, 

retinal detachment, macular hole, chorioretinopathy, and posterior vitreous detachment.

The proposed network with 436K parameters is implemented in PyTorch. Reflected padding 

is used for convolutions and dropouts with p = 0.2 is used on every resolution level. 

We set Znorm = 10 and λsmooth = 0.5 for the normalization factor and the smoothness 

weight, respectively, which are tuned for the best performance. The model is trained 

with Adam optimizer with weight decay 10−3, batch size 4, an initial learning rate of 

10−3 and exponential decay with momentum 0.99 for 500 max epochs. The best model 

is selected based on lowest validation loss and tested on the test set. The approach for 

ground truth acquisition [5] and two comparison methods [6, 12] are implemented in 

Python. The axial correction step in [18] is implemented in MATLAB based on the original 

authors’ implementation of saliency detection [19]. We evaluate the algorithms based on two 
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aspects: the smoothness of OCT volume and the pixel-wise mean absolute error (MAE). 

After motion correction, the smoothness of OCT volume is measured using the average 

of normalized mutual information (NMI) [20] between neighboring B-scans (MNMI), and 

higher MNMI indicates more smoothness.

MNMI Vout = mean
y

NMI Vout(z, x, y), Vout(z, x, y + 1) .

MAE between the predicted and ground truth displacement measures the overall accuracy 

and preservation of retinal curvature and smaller MAE shows better performance.

MAE D; DGT = Znormmean
x, y

D(x, y) − DGT(x, y) .

The qualitative results of different registration methods are shown in Fig. 5. Row (1) and (2) 

show an example OCT volume with disease, while row (3) and (4) show another example 

with large motion. The method of [12] in column (b) flattens the RPE and results in errors 

when the disease alters RPE in (b2). Method [6] of column (c) can smooth axial motion 

without flattening the retina, but it results in an unnatural curvature at large motion in (c2) 

and (c4) that does not resemble the ground truth. The results of [18] in column (d) are 

smooth in most B-scans, but the errors lead to abrupt discontinuities. Our proposed method 

in column (e) can reduce the motion in the input volume while recovering the overall 

curvature.

The quantitative results of MNMI and MAE are shown in Table 1, where each entry shows 

the mean and standard deviation value. We first compute the baseline MNMI and MAE 

before correction and the MNMI for ground truth correction [5]. As method [12] flattens 

the retina, it achieves the highest MNMI at 0.5927, but it also yeilds larger MAE than the 

input. Method [18] also tends to over-smooth the input, reflected by a MNMI larger than the 

ground truth and an increased MAE. Method [6] improves the MNMI and reduces the MAE 

compared with the input by a small margin. Overall, our method achieves the lowest MAE at 

7.86 pixels, and the MNMI is close to the smoothness of ground truth.

5. CONCLUSION

In conclusion, we propose a deep learning approach that uses the convolutional neural 

network to predict a displacement map from a single horizontal or vertical OCT volume. 

The experimental results show that the proposed method is able to correct large motion 

while recovering the retinal curvature, achieving significant improvements compared to the 

conventional methods. In future work, we will extend our proposed network to support 

coronal motion correction besides axial motion. The proposed method will lead to better 

display and visualization of 3D OCT volumes and benefit subsequent processing including 

retinal layer segmentation and OCT-A imaging.
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Fig. 1: 
(a) 3D OCT volume with axial motion artifacts indicated with red arrows, (b) motion 

corrected volume by our proposed method, (c) cross-sectional B-scan (YZ plane) with 

motion artifacts, (d) motion corrected cross-sectional B-scan by our proposed method.

Wang et al. Page 9

Proc Int Conf Image Proc. Author manuscript; available in PMC 2022 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Architecture of the proposed OCT motion correction network where a U-Net [13] like 

structure with residual blocks is adopted. Here IN operation denotes Instance Normalization.
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Fig. 3: 
Orthogonal method [5] for ground truth acquisition. Column (a) shows the horizontal 

volume, (b) shows the paired vertical volume, (c) shows the motion-corrected horizontal 

volume using the motion correction algorithm in [5]. Row (1) shows the 3D volumes, and 

row (2) shows the cross-sectional B-scan.
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Fig. 4: 
Data augmentation with random displacement. (a) Augmentation for Y dimension NY, (b) 

augmentation for X dimension NX, (c) Total augmentation N applied to the input OCT 

volume.
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Fig. 5: 
Qualitative result of different methods on the test set. Row (1) shows the 3D volume of an 

example scan with disease, and row (2) shows the cross-sectional B-scans. Row (3) and (4) 

show another volume with large motion. Gamma correction at 2.2 is applied for display.
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Table 1:

Quantitative result of different methods on the test set.

Method MNMI MAE

Before correction 0.5811 (±0.0219) 22.39 (±17.52)

Ground truth [5] 0.5901 (±0.0200) -

Antony et al [12] 0.5927 (±0.0190) 28.28 (±10.63)

Montuoro et al [6] 0.5831 (±0.0215) 20.28 (±16.35)

Fu et al [18] 0.5922 (±0.0223) 26.94 (±14.49)

Our proposed 0.5898 (±0.0196) 7.86 (±5.75)
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