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Integrative analysis of the inter-
tumoral heterogeneity of triple-
negative breast cancer
Alec M. Chiu  1, Mithun Mitra2,3, Lari Boymoushakian4 & Hilary A. Coller1,2,3

Triple-negative breast cancers (TNBC) lack estrogen and progesterone receptors and HER2 
amplification, and are resistant to therapies that target these receptors. Tumors from TNBC patients 
are heterogeneous based on genetic variations, tumor histology, and clinical outcomes. We used 
high throughput genomic data for TNBC patients (n = 137) from TCGA to characterize inter-tumor 
heterogeneity. Similarity network fusion (SNF)-based integrative clustering combining gene 
expression, miRNA expression, and copy number variation, revealed three distinct patient clusters. 
Integrating multiple types of data resulted in more distinct clusters than analyses with a single 
datatype. Whereas most TNBCs are classified by PAM50 as basal subtype, one of the clusters was 
enriched in the non-basal PAM50 subtypes, exhibited more aggressive clinical features and had a 
distinctive signature of oncogenic mutations, miRNAs and expressed genes. Our analyses provide a 
new classification scheme for TNBC based on multiple omics datasets and provide insight into molecular 
features that underlie TNBC heterogeneity.

Breast cancer is heterogeneous in nature, as breast tumors can arise from different cells of origin, and can present 
with distinct mutational signatures, biological and clinical phenotypes, and survival outcomes1–3. Breast tumors 
have been categorized clinically based on histological analyses of the levels of two hormonal receptors, estrogen 
(ER) and progesterone (PR), and human epidermal growth factor receptor 2 (HER2) amplification4. This classifi-
cation system has been proven to have predictive power about a patient’s prognosis and is routinely used to make 
decisions about therapy. Perou et al. analyzed the inter-tumor heterogeneity in breast cancer using microarrays 
and developed a classification system that defined intrinsic subtypes (luminal A, luminal B, HER2-enriched, 
basal-like, and normal)5. New breast tumors can now be assigned to one of these classes based on the expression 
pattern of 50 informative genes termed PAM50 (ref.5). These breast cancer subtypes have different molecular 
characteristics and clinical outcomes6. Luminal A has the best clinical outcome. Comparing luminal A and lumi-
nal B tumors, luminal B tumors have higher expression of cell cycle and cell proliferation genes, lower expres-
sion of luminal genes such as PR, higher mutational burden and more copy number changes. HER2-enriched 
tumors have the highest mutational burden of all subtypes and display high expression levels of HER2-regulated 
and cell proliferation genes. Basal-like tumors highly express cytokeratins that are usually present in the basal 
cells of normal breast, and cell proliferation genes. Another intrinsic subtype called claudin-low was subse-
quently identified7. The claudin-low subtype is associated with signatures related to mammary stem cells and 
epithelial-to-mesenchymal transition. In a large-scale study (~500 breast cancer patients) by The Cancer Genome 
Atlas (TCGA), the authors sought to identify breast cancer subtypes based on a combination of genomic, muta-
tional, and epigenetic signatures. This study revealed four groups that showed high concordance with the four 
intrinsic PAM50 subtypes8.

The majority of breast cancers (80–85%) are positive for hormonal receptors and/or HER2 amplification, 
and therefore respond to therapies that target these markers6. Triple negative breast cancer (TNBC) is clinically 
defined based on the absence of the estrogen and progesterone receptor, and HER2 overexpression. TNBC con-
stitutes approximately 16% of breast cancer cases9. It is a particularly proliferative and aggressive subtype of breast 
cancer, associated with large size, high tumor grade, high mitotic rate, and metastasis10. Because of the lack of 
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druggable targets, TNBC are treated with conventional chemotherapy, and only approximately 50% of patients 
respond11. The 5-year survival rate is only 14%12, much worse than for other breast cancer subtypes. TNBC are 
more prevalent in young women and in women of African or Hispanic descent13.

TNBC demonstrates genomic heterogeneity, as there is a substantial variation in mutational burden, copy 
number alterations, and genomic rearrangements across TNBC patients14–16. In contrast to other types of breast 
cancer in which several genes are mutated at high frequency, only two genes (TP53 and PIK3CA) are mutated in 
>10% of TNBC patients16,17. Thus, there are many different oncogenic drivers of TNBC. TNBC also demonstrates 
histological heterogeneity as nine different histologic subtypes have been identified based on immunohistochem-
istry (IHC), with invasive ductal carcinoma being the most prevalent type15,16.

Understanding the molecular basis of TNBC heterogeneity will be important for the development of pre-
cision therapy that targets specific molecular markers present in some TNBCs (genes, miRNAs etc.). Previous 
studies have defined subtypes of TNBC based on gene expression18–21. Most TNBCs are classified as basal-like 
subtype based on PAM50 gene expression signatures19. Further classification schemes focused more specifically 
on TNBC have also been developed. Lehmann et al.18 and Burstein et al.20 identified six and four TNBC subtypes, 
respectively, using microarray analysis. The six subtypes defined by Lehmann et al. have unique gene expression 
signatures and respond differently to chemotherapy. Some of the gene expression signatures associated with two 
(immunomodulatory and mesenchymal stem-like) of the six subtypes likely reflect the presence of cells from the 
tumor microenvironment, rather than the cancer cells themselves19,21. To address this, Lehmann et al. recently 
published a revised classification containing four TNBC subtypes (basal-like 1 (BL1), basal-like 2 (BL2), mesen-
chymal (M), and luminal androgen receptor (LAR)) using RNA-seq data from TCGA21. The survival outcome 
of patients with the BL1 subtype was found to be significantly better than the survival for patients from the other 
three subtypes combined.

Inter-tumor heterogeneity for breast cancers, including TNBC, has been measured mainly by clustering tum-
ors based on gene expression data from microarray or RNA sequencing methods. The availability of data from 
other sources (miRNA, DNA methylation, CNVs, protein arrays) has provided new avenues to understand tumor 
heterogeneity. Recently, three TNBC subtypes based on DNA methylation sequencing have been proposed and 
shown to have different clinical courses22. Integrative clustering methods23,24 combining gene expression data 
with other data types such miRNAs and CNVs have been performed to identify novel subtypes for breast25,26 
and other tumors27. Integrative approaches have been shown to be more robust in comparison to methods using 
biomarkers of one type only23. To date, methods that integrate different datatypes have not been applied to under-
stand TNBC heterogeneity.

Given the clinical importance of TNBC and the clear need for classification systems that capture the 
inter-tumor heterogeneity of TNBC in a comprehensive manner, we performed integrative clustering combining 
information from multiple types of omics data (gene expression, miRNA expression, and CNV) collected from 
TNBC tumors. This led to the identification of three TNBC clusters with distinct molecular and clinical features. 
This new classification scheme may have implications for the treatment of TNBC.

Results
Selection of TNBC patients. Out of 1098 breast invasive carcinomas in the TCGA database, 180 have 
been classified as triple-negative by Lehmann et al. based on low expression levels of ER, PR, and HER221. In 
addition to the cancer cells, a tumor sample may contain cells from the tumor microenvironment (TME), such as 
fibroblasts, endothelial cells, and immune cells. The presence of these cells may confound the signals originating 
from cancer cells. Sequencing data provided by TCGA were collected from only those cancer tissues with >60% 
cancer cells (>60% tumor purity) as determined by counting the tumor nuclei28. Recently, more refined compu-
tational methods using sequencing data (gene expression, methylation, and CNV) have been used to estimate 
tumor purity by taking into account the contribution of non-cancer cells29. Aran et al. provided consensus purity 
estimations (CPE) based on a combination of four methods—gene expression of non-cancer cells, somatic CNVs, 
immune-related methylation pattern, and immunohistochemical analysis. In an independent analysis, tumor 
purity scores (from Clonal Heterogeneity Analysis Tool (CHAT)) for the same tumors were determined based 
on an analysis of copy number alterations30,31. For this study, we only included those TNBC primary tumors 
for which the tumor purity scores were estimated to be >60% by either Aran et al. or Li et al. (Supplementary 
Table S1). One hundred thirty-seven out of 180 TNBC tumors met these criteria. About 39% of these patients 
were 50 years of age or younger (Table 1) and most of these patients (76%) had tumors that were classified as 
basal-like PAM50 subtype.

Single-data clustering to determine TNBC heterogeneity. In order to assess inter-patient hetero-
geneity among the TNBC samples, we performed consensus clustering (combining clustering information from 
different runs into one cluster)32 of patients using non-negative matrix factorization (NMF)33. Consensus clus-
tering was performed separately using gene expression (RNA-seq), miRNA expression (miRNA-seq), and copy 
number variants (CNV) (SNP 6.0 array) data provided by TCGA (Fig. 1, see Methods). Consensus clustering was 
performed on the subset of genes, miRNAs, and CNVs with the largest variation across the patients (pre-selection 
step, Fig. 1).

Gene expression-based NMF clustering was performed on 137 patients using two different distance metrics: 
Kullback-Leibler and Euclidean. To test the quality of the clusters, three different validation metrics34 were applied 
that analyzed the degree of cluster compactness (RMSSTD, r-squared) and cluster separation (SD validity index). 
Out of two distance metrics, the Euclidean metric performed the best based on top scores in all the three vali-
dation tests (Supplementary Table S2). For Euclidean metric-based clustering (NMF-gene), the optimal number 
of clusters was determined to be four (see Methods) (Supplementary Fig. S1). We also performed single-data 
clustering using miRNA expression and CNV data obtained from TCGA (Fig. 1). For both of these data types, 



www.nature.com/scientificreports/

3SCIentIfIC RepORTS |  (2018) 8:11807  | DOI:10.1038/s41598-018-29992-5

the Euclidean distance metric again provided the best solution (Supplementary Table S2). Four and three cluster 
solutions were considered optimal for miRNA-based (NMF-miRNA) and CNV-based (NMF-CNV) clustering, 
respectively, using the Euclidean distance metric (Supplementary Fig. S1).

Feature Number of Patients (% total)

Age

25–50 years: 54 (39.3%)

50–75 years: 73 (53.3%)

>75 years: 10 (7.3%)

Ethnicity

Caucasian: 83 (60.6%)

African descent: 40 (29.2%)

Asian: 7 (5.1%)

Not available: 7 (5.1%)

PAM50 subtypes

Luminal A: 16 (11.7%)

Luminal B: 2 (1.5%)

HER2-enriched: 6 (4.4%)

Basal-like: 104 (75.9%)

Normal: 9 (6.6%)

Lehmann subtypes

Basal like 1 (BL1): 44 (32.1%)

Basal like 2 (BL2): 23 (16.8%)

Luminal androgen receptor (LAR): 26 (19%)

Mesenchymal (M): 43 (31.4%)

Unclassified (UNC): 1 (0.7%)

Table 1. Clinical characteristics of 137 TNBC patients.

Figure 1. Workflow for single-data clustering of TNBC patients. Data for gene expression (RNA-seq counts), 
miRNA expression (miRNA-seq counts) and copy number variations (CNVs) were obtained from the 
Genomics Data Commons portal (https://portal.gdc.cancer.gov/) for all patients with >60% tumor purity 
(percent of cancer cells in a tumor mass) based on the scores provided by Aran et al.55 and Li et al.30. Two 
patients were excluded from miRNA-based clustering and one patient was excluded from CNV-based clustering 
due to unavailability of data. All the data were processed to generate a matrix with all of the data for each 
patient. This matrix was reduced in dimensions by including only the genes, miRNAs and CNVs that were most 
variable among the patients (referred to as the “pre-selection step”). This pre-selection step for dimensionality 
reduction (count matrix → New count matrix) was performed based on a defined standard deviation (sd) 
cutoff (sd >2 for genes; sd >1 for miRNAs; sd >0.5 for CNVs) to select the most variable genes, miRNAs, and 
CNV regions. Clustering for all three data types was performed with a clustering method (non-negative matrix 
factorization (NMF)) designed to find orthogonal matrices similar to finding multiplicative factors of a number. 
The clusters that resulted from NMF for each of the data types (gene, miRNA, or CNV) were tested with three 
different methods, root-mean-square standard deviation (RMSSTD), r-squared (RS), and SD index, that allow 
for a determination of compactness (RMSSTD, RS) of individual patient clusters and the separation (SD index) 
of the patients clusters34.

https://portal.gdc.cancer.gov/
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Comparison of the best NMF clustering solutions obtained from three data types (NMF-gene, NMF-miRNA, 
and NMF-CNV) did not show much agreement as indicated by very low (NMF-gene/NMF-miRNA and 
NMF-miRNA/NMF-CNV) and negative (NMF-gene/NMF-CNV) adjusted rand index scores35 (a metric of the 
similarity between two clustering solutions) (Fig. 2A). To gain further insight into these single-data NMF clus-
ters, we determined the signature genes, miRNAs, and CNVs that displayed the largest variation between the 
clusters for NMF-gene (1187 genes), NMF-miRNA (61 miRNAs), and NMF-CNV (2044 CNVs), respectively 
(see Methods). This identified gene sets 1 and 2, miRNA set 1, and CNV set 1 that showed prominent variation 
between the clusters (Fig. 2B). Thus, different data-types captured different information about the heterogeneity 
in TNBC tumors.

Comparison of single-data clusters with PAM50 and Lehmann subtypes. For each of the 
NMF-miRNA and NMF-CNV clusters, more than half of the tumors were classified as basal-like PAM50 
subtype (Supplementary Fig. S2). The fraction of basal-like tumors in these clusters ranged from 57–84% for 
miRNA-based clusters and 70–81% for CNV-based clusters. For NMF-gene clustering, the fraction of basal-like 

Figure 2. Relationship between single-data clusters. (A) Comparison of clusters generated by non-negative matrix 
factorization (NMF) method for different data types. The clusters (vertical bars of different colors) generated 
by gene expression data (NMF-gene, total four clusters) are compared with the clusters generated from miRNA 
expression data (NMF-miRNA, total four clusters) on the left. The assignment of individual tumors in the two 
schemes is shown with gray lines. A comparison of the clusters generated with gene expression data (NMF-gene) 
and the clusters generated with CNV data (NMF-CNV, total three clusters) are shown in the middle. The clusters 
generated with miRNA data (NMF-miRNA) were compared with clusters generated with CNV data (NMF-
CNV). The plots were prepared using the StratomeX package70. The adjusted rand index35 values, a measure of the 
similarity between the clusters produced with the different data types that ranges from 0 to 1 with 1 being perfect 
correlation, are also shown. (B) The heat map on the left shows the 1187 most variable genes among the four 
NMF-gene clusters (same color scheme as A) with each row representing a gene. As shown on the z-score scale, red 
indicates high expression for a particular gene in a particular tumor compared with the other tumors, while blue 
indicates low expression of a particular gene in a particular tumor compared with other tumors. The heat map in 
the middle shows the expression level of the 61 most variable miRNAs between the four tumor clusters of NMF-
miRNA. The heat map on the right shows the 2044 most variable CNVs across the three tumor clusters developed 
from CNV data (NMF-CNV). The order of the genes was determined by a hierarchical clustering algorithm. A 
Kruskall-Wallis statistical test was used to identify the most variable genes, miRNAs, and CNVs that were included 
in the heat maps, using a false discovery rate (FDR) <0.10.
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tumors in three out of four clusters was found to be >65% (Supplementary Fig. S2). These results agree with pre-
vious studies showing TNBC tumors to be predominantly of basal-like subtype19. The clustering indicates heter-
ogeneity within the basal-like subtype as these tumors did not cluster together, but rather were split into separate 
clusters. One exception among single-data clusters was cluster 4 of the NMF-gene classification (Supplementary 
Fig. S2). The tumors in this cluster were composed primarily of luminal A (38%) and HER2-enriched (25%) 
subtypes. Among the NMF clusters, the NMF-gene clusters correlated best with Lehmann subtypes, which were 
developed based on gene expression data (Supplementary Fig. S2). The majority of patient tumors from cluster 
1 were M subtype; the majority of patients in cluster 3 were basal-like; and the majority of the patients in cluster 
4 were LAR.

Integrative clustering of TNBC patients. Integrative clustering methods that combine different data 
types are based on more “information content” than methods that rely on a single data clustering23. They conse-
quently have the potential to provide a comprehensive view of inter-tumor heterogeneity. The low concordance 
among the single-data clusters from the three data types (Fig. 2A) suggests that the different data types capture 
the variation among the tumors in different ways. We reasoned that integrative clustering might be better suited 
for TNBC classification because it would combine information from the three data types. The similarity network 
fusion (SNF) method36 was used to integrate gene, miRNA, and CNV data from 134 TNBC patients. Each of the 
three data types was first used to construct individual patient networks. These networks were then combined to 
generate a single fused network. Spectral clustering was then performed on this fused network to reveal patient 
clusters or subtypes. In contrast to single-data clustering (Fig. 1), no pre-selection of genes, miRNAs, or CNVs 
was required for SNF analysis, thus removing any bias due to a pre-selection step.

SNF-based clustering produced three clusters (SNF clusters 1–3) upon combining gene, miRNA, and CNV 
data (Fig. 3A). The three SNF clusters were less distinct when considering patient networks based on a sin-
gle data type (Fig. 3B,C and E). Coverage scores (ratio of intra-cluster edges to total edges)37 for SNF clusters 
showed higher coverage for the fused patient network constructed using the combination of three data types 
(gene + miRNA + CNV, 85%) compared to those generated by single-data types (gene only, 69%; miRNA only, 
67%; and CNV only, 58%). The higher fraction of edges connecting the nodes within the clusters for the fused 
network indicates better separation (lower fraction of inter-cluster edges) compared to single-data types. The 
separations among SNF clusters 1–3 were maintained when DNA methylation data was incorporated with gene, 
miRNA, and CNV data (see Methods) to generate the fused network (Supplementary Fig. S3).

Comparison of SNF clusters with single-data clusters, PAM50, and Lehmann classifications.  
The clusters generated by an integration of the three datatypes did not correspond to the clusters generated with 
any single datatype using NMF clustering methods. SNF Cluster 2 had the most overlap with NMF-gene cluster 
4 (71%), NMF-miRNA cluster 4 (68%), and NMF-CNV cluster 1 (71%) (Supplementary Fig. S4). Most of the 
patient tumors in SNF cluster 3 were assigned to NMF-gene cluster 1 (63%) and NMF-miRNA cluster 1 (63%). 
There was no major overlap (>50%) of SNF cluster 1 with any of the single-data clusters.

The SNF clusters that we generated did not align with the PAM50 intrinsic subtypes defined for all breast can-
cers (Fig. 4A) or the subtypes defined by Lehmann et al. specifically for TNBC (Fig. 4B). Of the three SNF clusters, 
the fraction of tumors with a basal-like subtype classification based on PAM50 was least for cluster 2 (41%) com-
pared to clusters 1 (86%) and 3 (92%) (Fig. 4A). Cluster 2 had higher fractions of HER2 (18%) and luminal (32%) 
PAM50 subtypes compared to clusters 1 (0% HER2 and 4% luminal) and 3 (0% HER2 and 8% luminal). When 
compared with the Lehmann subtypes (Fig. 4B), clusters 1 and 3 were mainly composed of basal-like 1 (47%) 
and mesenchymal subtypes (65%), respectively, while basal-like 2 (38%) and luminal androgen receptor subtypes 
(50%) represented the majority of the tumors in cluster 2. The SNF clusters we generated did share a similarity to 
NMF-gene clusters (Supplementary Fig. S2) and Lehmann subtypes21 in that they all contained a cluster (cluster 
4 of NMF-gene and LAR subtype by Lehmann et al.) that was enriched in HER2 and luminal PAM50 subtypes, 
with the rest of the clusters containing a high fraction of tumors with a basal-like subtype.

Clinical properties of SNF clusters. SNF cluster 2 had a greater fraction of patients (26%) with larger 
tumor size (tumor score of T3 and T4 in TNM staging system), compared to clusters 1 (11%) or 3 (4%) (p = 0.03, 
Fisher’s exact test) (Fig. 4C). Higher T numbers (T3 and T4) indicate larger tumor size and/or greater extent of 
tumor growth into nearby tissues38. Thirty two percent of cluster 2 patients had tumors of higher pathologic stage 
(stages III and IV). In comparison, only 9% and 15% of cluster 1 and cluster 3 patient tumors, respectively, were 
of stage III and stage IV (p = 0.01, Fisher’s exact test) (Fig. 4D). In addition to tumor size, pathologic stage is also 
dictated by regional lymph node and distant organ metastasis38. Disease-free survival analysis revealed that clus-
ter 2 TNBC patients (n = 34) had poorer disease-free survival (p = 0.000024) compared to the remaining breast 
cancer patient cohort from TCGA (breast invasive carcinomas, n = 1098) (Fig. 4E). In contrast, no significant dif-
ference was found between disease-free survival for clusters 1 (n = 74) or 3 (n = 26) compared with the remaining 
breast cancer patient cohort.

Differentially expressed genes and miRNAs between SNF clusters. In order to understand the 
biological basis for the segregation of the TNBC tumors into the clusters generated with integrated SNF cluster-
ing, we ranked the features (genes, miRNAs, and CNVs) based on their normalized mutual information (NMI) 
scores36 (see Methods section of Cavalli et al.27). These scores (Supplementary Table S3) provide a measure of the 
importance of different features for the construction of the fused network obtained by SNF. Analysis of all the 
features with the top-ranked NMI scores (top 1% genes, top 5% miRNAs, and top 5% CNVs) across the three SNF 
clusters revealed a subset of genes and miRNAs (gene set 1, gene set 2, and miRNA set 1) that were differentially 
expressed in cluster 2 compared to clusters 1 and 3 (Fig. 5). Thus, the top-ranked NMI features contributed more 
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toward separation of cluster 2 from clusters 1 and 3. The 605 genes with the top 1% NMI scores (Fig. 5A) were 
enriched for genes related to transcriptional regulation, mesenchymal cell differentiation, embryo development 
and morphogenesis. The gene targets for the top 5% NMI-ranked miRNAs (94 miRNAs) (Fig. 5B) were involved 
in positive regulation of cellular and metabolic processes, development, and cell proliferation. The genes affected 
by the top 5% NMI-ranked CNVs (1809 CNVs) (Fig. 5C) participate in amino acid metabolism and phosphati-
dylcholine 1-acylhydrolase activity. These CNVs are mainly present on chromosomes 1, 5, and 14 (Supplementary 
Fig. S5). Out of 1809 CNVs, about 722 CNVs were not closely associated with any genes.

Figure 3. Similarity network fusion (SNF)-based integrative clustering of patient tumors. (A) Patient tumors 
were clustered based on a combination of gene expression, miRNA expression and copy number variants. 
Heatmap (left) for the patient-to-patient similarity matrix generated using the SNF method by combining gene 
expression, miRNA expression, and CNV data. The white and blue regions represent high and low similarities 
between patients, respectively. The patients in the heatmap are grouped according to the clusters (cluster 1 in 
red, cluster 2 in blue, and cluster 3 in orange) obtained by spectral clustering of the similarity matrix. On the 
right, the patients are represented as a network with patients as nodes (dots) connected by edges (lines). Long 
edges connect patients with low similarity, while short edges connect patients with high similarity. (B–D) 
Heatmaps (patient-to-patient similarity matrices) are shown on the left and networks are shown on the right 
for clusters developed based on a single-data type: gene expression data (B) miRNA data (C) or copy number 
variant data (D). For both heatmaps and networks, the patients are clustered and color-coded based on the 
clusters shown in (A).
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Analysis of the genes with the top NMI scores revealed differences between cluster 2 and clusters 1 and 3 
(Fig. 5, gene sets 1 and 2 and miRNA set 1). In order to find signature genes specific to clusters 1, 2, and 3, we per-
formed differential gene expression analysis for three cluster pairs (1 vs. 2, 2 vs. 3, and 1 vs. 3) and then extracted 
the genes that are specifically upregulated (up_1, up_2, and up_3) or downregulated (down_1, down_2, and 
down_3) in each of the three clusters (Supplementary Table S4 and Fig. 6). Of the top 100 NMI-scored genes, 
68 were specifically upregulated (46 genes) or downregulated (22 genes) in cluster 2. This supports the impor-
tance of cluster 2-specific genes in determining the pattern of the fused patient network. The gene ontology 
(Supplementary Table S4) and pathway analysis (Fig. 6) suggests that different cellular pathways are activated 
in clusters 1, 2, and 3. For instance, the androgen receptor (AR) was specifically upregulated in cluster 2 (up_2, 
Supplementary Table S4). AR-dependent signaling is activated in tumors classified by Lehmann as LAR subtype39 
and 50% of cluster 2 tumors are classified as LAR subtype (Fig. 6B). Pathway terms enriched among the genes 
induced in cluster 2 include “Rho GTPases activate PKNs” and “activated PKN1 stimulates transcription of AR 
regulated genes KLK1 and KLK2”, thus identifying a signaling pathway associated with androgen receptor expres-
sion upregulated in cluster 2. The expression of cluster 2 -specific genes (up_2 and down_2) was similar across the 
PAM50 and Lehmann subtypes (Supplementary Fig. S6).

The miRNAs specifically upregulated and downregulated in each of the three SNF clusters (Supplementary 
Table S5) were obtained using the same strategy used to extract cluster-specific genes. Fifty-two of the top 100 
NMI-ranked miRNAs (38 upregulated and 14 downregulated) were unique to cluster 2. The oncogenic miRNA 
miR-10b was specifically upregulated in cluster 2. Overexpression of miR-10b in non-metastatic breast cancer 

Figure 4. Clinical properties of integrative clusters. (A) Classification of the three clusters obtained by 
integrative analysis (similarity network fusion method) of genes, miRNAs, and CNVs based on gene expression-
based PAM50 breast cancer subtypes5. (B) Classification of the three integrative clusters based on gene 
expression-based TNBC subtypes developed by Lehmann et al.21. For each SNF cluster, the fraction of patients 
belonging to each of the five PAM50 (A) and Lehmann (B) subtypes are shown. (C,D) Patients in each of the 
three integrative clusters are classified based on two clinical measures: pathologic T (C) and pathologic stage 
(D). Pathologic T is based on the size of tumor and extent of tumor growth into nearby tissues, while pathologic 
stage is based on the combined analysis of tumor size, lymph node metastasis, and metastasis to distant organs. 
(E) Comparison of disease-free survival of an integrative cluster with the TCGA breast cancer patient cohort 
(breast invasive carcinomas, n = 1098) excluding the patients associated with this integrative cluster.
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cells has been shown to induce cancer cell invasion and metastasis, and expression of miR-10b in primary breast 
tumors is associated with metastasis40,41. Two tumor suppressor miRNAs41,42, miR-17 and miR-206, were 
downregulated in cluster 2. miR-17-5p targets amplified in breast cancer (AIB1), which in turn promotes cell 

Figure 5. Heatmaps of top scoring features across the integrative clusters. The features (genes, miRNAs, and 
CNVs) are scored based on their normalized mutual information (NMI) values obtained by similarity network 
fusion (SNF)-based integrative clustering of genes, miRNAs, and CNVs. Higher NMI scores for a feature 
(gene, miRNA, or CNV) indicate that the feature was more important for the fused network generated by SNF. 
Heatmaps are shown for the genes (A) miRNAs (B) and CNVs (C) with the top NMI scores. To generate the 
heatmaps, the top 1% of genes (605), the top 5% of miRNAs (94), and the top 1% of CNVs (1809) were selected 
and the variation of their levels across the integrative clusters was depicted. Higher levels are shown in red and 
lower levels are presented in blue.

Figure 6. Top cellular pathways related to integrative clusters. (A) Heat map showing the gene sets (boxed 
regions), up_1, up_2, and up_3 that are specifically upregulated in clusters 1, 2, and 3 respectively. Each row 
represents a gene and each column is a tumor. Higher scores shown in red indicate higher levels of gene 
expression in a specific tumor and lower scores shown in blue indicate lower expression levels in a specific 
tumor. (B) Heat map showing the gene sets (boxed regions) down_1, down_2, and down_3 that are specifically 
downregulated in clusters 1, 2, and 3 respectively. For both (A and B) the most significant pathways enriched in 
upregulated and downregulated gene sets are shown. The biological pathway analysis was performed using the 
g:Cocoa module of g:Profiler63.



www.nature.com/scientificreports/

9SCIentIfIC RepORTS |  (2018) 8:11807  | DOI:10.1038/s41598-018-29992-5

proliferation43. miR-206 is downregulated in many cancers and has been shown to target K-Ras, annexin a2, 
and cell cycle genes44,45. Oncogenic miRNA miR-9 (produced from the mir-9-3 locus) was upregulated in cluster 
346. miR-9 targets E-cadherin and thereby promotes cell migration and invasion. As with genes, the expression 
of cluster 2-specific miRNAs (up_2 and down_2) did not vary depending on PAM50 and Lehmann subtypes 
(Supplementary Fig. S6).

Structural variations and mutational profile of SNF clusters. Genomic alterations such as 
single-base mutations and CNVs (covering regions >1 kilobase) are important drivers of carcinogenesis and can 
maintain the fitness of cancer cells47,48. These alterations are a potential source of inter-tumor heterogeneity. We 
determined the extent of gene amplifications due to CNVs in the tumors that constitute the three SNF clusters 
(Supplementary Table S6). Clusters 1 and 3 had 126 genes and 168 genes with amplification frequencies above 
10%, respectively. In contrast, only 28 genes were altered with >10% frequency in cluster 2.

In addition to CNVs, activating and inactivating mutations can also serve as oncogenic drivers. Mutational 
analysis showed that tumor protein p53 (TP53) and titin (TTN) were commonly mutated in tumors in all 
three clusters with frequencies ranging from 63–78% and 23–27%, respectively (Supplementary Table S6). 
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) was mutated at higher fre-
quency in cluster 2 (23%) compared to clusters 1 (3%) and 3 (8%). Cluster 2 tumors contain a higher frequency of 
AR-positive tumors, and PIK3CA is frequently mutated in AR-positive tumors39,49.

Predictive modeling and biological properties of predictors. Because the three SNF clusters have 
different biological and clinical properties, the ability to assign a new tumor to one of the three existing clusters 
could be beneficial for patients with TNBC. We sought to develop a classifier (see Methods) that would assign a 
new TNBC patient to one of the SNF clusters based on the patient’s mRNA, miRNA, and CNV data. The workflow 
for training and testing the classifier is shown in Fig. 7A. We divided the 134 patients used for SNF clustering into 
a training set (n = 95) for developing the classifier and a test set (n = 39) for classifier testing. We trained three 
different classifiers (random forest, elastic net logistic regression, and support vector machine) and evaluated 
their performances. The elastic net logistic regression had the highest accuracy (90%) and F1 score metrics (see 
Methods) (Fig. 7B and Supplementary Table S7). The accuracy for random forest and support vector classifiers 
were 79% and 87%, respectively. When applied to a test data set not used for training, the elastic net logistic 
regression classifer was able to correctly predict 35 out of 39 patient labels (clusters 1–3) indicating an accuracy 
of 90% (Fig. 7C). This classifier (see Methods) could be used to identify the cluster label of TNBC patients if gene, 
miRNA, and CNV data were available.

Discussion
The breast epithelial layer consists of an inner layer of luminal cells and an outer layer of basal or myoepithelial 
cells50. Gene expression-based PAM50 intrinsic classification of breast cancer5 includes basal-like and luminal 
A/B subtypes, and two models have been proposed to explain the cellular origin of these tumor subtypes50. In 
the cell of origin model, luminal tumors originate from committed late progenitors of luminal cells, while basal 
tumors originate from early progenitors of luminal cells. The alternative genetic mutation model postulates that 
luminal and basal-like tumors result from different genetic insults acting upon similar populations of luminal 
progenitors. With this model, TNBC tumors result from additional changes that lead to a loss of expression of 
ER and PR in tumors without amplification of HER2. Much less is known about the origin of HER2-enriched 
PAM50 subtype. The tumors in this subtype are heterogeneous with respect to the expression of hormonal recep-
tors (ER and PR) and only 70% of these tumors are classified as HER2+, suggesting a different cell of origin of 
these tumors50.

Using an integrative approach to clustering, we discovered that we could classify TNBC tumors into three dis-
tinct tumor clusters using a combination of gene, miRNA, and CNV data. Comparison of our integrative clusters 
with the PAM50 subtypes revealed that integrative clusters contained a mixture of tumors from multiple PAM50 
subtypes. Cluster 1 and cluster 3 had a similar composition of tumors based on PAM50 classification. Tumors 
from both clusters were 80–90% basal-like, which is the subtype often associated with triple negative breast can-
cer, and contained a small amount of luminal A (4–8%), with normal making up the rest (Fig. 4A). In contrast, 
cluster 2 had the worst clinical features and disease outcome out of all the three integrative clusters, and the lowest 
proportion of patients identified as PAM50 basal subtype (41%). This cluster contained the highest proportion of 
HER2-enriched (18%) and luminal A (26%), with smaller contributions from luminal B and normal (Fig. 4A). 
Thus, by interrogating different types of features (genes, miRNAs, and CNVs) and interactions among them, our 
clustering resulted in distinct clusters from those produced by the PAM50 gene expression-only approach. We 
interpret the relationship between our integrative clusters and PAM50 gene expression as supporting a model 
in which there are two quite distinct pathways to TNBC, one involving mostly basal cells and leading largely to 
tumors in integrative clusters 1 and 3, and another that can result from luminal or HER2-enriched cells, that we 
believe leads to tumors in integrative cluster 2. These two pathways may reflect a different cell of origin or differ-
ences in the most critical oncogenic drivers.

We also compared the three clusters generated by our integrative analysis with the four TNBC subtypes of the 
gene expression-based Lehmann classification21. Each of the integrative clusters contains tumors that had been 
assigned to multiple different Lehmann subtypes (Fig. 4B). Integrative cluster 1 includes more basal-like 1 (47%) 
than the other subtypes, with mesenchymal (28%) the second most frequent. Integrative cluster 2, the cluster 
with poor clinical properties, is enriched in luminal androgen receptor (50%) and basal-like 2 (38%) Lehmann 
subtypes. The basal-like 1 Lehmann subtype, which has the best survival outcome compared to the rest of the 
subtypes combined21, is least represented in integrative cluster 2 (3%), suggesting agreement of integrative clusters 
with Lehmann subtypes in terms of clinical characteristics of the TNBCs. Cluster 3 of the integrative clustering 
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was most strongly enriched (>60%) in the mesenchymal Lehmann subtype, with basal-like 1 (27%) the next most 
abundant. Comparing all of the classifications, we observe that three out of four Lehmann subtypes (BL1, BL2, 
and M) mostly consisted of TNBCs that were assigned as basal-like PAM50 subtype, while the majority of LAR 
tumors were HER2-enriched and luminal PAM50 types. Therefore, clusters 1 and 3 were similar in being mostly 
comprised of tumors classified as basal-like by PAM50 and as either basal-like 1 or mesenchymal by Lehmann. 
Cluster 2 was enriched for basal-like 2 and luminal androgen receptor by Lehmann classification, making it dis-
tinct from clusters 1 and 3, a finding also supported by its low levels of basal-like tumors by PAM50. By generating 
cluster 2, our integrative clustering found similarities between tumors called basal, HER2-enriched or luminal A 
by PAM50, or basal-like 2, luminal androgen receptor or mesenchymal by Lehmann classification, that were not 
detected by previous clustering approaches. Our findings also suggest that there are global distinctions identified 
by the features we considered that lead to two distinct and separable groups (cluster 1 and cluster 3) among tum-
ors that are assigned basal-like by PAM50 and basal-like 1 or mesenchymal by Lehmann.

Each integrative cluster had a distinct profile with regard to genes, microRNAs and CNVs. Cluster 2 was the 
most distinct and its gene expression signature included genes in the RhoA-PKN1-androgen receptor pathway. 
PIKC3 was more frequently mutated in the tumors in this cluster, while copy number variants and gene amplifi-
cation events were relatively rare. Tumors in this cluster also contained higher levels of the oncogenic microRNA 
miR-10b. Clusters 1 and 3 were similar to each other in terms of being mostly basal PAM50-subtype, similar 
disease-free progression and tumor size, similar numbers of copy number variants, and a similar set of oncogenic 
mutations with frequent mutations in p53 and titin. Tumors in clusters 1 and 3 were most strongly differentiated 
by downregulation of genes associated with the nervous system and synaptic transmission in the tumors in cluster 
1 and downregulation of genes associated with the complement pathway and the humoral immune response in 
cluster 3. The variable expression of neuronal genes in TNBC clusters 1–3 is surprising, but neuronal-specific 
markers have been reported to be expressed in breast cancer cell lines and primary tumor tissues, possibly due to 
an abnormal trans-differentiation process51.

Figure 7. Classification algorithm to best predict the cluster assignment of a TNBC patient. (A) Workflow 
showing the steps involved in predictive modeling using the carat R package69 to find the best classification 
algorithm (classifier) based on the training set to predict cluster assignment (integrative cluster 1, 2 or 3) of a 
TNBC patient in the test group. The true cluster assignments of the patients in the test group are known based 
on the results of the integrative clustering. (B) The F1 score, which measures both precision and recall, and 
the accuracy are provided for three different classifiers tested: random forest, elastic net logistic regression, and 
support vector machine. (C) Matrix showing the performance of the elastic net logistic regression classifier 
on the test set. Rows represent the number of tumors predicted to be in each cluster by the classifier and the 
columns represent the known cluster for each of the tumors based on integrative clustering results. The entries 
in the diagonal (orange) contain tumors that are correctly predicted by the classifier.
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TNBC patients do not respond to hormone-based or anti-HER2 therapies52 and treatment options are mostly 
limited to chemotherapy (neoadjuvant and adjuvant) and surgery. Furthermore, the heterogeneous nature of 
TNBC limits the efficacy of standard chemotherapeutic agents because the response to these treatments varies 
greatly among patients. A few targeted therapies for TNBC have been proposed, including mTOR inhibitors, 
FGFR inhibitors, and EGFR-directed antibodies such as cetuximab52. Our results include the discovery that the 
androgen receptor is expressed in tumors in cluster 2. This finding suggests there may be an opportunity to treat 
this group of patients with anti-androgens53. Also, we identified two oncogenic miRNAs, miR-10b and miR-9, that 
are specifically upregulated in clusters 2 and 3, respectively. Silencing of miR-10b using an antagomir oligonucle-
otide54 and silencing of miR-9 using a miRNA sponge46 have been shown to inhibit metastasis in mouse models 
of breast cancer.

Collectively, our results indicate that a new classification system for TNBC that addresses its inherent hetero-
geneity can be defined by an integrative clustering methodology that incorporates multiple different data types. 
With this approach, we identified specific molecular signatures for different TNBC clusters. The distinctiveness 
of the integrative clusters we identified in terms of their genetic and epigenetic properties, oncogenic drivers 
and clinical features suggests that this new cluster assignment could provide another perspective on TNBC 
heterogeneity.

Methods
Acquisition of patient data. All the sequencing and clinical data associated with TNBC patients (n = 180) 
were obtained from The Cancer Genome Atlas (TCGA) hosted by the Genomic Data Commons (GDC). Patients 
(n = 180) were identified as triple negative breast cancer patients based on the analysis performed by Lehmann 
et al.21. RNA-Seq and miRNA-Seq data were downloaded as raw counts. The CNV data from Affymetrix SNP 6.0 
array was processed by GDC into output files containing segment mean values (transformed copy number values 
for each of the segmented genomic regions), which were used for this work. DNA methylation levels (as beta 
values) from Illumina Infinium Human Methylation 450 arrays (if available) were also obtained. (More informa-
tion on GDC output files and pipelines can be found on the GDC website: https://docs.gdc.cancer.gov/.) Clinical 
metadata (Supplementary Table S1) were extracted from clinical XML files provided by GDC.

Purity estimates for the 180 TNBC tumors were obtained from Aran et al.55 and Li et al.30. Patients were kept in 
the study if they had a consensus purity estimate (CPE) (from Aran et al.) or Clonal Heterogeneity Analysis Tool 
(CHAT) (from Li et al.) purity measurement of 60% or higher. The purity scores are presented in Supplementary 
Table S1.

Single data type patient clustering. The workflow for single data type clustering is presented in Fig. 1. 
The raw reads (genes and miRNAs) were normalized and log2 transformed by DESeq256. The segment mean 
values for CNV events were processed and converted to a CNV region-by-patient matrix using the CNTools 
bioconductor package57. Standard deviation (sd) filters (sd >2, sd >1, and sd >0.5 for gene, miRNA, and CNV, 
respectively) were used to select the genes, miRNAs, and CNVs that showed maximum variation across the 
patients and, therefore, were indicative of TNBC inter-tumor heterogeneity. Applying these criteria led to the 
selection of 2587 genes, 369 miRNAs and 5000 CNVs. We applied consensus clustering using non-negative 
matrix factorization (NMF) as the underlying algorithm. NMF clustering was performed using the NMF biocon-
ductor package58 with Euclidean and Kullback-Leibler divergence as distance measures. The cluster number was 
selected based on the values of cophentic correlation coefficient59, which is a metric for the stability of clusters58. 
We evaluated the cluster solutions from NMF methods by following internal validation metrics34: RMSSTD, 
r-squared and SD validity index.

Integrative clustering. Integrative clustering using gene, miRNA, and CNV data was performed using the 
similarity network fusion (SNF) method36 for the 134 patients for which all the data were available from TCGA. 
No preselection of genes, miRNAs, or CNVs was required for SNF method. The three data types were aggregated 
by SNFtool R package to generate a fused patient network and a fused patient similarity matrix using the follow-
ing parameters: K = 13, alpha = 0.5, and t = 2036. Spectral clustering was performed on the fused patient similarity 
matrix using the function built into the SNF package. Cluster number was chosen using the supplied function, 
estimateNumberOfClustersGivenGraph. The networks were visualized in Cytoscape60 by generating a k-nearest 
neighbors graph from the values of the patient similarity matrix. Normalized mutual information (NMI) scores of 
the features (genes, miRNAs, and CNVs) were obtained as the output from SNFtools package using its rankFea-
turesByNMI function. For the fused patient network generated using gene, miRNA, CNV, and DNA methylation 
data, only the 87 of 134 patients with associated methylation data were used.

Pathway Analysis of genes, miRNAs, and CNVs. Gene ontology (biological process and molecular 
function) and pathway analysis (based on KEGG61 and Reactome62 databases of cellular pathways) of genes was 
performed using g:Cocoa module of g:Profiler63. The statistical significance of the results after multiple testing 
correction was computed using the built-in g:SCS method. Only the results (enriched pathways) with p values 
<0.05 were considered significant. The gene targets for miRNAs were obtained from miRTarBase v6.064 and miR-
Tex65. The genes present in the CNV regions were extracted using genomicRanges bioconductor package66. SNF 
cluster-specific data for genomic alterations (mutations and genes amplified or deleted by CNVs) were obtained 
from cBioPortal for Cancer Genomics67,68: http://www.cbioportal.org.

Differential expression analysis of genes and miRNAs. Differential gene and miRNA expression 
between the SNF cluster pairs (1 and 2, 2 and 3, and 1 and 3) was performed using DESeq2 bioconductor pack-
age56. Only the significant (adjusted p < 0.05) genes and miRNAs with absolute log2fold change >1 were selected. 

https://docs.gdc.cancer.gov/
http://www.cbioportal.org
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In order to find cluster-specific genes, we compared the log2fold-change values of the genes across the three 
pairwise differential expression analyses. Genes were considered specifically upregulated (downregulated) in one 
cluster if they were upregulated (downregulated) in that cluster compared to each of the other two clusters.

Predictive modeling. Classifiers were created using the caret package in R69. Initial predictors were selected 
by taking the top-ranked NMI features from the SNF network analysis (top 1% for genes and CNVs and top 
5% for miRNA). A 70/30 split was applied to the data (n = 134) to create a training set (n = 94) and a test set 
(n = 40). Samples were selected for the training set by the partition function built into the caret software package. 
Predictor selection was performed on the training set by applying a Kruskal-Wallis test across the top NMI fea-
tures (FDR < 0.01). Predictors that passed the significance test (525 genes, 112 miRNAs, and 1809 CNVs) were 
used for the classifiers. Three classifiers (supplied by the carat package) were trained: elastic net logistic regres-
sion (glmnet function), random forest (randomForest), and a linear kernel support vector machine (lmSVM). 
Leave-one-out cross validation (LOOCV) was used to further validate and tune model parameters and the result-
ing classifiers were evaluated using accuracy and average F1 scores (based on precision and recall) obtained from 
the carat package (Supplementary Table S7).

Statistical analysis. Statistical tests employed for each analysis are provided in the text and legends. For all 
analyses, we used adjusted p < 0.05 to determine statistical significance. p values are adjusted for multiple hypoth-
esis testing. Tests are two-sided.

Data availability. All the datasets used in the study are publicly available from NCI genomic data commons: 
https://gdc.cancer.gov/.

Code availability. The software packages used in this study are listed in Supplementary Table S8. Further 
information is available upon request.
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