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Abstract 

This article proposes a method by which anchoring effects 
can be mathematically modeled. Anchoring effects are a type 
of assimilation effect; so this article proposes using 
Anderson’s (1965; 1981) integration model to model 
anchoring effects, as it is typically used to model other 
assimilation effects. The difficulty in using the integration 
model is that doing so requires that the modeler knows or is 
able to estimate participants’ unbiased estimates (i.e., what 
their estimates would have been had they never seen the 
anchor) and this information is not available from 
conventional anchoring effect paradigms. A method for 
estimating unbiased estimates is proposed. This method is 
used to estimate unbiased estimates for a set of anchoring 
effect data and the integration model is fit to these data. This 
article closes by speculating on possible theoretical insights 
into anchoring effects that might be gleaned by using the 
proposed methodology and possible practical applications. 

Anchoring Effects 
The goal of this paper is to propose a method by which 

anchoring effects can be mathematically modeled. The 
ability to mathematically model anchoring effects might be 
useful both for differentiating among theoretical models of 
anchoring effects and for calculating likely practical 
applications of anchoring effects in situations such as 
negotiations (e.g., Chapman & Bornstein, 1996; Galinsky & 
Mussweiler, 2001), auctions (Ku, Galinsky, & Murnighan, 
2006), and pricing (Northcraft & Neale, 1987). These 
possible applications of the proposed model will be 
discussed in the General Discussion section. 

In anchoring effects, estimates of an unknown value are 
assimilated towards an arbitrary numeric value called the 
anchor.  For example, in a well-known study, Tversky and 
Kahneman (1974) asked participants to judge whether 
African nations represented a higher or lower percentage of 
UN-member nations than an anchor and then to estimate the 
actual percentage. Estimates were assimilated towards the 
anchor.  When the anchor was 10% of UN-member nations, 
the median estimate was assimilated downward toward 10% 
to equal 25%; but when the anchor was 65%, the median 
estimate was assimilated upward toward 65% to equal 45%. 

Assimilation effects like these are typically 
mathematically modeled using Anderson’s (1965; 1981) 
integration model. A mathematical formalization like the 

integration model formalization was alluded to in at least 
one anchoring effect paper (see Jacowitz & Kahneman, 's, 
1995, discussion of priming models of anchoring effects).  
In addition, this mathematical formalization has been used 
to model assimilation effects in phenomena as diverse as 
impression formation (the domain that originally inspired 
Anderson's model, see Urada, Stenstrom, & Miller, 2007, 
for a recent application), physical attractiveness (e.g., 
Wedell, Parducci, & Geiselman, 1987), product evaluation 
(e.g., Miyazaki, Grewal, & Goodstein, 2005; Troutman & 
Shanteau, 1976), risk assessment (e.g., Hampson, Andrews, 
Barckley, Lee, & Lichtenstein, 2003), and the best timing 
for lesbian and gay politicians to come out of the closet 
(Golebiowska, 2003)1. 

The Proposed Mathematical Model 
Anderson’s (1965; 1981) integration model would model 

the assimilation observed in anchoring effects as a weighted 
average of the anchor value (A) and the unbiased estimate a 
participant would have made had she or he never seen the 
anchor (U: U for Unbiased; see below for how this quantity 
can be empirically measured): 

 
where EST represents a participant’s estimate (i.e., the 
dependent measure in anchoring estimation tasks) and w is 
the weight bound between 0 and 1 of the anchor value (A) 
relative to the unbiased estimate (U).  A weight of 0 would 
represent a case in which estimates were not affected at all 
by exposure to the anchor.  In such a case, unbiased 
estimates (U) would be equal to participants’ estimates 
(EST) so that EST = U.  A weight of 1 would represent a 
case in which all participants simply respond with the 
anchor value.  Weights between these two extremes 
represent estimates that are assimilated toward the anchor 
value, but are not equal to it. 

The key problem in using Anderson’s (1965; 1981) 
integration model to model anchoring effects is that it 
requires the modeler to know what participants’ unbiased 
estimates (U) would have been had they never seen the 
anchor. Measuring these unbiased estimates is made 
particularly difficult, because it is not possible to ask 
participants to make a numerical estimate twice (once 
before and once after being exposed to the anchor value) as 

EST = wA + (1-w)U (1) 
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their first numerical estimate will bias their second. To solve 
this problem, the methodology proposed here would have 
participants make a non-numerical estimate before being 
exposed to the anchor and then make a numerical estimate 
afterwards. The mapping between non-numerical estimates 
and numerical estimates can then be established by running 
a control condition in which participants make both types of 
estimates without being exposed to the anchor and 
calculating a regression line between the two types of 
estimates. The unbiased estimates (U) of the participants in 
the experimental condition can then be calculated using the 
non-numerical estimates that these participants make and 
the regression line. 

 

 
Figure 1. Graphic estimate of the height of the Sears 
Tower.  Participants placed a tick mark between the 
horizontal line representing the height of the Empire State 
Building and the horizontal line representing the height of 
the Petronas Towers to represent how tall they believed 
the Sears Tower to be. 
 
 
In the data modeled below, for example, the task was to 

estimate the height of the Sears Tower (a Chicago landmark 
and one of the world’s tallest buildings; since the time 
during which these data were collected, this building has 
been renamed the Willis Tower). Participants made two 
estimates: a non-numerical estimate and a numerical 
estimate. The non-numerical estimate was made on the 
graphic presented in Figure 1. Participants were told that the 
Empire State Building was the tallest building in the world 

until the Sears’ Tower was built and that the Sears’ Tower 
was the tallest building in the world until the Petronas 
Towers in Kuala Lumpur, Malaysia were built (taller 
buildings yet have been built since the Petronas Towers 
were built). Participants made a tick mark between the two 
horizontal lines in Figure 1 to denote how tall they believed 
the Sears Tower to be relative to the Empire State Building 
and the Petronas Towers.  The distance between the bottom 
line representing the height of the Empire State Building 
and each participant’s tick mark was then measured in 
millimeters (mm).  

The numerical estimate was the number of feet tall that 
participants estimated the Sears Tower to be. Participants in 
the control condition made the non-numerical estimate and 
then the numerical estimate without being exposed to the 
anchor. Participants in the experimental condition made the 
non-numerical estimate before they made a judgment 
regarding whether the Sears Tower was taller or shorter than 
the anchor value of 1,367 feet and then made the numerical 
estimate. A regression line was calculated between the 
control participants’ non-numerical and numerical 
estimates. This regression line was then used to calculate the 
experimental participants’ unbiased estimates (U) from their 
non-numerical estimates. 

 
 

 
 

Figure 2. Anchoring effect that would be characterized as 
an assimilation effect.  The black line represents the 
predicted pattern of estimates, if estimates were not 
affected by the anchor.  The gray line represents the 
predicted pattern of estimates, if an assimilation effect 
were observed.  Notice that the gray line represents a 
weighted average of the black line (estimates unbiased by 
the anchor) and the anchor value (See Equation 1). 

 
 
A pattern of biases that would fit Anderson’s (1965; 

1981) integration model definition of an assimilation effect 
as presented in Equation 1 is demonstrated in Figure 2.  The 
x-axis represents unbiased estimates (U) and the y-axis 
represents participants’ estimates in anchoring estimation 
tasks (EST).  Do not confuse this figure with the similar-
looking figures used by Chapman and Johnson (1994). In 
Chapman and Johnson’s figures, the x-axis represented 
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alternative anchor values. In Figure 2, the x-axis represents 
unbiased estimates and the location labeled “Anchor” 
represents a situation wherein a participant’s unbiased 
estimate just happened to be equal to the anchor value. The 
black line in Figure 2 represents what the pattern of 
estimates would look like, if the anchor did not bias 
estimates (i.e., the case in which w = 0 and EST = U).  The 
gray line represents a pattern of biased estimation that 
would be characterized as an assimilation effect (any linear 
slope between the slope of the black line and horizontal—
that is, where w in Equation 1 takes a value greater than 
zero and less than one—would be classified as an 
assimilation effect). 

Notice that regardless of the values of the unbiased 
estimates (U), Equation 1 predicts that they will be biased 
toward the anchor value by the same proportion.  For 
example, all values might be biased 20% toward the anchor. 
Sometimes the term “assimilation effect” has been used 
roughly to refer to any bias towards a standard regardless of 
the extent of the bias and whether the bias toward the 
standard is uniform (e.g., Schwarz & Bless, 1992).  While 
using the term in this way often provides a useful way to 
quickly classify results (i.e., as either “assimilation,” bias 
toward or “contrast,” bias away from a standard), 
Anderson’s (1965; 1981) definition is more precise in that it 
captures the degree of bias toward the anchor across the 
entire range of unbiased estimates and provides a starting 
point from which to model anchoring effects. If it turns out 
that not all estimates are biased toward the anchor by the 
same proportion (e.g., unbiased estimates close to the 
anchor might be biased towards the anchor by a smaller 
proportion than unbiased estimates that are farther away 
from the anchor or vice versa), then the methodology 
proposed here can also be used to fit alternative equations—
other than the integration theory equation—to anchoring 
effect data. 

We used this methodology and collected anchoring effect 
data to which Anderson’s (1965; 1981) integration model 
could be fit. 

Anchoring Effect Data 
The purpose of the experiment reported here was to use 

the methodology proposed above to collect data to which 
mathematical models—Anderson’s (1965; 1981) integration 
model, in particular—could be fit. There was an 
experimental group of participants and a control group. The 
experimental group made a non-numerical estimate of the 
height of the Sears’ Tower, then compared its height to the 
anchor value of 1,367 feet, and finally made a numerical 
estimate of the height of the Sears’ Tower in feet. The 
control group made a non-numerical estimate and then a 
numerical estimate without ever being exposed to the 
anchor. 

Method 
Participants. One hundred sixty passengers on the 

Chicago elevated train system participated voluntarily (80 in 
the control condition and 80 in the experimental condition). 

Materials and Procedure. We told our participants that 
the Empire State Building was the tallest building in the 
world until the Sears Tower was built and that the Sears 
Tower was the tallest building in the world until the 
Petronas Towers were built.  To measure unbiased 
estimates, we first asked participants to estimate the height 
of the Sears Tower graphically by showing them in-scale 
silhouettes of the Empire State Building and the Petronas 
Towers as shown in Figure 1.  Horizontal lines crossed the 
page to represent the height of each skyscraper.  Participants 
placed a tick mark between the lines to represent their 
estimates of the height of the Sears Tower.  After estimating 
the height of the Sears Tower graphically, participants in the 
control condition simply estimated the height of the Sears 
Tower in feet (numerical estimate).  Participants in the 
experimental condition judged the height of the Sears Tower 
to be “more” than or “less” than the anchor value of 1,367 
feet before estimating the height of the Sears Tower in feet 
(numerical estimate).   

Results 
The results are presented in Figure 3. As noted in the 

discussion of Figure 2 above, be careful not to confuse these 
figures with the similar-looking figures used by Chapman 
and Johnson (1994). The x-axis here represents unbiased 
estimates as measured using the graphic presented in Figure 
1; and the y-axis represents participants’ numerical 
estimates in feet. We first investigated whether an anchoring 
effect was observed by performing a t-test on the absolute 
difference between participants’ numerical estimates in feet 
and the anchor value of 1,367 feet.  The anchoring effect 
was highly reliable, t(158)=4.72, p<.01. Estimates were 
significantly closer to the anchor value in the experimental 
condition (M=128.30 feet away from 1,367 feet, 
SD=127.93) than in the control condition (M=479.90 feet 
away from 1,367 feet, SD=654.42). 

Fitting the Model 
Equation 1 was fit to the results of this experiment.  The 

criterion variable, EST, represented each participant’s 
estimate.  To use Equations 1 to predict EST, one must 
somehow measure the estimates participants would have 
made had they never seen the anchor value.  That is, one 
must measure participants’ unbiased estimates, Parameter 
U.  To do so, we used the results from the control group to 
regress their non-numerical estimates (as collected using the 
graphic presented in Figure 1 and measured on mm from the 
bottom horizontal line representing the height of the Empire 
State Building) on their numerical estimates.  We then used 
this regression equation along with each experimental 
participant’s non-numerical estimate to predict what their 
unbiased numerical estimates, U, would have been had they 
never seen the anchor. The regression line predicts U as: 
U=766.12+(50.93*the distance in mm between the bottom 
line in Figure 1 representing the height of the Empire State 
Building and each participant’s tick mark). With EST equal 
to each experimental participant’s estimate and U equal to 
the value predicted by the regression equation, assimilation 
effects toward the anchor were modeled using Equation 1.  
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Parameter A, representing the anchor value, took a value of 
1,367 feet and the best-fitting value for Parameter w was 
calculated using a root mean squared error (RMSE) 
criterion. The best-fitting value for Parameter w was 0.47; 
and the RMSE was 116.93. A paired sample t-test on the 
squared errors of the values predicted by Anderson’s 
integration model versus the squared errors of the values 
predicted by the regression equation found that Anderson’s 
integration model provided a better fit, t(79)=3.81, p<.01.  

Discussion 
A method of mathematically modeling anchoring effects 

was proposed. This method calculated unbiased estimates 
(the estimates participants would have made had they never 
seen the anchor value) by having participants make a non-
numerical estimate before being exposed to the anchor value 
and a numerical estimate afterwards. The mapping between 
non-numerical estimates and numerical estimates was 
calculated by asking a control group of participants to make 
both types of estimates without ever being exposed to the 
anchor and calculated a regression line between the two 
types of estimates. The regression line along with the non-

numerical estimates of the experimental participants 
allowed us to estimate what the experimental participants’ 
estimates would have been had they never been exposed to 
the anchor value. Anderson’s (1965; 1981) integration 
model (Equation 1) was then fit to these data where U 
represented each experimental participants’ unbiased 
estimate as calculated by the regression line, EST 
represented each participants’ numerical estimate, and A 
represented the anchor value of 1,367 feet. The best fitting 
value for parameter w using a RMSE criterion was 0.47. 

Future research should fit other types of equations to 
anchoring effect data collected using this method. Doing so 
might prove useful for further refining theoretical models of 
anchoring effects. For example, if the anchor value is 
outside of the range of acceptable estimates, then Tversky 
and Kahneman’s (1974) account of anchoring effects—
under which anchors provide a starting point for 
participants’ search for an appropriate estimate—would not 
produce a pattern of results that should be modeled using 
Anderson’s integration model. Instead of predicting that all 
unbiased estimates would be biased toward the anchor by 
the same proportion, Tversky and Kahneman’s (1974) 

 

             
 

Figure 3.  Results of the anchoring effect experiment reported here including the regression line and Anderson’s 
(1965;1981) integration model fits. The x-axis represents participants’ unbiased estimates of the height of the 
Sears/Willis Tower on the graphic presented in Figure 1 and the y-axis represents participants’ numerical estimates of 
the height in feet. The white diamonds represent particular participants’ estimates; the black diamonds represent the 
regression line calculated on the control participants’ estimates; and the gray diamonds represent the best fit from 
Anderson’s integration model. 
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account would predict an approximately horizontal 
estimation function. It would predict a horizontal estimation 
function, because all participants would start their search for 
an appropriate value at the anchor value which is outside of 
the range of acceptable estimates, and adjust from there, 
stopping at the first acceptable value. They would do so 
regardless of what their unbiased estimates would have been 
had they never been exposed to the anchor value. One 
qualification on this prediction of the anchoring and 
adjustment model of anchoring effects would be if the range 
of values that participants thought acceptable correlated 
with their unbiased estimates, but this question could be 
addressed in future research as well (by having control 
participants identify the range of values they consider 
acceptable) and the issue would not have been addressable 
without the methodology proposed here. 

By contrast, priming models of anchoring effects (Wilson, 
et al., 1996; Wong & Kwong, 2000) would predict 
estimation functions that would follow Anderson’s 
integration model pattern  (see Jacowitz & Kahneman, 's, 
1995, discussion of priming models of anchoring effects). 
Exposure to the anchor value would prime that value and 
then estimates would be a weighted average between the 
primed values and the unbiased estimates participants would 
have made had they never been exposed to the anchor. 

The pattern of bias predicted by Mussweiler and Strack’s  
(1999; see also Strack & Mussweiler, 1997) selective 
accessibility model is less clear. The selective accessibility 
model assumes that when people compare the unknown, to-
be-estimated value to the anchor value, they test whether the 
unknown, to-be-estimated value might be the same as the 
anchor value by searching for semantic information that 
would confirm that the to-be-estimated value is equal to the 
anchor value. Confirmation biases almost always produce a 
situation wherein people are able to find semantic 
information about the to-be-estimated value suggesting that 
it is equal to the anchor value.  If this account of anchoring 
effects is correct, then the degree of bias toward the anchor 
will depend upon the amount of confirmatory information 
they are able to recall. The ability to find such confirmatory 
evidence may vary as a function of people’s unbiased 
estimates. People whose estimates would have otherwise 
suggested a value close to the anchor based upon their 
unbiased semantic knowledge of the to-be-estimated value 
may be more likely to find confirmatory evidence than 
people whose unbiased estimates would have otherwise 
been farther away. The proportion of bias towards the 
anchor may then be greater for unbiased estimates that are 
relatively close to the anchor than for unbiased estimates 
that are farther away from the anchor. Furthermore, future 
work might investigate the role of selective accessibility 
mechanisms in anchoring effects by using the methodology 
proposed here to investigate anchoring effects when 
participants have a great deal of semantic knowledge about 
the to-be-estimated value and when they do not. 

The methodology proposed here (perhaps using a rating 
scale to measure unbiased estimates, rather than the measure 
presented in Figure 1) may also be useful for studying 
practical applications of anchoring effects in situations such 
as negotiations (e.g., Chapman & Bornstein, 1996; Galinsky 

& Mussweiler, 2001), auctions (Ku, Galinsky, & 
Murnighan, 2006), and pricing (Northcraft & Neale, 1987). 
For example, starting negotiations over the selling price of a 
home at a high initial asking price may have different 
effects depending upon what the potential buyer’s unbiased 
estimate of a reasonable price for the house would have 
been had she or he never heard the asking price.  It is not 
clear a priori whether all buyers’ bids are biased toward the 
initial asking price by the same proportion. It might turn out 
that closer unbiased estimates are biased toward the initial 
asking price by a smaller proportion; or it might turn out 
that they are biased toward the initial asking price by a 
greater proportion. If it turns out that closer unbiased 
estimates are biased toward the initial asking price by a 
greater proportion, then it may not be the case that larger 
initial asking prices always produce the highest selling 
prices even if on average they do so. It may turn out that this 
phenomenon is mostly due to people who’s unbiased 
estimates would have been relatively high before hand and 
the bias just makes their estimates of an appropriate bid 
higher yet. If so, then lower initial asking prices might be 
more effective in producing high selling prices among the 
segment of consumers whose unbiased estimates of an 
appropriate price were not quite as high at the start. If so, 
then the methodology proposed here might be useful in 
setting optimal initial asking prices for the entire range of 
potential consumers. 
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