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ASYMPTOTIC PERTURBATION OF DIFFERENTIAL EQUATIONS 

John Killeen 

Radiation Laboratory 
University of California 

Berkeley, California 

July, 1955 

ABSTRACT 

The eigenvalue problems given by 

d~u 11 
d xz. + t A - gcx)- Ep(x)J u Q.(X.C:::a:> J 

and 

\J2 u + tA- qrx) y) t: )-Ep(x) yJ1=)]u =OJ 
in ordinary three -dimensional space, are considered. It is assumed 

that E is a small real quantity. The expansions for the eigenvalues 

and eigenfunctions which are given by formal perturbation theory are 

justified as asymptotic series, valid for a finite number of terms as 

E - 0. The approximations are established tigorously up to second 

order by placing certain restrictions on the functipn p. 
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ASYMPTOTIC PERTURBATION OF DIFFERENTIAL EQUATIONS 

John Killeen 

Radiation Laboratory 
University .of California 

Berkeley, California 

July, 1955 

INTRODUCTION 

We consider th~ eigenvalue problem given by the differential 

equation~:~ + [A - q (X) 1 U =- .0 

with -co ~ a <::::. X <::::. b ~· + co and A a 

complex number. The function q(x) is a real-valued continuous 

function in (a, b). In this paper we treat the so-called singular case; 

that is, the interval (a, b) is infinite, or q (x) is singular at one or both 

end points. 

Now consider the above equation perturbed as follows, 

d1.U _( } ~+l\-q(A)-Ep(x) U-==0 
where E is a small real quantity. The problem of perturbation theory 

is to calculate the eigenvalues and eigenfunctions of the perturbed 

problem in terms of the knowll: eigenvalues and eigenfunctions of the 

unperturbed problem. 

In this paper we consider the discrete part of the spectrum of 

the unperturbed problem and assume conditions Oll p(x) such that the 

corresponding perturbed spectrum is discrete. 

If we take AV\ and cpr/X) to be an unperturbed eigenvalue and 

an unperturbed eigenfunction, the formal perturbation procedure is to 

assume that the. iillinite s.eries 
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give the perturbed eigenvalue and eigenfunction. The coefficients are 

computed by substituting the above series ·in the perturbed equation 

and equating like powers of E. 
; . . . 

The justification of this formal procedure in the. case where the 

above series are convergent in the usual sense is called analytic 

perturbation theory, and has been given for linear <>perators in a 

normed :Unear space by Rellich (1; 2, 3; 4, 5), Sz. Nagy (1), Wolf (1), 

Kato (5, 7) and others. In particular for operators of the type we are' 
' '· ' . 

considering~ Rellich (4) and Kato {5) establish the following two 
.: -r. : ~. - ' 

independent conditions for convergent series in powers of E. . The 

first condition is 

{ [fr(x1Hx1Ydxt ~. o<, {r~rxULdx \~ H;~lffxl-f~~df 
for~o( ~ Q' 1 ~ ;::.: 0 and f(X) such that f J L f are in 

L2.(0J b) .· .. where Lf. gf -·· f". The second 

condition is 

f(x){f(xl/dx/ { 1ff(x))' dx + ~lf;x){qiA)f(xl-fMdxl. 
In ,this paper we consider cases wher.e the above conditions are 

not fulfilled yet the perturbation method is known to give useful results 

by taking a few terms of the perturbation series. Mathematically the 

series are considered as asymptotic series, valid for a finite number 
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of terms as £ ~ Q . This interpretation was first given by 

Titchmarsh (2, 3} for differential operators and by Kato (5, 6} and 

V. Kramer (1) for semibounded operators in an abstract Hilbert 

space. Kato 0) has generalized the latter to asymptotic perturbat~on 

for semibounded quadratic forms in Hilbert space. 

In this paper we derive theorems giving asymptotic perturbation 

series. for ordinary and partial differential operators of s.econd order 

which are semibounded. We derive these theorems using the abstract 

theory of Kato (1 ~. 

In the first chapter we summarize the theory of semibounded, 
I 

closed. quadratic forms and the asymptotic perturbation theory in 

Hilbert space. 

In the second chapter the eigenvalue and eigenfunction 

appr:Oximations are e.stablished up to second order for singular 

ordinary differential operators by placing certain restrictions on the 

function p (x). 

As a by-product of the abstract method used in the second 

chapter, approximations for solutions of a nonhomogeneous two .. point 

boundary value problem are given. 

In the third chapter the theory is extended to the equation 

in ordinary three -dimensional space. The problem of degenerate 

eigenvalues occurs and is considered. 

I wish to thank Professor Frantisek Wolf •. who suggested the 

problem and gave me advice and encouragement throughout, and 

Professor Tosio Kato» whose teaching and guidance were invaluable. 
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I. 

ASYMPTOTIC PERTURBATION 'THEORY IN HILBERT SPACE 

1. Sernibounded, closed quadratic forms 

We base the asymptotic perturbation theory of ordinary and 

partial differential equations. on the asymptotic perturbation theory 

of quadratic forms in Hilbert space· which has been developed by 

Kat.o. 
1 

The theory developed by Kato is for semibounded, closed forms. 

The theory of semibounded quadratic forms :was introduced by 

Friedrichs
2 

and applied by Rellich and Friedrichs to differential 

operators
3 

and by Rellich to analytic perturbation theory. 4 Kato 1 

has developed the theory conside_rab~y and has applied it to asymptotic 

perturbation theory. 

We introduce the following definitions: 

Definition. Let f) be a dens.e linear .subset of an abstract Hilbert 

space, PI- A functional J [u.; ~ defined for u, v in f) is called a 

Hermitian bilinear form if 

i) J f· ~ = J ~·~ 
ii) J ~~ v] is linear in u, that is, 

J[o<u, + f3 uz.) v}=o<.J[u,) v] + ~ J"[Uz.) V J. 
fj is called the domain of J and denoted by fJ[.:rJ 

J [. u] : J ['u, u J is called a quadratic form. 

1 
Kato (1) 

2 
F.riedrichs {1) 

3 
F.riedr:i.chs ( 1}, (2); Rellich (6) 

4 
Rellich (3) 

.. 
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Definition. A quadratic form J is said to be bounded from below if 

there is a real number '6 suchthat J[u] .:::_ ~/} U//2. 
for all u in .5 [J] This is. denoted Such forms 

are called lower semibounded. Henceforth we shall consider only 

lower semibounded forms. 

Definition. Let Jl' J 2 be two forms such that lJ[J,] C .[)[Jz] 

for u. v in lJ[J,]. 

Then J 2 is called an extension of J 1 and J 1 a restl'iction of J 2 • We 

denote this 02.,:) J• or J'l c Jz. ' 
As an example let K be a linear symmetric operator in PI- and 

with D[J"] = B[K] . J is clearly a Hermitian form and 

bounded from below if Kis bounded from below. A symmetric 

operator is bounded from below if (KU1 u) -2::. c(U, U) 
for all u in B[K] where o > - 00 , 

To continue with the necessary theory of quadratic forms we 

need a few more definitions. Consider a form J with D[.J] as its 

domain and a sequence f u.,.,} such that each uh is in !J[J J. 
Definition. The convergence Un~ U means /1 UV't- U J/ -7 0 

as n~c:o and J"[UV\ -Uf!V\] ~ 0 as n,m ~oo . 
Definition. A form J is called closed if .uVI4 U impli~s u in S[J] 

and J[UV\- U] ~ Q. 

Definiton. A form J is said to be closable if it has a closed extension. 

With these definitions we can state the following theorem. 
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5 
Theorem A (Kato ). A necessary and sufficient condition that a form 

J be closable is that Ur. :::r "> 0 imply 0[UVI] 4 0, Then J has 

-a least closed extension, J, called the closure of J. J has the same 

-lower bound as J;· £:f::J] is the set of u in~ such that-there is a 

sequence £ U 11} with Un -4 U and 

where VY\ ~ · V , arbitrary. 

I£ we consider again the example J[u; v] = (k'U) V) 
where K is. lower semibounded we shall see that J is closable. Assume 

without ioss of generality that K ~ 0 , Let Un 4 0 Then 

II u n/1-7 0 and'( K(Un- Um)) Un- ui"V)) ---7 0 . 
For. E. > 0; there exists. an N such that 

£ '> (K(Un-UI'V)) 1 Un- UYY) J 
= (Kur.)UV1) + (KUm) Um )-2 Re{K Un) Ul'vl) 

for m,n >N Let m ~co for a fixed n. As 

( K Um) Urv1) ~ 0 it follows that (K UV\J UV) J~ [ 
for n > N So :J[Un]~o. 

From now on we shall consider only semibounded, closed forms --

or, at any rate, closable forms. We shall proceed to state some of 

their more important properties. 

Definition. A linear subset B' of B[J] of a closed form J is c'alled a 

core of J if the .restriction of J to J:J' has J as its closure. 
6 . 

Theorem B (Kato ). Let J 1 , ..... , Jk be forms with dense intersection. 

If J 1 , ... , , Jk are closed so is J 1 + ..... + Jk. H Jl' ..... Jk are 

closable, so is J 1 + ....... + Jk' and 

5 . 
Kato'{l) Theorem 2.3 

6 Kato (1) Theorem 3.1 
' 
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(J;+ I I, I I I I +JR 
7 

Theorem C (Kato ). Let J, ..... Jk be closable fbrms derived from 

symmetric operators K 1, ..... , Kk where D[J"";] = [)[KJ and 

Jt [ u) v] == ( K; u) v) I 

is essentially self-adjoint, 
8 

then 

If the operator K 1 + . . . . . . + Kk 

( J 1 + I I 1 + J"~)~ ==- J, + II I + J~ 
The main result concerning semibounded, closed forms is 

embodied in the following theorem due to Friedrichs. 

Theorem D (Kato 9). If J is a semibounded, closed form, there exists 

a self -adjoint operator, H, such that (i) l:J[H] C [)[:r] 
and :T[u)v]~ (Hu) v) for every u inJ)[H]and v in fJ[J] 

. (ii) 8[H] is a core of J; (iii) if u in B[J]J u *in P/. and 

J"[u) v] -=(u*) v) for all v of a core of J then u in .EJ[H] 
) 

* and Hu = u ; (iv) H has the same lower bound as J. His uniquely 

determined by {i). 

H is called the self-adjoint operator associated with J. 

An important consequence of this theorem is stated in the following 

theorem. 

10 
Theorem ~ (Kato ) . Let. J be a semibounded, closed form and let H 

be the associated self -adjoint operator. Let 't ~ '(s'J" = f 1-1 , Then 

B[J} .b~H-l()"~] and J"[u, v] =(0+-£r)iu J (H -~ )~v) + ~(uJ v) 

for every u, v in B[r], 

7 
Kato (1) Theorem (4.9) 

8 
Stone ( 1) page 51 

9 Friedrichs (1), Kato (1) Theorem (4. 1) 

10 
Kato (1) Theorem 4,2 
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.H we consider the example J[U1 V ]==(kU; v)with B[:r] = £J[K] 

we have 
11 

that H is ~ seli -adjoi,nt extension of K with the same lower 
. . ' 

bound asK. t:)[K] .is a core of(H-~}Z: for any ?f.<:::: 't~ In this case 

H is called the Frfedrichs extension of K. 

2. Monotone sequences of forms 

We now state some theorems and definitions conce.rning sequences 

of forms. 

DefiniHc:m. A form J 1 is s~id to be not .smalier than a form J 2 , J 1 ? J 2 , 

if f)[J",] c fJ[Jz.] and J, [u]::?: J2[u] 

holds for every u in. B[J,], 

Definition. A .sequence { J"VI} of forms is said to~ be nondecreasing 

(nonincreasing) if 0 I'Y\ 6. 0V') (J M > J n) for yY) c( n I 

Definition. A sequence [ J"n} of forms is said to be dominated or 

bounded from above (below1
)' by a form J if J n .=::;. J" ( J n :;::;: .J) 

for all n. A sequence { J n} ig, dominated from below if and only if 

it is uniformly bounded from below, i.e. Jn .:::::_ 't where ~ is 

real and independent of n. 

' 12 ( I. Theorem F (Kato ). Let tJn..) be a nonincreasing .sequence of forms 

uniformly bounde.d below. Then there is a greatest lower bound, J, 

·of the sequence with the fohowing properties: 

(i) fJ[:r J 

11 
Kato (1} Theorem 8.1 

12 
Kato (1) Theorem 9.3 

J 

t 
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(ii) I i YY\ Jn [ u~ V] 
Vl~CO 

) 

(iii) for all n and 0 ~ J' 

for any J' such that J-1/ -rh 
...._ .._; I fOr all () , J is 

uniquely determined and we write J= infJn 
We now consider ncmincreasing sequences of closed forms and 

give the following two theorems. 

. 13 [ } Theorem G (Kato ). Let J" V'l be a nonincreasing sequence of closed 

forms uniformly bounded from below by J'li >-. ~o , Then there is a 

greatest lower bound J of the sequence with the following properties: 

1 1 1 
(i) J is closed and J ~ inf Jn; J ~ J for any J such that J ~ Jn for 

all n; 

(ii} Let Hn be the self-adjoint operators associated with Jn and let 

H be the self -adjoint operator associated with J. Then for any 

't <: ~0 

(Hn-~)-' > (H-~r' 
I I 

(H n- ~ )"iu w ) ( H- ~ )~ u 
for LJ in U fJ[JV'I] 

VI 
{iii} H in particular inf Jn is closable, 

J"-= ( 1'n f J n)"'"' 
(Hn-~iu ~ (H- ~)t L) 

and 

for 

U in UB[Jn] and 't .C:::::. ~o , 

13 Kato (I) Theorem 10.2 
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J is uniquely determined by [J" V\} and we write 

J" ::= c - 1
1nf JY) . 

Note: For a sequence of linear operators {TV\} the symbol 

TV\~ T means //TV'\ U - Tu//~ 0 as n --7 CO for 

all u in 0 B[TY'I]) Thu~ TU means(T~U;V)~(ru;v) 
for v in ~I 

14 
Theorem .H (Kate ). In Theorem G let the spectrum of H consist of 

discrete eigenvalues )A 1 <:)A 2. ~3 <:::. 1 1 • with finite multiplicities 

Yfl, «lz.. YYl3 ''' ' ) I ) . 
at least in its lower pa.rt. For each i and for 

sufficiently large n, there are exactly m eigenvalues of Hn in each 

neighborhood of U(• and these ml eigenvalues converge top\ for 

h ~ 00 . The projection on the W'l[ ...:dimensional subspace determined 

by all the eigenvectors corre.sponding to these eigenvalues converges 

uniformly to the projection on the eigenspace of H corresponding to 

the eigenvalue p l· 

3. Asymptotic perturbation series for H£'u and (~r1UJV) : first-.order 

approximation. 

We consider now the asymptotic perturbation theory of semi­

bounded closed forms. Consider a closed form~= (J + £ J: )~ 
[ > 0 where 0~ l 1 J"~ 0 I In the cases that we shall consider 

~ ""'v ...... 

We have Je: = J" + £ J"~ However, the next three theorems 

"- ........, -
hold if J"E. C J + E J ( is a 

core of J. 

We wish to study the spectral properties of the self-adjoint 

14 
Kato (l} Theorem 10.3 
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operator~£ 
,..,., 

associated with J£ in the sense of Theorem D. In the 

following theorems we get asymptotic expansions for the quantities 

H~'u and (H£'u1 V), 
Theorem 1.1 {Kat() 15 ~. Let J:;:: / be a closed form. For each E:. J 

0L.£<::'to 1 

,...,_/ 
let J£ ~ 0 be a closed form nonincreasing 

""'t 
as £ ~ + 0 , such that inf J£ 

(~+0 

be dense in f+ so that J + £J~ 

is closable. Let fJ[Y] n fJ[J[~] 
is a closed form for 0~ £ ~ £ 0 

" ""'- .t:;:i I 
nonincreasing as E ~ + 0 . Let JE C J + ( Uf b.e closed 

and nonincreasing as E.~+ 0 . Let U lJ[J£] 
O~E<Eo 

-be a core of J. 

' ,...., ' ,..,, 
Let J 1 = C- 1nf JE: 

E-+'+0 
be the self -adjoint operators belonging to 

I I 

respectively. Let At:== H2: He:-z: 

Then (i) H[') H-; A( J B~ are bounded operators and 

..L 

II Hi'//~ I ) liAr./}~ I ) 1/B~ II~ E.-z.) 

(ii) I ~ ..L I J._ 5'~ Af.. ~ ) Af. ---7/ ) E 2. Bz: ----7 0) E 2. E ~ 

for- £~+ 0) 
(iii) 

""'-' 

J=C ) 

(iv) 

H~'-7 ~~-~ 
(v} for any u such that H-lu in fJ [ ~] 

I ) I 

HE.' u = H-' u - E 1-/~-t B~~ H~T H-'u 1 

'·. ,, 
H~' u ::: H-'u + o((t) J E.~+ 0; 

15 
Kato (1} Theorem 15.1 
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. . -1 ~1 . ~IT'] (vll} for u, v such that H ' u, H v 1n /JLLl£ 1 
) 

( H~' u) v) . ( H-'u) v) -· c: ( H~ ~ H _,u) H/ H-~) 
2.(s/ • H'1 H. _, B1 * Hrt H-' ) + [ E £ . U J E: €. V 7 0.:::: t 6 [ 11 

.(H£'u)v} -(H-'u)v) -[(HdH-~; HliH-'v) + o([}, ~ 
[~+0. 

4. Improved first order approximation 

We can improve the first order of approximation for the case 
"" ........., ._.I . 1 JE. C J + [. J by restricting the domains of H- u and 

H-
1

v to b[~J n B[H'~ ) 1 ~ o( ~ I. We establish the 

following theorem. 

Theorem 1.2. Let J ~I 1 J'~ Q be closed forms. 

Let B[J'] n [J[J'] be dense in I~ ~ Let J[ c y t- [ J I 

be a· closed form, nonincreasing as [. ~ 0 , Le~ H£ J H J H 1 

- ,_ T' 
be the self-adjoint operators belonging to Jc.. ,JJ 1...1 _respectively. 

,f-~ -it-~ . 
Let c~ = H I~ HE where J3 is a real number such 

that 0.6f~~. Then 

(i) C £ is a bounded operator and // Cd/ = // c: J/ 6- £- f +,B , 
~ ~ ) 

(ii) E-z..-(3 (E ~ 0 as E~+ 0 J 

(iii) for any u such that H-
1

u is in E)[ft.] nB[H'o(]) 0 <. £ ~ E..,) 
I . 

where o( -=(3+ 2.) i_ (..0'(< I we have 

H_, - H-' H -t -~c ~ Hlo< H-' r.. u -. u - E £ E. u) " 

H 2 u ~ H _, u + o ( <L o() ) £ ~ + o ; 
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(iv) If u, v are such that H-
1
u. H-

1
v are in J;J[j£] n D[H.o<]) 

then (H£'u, v) =(H-'u) v) - E (H't H-'u
1 
H'± H-'v) 

- . . +- £'( H£~ c: H/o( H-'u) Hi~ Ce.~ H/Q(' J-r' v) 
1 

and 

( H £' u) u ) = ( H _,u) u ) - E // H' f H-I u 11
2 + o (E. zo<)) £. ~ + Q 

Pr.oof: (i) We first prove that CE. is a bounded operator. We need to 

give the following definition. Let A, B be linear operators in 1=4. . 

A is said to be metrically not smaller than B, A >>B. if ZJ(AJC fJ[B] 
and //Au// ~ 1/ B U /{ for every u in fJ[A]. We then need the 

following lemma. 

Le.mma 1.1 ~ (Heinz (1) Satz 3; Kato (8) Theorem 2) Let A and B be 

self-adjoint operators and letA ~OJ 8~ 0. If A >>B thenA'>>BJI 

for O~Y~ I. 

We have lJ[Je]C iJ[J"'] 
'"'J .....,; 

and Jf_[u] ~ [. :J'[u] 

for u in t)[Je], We also know from Theorem E that 

I 

~ [u] - II H~ u II' 

J'[u] = II H't u II' 

consequently, we have 

lJ[f"t] == B[ H/] ) 

[j[:f'] = D[H'r) 
) ) 

Now,using Lemma 1.1, we have 

. E t.-(3 H't-,g c::::: < H 1:-,s 
£ ' 

Hence II£~-~ H't-~ H;++f II ~ 
) 
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~ 

-2. +A £ ,.... 

The adjoint 

. I ..L.. 

C * H· --:r+f H' "l. -f 
f.. ~ '£ ,, 

(ii} We wish now to prove 

and 

[ ~ -~ c: ~ 0 ). E ---?- + 0 I 

We have c~ - H-t+~ Hrr-fu for E U -. E · · 

u in 'fJ[J''] 
1 

and . 
1 

fl c; uJ/ = II H£--t+~ H'-t -,s u II~ II Hr2:-~u/l) 
because 1-1£ >- I so II H(t+f3//~ I I Hence /} [ t-~ c; u II== 0(£±~. 

l.-Ac* o o Hence [ l. I £ U ~ as E. ~ + for 

c;:"\c- J ~....., [. -i-&c7 u in 1-.J J"' which iS a dense set in. r--t·· • We have that ,~ ~ 

II ct-,.s c: II~ I is uniformly bounded in [. ) c. c. - by (i) of 

the proof. We have then that II E. i. -(d ct u II~ 0 for u in 

dense set in PI and II (~ ~ c; u II~ I independent of [. ' so by 

Kato {1) page 86 we have II r-t-,B c: u 1/ ~ 0 for all 

~-., i.-A c*" o o u in H , which is E. r E ~ , E. --+ + . 

H;~ c: H' fl C. B'r:* Then we have c. c. c. Now if we assume 

H-lu in ~Cft:] n D[H'~ ,~ H-' that is that H U 

exists; then 

,. 

" 

f 
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H;lu On substituting this expression into the previous expansion for c.. 

We can let 

H --t-~c*H'o( H_, - ,t+~H-t-~ ~_,.c* LI'~H-' 
f. f £ U-t. E E. £/1 Lj 

, c* o o and since f.'=i'-(3 E. ~ as [ -4 + , we have 

H ~t-p E t-,d c; HI=< H _, u > 0 ) £ ~ + 0 ' 
Consequently, the second term in the expansion is o(E L +,S) =- o(E.o<). 

Hence 

H£'u-= H-'u + o(EQ() 
(iv} We now derive the asymptotic expansion for (Hi' U, v) under 

the conditions stated in (iv). From (iii) we have, for u such that H-lu 

is in fJ[J(] n [) [H'o<] ; and for v in PI , the following 

expansion 

(H;'u)v) = (H-'u)v) -£ ( H~t-~ c; H'o< H-'u) v) 
=(H-'u) v )- £( H"'' W' u

1 
C., H;t~v ), 

If we take v such that H-
1

v is in JJ[Je] () D [H'1 
then we have 

I 

CE H;-r.-,8 v == 
I I 

HA:-# H~2:+f3 H;Tt8 v 

H'~-ts H~' v 
== Hd:-,8 H-1 v - [ H' t-~ H~t-,B c; H'o( H-'v. 
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If we substitute the above expression back into the expansion for 

( H £' U J V ) we then have : .:, . · • -\ ·• · · 

(H£' u> v) == ( H-'u) v)- t. (_f-rl~~:.H .. -' u) H;f:-f H_, v) 
+ (' ( H'a< H-' :u; Hrr-,s H£-t-,s c; H'<>< H-' v) 

= (H-iu v)- £(H'~ Hd: J-r'u H'~ Hd: H-'v) 
. ) ) 

+ E'" ( H'o( H-' u) H't13 Hit+~ H£- 213 CE* H'~ H-'v) 

== (H-'u) v)- £ ( H~t ~r' u) H't H-'v) 
+ t ,_ (H'-< W' u 

1 
CE HE,s Hi,s C; H~-<Wv) 

=(Wu) v)- [( H'i H-1u, H'i ~r~ v) 
+c:•(Hi~C: H'o(H-1

U
1 
Htc; ~-(W1 v) 

So we have e.stablished the first part of (iv). To prove the second part 

we write 1 l. 

( H ~~ u J u) = ( H _, u) u) - [ II H /2: H _, u It 

+ E 'II H~,B c: H'o( W1 u It·. 
We must show that 
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That is~ we need to show that 

[ II H?g ct H;o< H_, u Jl 
:::-0 E....<.. 

E~+O 
t-o< ..L A 

We can write t. E 2. -r then 

E ,_"' II Ht c: H'o( W' u II = II Hi13 E. -l:-,e c; H'o( W' u II J 

but as E ~+ 0 by (ii}. so 

E1
-o< II Ht c* H'o( H-I u II ~ 0 as E~ + 0, 

We then have 

( H£' U
1 
u) = ( H-1 U1 u) -£If H'+ W' u II'+ o (tz-<)

1 
which completes the proof of Theorem 1.2. 

5. Second-order approximation 

H-1 
We n.ow state the second-order approximation for t U and 

( 
I ) """ T """ -, 2.. ~II Ht U; V . We assume that J"e is given by u£ C J + [J -j- £ JE: 
~ "-' 1 "'-' II 

with 0 >- I 1 J ~ 0 ) JE. ~ 0 . 
1 6 ,...., -'"V ,..._, I f"V II 

Theorem 1.3 (Kato ). Assume JE C J + [ 0 + (z. JE: J 

"'II 0 where Jc ::::_ is. a closed form, nonincreasing as E ~ + 0 , such 

,.._II T/1 • ""'II 
that inf J"E . is closable, and let u = c- \V\T IE . Let 

f~+O £~+0 

J'~ = J1 + EJE' and let lJ [)[Ji] be a core of 
t > 0 ,..,_.II ,..._II 

J~ Let H '' H" be the self-adjoint operators belonging to JE: J J. 
£, I j_ .l.. 

Let I - 8 II - H II ,_ H - 2. A~ == H /""'f: H~ ,_ ) E - € [. 

Then 

AI 8// 
(i} ( ) £ are bounded operators and 

I 

II A't: ll ~ c:-z: . 
.,...lb,_.....K~. a_t_o_(_l_) _T_h_e-or em 16 . 1 

) 
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(i,i) 

E ~A~-~) o, [~ !'\[_* .. o, d3{-~o, £a;~ oJ 
E ~+ 0; 

(iii) 

J' ==-· c- ,·nf X , 
(iv) if u is such that H-

1
u is in ) fJ[:JeJ () fJ[H] . for some 

E.,> 0) then 

-I . H-' H-I H' H-I . '2. H-tB''*H" ~ H-' He: L) ::::;- ' u - [ E u - [ [ £ y 
0 0::::: E. ~ ~I) . 

H£'u = H-'u - t. H-' H' H-lu + o(c:)) E.~+ o ), 
(v) if H-

1
u, H-

1
v in lJ[j£.] () f)[H'] for E 1 > Q , then 

(HE'u,v}=(H-'u,v)- t.(H'H-'ul H-1v) 
+ £-z.(H£1 H1 H-'u) HI H-'v) 
-{2-(H~~ W'u 

1 
H~!. W' v) 

+ t 3
( H' H-1 u, H( ~ B~* H~t H-1 v) 

+ ('(Hi*~*H~{H-'u} H'H-'v) 

. + £~ ( B~~H~t W' U
1 
B~~ H~t W1v )J 

. O<~~E.,l 

(H~~~vJ=(H- 1 u)v)-E(H'H-'u) H-'v) 
. + E 2. ( H-' H1 H-' u J H1 H-'v) . , 
- t.z.(H"t Wu, H''l: H-1V) +o(£') J t _,+o. 

To conclude this chapter we give the following theorem which we 

use repeatedly. 

.. 
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""-/ ~"'..,; ""I 

Theorem 1.4. If we have JE. = J f £ J~ , then the condition 

H-lu in 5[H~ "] J t ~ (( ~ I) implies H-lu in fJ[JJ, 
Proof: H-

1
u in ..tJ[H~Il'J implies H-lu in lJ[H~f ]·= f) [J£'] 

1 

H- 1u is clearly in fJ[H] L tJ{J J . Hence H-lu is in 

b[J] () D[jE'J = !J[JE] I 
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II. 

~ -· \ . 

PERTURBATION THEORY OF SINGULAR ORDINARY 
DIFFERENTIAL OPERATORS OF.iTHE SECOND ORDER 

· ~.... .'~~ r~·~ .' l. H ~ 

i. Statement of the Problem and Results 

Consider the differential equation 

0 (2 .1) 

) 

with a< x < b where-oO ~a< b ~+CO and A is a complex number. 

The function q(x) is a real-valued, continuous function in the open 

interval (a, b). When (a, b) is a finite interval and q(x) tends to finite 

limits at a and b we have the classical Sturm-Liouville problem. 

If (a, b) is an infinite interval or q(x).-.co at either end point we have 

the singular case. There exists considerable theory for this case. 
17 

We shall consider only the singular case, since most of the interesting 

applications to mathematical physics are of this type. 

We consider the case where Eq. (2.1) is of the limit-circle
18 

type at a and the limit -point 
18 

type at b, although the results to be 

shown will apply to the other possibilities, L e. limit-circle type at 

both end points or limit -point type at both end points. 

In Eq. (2.1) let a = 0 and b = +CD ; then for the case we are 

considering to be a solvable eigenvalue problem, i.e., for some A. 

a y(x,A) in L 2 (0,00 ) satisfying Eq. (2.1), the solutions y (x,A 

must satisfy a condition of the form 

y (O) cos e>< + y' (o) sino< - 0. 

17 Weyl (1), Stone (1), Titchmarsh (1), Kodaira (1) 

18 Weyl (1), Titchmarsh (1) Ch. II, Kodaira (1) 

(2.2) 
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We .shaH further assume q{x} real-valued, continuous in (0, CO }. 

and CJ(X) ~ 9o >-co for all X in.- (01 CD), (23} 

Equation {2.1) with conditions (2.2~ and (2.3) will be ·called the 

unperturbed problem. As is usual in perturbation theory, we assume 

the unperturbed problem to be completely solved, i.e. there exists a 

complete set of eigenvalues and eigenfunctions {discrete or continuous) 

that can be calculated. 

Now consider Eq. (2.1 )"to be modified, 

d~v } dx'z. + t;\-q(x)-£p(x) y==O 
where [ ~ + 0 and X is. in (0, ro :). The term £ f(X) y (X) 

considered. as a perturbation on Eq. (2.1). We assume 

p{x) .real-valued, continuous for x in (0, CO }. 

p(x) >- po > - c:D for x in (0, cp ). 

is 

The boundary conditions are given by Eq. (2.2). Equation (2.4) with 

(2.4) 

(2.5) 

conditions (2.2} will be called the perturbed problem. We wish to find 

expressions for the eigenvalues and eigenfunctions of the perturbed 

pr.oblem in terms of those of the unperturbed problem. 

Before stating the results of this chapter we need to make some 

further assumptions. We assume the inequality 

lf'qrx)f{x)-~j f(x) dx ;;::. t I~(x)t" dx 
0 0 

) ~>-OQ 
(2.6) 

for allf{x) in L2.(0,oo) satisfying conditions (2.2). We have from 

integration by parts, 

f{qr)\lf(x)-~~~} f(x)dx...:JU~: )'" + 9(x)[f(xl]jdx -[f(o)}~oto<. 
0 0 

For the case f(O) :::- Q we see that 'Is'= qo, as given in condition (2.3). 
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In addition we assume that at least the lower part ,of the spectrum of the 

unperturbed problem consists of discrete eigenva~ues. 
' _, I• 

That is, there 

exists a number A >If:: <::. CO such that 

A , < A 2. < A 3. <( I I I < ·A V) .::::. A~ 
I (2. 7) 

where \
1 

I< I I ) ~Vl are points of the discrete spectrum. 

Consequently if any contin~ous spectrum exists it lies ~bove )..*' • The 

nature of the spectrum of eigenvalue problems in equations of type (2.1) 

is determined by the behavior of the function q(x) and also the· boundary 

conditions. Discussions of this problem, including criteria for the 

disc.retenes.s of s.pectrum, are given by Friedrichs (3) and Titchmarsh (1 ), 

chapter V. We have, for example, the criterion that if q(x) ~CO 

, then there is pure point spectrum. In quantum 

mechanical problems this correspond.s to a potential well with sides of 

infinite depth, which leads to only bound states. 

With only Assumptions. (2.5), (2.6), and (2.7), which in practice 

are not very restrictive, we can derive the zeroth-order approximation, 

which is given in the following. 

Theorem 2.1. Let Ao be an isolated eigenvalue of the unperturbed 

problem. Then inthe neighborhood of Ao there exists an eigenvalue 

Ae: of the perturbed problem, and in this neighborhood there are 

no other points of the spectrum of the perturbed problem provided E. 

is sufficiently small. Furthermore we have that 

E.~+O. 
Wit.h the above theorem we establish the fact that for an eigenvalue 

/ 

of the unperturbed problem there exists a corresponding eigenvalue of 

the perturbed problem that converges to it, but we cannot make such a 

statement concerning the eigenfunctions at this point. 
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We shall assume that for the remainder of the chapter, conditions 

{2.5}, (2.6). and {2.7) are .satisfied. We now proceed to the first-order 

approximation and make the following additional assumption: if ¢o (x) 

is the eigenfunction corresponding to Ao of the unperturbed problem; 

then 

(P(xl f ¢o (x)r d x < co 
0 

(2.8) 

This condition assures the existence of the first-order coefficient in the 

formal perturbation series, 

With Eq. {2.8} we state 

Theorem 2.2. Let Ao be an isolated eigenvalue of the unperturbed 

problem and let cp
0 

(X) be the corresponding eigenfunction with 

_({ cl>o(x\}" clx = I , 
Let 

then 

J 
(2. 9} 

!£ ~(X) is the eigenfunction corresponding to A~ then we have, uniformly 

in any finite interval, 

With Eq. (2~ 9) of Theorem 2.2 we have the first-order approximation 

to the perturbed eigenvalue rigorously established. It is seen that the 

first two terms of Eq. (2.9} ag.ree with the corresponding terms obtained 

by identification of coefficients in the formal series expansion that is 

usually assumed. As we shaH see in the proof of Theorem 2..2, a bound 

can be computed for the error involved in taking the first two terms of 

the series to be the perturbed eigenvalue. 

The order of approximation can be improved by introducing further 
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restrictions. We shall state these in a new theorem. 

Theorem 2.3. Let Ao be an isolated .. eigenvalue of the unperturbed -- . 

problem and let ¢
0

(x) be the corresponding eigenfunction with 
00 . 

[ f ¢o{X)_}' d X = j 
0 Let 

;._111 = fP(x) f ¢o(x)}'-dx .::: ro 
Furthermore, assume that 

i 7 r(xlf' { cPo(x )}'" d X <( CD ) 

where t ~ o<. ..:( I then 

~£ = Ao + E ~I) + 0 (EZP<) 

If cpE (X) is the eigenfunction corresponding to A£ 
uniformly in any finite interval,, 

then we have, 

<PE (X) - c?o(X) = o(£<><) ) £--? + 0. 
This theorem indicates that if the function p(x) satisfies the more 

restrictive condition (2.10), then the approximation to AE by the 

first two terms of the series is a closer one. 

We can now proceed to the second-order approximation of the 

(2.10) 

eigenvalue and first-order approximation of the eigenfunction. Again 

we must introduce further restrictions that the function p(x) must 

satisfy. In the statement of the next theorem we assume that the lin-

perturbed Eq. (2. 1) has a complete set of discrete eigenvalues and 

eigenfunctions, i.e. pure point spectra. This assumption :ls not 

necessary for the proof of the second-order approximation, but is 

taken for convenience in express:lng the coeff:lcients of the higher -·order 

terms in the perturbation series. 
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Theorem 2.4. Let { Ay} and ['fiJI {x)} J Y = 1, 2, 3, ..... , be the 

eigenvalues and orthonormal eigenfunctions or' the' unperturbed problem. 

Consider a fixed n. 
··, .. 

Let A~\= {~(x) [ l)J., (x)Yd X L. co 
0 

Furth¢rmore, we a.ssume 

CXJ l i p(x) \fl., (x)j" d x .:::co 
0 

) 

then 

where 

2. \(2) 
+ E /\VI 

(2 .11) 

If ~£ v.JX) is the eigenfunction corresponding to A£ Vl then we have, 

uniformly in any finite interval, 

lVe_ V) (X ) = lfJ V\ (X ) + E tjJ ~l (X ) + o ( E ) ) £ ~ + OJ 
where 

co 

yJ~\x) =I_ fv~~v ip(y)lJln(y) lJlv(y)dy , 
V~V'\ V\ a 

Higher -order approximations to the eigenvalues and eigenfunctions 

can be obtained by the methods to be employed in this chapter. For 

purposes of applications to problems in mathematical physics the first-

and second-order approximations are usually all that are employed, as 

the difficulty in computing the higher-order coefficients becomes great. 



-29-

In fact in many practical problems. only a few eigenvat,ues, and eigen­

functions of the unperturbed problem are k~own f,:rp'P1r;rnp:l];erical 

integrations of the differential equation. In these ca~es only the first-

order coefficient of the perturbed eigenvalue can be computed in the 

conventional manner. In a later section we give a method for determining 

the second-order coefficient even though the complete set of eigen-

functions for the unperturbed problem is not·· known. 

The results of Theorem 2.2 and Theorem 2.4 are similar to those 

of Titchmarsh, 
19 

but Conditions (2.8) and (2.11) are less restrictive 

than his conditions. Theorem 2.3 is a new approximation. 

2. Formulation of the Problem in the Theory of Quadratic Forms in 

Hilbert Space. 

In order to establish the theorems stated in the preceding section 

we need to first formulate the problem as one in the spectral theory of 

linear operators in Hilbert space. As the Hilbert space, P4- > we have the 

space o£ real-valued measurable functions, f(x). defined on (0; CD) 
which are square -summable, L e. the space L 2. (0, co)' Measure and 

integration are in the sense of Lebesgue. In this space we have the norm., 

II f II = ( (1Hxl}'-dx )t L_ oo 
and the inner product 

00 

( f I 9) = l f(x) 9 rxl d x 
for f, g in pj. Actuall~ this space is a set of equivalence classes of 

functions. Two functions are equivalent in this sense if they differ only 

on a set of-Lebesgue measure zero. So 11 f,(X)::: f,(X) almost 

everywhere 11 is equivalent to II f1 - fz. JJ == Q, 

19 Titchmarsh (2) Theorems 4, 5, 6, 7 
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For the unperturbed problem we are considering the differential 

operator, which is formally given by 

Lu = qrx)u(x)-~:~ 
for u(x) in L1.. (0 

1 
(X)) and Q < X <: Cf). The function q(x) satisfies 

Condition (2.3). Luis not defined for all u in Ff and L is an un-

bounded operator. Consequently, for L to be properly defined as an 

(2.12) 

operator in Hilbert space its domain must also be specified. The domain 

of L J .lJ[L] is the set of functions u(x) such that u(x), u' (x) are absolutely 

continuous and u, Lu belong to!::! . The unperturbed problem can be 

written as the following eigenvalue problem in PI 

Lu=AU 
1 

(2 .1. 3) 

where A is a complex number. 

In order for Eq. (2.13) to be a s·olvable eigenvalue problem, L e. 

a complete set of eigenfunctions corresponding to real eigenvalues that 

satisfy Eq. (2.13), we must have a self-adjoint operator. The operator 

L with domain 5[L] is not self-adjoint. We must find the self­

adjoint contraction H C L, i.e. the operator H given formally by 

Eq. (2.12) with EJ[H] C D[L] and such that His a self-adjoint operator. 

The theory of singular second-order ordinary differential operators 
17 

indicates that since Eq. (2.12) is of the limit-point type at C:O and of the 

limit-circle type at 0 a suitable boundary condition must be imposed at 

0. 
. 20 

Only conditions of a certain general form are admissible. The 

boundary conditions for the u11perturbed problem given by Eq. (2.2} are 

self •adjoint boundary conditions. 
20 

zo Weyl (1.}, Stone (1} Ch. X, Kodaira (l) 
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We have then that the operator H -- given formally by Eq. (2 .12) 

arid with domain 8[H~ where iJfH] is the set Of functions u(x); 

.0 <X<::: CD 

H u belong to \::4 

such that u(x), u' (x) are absolutely continuous, u(x}; 

. I ' 
and also U(O) C.OSo< + U (O).SJno< == 0 

is _a self-adjoint. operator in Ff · ·: And the unperturbed problem 

., ,: (2.14) 

·is ~ self -,adjoint eigenvalue prpbl~m in Hilbert space. 

Similarly we can define the ~elf-adjoint operator 

Ht. = q (x) +E. p(x) - jx'-'2.. > E..> 0 (2.15) 

for OzX<.OOand q(x} as befo~e and p(x) satisfying Eq. (2.5) real-valued, 

continuous in ( 0) CX)). The domain of He: J f)[H£] is the set of ru~ctions 
u~x}, 0 <( XC::::. CP) such that u'(:x), u' (x) are absolutely c ontinuous, and 

u(x), HE U · belong to ~ and also 

u(o) c.oso< + u'(o) si ho< = 0 
Then HE. is a self -adjoint operator and the perturbed 

problem 

H~ u == AU (2. 16} 

is a self -adjoint eigenvalue problem in Hilbert space. 

We see that HE. is given b; 

H£ = H + £ H('1 
{2.17) 

. H(l) 
· where the perturbing operator, is just the multiplication operator 

given by l-f' 1u == p(><) U (X) and B(H('~ is the set of functions u(x} 

such that II Hill u II = ( £lf(x )V ( xlt cl X t ..::. 00 . • • ' ' 

We have B[H£] = D[H]'n B(H('~ = § -Let-H be 

the restriction of the self":adjoint unperturbed operator H to the domain 

-~.<>f th~ ·self:::ad-joint operator H~:_. We have for u. v in "fS 



-32-

CD 

= { [~ ~ + qlx)vlx)vlxj d 11 _ lJ(O) v( o) cot o<. ; 

ex:> 

( V Jf v) = i U( X l[ q (X\ V(X) - sfx, J d X 

= { [~-t + q(x)u(x)v{xij dx- u(o)V{o)cot<><., 

I ' 
J l.).J V E EJ . 

We have then that H is a linear symmetric operator. Now let us 

define the form J[ U J V] = ( H U J V) whe:re .S[.J] =B. 
Then the quad:ratic form is 

T[u]=(Ru)u) 

-i~~~ r + CJfx)[u(xl}'"] dx -. [ U(ol} wto<. , 
We have from condition (2.6) that J is a lower semibounded form. 

Furthermore, J is closable, since it is derived from a semibounded 

-symmetric operator. Denote the closure of J by J. The self -adjoint 

---operator associated with J, in the sense of Theorem D, is denoted H. 

It is the Friedrichs extension of H . From the spectral theory of 

ordinary differential operators of second order. 
21 

we have that H 

21 
Rellich (6), Rellich (7) p 54, Stone ( 1) Ch. X. 
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with domain Jj is an essentially self -adjoint operator. Therefore~ 
~ ......... 

H is its unique self -adjoint extension and cCin~eq_uently coincides with 
i 

H. That is~ we have 

R=H ) 
JJ[H] fJ[H]. (2.18) 

Now let H('l be the restriction to f) of the perturbing operator ,.. 

aP) defined in (2.17). We have u~ v in fJ 
CD 

(f.{'1u,v)= fp(x)u(x)v(x)dx =(u) R''v). 
We have the~ that H'1 is a linear symmetric operator. 

ltl~ ,l (H-tl) . ) 
define the form J L U J V_J = · U; V with 

The quadratic form is · ro 

J<'ru]- (R01 u, u) = l_p(x)[ u(x)Y dx 
0 

CD 

:;?:::. po {{u(x)J\Jx) 

Now we 

.which is seen to be lower semibounded. The form J(l) is then closable 

. ..,; ( 1) 
and its closure is denoted by J . The self -adjoint operator associated 

with J {1) is j:f{l) and is the Friedrichs extension of H(l). Moreover, 

]HP) coincides with Hr{l); a multiplication operator, with domain f::) 

is clearly essentially self-adjoinL That is, we have 

) 

TC" ::::· T + c T. (
11 We can define the form J t. J c. v for E.:> 0. 

where 5[Je:] = EJ It is clear that JE.. is lower ·s:emi .. 

bounded since J and J(l) ar~ lower semibounded. The form JE. is 
~ 

closable by Theorem B and its closure is denoted by JE. . We then 
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have from Theorem B that ~ C J + [. :f<'l, We further have 
"" .._ "'Ill 

that JE.. = J + (. J' . - -(/} 
by Theorem C, since the operator H t- f. H 

is essentially self-adjoint. The self-adjoint operator associated with - - ~ 
Jg is the Friedrichs extension of H + £ H and coincides with He: 

H + c U.('l defined in Eq. (2.17) since c.. 'l is essentially self-

adjoint. 

""""-
So we have that the self-adjolnt operators associated with JJ Jf~ 
~ H H01 H JE: are the operators J J E previously defined. 

Consequently, we have an equivalent formulation of the perturbation 

problem given in Eqs. (2.16) and (2.17), that is, to find the spectral 

properties of a self-adjoint operator Ht: associated with a quadratic 
"J -"".,; .- .......,(I) 

form J£ where J£ = J" + E J' . 
For convenience we can assume without loss of generality that 

J~ I ; Jt•l ~ 0 J 
- -, 22. 

and therefore JE. ~ 1. (Kat'o J This 

implies that 
(H v; u) ~ ( UJ U ), 

(He" u) u) >- 0 . 
(2 .19) 

These conditions appear to be much more restrictive than conditions 

(2.5) and (2.6); however, the condition (Hu_) u) :::::: ( u) u) may 

be assumed if H is only bounded below, for we only need to add a 

suitable constant to H and this means only a change of the origin of the 

spectra of H €. by the same amount. We write condition (2.5) 

( Hl') u) u) ~ - o( ( u J u) - ~ ( H u j u) I o() f3 -;:: 0. 
If we set Hl'l' = H(') + o( + {3 H then { H('}'uJ u) ~ Q, 

Also we see that H + £ H(r\ = H + £ (HW -o< -,SH) 

22 
Kato (1) page 77 

~(l- <:f3)(H + 1!:'<-f' H1
'
1')-t:.o< 

= ( I - £ps )( H + [I H Ol' ) - ( o< ' 
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.- ",,.·, 

The factor (1- £. (d} and the added number ,..-e,~ imply only a change 

of scale and of origin of the spectra of He. . So we could consider the 

H' + 1 Htn
1 

problem of E 

and ( Hill~ ; U ) >- 0 J 

where we have ( H~.~ u) =:::: (u, u) 
and H 

1 = H + /l{ J + / 
I ) 

HM == H(l' + o( +(3 H. 
Consequently we shaH assume that condition {2 .19) is satisfied for purposes 

of convenience in proofs. 

3. Zero-Order Approximation; Proof of Theorem 2. L 

In Section 2 of this chapter we formulated the perturbation problem 

in the language of semibounded closed quadratic forms. In particular 

we have the relationship 
""'-' A/ ,...._, 

JE ::= J + [ J(n) 
) 

and 

lJ[JcJ =· B[~J () 8[J1'1J 
which is independent of C. . With th~s formulation of the problem we 

can make use of the asymptotic perturbation theory of such forms. 

Considering B[Je]as a set defined for the continuous parameter €. > 0
1 

we note that 8[.Je:] is independent of E. , We can show that If. 
is nondecreasing in ( , that is nonincreasing as £.---? + 0 by 

the following simple argument. 

d"l.u 
dx;: + [;\- q,(x)j u = 0 

Consider the two equations for x in{OJ oo)
1 

) 

~ + (\- q-z.(X)) U 
d x'" 'l lf 

0 

with U ( 0) =- 0 • 
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Let 

J,[u] = Sff~~r +- q,(x)[u(xJ]j dx 
0 

J?.[u]...: fG~r- + 92.(x)[u(xl]J dx; 
. 0 

clearly J2.[uJ ~ J", Cu] for u in B[~J n f)[Jz] 

if q2 (X) ~ q, (X) for all X in (OJ CO). 

Iri our case q, (X) = 9(X) + E.,f(X.) J 

qa (X)-= C/(X) -f- E 2 f(X)) 

[2.~ £,I 

Now from Theorem H, using a continuous parameter [. instead 

of the discrete index, we have the lemma 
........ 

Lemma 2 010 Let Je: >-. I be a closed form, nonincreasing as [.--.:, + 0, 
........ ' "J 

Let J = C -1nf J~. If Ht is the self-adjoint operator belonging 

t.~+O 

-and H the self -adjoint operator belonging to J, and if the 

spectrum of H consists of discrete eigenvalues at least in the lo'Ver part, 

then the same holds for He: and the eigenvalues of HE. converge to the 

corresponding ones of H. teo ;\£j ~ Ad 
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~· the upper bound for discrete spectra. 

In Section 2 we noted that Je ,?: I could be assumed if conditions 

(2.5) and {2.6) are fulfilled. We assumed in Eq. (2. 7) that the lower 

part of the spectrum of the unp7rturbed problem is discrete. Consequently, 

Lemma 2.1 applies directly toour problem. Theorem H provides that 

in each neighborhood of AJ 
is exactly one eigenvalue of 

which is a simple eigenvalue of H, there 

provided €. 

is sufficiently small. ' We he~;ve thus established Theorem 2 .1, which 

· .. gives the zero-order approxi:lt;lation to the perturbed eigenvalue. 

4. First ... Order Approximation; Proof of Theorem. 2 .2. 

We proceed now to derive the first-ord~r approximations. We have 

fo.rmulated the problem as one of finding the spectral properties of Ji(. 
,_ 

which is the self-adjoint operator associated with the closed form J(, 
. . . "'"'w ~ "'-{I) . .t:;:z/ ,.....; (lj . ) 

defined by JE. = ...J +tJ' ~ where u J J were defined in Section 2. 

H and H(l) are the self-adjoint operators belonging to J, ~ (1). We have 

assumed for convenience that J>- l .and J ~ 0 . We have that 

is dense in Ff and 

independent of €. . Furthermore, in the previous section we showed 
,..._ 

that Je is nonincreasing as E ~ + 0 
With these considerations we can now make use of Theorem 1. i 

from the perturbation theory of quadratic forms. 

In order to derive the first-order and higher -order approximations 

to the perturbed eigenvalues and eigenvectors, we use some lemmas 

. . . . 23 
on estimating eigenvalue.s and eigenv;ectors developed by Kato. 

Consider a self-adjoint operator H with th~ trial eigenvector w. 

23 
Kato (2) 

... 
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Lemma A {Kato
24

}. Let w be in 8[H]_ 1 //W 1/ = / ) and 

let f( =(Hw) w)) e = 1/(H -yt) w//. Then for any 

o( <( fl_ the interval ( o( J Y{_ + t?_ ~~] contains at least one 

point of the spectrum of H. and for any (3 > yt_· the interval . 

92. ) 
[ VL -_ (3- rc ) (3 has the .same property. e~ //(H -~) W// 

for any scalar '((, 

Lemma B (Kato25 ~. Let (o<J3) be an interval in which there is at 

most one nondegenerate eigenvalue of H but no other points of the 

spectrum. Let W J '1 1 9 be as in Lemma A and further let 

82. ~ (yC -o<.J{ f- Yl_), Then the interval (0< JjS) contains 

exactly one eigenvalue Ao , which is contained in a smaller interval 

~ s' el. J · L 1- r6-~) V1_ + fL _ o< , Let ¢ 0 be the 

eigenvector associated with Ao , Then we have 

~E 
II ¢o- w/1 ~ (t _ -fr) Y'i provided 

e c::: b = h') iV\ ( rc - o< I f3 - 11) J. II ¢o I( -= I ) (<Po) w) ~ 0. 
Proof of Theorem 2.2. From Theorem 2.1 we know that the interval 

) 
l -1 -1 

(o< J A contains exactly one eigenvalue A E. of HE. so we can 
r- -! ) 

apply Lemma B to H£ with the trial vector W-= ¢<:J the un-

perturbed eigenvector. Then yt :- ( H;' ¢0 J ¢0 ) . 
00 

From condition (2.8), l r(X) f ¢o(X)}4 d X .-::_ OO 

is in ° lJ[H(•l±] :_ £J[J"Cd] and there-we have that cp 0 

fore A=1cp 0 is in f:{ :f1 and also/·f
1cf:>

0 
; consequently H_,¢0 is in t)lJ J 

' ., ...... ---. ··-.. ' . ·-~-

24 
Kato (1} Lemma 18.1 

25 
Kato (1) Lemma 18.2 
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by Theorem 1 A and we can use the asymptotic expansion of 

(H~'¢o/P0)given by Theorem Ll (iv). Then 

( 
·, ) . IJ (r/'t -1 /}

2 

·- t'l_ ~ H- <Po 
1 

cp 0 - [_ H H ¢o If. + 0 ( E ) J 

. I 

. I \ -2 // HI I) T ~ 11 2. + ~ = A~ - E /\o '-f-"o o(l); 

-We have 

e = II ( H~' -I(_) ¢o II 
. f jj(H£' -. ;.,-; ) ¢o)/ = )/ H;' ¢o- tf'cPo //~ o(E ~) 

by Theorem L 1 (iii). So e::: 0 (t i) and 8 (. L... ( VL- o( )( (3 -'1.) 

for sufficiently small E. • Using Lemma B, we have 

which gives 
\ \(I) A E -==. · f\o + ~ 1\ + 0 ( [) J £ ~ -+ 0 J 

. a) 

where A1
'' = II H111

-l: <:Po 111. = l pcx) t cpc( xJ}d X ' 
a 

Also by Lemma B we have_ ...@_ 

\1 cp t. - cp o~~ E, [ I - s ( t r r~ , 
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assuming 1/cp£ /J= / and ( cpE.; cp0 ) >- Q 1. so we have 

/1~-cf:>o/1= o(£~) J £~+0. 
It is interesting to note that by using Lemma B in this way we 

actually can get estimates of the errors involved in these approximations. 

We see that e. 

8 2 == /J{H£'- rU cpo J/
2 ~ J/ {H€' -A~1 ) ¢o J/ 

= Jl A-~ cpo - E A~ H;~ B~ 'ifc H(l).i. <i:t, -A ~I ¢o t· 
= {'-A:'- II HE-i B~* H(l)f <:Pot· 
L. E.' ).~a //B~* H1

'
1t¢o f = E A~~/c:tB~*H(I)tcitf 

~ E A-oz. II Hod: cpa It = E.. A:2 X') 
1 

because we have Jl HE.-~}} ~ / and J/ E~ B~~~~ ~ /. 
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All the quantities on the right..,hand side can be computed easily,. We 

have a similar inequality fo:r the other side from Lemma :& . 

We have established · ·. · .. 
1 

.· 

.. (if <P.(x)- ct>o(xJt dx r == 0 (£ i:) ) c -'H OJ 
arid now wish to derive the uniform convergence over any finite interval. 

We make use of the following formu1a26 which can be verified by 

·integration by parts: For' any continuous function u(x) with continuous 

first and second derivatives we have 
X+AX I .. 

U(X)-:- (ll,X)'-f Ux+Llx- yt{y -x) u"(y) -(by- bx- 4M) urygdy 
X . . 

Using the above equation together with Eqs. (2.1) and (2.4), we have 

X+t::.X 

~(x)= dxJ .. )[(x+c.x-y)'"(y-xX gry) + c: pry) -A~ c4_ (y)dy 
X 

X+b.X 

- rfxi .. f(loy- bX- Lf to~ cj:;E (y) d Y J, 

X 

. . X~~X 

t(x) = dxlJ[rx+ 6X -y)'"(y -x) { qry )- ,q 4Vyldy 
)( 

X+-b.X 

-dxi·J ( b y -b X - 4 ~X J cpo ( y) d Y . 
X . 

Hence --- ¢f. (X)-- cpo( X) 
X+AX 

=c~xt fUX+~>x-yJ'"(y-x){qcyH.}-(by -bx- 46 '4/NHyl- ¢/yfidy 
' .X. . 

26 . . 
Titchmarsh (1) p 34 



• 

-42-

(; X+b.X 

+ rixl· /X+ M -y) 2.( y - X ){E: pry)- ( AE- Ao)} ¢t ( y )d y . 
X 

By the Schwartz inequality, the square of the first term is 

OJ/ ¢€- cpo JJ' = o(E) 
So the first term is o(c;i:) and the s~cond termis O(E)//<It./1== O(E). 

Consequently, we have ~ (x) - ¢o(X) = o(£ ~) ) [ ~ + 0) 

uniformly over any finite intervaL We thus have establi~hed Theorem 

2 .2~. giving the first-order approximation to the perturbed eigenvalue 

and the zero-order approximation to the perturbed eigenfunction. 

5~ Improved First-Order Approximation; Proof of Theorem 2.3. 

We wish now to·improve the approximations derived in the 

previous section by imposing further restrictions on the perturbing 

term p(x). In order to do this we use the results of Theorem i .2 .. 

Proof of Theorem 2.3. We can apply Lemma B, given in the previous 
-I 

section, to H~ with the trial vector cPo 
1 

the unperturbed eigenvector. 

From condition (2.10) of The.orem 2.3 we have 
CX) i 1 p(x)}2

o< {qlo(XlJ \j X C:... OJ J 

which m
0

eans cpo is in .[)[H1'b<] also A~ ¢o in [) [H"Jo<] 
cons.equently, H-I cp

0 
is in fJ [Ht'loo<] and we can use the 

expansion of { H~' cp
0 

J cp
0

) given by Theorem 1.2 (ivL 
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Then 

Also we have 

We note that 

e =II (Hi'-~) cpoJ/ 

~ J/ { H;1

- A~' ) 4d/ = 1/ H£-
1 

¢o - H-~o 1/ == o(E:o<) J 

by Theorem 1.2 {Hi}. So 8 = o(E~) and 82. c:::. (rc- o< y rs-rL) 
for s,uificiently small [. j where the interval {:::K.J~) c~ntains exactly 

one eigenvalue A'€1 
, 

Using Lemma B~ we have e' \ _
1 

. . e" 
. . - (S-rt, 6- 1\E - rc ~ YL -o<.. 

Hence 

A~ = A~ - E x;,a II H"'~ <Po f + o(E2."'), 
which gives. 

. . CX) . 

X''= II H111+ cpJ' = lrr~H ¢o (x )f d x . 
0 
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Also by Lemma B we have 

.c.. -
assuming 

) 
>0 -

Then we have 

We derive cpE (X)- cp
0
(X) _:_ O(€o<) 

1 
E ~ + 0 uniformly over any 

finite interval from convergence in the mean exactly as in the proof 

of Theorem 2.2 in the previous section. We have thus established 
I 

Theorem 2.2, giving an improved first-order approximation to the 

perturbed eigenvalue and an improved zero-order approximation to 

the perturbed eigenfunction. 

6. Second--Order Approximation; Proof of Theorem 2.4. 

We proceed now to derive the next order of approximation for 

eigenvalues and eigenfunctions by imposing further restrictions on the 

function p{x~. 

Proof of Theorem 2.4. 

Let t E ( A)1 be the resolution of the rentity for the self ~adjoint 

operator H. We define the operator s. 

s S' 1 
'A-'Ao dE(A) 
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w:here an trleans integration except for the point A= A 0 ) 

eig.envalue of H. S is called the reduced re.solvent of H and is a bounded; 

self-adjoint operator. We u:se the following lemma from the perturbation 

theory of quadratic forms. 

27 
Lemma, 2.2 (Kato ) Let be closed .forms. Let 

~[JJn B[J''] be de~se in W 
be a closed form nonincreasing as €. ~ i- 0 

Let JE-= :f +-E. J' 
Let H£ H' H ) ) -- - -be the self.-.adjoint operators belonging to J'E. 

1 
J 1

; J" respectively. 

Let A o be the eigenvai,ue of Hand let ¢
0 

be the corresponding 

eigenvector j II (/)o/1 =: I I .Let 'Po be in f)[H 1
] r Then 

AE = Ao +E. X'\+ £ 2
A(2.) + o(Ea)J E~+OJ 

cp~ = cpo + E cp(l) + o(E) ) E ~+OJ 

X'1 
= ( H 'cpoJ c/Jo) 

xl) = ~ cs HI ¢c) HI ¢0 ) ) 
. . cp(l) -= - S H 1 cf?o . 

We assume that the spectrum of the unperturbed operator is totally 

discrete and denote [ Av) and { \f;11 {X)} ' as the complete set of 

eigenvalues and· orthonormal eigenfunctions. We consider a fixed 

\1 I and from condition {2. 1l} of the the. or em we have 
(X) . . ll jD(Xll/l~(x)f dx .c:. oo 

0 

Thu:s YJ""' is in £) [H '] and w:e apply Lemma 2.2. The spectral 

representation of H ·is 

Hf =sAd E(A )f 
Y=l 

27 
Kato {1) Theorem 20.1 
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for some fin t)[H] . So we have 

From the lemma we then have 

where 

X~ = J~x) [ !fn (xl}" d X J 

0 . 

and 

4'~1 (x)= L ~~~ [fi~cyi lJJn (y) ljly{y) dV 
v :t='V\ n V c . 
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We .shall now establish the uniform convergence over any finite 

interval, The function tf{,'''{x) is tw4ce differentiable and satisfies 

the following diffe:rential equation: 
~ 

dl. (II (1) {1) ~?· . d;,:' +- [ t\,- q(x)]4JVI :=: - {A~ - p(x)J 'L/Jn I 

This is not an eigenvalue p~obl~m but ·~~' 1(X) must satisfy conditions 

(2 .2) at X= 0 and belong to. L2. ( 0 J Q)) .. ·We verify that 

II IV)( I) (X) 't'l .. does satisfy the above differential equation by w;titing it 

in the fol'm 

H~~~~ ~ AV)\fJ~11 -. H'LPr~ 
OJ 

I}Jy-[_ H~v L/Jv + H~n t/Jn 
V=l 

I 

Hnv tfJv 

I 

Hnv H tg 
A~-.Av v 

Hlp~) I 

Now, using the representation .for twice differentiable functions given 
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in Theorem 2.2 and the differential equation for VJ:I) (X) , we have 

·, (rX+AX 
l/1:1 

(X) ==r~xl'j[(X+M- y) Yy-x)[ 9ft l -An}-(b y-bx -4bXg l/1~' 1 ry ldy 
X 

Xt-AX · · . 

+ rdxt{( X t 6.X- y)'"( y- X ){pry)- A~j lfJ~ (y )dy. 
X 

Also from Theorem 2.2 we have , %n (X) _ (j}h (X) 
~~ . 

=(6~l{U x +t>x- y) Yy -x}f q ry l-A,} -(6 y -bX-46xll[ l/tn (y)-l/J.. ry fJJy 
X 

xt~x 

+ (ll~)'"fr X+M- y )'( y-x)t Ep(y )~ ( Ae., -A.-.)] l/1..,(y )dy, 
X 

Hence we have tfc.~ (X) _ lJJn (X)_ E. o/~l) (X) 

x+~x 

-~xt {~x+t~X-y)'(y- x)[ gry)-~.,}-(b y -bx-%x][ 1/f"ly)-~lyl-~lyt}Jy 
X. 

X+AX 

+
1
ix)f X+L>X- yt ( y- x ){ tpry) -( AEn-An)}fl){n(y)-~cyll~ 

. X 

x+~x 

+txtYx+~>x-y)'-ly-x)(Atn- A"- E A~1 ) l/Jn (y) dy. 
X 
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By the Schwartz inequality, the square of the first term is less than 

0 //lflu1- tJJn .;... E 'fn111 
// :__ o(t•) • 

So the first term is O(E) 

since [ 4J£h -lfJV\J -
third term is Q{ (L) 

Consequently, we have 

The second te.rm is Q(6)t tfth- '11,] :o(£) 

tends to zero by Theorem 2020 The 

4JEn (X ) - \jJ V1 (X ) - E ~~I) (X) = o ( £) J [ ~ + Q J 

uniformly over any finite intervaL We have thus established Theorem 

7 0 Higher-Order Perturbations 

Until now we ha,ve considered only the case of a fit~t-order 

perturbationo . We .con.sider now higher-order perturbations, that is, 

equations of the type 

d\< +fA- Cj(X)-i E:i p/x)} u = 0 
dX . · • . . J-'. 

on the interval ( 0) co) with E > 0 . The pd ( x) 
are assumed to be continuous and real~valued in ( 0 J OJ) and 

rd (X)"=:: rd >-co for X in (OJ 00) 0 We wish to investigate Whether 

the theorems giving first-and second-order approximations to the 

eigenvalues are valid for such problem.so To do this let us consider 

the more general equation. 

d\-; + {A- qrx)- t.p,Cx)- E'-pJx,c!}u= 0 
dX · . 

in ( 0 J CO) with condition (2o2)o The functions q(x)J p.l~) J (h.( X,£) 

are real-valued, continuous in (OJ oo); also 
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for all x in (01 ())) and E. > 0 . Moreover» let f 1 (X1 £)~ p2.(X) 0) 

as £-+ +0 , We shall establis.h the following two theorems. 

Theorem I. Let Ao be an isolated eigenvalue of the unperturbed 

problem and let ~(.X) be the corresponding eigenfunction with 
co f [<tt,(x)j'-dx == I. 

Let 

l 1= J)~,(x){cfllxltdx L.oo J 
then 

1!. 4t (.X.) is the eigenfunction corresponding to AE, , then 

cpE(X)- ¢o(X) = o(t_+) 1 ~~ +0; 
uniformly over any finite intervaL 

Theorem II. Let the conditions of Theorem I be satisfied. Furthermore, 

assume pure point spectra and 

1fr,cxl ¢,CxU'-dx..:: ro 
0 

1 
i; (.x, <. ) t cp., (X )} 

1 d X .<::: oo 1 E. 6 E. , 
1 

0 . " 

for some E1 >0 and fixed V\ , Then 

i A£V\ =AV\ +£A~ + El..A(~) + o(£"~-) J. E~+OJ 
I ) [fro z. 

where A(~ = k" A~ -..\v J. 'po{X) cfl, (X) c/Jv (X) d X] 
+£~.ex, o){ <jl"(x)fdx . 

.!!:._ ~En (X) is the eigenfunction corresponding to At:h , then we have 

uniformly over any finite interval 
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where ~:1) (x) = ~ ),~-;.J[P,(y)¢n (y) ¢v{y)dy} 
As a problem in the Hiibert space L2.(0, en) the perturbed 

operator is 'given by HE . H +- E H1l+ ( 2. .H~1 

with domain fJ == D[H] fl B[H] !7 fJ[H~'] 

T~e operators H) H 1 II 
are defined in Section 2 and HE. is the 

multiplication operator, i.e. . 

H~u = p2.(X)E)u(x) 
(\[H~] ·. for u in '-J ~ fJ [H ~] is the set of functions such that 

f{ p,(X1 E) U( X)r-d X L. oo 
0 

H" H.,, -
Let . £ be the restriction of E.. to EJ . We have .for u;v in 8 

r:J:) 

(H~ u
1 
v)= _(p,.(x, £) u(x) V(X)d X = ( U1 H~' v) 

-11 
and the domain fj is dense in 1::+ so HE is a symmetric operator. 

We define the form J~1 [UJ V] - ( H~ UJ V) 
. The quadratic form is fr.(x, ~) { u (xlil. d x 

0 c:o 

~ p{t u(x)r dx J 

o n 
and is observed to be lower semibounded. The form J~ is then 

. -,, 
closable and its closure is denoted by .J~ . The self -adjoint· operator 

""II .::::::II -II 

associated with .1£ is H't. and is the Friedrichs extension of H£ 
,-.../ -,1 II -, 

Furthermore H£ coincides with H£ since He. is essentially 
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self -adjoint. 

We can now define the form 
11 

Jt- ::::- J + E 0' + Ez. Jc 
where lJ[J"re.] -:= B and J' 

E >0 I ) 

and .J' are defined in Section 2. 

~ is lower semibounded and closable as before, and 

J( c J + [ Jl + ~' ~~~· 
by Theorem B. We further have, by Theorem C, that 

- . -· -'-11 
since H + E H + (l H€. 

is essentially self-adjoint. The self-adjoint operator associated with 
"'-' - -I - II J£ is the Friedrichs extension of H + £ H + £2- H£ , 

H ~ c: H-, +- C" 1. H~' It is the unique self -adjoint extension since , c:;.. c::.. c. 

is essentially self-adjoint. So the operators Ht, HJ H'J Ht are 
--- ....-.. ....... J ....... ,, 

the self-adjoint operators associated with Jc: J J
1 
J J .Tc: We 

then have the equivalent perturbation problem of finding the eigenvalues 
,..._, 

of a self -adjoint operator H£ associated with a form JE. where 

Je = J t-EJ' + £\}£" 
"'- ......_., -II 

We assume for convenience J ~ I J CJ ~ 0 1 J"e ~ 0 
""" I "- I "- II ""- ~ -

Now let J€ = J" +E. J€ then JE, =:.. .J + £ J ~ 
"'"'I f -, 

and J- C-·ln IE We can then use the results 

[~-+0 

of Theorem 101 to derive Theorem I exactly as in the proof of Theorem 

202. 

To derive the second-order approximation we use the following 

lemma, which is a gneralization of Lemma 2.2. 
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28 
Lemma 2.3 (Kato ) Let the assumptions of Theorem 1.3 be satisfied. 

Let Ao be the eigenvalue of H and let cp
0 

·be the corresponding eigen-

vector,· J/ <Po//== /. Let cp
0 

be in f:J[~ ,] () JJ[H'] for some 

£
1
'>0, Then A£= Ao + £A(I) +- E2.A(z) +- o({l.)) E~+01 

and cp£ -=: <Po + £ cp(l) +- o(E) J E---)+ 0 1 

where )t/'1 
= ( H1 

¢o J cPo) . 
) I 

X2) = - ( s H' <:Po) H' <Po) + II H" 2 ¢o ltz) 
cp'''- - S H' ¢o, 

"" ,._. ""'- I '2.. T II 

The quadratic form Jt: = J" + (. J + E v [. satisfies 

the conditions of Theorem 1.3 and the convergence of the integrals, 
co 

. ( [p,(x)<:Ph(x)j2. dx L: oo 
Jo ) 

co l P> (X, E.,)[¢., (X ltd X .c: CD ) 

means

0

that ¢n is in tJ[H] /l £)[H2t] , but this implies 

. cpV\ in EJ[Jf.J () D[H'] by Theorem E and Theorem 1.4. 

We can then use Lemma 2.3 to prove Theorem II just as in the proof 

of Theorem 2.4. With the assumption of pure point spectra we have 

A~\ = ~ (H'~~cpv) + // H'' i rf-. 1/z.. 
v~n An Av- 't"n 
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We have then the first- and second- order approximations for the case 

of higher- order perturbations. 

8. Local behavior of A(~) of the equation 

~ + {\-g(X1 V(_)]u=0 

The theorems established in this chapter can be used to study 

· the dependence of the eigenvalue A upon a parameter Yl_ 1 assuming 

small changes in t1_ • Consider the differential equation 

d2.u } 
dX'- + fA - q (X) Y(_) u == 0 I 

with 9 (X J Yl_) a real-valued function continuous in 

x in { 0 1 CO J and analytic in the real variable YL_ . Furthermore, 

assume q (X /L) :;:::, q '* for x in {OJ 00) J independent of 7_, 
We assume the limit-circle case at 0 and limit-point case at 00. 

For a boundary condition at 0 we take u(O) = 0. 

At the point ·rc = r'( o we are given the lowest eigenvalue, 

A(yta) -:= Ao J and the corresponding eigenfunction, 

u(x, V(o) = Uo(,x.) We wish to find A (Y(_) in 

the neighborhood of ~ 0 • Let ~ 1 - Y[ 0 + btt_ We have 

q( X,~,)= Cl(X,Y}_o) + 6~ ~(X, ~o) + (,_)'- ~'-(X, I[ c)+ · · · 

Let 
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We can write the above as 

q,(X)== qo(X) + cqrn(X) + t."2-Cf(21(X)E.) 
The problem then is to find A. and U(X) for the equation. 

~+{A~ CJo(X)-c:ct(x)-E 2 CfnJ(X1 E)ju. 0 

This equation is of the type considered in the last section; consequently, 

we have sufficient conditions that can be tested to establish the validity 

of first- and second.:..order approximation~. 

Denote ,AJq, J ::::-A E. and U ( XJ Y( 1 ) -= Uc; (X ) . 

We have q (X, Y(_) ~ q~ for all x in (OJ CO) independent of 

rt. • so qo(XL 9°){X) ~r~ ) . . * and q 1,1 t are all greater than Cf . 

We assume further that the lower part of the spectrum for the problem 

with 9/X J '(_o) is dis~rete. Then if 

A(l) = 1 q111 (xHua(x)r-dx ~ oo 
we have the first-order approximation and 

A£== A 0 + . t A0 
I + 0 ( €.) I E. ~ + 0 J. 

Uc:(X) = Uo (X) + o ( t-f) 

uniformly iti any finite interval. If, furthermore, we have sr q1
'i (X) L!a(x\}'c:/ X L. ro 

1 

then the second-order approximation is valid and we have 

A E = A 0 + ~. A0) + [ 1 A ('2.) + 0 (E. 2.) ) € ~ + 0 ) 

u·£(X) . Uo(X·) +E. uc'1(X) ·+ 'o(t.) ) t ~ t-0 J 

uniformly in any finite intervaL 

The difficulty wifh the secon(f-ord~r ~ppro:ximation is that we are 

given only the lowest eigenvalue and eigenfunction at V'lo, so the 
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. \(l.) OJ( ) " . ' 
coefficients 1\ . and U X cannot be computed by the usual formulae. 

We know, however, that the function U(JI(X.) satisfies the differential 

equation 

~·~: + [ Ao Cfo (x)} uf'1 ==- [XI)_ q(i)(x)j Uo(X)! 

with the conditions u(Jl(o) = 0 
) 

sr U0l(x)rd X < oo 
0 

This was verified in Section 7 of this chapter. This is a two-point 

boundary-value problem. However, ohce u(l) (X) is computed, then 

Uf. (X) can be computed for any C.. sufficiently small. We now wish 
\(z) 

to determine /\ • Consider the two equations 

Uo11 + {Ao- qo(X)}Uo ==0 

u~' · + t A~ - q, (x)} u, ::= o 
Multiplying the first equation by Uf(X) and the second by Uo(X) ) 

subtracting the first from the second, and then integrating gives 

co co . i Uo(X)U~1 
(X) d X -l u~1 (X) UE (X) d X 

0 

C() 

+(A<-- Ao)t Uo(X) uc(x)dx 

co 

= ~ £ q,(x)-qo(X)}Ua(X) UdX )dx 
0 
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The first two terms cancel by integrati'ort by parts and by the vanishing 

ofUo(X) and~Uc.(X} atO andCO. Sowe.have 

. (A< -Ao) _[~o(X)UE (X) dx "' {£q,(x) -qo(X)} Uo(X) UdX) d X 

• . ct:J . . . . . 

( £X11 + ~· ,f1 + o(E~)i[[uocx)}'+ f.Uo(X)J
01
(X) + o(c)]d X 

0 

== _([c c('lx) + <.'q1
'
1 (X, 0) +0(E3 [1[ Uo(xf+Wo(X)Li''(x)+ctE]dx 

Now, equating coefficients of like powers oft. and assuming Uo (X) 

normaliz_ed so that l"i Llo(X~' dX = / 
0 

1'. 

we have 
co . : 

A(l\ = l q01 IX)i Uo(X)}':d X 
0 

and 

f.Vj = ifq'"(x\ - Au1
] UoCxl u''1 (x) d x + i'?'(l.Jrx,o) [ uo{x (}l. d x. 

We thus have a direct method for computing the second..,.order coefficient 

without knowledge of the spectral decomposition of the unperturbed 

operatoro 

9o An example from the quantum theory of liquids 29 

As an example of the method of the previous section consider the 

Schrodinger equation for liquid helium (He 
4

)o The one -dimensional 

equation to be considered is . 

~
2

~ + fE - i(x,f:~_)} f . 0 0 <- X<- I; 

V (X) vt) == f1 ( V(} F1 (X) - 8 (n)F <J X) ! 

29 . Example suggested by Dro Marshall Rosenbluth 
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~(X) +UI-1 X)'o- (llt-X)'o] 

F,_(X)=+D,~x)4 - (I~X)4]) 
J 

We note that F 1 (x) and F 2 (x) tend to finite limits as x - + 0, 

in fact F l (x) - 20. F 2 (x) - 8 as x - + 0, and F l (x) and F 2 (x) tend 

to ro as X - 1. So we have v (x) 1_) ~ V* for X in (0, 1 ). We have 

the boundary condition "/)(0) = Q, For some rt_ we wish to find E 

sr~{XJE)rdx .c:..oo. 
0 

such that 

The physical problem is to calculate certain physically observable 

quantities by use of the prescribed potential V(X, yt) in the one-

dimensional equation. The variable Y"t_ is proportional to the density 

of liquid He 
4

. The value Yl.o = 3. 75 corresponds to normal density. 

d 1 E From the quantity - atn::V'l 0 we can calculate the speed of sound 
dYl"L 'l 'l 

in liquid He 4.. From the previous section we see that this quantity can 

be computed by second-order perturbation approximation. 

By numerical integration or differential analyzer we can find 

E(~o) and '}'(X J ~ o) which will be considered as the uhperturbed 

solution. Let YL' =- ~0 + 6 VL ) 
then 
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V(x, fL, )== V(x, 1·) + LyC ~~(x~~o) + (~ )' ~~~ (X1 1o)+ · · 
' . -

Let 

E = L::. V(_ J V (XI 7o) 7 Vo (X) J ¥r/X1?o)'= 1/'1( X) 
1 

and , 

(2l I ,y V ( ) . E:. 03 V ( y {XJ_E) == ~ ~~~ XJ ~o + 3T 0 Y(_3 XJ0o) +'' " 
We are then solving the perturbed equation, 

~~'#. + f E - Vo (X) - £ V1
'
1 
(X)- E' V

121
(X, ED tp= 0' 

We find that 

'E~'IY)o)f V01
{x) £ !JI (x, ~.)j' d x L co 1 { Vrrx, Elf if!{X, 1o )}'dMco 

, .. · '._-.. · 0 . () . J 

I i { V1''(x) ljJ (X, ~o)}'-d X L ro ) by 
0 

numerical quadrature. Consequently, the second-order expansion is 

valid and 

· E(Y[,) == E{~o)-+ E. E 1' 1(~o) + t''-221
{1o)+O(t') 1 £_,+01 

. \j)( x)~,)= ljl(x) ~·) + E.ljJ(I)rx, ~·) + o (E) J £ ~+a , 
- uniformly in any finite intervaL The function tJ~N(X1 7c )can be computed 

: by integration of the equation 

d 2-t/ >(II 

. d ;;_ +[ E'(~.)-V(X J ~o} l/}
111
=-· { E(11{qo)-V0tx)jl/)(X>~o)J 

' . ,· -

with 
I -

YJ 1
n (O ):- 0 1 l { ljJ

1
'l (X 1 ~o fd X ~ ro 
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Then 
1 

Erz.l ( ~o) = l [ v'%)- EM(Y(o )] ljJ( X; Y(o) YJ 0
J (X) J{o) d X 

o I 

-f- i V~(X, 0) { \jl(X//o)J' d X 
0 

~E(z)(no) = .J_ d7.E I 
-( 2.. d~2 YL=I£o 

can be used to calculate the speed of sound in liquid He 
4

. 

We have which 

10. Solution of the equation 

d 
2

U _ q ( x ) U - E. p( X) U = - f (X ) 
d X 

4 

by iterated integral equations. 

In this section we digress from the perturbed eigenvalue problem 

considered in the first two sections of this chapter. We wish to find the 

solution of the equation 

dl.u - qrx) u - Ep(x) u = - f(x) 
d X'" (2.20) 

satisfying the boundary conditions of Eq. (2.2), where q(x) and p(x) are 

defined as before and f(x) belongs to the class L2.(0 1 CO) . 
' 

Consider first the equation 

~-q(x)u =-f(x) 
dx'- (2. 21) 

The solution Uo (X J of Eq. (2.21) satisfying the condition (2.2) can be 

written as the following integral equation. 

Uo (X)= l~ (X J Y) f(y) dy 
0 

(2.22) 

where G(x, y) is the Green 1 s function determined in the usual way from 
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linearly independent .solutions of the homogeneous equation 

d'l.u- 9(X)U = Q 
d x1.. · (2.23) 

that satisfy the boundary conditions (2.2}. 

Considering this problem as one in the HUbert space 

~ = l2-( 0 1 CD) we write Eq. {2.21) as the following 

equation in P/ : 
Hu =-f 

where H is the unperturbed self-adjoint operator defined in the previous 

section, The solution {2.22) is given by 

-1 
H ·is then the integral operator (2 .22) with G (x, y) as the kernel. 

Consider now Eq. (2.20). We can rewrite this as 

dlu - qcx) u ::= - f(x) + t:p{x) u(x) 
d x_1.. 

In this form we see that the solution UE(X) of Eq. (2.20) satisfying 

conditions ·(2. 2) can be written as the integral equation 

Udx\= i_~rx, ylHy l dy - tJ~(x, y) pry) udy) d y. 
0 J~ (2.24) 

We see that co 

UdX)= Ua(X)- E ~0G(X, y)pry)udy)dy. 
Proceedi~g formally, we can solve the above irltegral equation by 

iteration, i. e. , 

Uo (X) 
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- ' O:J 

U~1 (X) '= Uo(X) -£ s G(X, y)pry) Uo(y) dy 
1 

0 

00 

£ i G ( x) y) pry l u~·J ( y) dy) 

I I l ~ l 1 l I L 

which gives the solution 

CX) ' 

UE(X) = Uo(X) -t, ["t Kn(X, y) Uo(y)d Y 

where 
K,-= K) KYl(x, y) = _£K( x, 2) Kn-Jz, yldt J>>IJ 

K(X}t.) G(XJ~)p(r). 

Of course this procedure is purely formal, and we have no assurance 

that the series for U£(X) is convergent in the ordinary sense, since 

we have not assumed anything about the smallness of p(x). We can, 

however, consider the series for Ue(X) from the point of view of 

asymptotic perturbation series. 

Now, considering the perturbed equation as one in the Hilbert 

space -~ == L 2..( OJ Q)) we can write Eq" (2.20) as the 

following equation in ~ 
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. HE u == f 
where Ht:_ is the perturbed self -adjoint operator defined in the previous 

section in Eq. (2.17}. The solution is then 

Therefore the problem is to find the inverse operator 
H _, 

£, " 

Theorem 2.5. Let Uo(X) be the solution of the unperturbed Eq. (2.21) 

satisfying conditions (2.2). If p(x) in Eq. (2.20) satisfies the condition 

{PrxJ{Uo(xlfdx L ro 
0 

then the solution U£ (X) of the perturbed Eq. (2.20) satisfying conditions 

(2.2) can be approximated as 

) 
E---;,+0 1 

uniformly over any finite interval. 

Proof of Theorem 2.5. In Theorem 1.1 (Hi) let u be the function f(x) 

in L, (o, co) -1 
on the right-hand side of Eq; (2.20). Then i-f H f 

is in B[JE] we have 

Hi'f = H-'f + o(E-k-) ) 

But we know that H"E' f = U E. the solution of Eq. (2 .20), and 

H-tf = Uo J the solution of Eq. {2 .21), so, if Uo 

is in £J [J'£] then we have 

t~ +0. 
. I 

in fJ [H('l"i:] implies Uo From Theorem 1.4 we have that lJ o 

, so we must have Uo in fj [Hcoi] 
This means 

L. a:; ' 
I 
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since p(x) is the perturbing multiplication operator and this is the 

condition stated in Theorem 2.5. So we have 1/ UE -Uo/1 = a(E-i-) 

as E __...:;. + 0, We wish to prove uniform convergence over any 

finite interval. We use the representation for twice -differentiable 

functions that was given in Theorem 2.2. Making use of Eq. (2.20) 

we have 

;<+6.X 

UE(X) (L'>~)*X+llX- y)'{y- X )f q(y)-E f(~~-(b y-I:,X-llloxf/Ur(j)dy 
X. 

X+6X . 

_j_ ((X t-6X- y)~{y- X) f (y )dv J 

(6xtJ 1 
I 

X 

and using Eq. (2.21), we have 

X+b.X 

Uo(X) (ll~)1~X +LX-y)'"(y- X) qry )-(by -bX-'-It..XJUo(y)d y 
X 

X+AX 

-(6~r-[(x+.0,X- yt(y- x)Ny) dy. 
X 
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Hence Uc (X)- Uo (X) 

x~x - · 

=-r~xl{fx+"'x-y),_ry-x) qry)-(~:, y- 6X-'-!My{udy )-Udy))dy. 
X 

+(~Y'" (X+ t::.x-yl,_(y-xhpryl udy) dy. 

X 

By the Schwartz inequality, the square of the first term does not exceed 

X+i:lX 

~ .. j[(x + t::.X- yt(y -x) q ry)- (by -bX-LJLJxfldy 
X · X-fl::.X 

. '(c.'xt [f U, (y) - Uo (y )J '- dy 
X 

-==0//uE-Uo/(= o(E}. ·. 
So the first term is o(£+) and the second term is clearly 0(£) and 

therefore we have 

J 

uniformly over any finite interval. Thus we have established Theorem 

2.5. 

We can improve this approximation by imposing a further restriction 

on p(x), as we see in the following theorem. 

Theorem 2.6. Let Uo(X) be the solution of the unperturbed Eq. (2.21) 
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satisfying conditions (2.2). If p(x) in Eq. (2.20) satisfies the condition 
00 . 

)f p(xJY"{ Uo(xlfdx .:::_ ro , t 6 o< <: I J 

0 

then the solution ~(X) of the perturbed Eq. (2.20) satisfying conditions 

(2.2) can be approximated as 

uniformly over any finite interval. 

Proof of Theorem 2.6. In Theorem 1.2 (iii) let u be the function f(x) 

in L,( 0 100) on the right-hand side of Eq. (2.20). Then if H-1t 
is in lJ[H'C'(] we have 

Hi'f -= H-'f + O(f.C>() ) 
E.~+O. 

But we know that H£'f = Ur. J the solution of Eq. (2.20), and 

H-'f = Uo the solution of Eq. (2.21), so if Uo is inlJ[H,t] 
then 

The condition Uo in D[H.o<J means 
00 

S frtxlj'"'fuo(x)fdx LC ro 1 
0 

which is the condition assumed in Theorem 2.6. So we have 

CD . Yt.. j { UE (X)- Uo (X )J'-d X o(t"') 
0 

We derive u( (X)- Uo{X) 
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uniformly over any finite interval from the above convergence in the 

mean exactly·as in the proof of Theorem 2.5. 

By further restricting the function p(x) we can derive the next-

order approximation. 

Theorem 2. 7. Let Uo(X) be the solution of the unperturbed Eq. (4.21) 

satisfying the conditions (2;2) and let G (x, y) be the Green's function 

for the homogeneous Eq. (2.23). If p(x) in Eq. (2.20) satisfies the 

condition sr p(x) Uo(x)fd X ..::: co 
0 

J 

then the solution Ue(X) of the perturbed Eq. {2.20) satisfying conditions 

(2.2) can be approximated as 

UE(x)= Uo (X)- ~J~(x I y) r(y) Uo(y Jdy + o(£) 

0 

uniformly over any finite intervaL 

For the proof of Theorem 2. 7 we make use of the following lemma, 

which is a special case of Theorem 1.3 
"w rv I 

Lemma 2.4. L~t I~\ J .J ~ 0 be .closedforrns. Let 

D[J] n £J[J'] be dense in Ff 
,..._ ,..._ ,.._ J 

Let JE==J" + £ J 

be a closed form, nonincreasing as E ~ +0. Let H£ J H1
J H be 

- ""-- -
the self -adjoint operators belonging to Je 

1 
J" 1J J" respectively. 

Then if u is such that H-lu is in D[H 1
] we have 
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Proof of Theorem 2.7. In Lemma 2.4let u be the function f(x) in 

L, {OJ OJ) on the r!ght-hand side of Eq. (2.20), Then if 

rr'f is in tJ[HJ we have 

H2f = H-'f - E. H-' H' H-'f + o{€)) t ~+o 
We know that H£' f ..;_ Ut_ the solution of Eq. (2.20), and H-!f =: U 0 

the solution of Eq. (2 ,21), so if U o is in .O[H'] then 

u E == u 0 - E H-I H I u 0 + 0 ( £ ) I ~ --7 + 0 . 

From Theorem 2. 7 we have the condition 
co i {p(x) Ua(X)dxfdx Loo 1 

which fmplies U 0 in fJ [H'] . We have 

Q) 

H-I HI u 0 = f G (X I y) p ( y ) Uo( y) d y = u(l} (X) ' 
0 

Then we have proved so far that 

II u t - L) 0 + E u (I) // = 0 (E) ) c --7 + 0 . 

We wish to establish uniform convergence over any finite intervaL 

From the proof of Theorem 2.5 we have 

X+t::.X. 

=r~xl'Jx+t--x -yWy-x )qry )-(b y-b x -'flix}j[udy)-uo(y)] d y 
X. 

x+~X 

+r~xl'" (x+t::.X -yf"(y- x) '[_pry)udy )d y. 
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We have that 

The function u(l)(x) is a solution ofthe differential equ~tion 

~ _ q (X) u01 = ~ prx )uo(x) · 
dx . ·· . . 

with the ~oundary conditions (2.2) .. That is, we have. H v(l) = H'uo ' 
The representation for twice -differentiable functions, which was given 

in the proof of Theorem 2.5, can be applied t~ u(l)(x). Hence 

X+~X 

d1(x )=~xljqxHx- y)'-(y-x) qry) -(bY-b x -'-ft:,xyum(yJdy 
X 

x+~x 

~ ri:x)f( x + 6X-y )l- (y- x) pry) Uo(y) d y 
X 

Then U£(XI - Ua(X) + £. u{l) (X) 

X+b~ . 

. r~xtjxH x-y)Yy-x) qry)-(b y- b x-'i LJx~[u<ryl-Uo(y)HJ''rrfldy 
X 

X+6X 

. +(~tfr X+t>x-y)'-(y -x) f_P (y ){ udy )- uoryl} d y. 
X . .• . ·, . . . . . .. 
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By the Schwartz inequality, the square of the first term is less than 

So the first term is o(€) . The second term is 0(£) since 

U£.(Y)- Uo(Y) tends to 0 by Theorem 2.5. Thus we have 

lJ£ (X) = Uo {X)- ~J~ (X) Y) p(y) Uo(y}dy +-o(t.), 
c 

as E ~ + 0) uniformly over any finite interval. 
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III. 

PERTURBATION THEORY OF 
PARTIAL DIFFERENTIAL OPERATORS OF'SECOND ORDER 

1. Statement of the Problem and Results 

Consider the Hilbert space, L 2. ( E:,) --that is, the space 

of real-valued, measurable functions, f (X, y, c ) J defined in 

ordinary three-dimensional space, which are square summable; 

measure and integration·are in the sense of Lebesgue.· In ~=L2(E3 ) 

we have the norm 

II f II === f)"' [r(x, y} llfdxciyd~ 
.,-oo -oo 

Yz 

and the inner product 

oo m co · 

(f J 9) = [ J If(x, y, ~) srx, YJ r. )dxdydl ) 

-co -ro -ro . 

f 1 J E b4. 
The operator, Ho) is defined by 

(3 .1) 

for u in D[H o] c Fi . D[Ho] is the set of functions u (X, y I e) 
such that u vanishes for r- ~ R, and Y"' 2 R'2. where 

r-= Jx'-i- y?- + 2"1. and R, J R 2. are positive numbers; 

UJ Ux > Uy, U-:c are absolutely continuous in 
: 

x, y, z and u, Ho U belong to ~ . ThefunctionCJ(X,y,r) 
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is real-valued and continuous in x, y, z except possibly at the origin. 

We have 

(Hau, v)=j(j[()" Vx +uyvy + Ue. Vc +qu>] dxdycl"l 

-= (u/HcV) 
for u; v in fJ[\-Io] and fJ LHc] is dense in P/. so He is symmetric. 

We assume that the function 9 (X 1 y, ~) is such that the operator 

Ho is lower semibounded, that is, 

) ( >-CD 
(3.2) 

for all u in D[Ho]. An example of a symmetric, semibounded operator 

is given l;>y the Sch:rodinger operator for the hydrogen atom, 

Au = - \J2..U 
which is defined for functions 

considering. 
30 

We note that 

_ _g_u, 
r 

in the domain £J[Hc] that we are 

Every symmetric, semibounded operator has a self-adjoint 

extension, the Friedrichs extension, which preserves the semi-bound. 

We take the Friedrich's extension of Ho) denoted H) to be the 

unperturbed operator. The unperturbed eigenvalue problem is then 

expressed by the equation 

Hu =AU 
50 . 

Riesz-.Sz. Nagy, p 328 
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for u in D[H} . Then u satisfies the differential equation 

(3.3) 

The above eigenvalue equation is solvable because H is self-adjoint, so 

we assume that the complete set of eigenvalues and eigenfunctions is 

known for the unperturbed problem. 

Consider now the operator H' defined by 

(3.4} 

for u in tJ[H'] C Pf, . B[H'] is the set of functions u in ~ such that 

ff{f p(X1 y 1 r) u(x, Y~ r)] \Jx dyd?: L oo 

The function p(X, y J ~ J is a real-valued function, continuous in x, y, z. 

We assume thatp(X 1 YJ~) is such that H' is a lower semibounded operator, 

i.e.' 

) o>-co ) 
(3 .5} 

for all u in LJ[H] , 
Consider now the common domain f)= iJ[H] /l D[H'] J 

kl H' I -which is dense in tT . Let be the restriction of H to fJ . The 

operator H1 
on f:J is a symmetric, semibounded operator. The 

~ 

Friedrichs extension of H1 
denoted H' coincides with H', i.e., 

H/ = H' ) D[R'] =- B[H']. 
Now let H be the restriction of H ' the unperturbed operator, 

to the common domain £) . H on fJ is a symmetric,. semibounded 
~ 

operator; its Friedrichs extension is denoted by H We assume H -
on f:::J to be essentially self-adjoint, then H ·is its unique self-
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d .. t t . 31 a JOin ex ens1on and coincides with H , L e. 

) 
8[H] == £J[H] 

The theory of partial differential operators in Hilbert space has been 

treated by several authors. 
32 

In particular, Kato
33 

gives the conditions 

for the Schrodinger operator for N particle systems with Coulomb 

interaction to be an essentially self-adjoint operatoro He also applies 

these conditions to the helium atom equationo 
34 

The operator H + ~ H 1 
defined on fj with £ >0 is then 

a sym.metric, semibounded operatoro We denote the Friedrichs 

- H' extension of H + t. Moreover, H +£. H' is essentially 

self-adjoint so Ht_ is its unique self-adjoint extension. We take the 

self -adjoint operator. HE. to be the perturbed operator. The perturbed 

eigenvalue problem is then expressed by the equation 

for u in IJ[H~]. Then u satisfies the differential equation 

(3 .6) 

We wish to find the eigenvalues and eigenfunctions of Eqo (3o6) as 

asymptotic perturbation expansions 0 

31 
Stone page 51 

32 
Friedrichs (4), Halperin (1), Kato (3), Murray (1) 

33 
Kato (3) 

34 
Kato (4) 
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Using the methods. employed in the preceding chapter, we can 

d~rive theorems analogous to Theorems 2"2, 2"3• 2Ao 

A complication that arises in partial different~al eigenvalue 

problems is the phenomen of degeneracy" That is, a particular eigen-

value may have.:more than one eigenfunction associated with it. We 

.shall treat the case of first-order splitting" We assume the lower part 

of the spectrum of the unperturbed problem is discrete" We take the 

lowest eigenvalue to have :multiplicity 

The functions cp, (X 
1 
y 1 ~) J 1 1 ' 

m • i.e", 

AWl..::::::: Am·H 
¢m (X, y,?: J 

(3.7) 
are 

associated eigenfunctions" We shall show that the perturbed problem 

has '('() discrete eigenvalues AE.I ~ At.z. ~ ' ' ' ' ~ A£. W\ 
1 

which are perturbations _of the value A and we shall derive the first-

and second-order approximations to these rn eigenvalues 0 

We assume for the remainder of this chapter that conditions {3"2}, 

(305), and ~3"7} are satisfied" We now proceed to state the theorem 

that gives the first-o.rder approximation and make the following 

assumption" If 

¢, (X J y J ~) 
1 

1 l 1 1 ' 1 ¢m {XJ y, ~ } 
are the eigenfunctions corresponding to A of the unperturbed problem, 

we assume 

{3o8} 

I l ford- ) 
\ l l ' \IV\ ) r r 1 , 
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With Condition (3,8) we can state: 

Theorem 3.1. Let A be an eigenvalue of the unperturbed problem 

multiplicity m I let ,.+.. (x y .1) ' ' ' . tf.... (X v ~). ) - '+'! J J c I ) IVY\ I I J 7:: 

be the corresponding eigenfunctions, that are determined so that 

where ( ( Q 
Gj~-::: ll 

and J ) !Q == l ) I I ' ' ) m 1 

\ (J) \ ("2.) 

/\1 ~ 1\"2. L. 
(t \ 

I l l I ~ AVv\ I We take 

Let be the corresponding eigenfunctions with 

then 

uniformly in any finite region. 
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The first two terms of the eigenvalue expansion agree with the 

co.rresponding terms obtained by identification of coefficients in the 

formal series expansion that is usually assumed. The condition (3.8) 

guarantees the existence of the first -order coefficient, 

The order of approximation can be improved by introducing a 

further restriction on the function f?(XJ y 1 ~), 

Theorem 3.2. Let all the conditions of Theorem 3.1 be satisfied. In 

addition assume that 

for t = I • ' · · W) - (J ) ) 

Then we have 

and 

\(I) + t 1\. d 

uniformly in any finite region. 

(3.9) 

where ~ ,6 o< ~ 

We now proceed to the second-order approximation of the eigen-

value and first-order approximation of the eigenfunction. Again we 

must introduce a further restricti~n that the function pCX1 y, t:) must 

satisfy. In the statement of the next theorem we assume the unperturbed 

Eq. (3.3) has pure point spectra. This assumption is not necessary 

for the proof of the seconcl-order appr,oximation, but is taken for 

convenience in expressing the coefficients of the higher -order terms 
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in the perturbation series. 

Theorem 3.3. Let [ Av} and { cp )I {X, y, Z: )J 1 Y= )1 2J 3/ 1 1 
'· 

be the eigenvalues and orthonormal eigenfunctions of the unperturbed 

problem. Let A be an eigenvalue of the unperturbed problem with 

be the corresponding eigenfunctions, which are determined so that 

J[ (prx, y, ~) cpj (x, y, i) cp~(x, y, r )d x dydto = ;\;' ~r.., 
d·,k== )J ,,, 'j m. 

In addition we assume 

j[(fp(x, y,~)¢1 (X, y, tjfdxdydt L. ro (3.10) 

Then 
J'=l 1 '"Jm. 

+ o(£') 1 E.~ +0) 

where 
\- I ''. VV\ 0- ) ) "') 

Let cpf~ (X, y
1 
l;-) be the eigenfunctions corresponding to A£j with 

II cp~J )/ =- j and { cpfj ) cpi) ~ Q) then 
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uniformly in any finite region, where 

)I= YYl+l 

The results of Theorems 3.1 and 3.3 are similar to those of 

Titchmarsh, 
35 

but the conditions (3.8) and (3.10) are less restrictive 

than his conditions. Theor.em 3;2 is new. 

2. Formulation of the Perturbation Problem in the Theory of Quadratic 

Forms in Hilbert Space. 

In order to establish the theorems stated in the previous section 

we make use of the theory given in Chapter I; consequently we formulate 

the perturbation problem in the language of quadratic forms. 

Consider the restriction H of the self-adjoint, unperturbed 

operator H to the corn~on domain B ·=- .D[H J n ..D[H '], . 
We noted in the previous section that H is a symmetric operator. Now 

we define the form 

J"[u, v] = (R u)v) nCr] 
35 

Titchmarsh (3) 

•· 
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Then 

J[u]={Hu)u)=2= c(u)u) ) C>-CD 
} 

by condition (3.2) so 0 is lower semibounded. Furthermore, ::T 

is closable, since it is defined by a semibounded, symmetric operator" -Denote the closure of 0 by J . We assumed in the previous section 

that H is essentially self -adjoint. The self -adjoint operator 

associated with J in the sense of Theorem D is then H because an 

essentially self -adjoint operator has a unique self -adjoint extension. 

H' 
fJ. 

We define the form J 1
[ L)) v] == ( HI u) v ) where 

H/ 
is the restriction of , defined in Eq. (3.4). to the domain 

Then 

J' [u]=(H' u) u) ~ 
· T 1 T 1 

by condition (3,5) so \..! is lower semibounded. u is closable since 

H 1 
.is a lower ·semibounded, symmetric operator~ Denote the 

I ,._/ "-1 

clo~ure of J by J The self -adjoint operator associated with J 
I ---, 

is H , since H is essentially self-adjoint. 

We now define the form 

) £ '>0 
The form J"~ is lower semibounded, since J andJ

1 

are lower ·semi­

bounded. Ji. is closable by Theorem B and its closure is denoted by 
"'"'"' "'- .._ ,_ 
.Jt. We have .J£ C J + £ J 1 

, We also have 
....,_ . "- . ,.._ 
J~ = J + t J 1 

by Theorem C. because the operator 

H + t_ H 1 
is essentially _self-adjoint. The self-adjoint operator 
"-

associated with JE. 
- -, 

is the Friedrichs extension of H + [ H 
and is the perturbed operator Ht_ defined in the previous section. 

As we noted in Section 2.2, we can assume without loss of 



-81-

generality that 

J >I) J'~ 0) 
We now have the perturbation problem formulated as a problem 

in the_ theory of quadratic forms; that is, to find the spectral properties 

of a self -adjoint operator HE. associated with a quadratic form .:f[ 
where 

/ E>O, 

3, First-Order Approximation; Proof of Theorem 3.1 

In the previous section we formulated the perturbation problem 

in the language of semibounded, closed forms. In particular we have 

With this formulation we can make use of the asymptotic perturbation 

theory of such forms. 

We first establish the fact that for the rYl eigenvalues of the · 

unperturb~d problem A 1 - I' I there correspond exactly 

VYI eigenvalues of the perturbed problem A( I ~ .Au. ~ 1 
I 

1 :f. At: V"Yl I 

To do this we wish to make use of Theorem H given in the first chapter. 
~ 

We consider the form JE. defined for the real variable E.> 0 1 

Considerl.ng 1-J[.:JE] as a set defined for £ > 0 , we note that 

D [J=E J D[J] () IJ[J'] 
and is independent of [ We show that JE is nondecreasing in E. 

by the following argument. Consider the forms ·• 
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J2[u] j)~ux'- +UY +U: +qu'" +- E2_pu>-]dxdydr. 
·we have for t 4 ~ £ 1 

> 0 that :T,[u] :::=: J,[u] 
for u in w[J~] n D [:rl]. 

We. now can apply Theorem H, using a continuous parameter£ 

instead of discrete index VI , because we have shown that JE is 

nonincreasing as E~ +0 . We thus have exactly m perturbed 

eigenvalues of Ht_ corresponding to the m eigenvalues of H , 

and these m perturbed eigenvalues converge to the unperturbed 

eigenvalues as E. ~ +- 0, 

We shall now dedve the first-order approximation to these m 

eigenvalues. 

Proof of Theorem 3. 1 We make use of the following lemma from 

the perturbation theory of quadratic forms: 

Lemma 3.1 (Kato
36

). Let J ~ I) J'? 0 be closed forms with 

~[J] n D[I'] dense in Ff . 
"'- ...._ "'-' I 

Let JE C 0 + f J 1 £ >0 1 

be a closed form nonincreasing as E..~ +0. Let Ht; H J H 1 
be the 

-.., . ,._ ,...._ 
self -adjoint operators associated with J£ J JJ J 1 

respectively. Let 

A be an eigenvalue of H with multiplicity m Let cp
1 

J 1 1 o o J ¢m 

the eigenspace of H corresponding to A , be a subset of 

~[J'£,l ) E, > 0 . Let 

so that ( cp d cp ~ ) ~ &J k 

and let 
\ Ill \(I I 

1\ I <( 1\ l L:, 1\ ,, < 

36 Kato (1} Theorem 19.3 

¢I ) I I I o ) ¢ m be determined 

and ( H'fcpi) H'+cpkL )~A~~&Jk 

\ (I) 

1\I"V'\, 
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Then 
(I) 

A£j A+ EAi + O(E) I E~+D) 

// ¢£~ - <J;J // -= o(J) E ---4- + 0 J 

for where cpEJ, is the eigenfunction 

corresponding to Atj and IJ ¢£J If== I J ( cpEi J 4J i) ?::. 0 1 

From condition (3.8) of Theorem 3.1 we have 

)) f p(x, y 1 2: )[ ¢J(x I y 1 t: )}'-dxdydr: .c:. oo 

which means cp· is in .!J[H1-t] so A -I cp · ··-= H-I cp J is in 
I J I 

ZJ[H'l.] and thus in IJ[J"e:,] by 

Theorem 1.4. From this we get that ¢· in iJ[~] 
1

• 

d 
The other conditions of Lemma 3.1 are fulfilled in Theorem 3.1, so 

we have the first-order expansion of the eigenvalue given by 

AEJ :::::- A + ~ Aj1 +- 0 (E) l E.~ + 0} 

where Aj1 =II H'.:.cpd r-JJjrrx I y) 'b) {¢j (X, y, ~)rdxdyde 
From 1/ cPe~ - ¢ d )I ::::- o{l) 1 E ~ + 0 we wish to 

establish 

cpt~(x,y~ t)-cpi(x,y,l-)~o(l) ,£--7-t-0) 
uniformly in any finite region. From Courant-Hilbert

37 
we have 

for which satisfies 

the following mean-value formula: 

37 
Courant-Hilbert ( 1) page 250 ( 5) 
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U(Xo, Yo, 'to)::::- "':Ra §[ U(Y'1 8 1 ¢) r 1 
Slh 9 d r-d e d r:p 

r~R (3.11) 

+- fff (R-~'(zR+r);JA r's1nsdr-dgdcp 
r~R 

which gives the value of u at the center (Xo) Yr::u ro) of a finite sphere 

with radius R . From the above formula and Eq. ( 3. 6) we have 

cp£j (Xo, Yo) to)::: 4~ R3 jf [ <P£j {r, e) ¢) r >-.sIn 8drdedcp 
r~ R 

_ ~~R~ ff YR-r)'"(2.R+Y')[ q + t:p -A<Jcf1:j rslhBdrdlli¢ 
y-LR 

and from ( 3. 3) we have 

¢E~(Xo, yo)l: o)- cpa' (X OJ Yo} ~o) · 

""''l~R3 jf f{ ¢,i (r, 8,¢ l- cp1 (r, eA Ur1s1n e drded4 

rfR 
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- ~~R?. { fYR-d'(zR t-r)[q~AaJ{ 4JrJ- ~ }r.s,nednktdrp 
r-6 R " 

~~~R3 sss(R- rWz R+r){sp -( ).£d, -A; ~¢Ei r s1n edrded¢, 
r~Rc . · 

By the Schwartz inequality the square of the first term and the square 

~ o II cpE.J- cpd II'"-== o(l) . So the first of the second term 

two terms are o(l) . The third term is 0( E.) s"ince £ p and 

The above holds for any point (XoJ YoJ .io) areO(£). 

so we have cpq (X) y) ~)- cpJ (X) y, t:) ==o(l) 
uniformly in any finite region. We thus have established 

Theorem 3. 1, giving the first -order approximation to the perturbed 

eigenvalues and the zero-order approximation to the perturbed eigen-

function. 

4. Improved First-Order Approximation; Proof of Theorem 3.2. 

We now improve the approximations derived in the previous 

section by imposing further restrictions on the function p {X 1 y J ~) 
1 

For the proof of-Theorem 3.2 we make use of some additional 

lemmas for the estimating of eigenvalues and eigenvectors in Hilbert 

space. 

· · · 38 L/ 
Lemma C (Kato ) . Let HYY) be a finite dimensional Hilbert space 

with dimension m . Let H be a self -adjoint operator in PJ I'Vl and 

let w I ) I I I I ) w m be m vectors of FlW~ with II Wj II:= I, 
Let 

) 

38 
Kato ( 1) Ex. 18.1 
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We assume ~~ < Y(-z. <::: ' ' '< f(_m Let 

;\, ~ t\L ~ I I\ ~ AVV\ be the eigenvalues of H, 
Then 

;\i ~ Ji ) J. 
d 

.:::::... -
where 1d· '(d - (~+I - V/.0 rl et J 

j,d. ~ J + ( ~j - ~· _, ) -1 eJ' J 

provided ed· are sufficiently small. 

Lemma D (Kato 39). Let ~ be an infinite dimensional Hilbert space. 

Let H be a self-adjoint operator in ff . Let m vectors ' 

,w'fV\ in B[H] 

( H w d , Wt<_ ) = Y(_j 6d \Q. 

be such that 

J 

We assume n <... V) <.. 
-l I - , l '2.. -

I l I 

Let 

8 -= II ( H- VlJ) wd j I. Leto( be a number such that 

D( C::::: Yl_1 and let A 1 ~ A "2. ~ , 1 ' 1 1 be the eigenvalues of H 
which are larger than o<. . Then 

~ === 1) · · · ·) m, 

39 
Kato ( 1) Lemma 18.3 
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where fk_ is the largest root of the eq:uation 

~ e7 
z__ --~~di!-----;- - ·J I 

a=' (~i -o<){p- ~i l 
In particuUu 

k. - 8 ~· 
pk ~ ~~ +L ~· -·o< 

d =I d 
I . I 

Similarly let rs > V(_m and let I I I ~Am-I ~Am be eigen-

values of H smaller than (3 . Then 

A~ ~ mm (~'f<. ) a-b.) J 
I; I I I) M j 

where cr IQ.. is the smallest root of the equation 
- <.. 

tv'\ ' 8· 

~ (~-·~J)I~j -cr) 

In particular we have 
1.. 

m e. 
c1i ~ n~- L- - d . 

. l d' =~ (3 t( J 

Lemma E (Kato 
40

}. Let W · n · 9' be as in Lemma D. 
dJ'(dl d 

Let 

{o<. J ~) be an interval containing at most rY\ eigenvalues of H) 
but no other points of the spectrum of H . If C>( .C:::: ~ 1 ) f3 > V'( VV1 

and 

40 . 
. Kato (1) Lemma 18.4 
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then there are exactly rr) eigenvalues A 1 ~ A 1. ~ 1 • • '- ;\Wl 

in ( o( J (3 J and 

min ( ~ jQ_ 
1 
u~ ) ~ ~b. ~ ma. X ( ~ ~ 1 P~) 1 

~ ":' I) I ' ' I ) m ) with P~ I ~ as defined in Lemma D. Let 

...h , , 1 , 1"'1--. be the eigenvectors of H belonging to 
'+"' J J 't'm 

A 1 J. : 1 1 1 ~ A I'Y\ respectively, such that 

Let · 

Then 

(cPd) cp~ )== ~j~ I 

~d = rYun (ryd-o<,~ -ru) 

1·-== m1n lnj_- A\o. \ 
d ~~j . l 

for J' = I ) I I I I ) m . 

Proof of Theorem 3.2. From condition (3.9) of Theorem 3.2 we have 

for 
I _2-1 -~ o( L_ I) 
d= 1 ····I m J ) ) which 
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means cpd· is in ,E)[H'~J. Also A,- 1 cp d and thus 

are in £)[ H'o(] and hence in fJ[H'<><] () JJ[&,] 
by Theorem 1.4. We can then use the asymptotic expansions of 

given by 

Theorem 1. 2(iii) and (iv). In particular 

H~'cpJ :::= H-'cpd· + o (£o<) === ;\-'cpd. + o(Eo<) J 

( H £' cflj 1 cfl~) == { H-' 4lj, c/>,_)- E (H'-l: 1-f '¢J J H ,f H-'cj)._) + o(t 2"') 

We wish to use Lemma E; however, we cannot take the cp· to be 
. J 

the trial vectors because ( H €' ¢ d J cp lt:a. } is not a diagonal matrix, 

as is seen above. The proof is divided into two stages. 

1. In the first stage we diagonalize the matrix ( H£' cPj 
1 

cPjQ.) 
by diagonalizing the operator E HE' E = K J where 

E = p { cp
1 1 

' 
1 1 

I J cpm} K is aself-

adjoint operator on an rY) -dimensional Hilbert space. We apply 

Lemma C to -K with trial vectors cp, 1 ' ' 1 
• J ¢rYJ , .. 
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e; = II (- K - ~d ) cB· 112. 

~ II(- K t A-I- ~A-" A~')) cpd. !12.. 

by the Riesz -Fischer theorem because A-- , , , t+- is a complete 
't'1 I I 'f-'n--. 

orthonormal set in E ~ , Moreover 

f._ ({-k+A-'-EX'-lJj~d,¢~J/,_=o(t:~o<)J 
~=I 

Consequently, Jd· and j'
0
· so 

Lemma C are defined and 

1 ~· -= 11 ~ + 0 ( E yo( - I ) ) 

jd = t')_j + 0 ( E '{o<- I ) 

We prove this by induction. j 1 = V(_ 1 l and assume 

-P ( 4o<- ') 
,j i = ·vc ~ + a £ · . 

1n 



Then 

Similarly for f · 
d 
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are the eigenvalues of - K J then 

ji < fd ~ :fd· d -= 1 ' ' · ·) m ; 
therefore, _ 2. (t) 

,Md· == yt~ + o(c~L/o(-l) = - ~- 1 + £A Ad· +o(E
2

o<), 

Let YJi be the eigenvectors of- K corresponding to )A i such that 

(LtJJ) lj)~) == ~d~' 
chapter we have 

( 4Ji J cpd. ) ::::: 0 I 

Using Lemma B of the preceding 

e· _J 
~· 

6J=- m1'n (~d- =G-1 )IJ+'-~d·)= O(E). 

Since 8 d = 0 { E 2.~ J we have 
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-I 
2. In the second stage we apply Lemma E to- H~ , using 

\..jl, 
1 

1 1., 
1 

tfJI'Y\ as trial vectors. We have 

(- H~' lfJd ) lfJ ~ ) = (-- K' l/Ja· , lfJ~)-= )Ai &'j k 
and (til fll \ ~ so we can apply E. 

i'j) ~~ }== jb_) 
In E let f(J fJ and 

ed = /1(- H~'- ~JL/Jd·/1 = //(- HE
1 

-)Ai) <JJi II. 
We note that 

E.(- H;'-fJ) ~· = (- K-)AJ) i.fd· = 0. 

Hence(- f{'-)11J) lf{ =(I_ E)(-H;' --;uJ ~· 
. =(I- E)(- H;') E l/Jd ; 

f e; = f_ //(- H~' -td·) lfli It 
J-=1 d'==l 

= t 11 (I - E)(- H;' ) E l/Jj r 
J=l 

VYI 

= 2J/ (I- E)(- H;') E cf;i ;r 
~=I J 
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because the expression L IJ T ~·II "2.. J · · · the trace ofT, for 

T, a bounded operator, is dindependent of the ~rthonormal system. Then 

m m 2. 

L e; ~ ~ //(r- E)(-H~') ~II 
J=l d'=t . 

= t II (I- E)(- H~' + X') cp./r 
. d 

d=. I 

~ [ // ( H~'- X') ¢d /r = o(t,o() 
1 

d =I 

by Theorem 1.2 (iii). Thus we have 8d = O(Eo<) and we can apply 

Lemma E. We can choose ( o< 1

1 
~ ') == (-rs 

1
- o<. J in such a 

way that qd· _ o<,
1 

) f'- ~d are all > Q . We see 

by Lemma D that fb. ~ ~ ~ + .O ( t "Z.o<') and 

Thus we have by 

Lemma E 

A~~~ 
hence 

\ \ \.(I) ( <.~ \ 
!\ £ ~ = 1\ + E 1\ b. + o E J ) 

which is the required result. 

Also by Lemma Ewe estimate 1- I ( cp£d 1 'fj ) I~ 
We have ~j > 0 j 

.. ' ( (I I \ (I l } j \(II \ (I I I ) Za>< ) 
Tj = £ m HI I Aj -, 1\j_, ) 1\J -- /\d+'. + o (E. 

is of the order 0( t) , Hence /( ) 

1 

c.. ( 2.o< _ 1 ) . 1- ~ . t/J. - 0 [ 'f'lq J 'YJ - ) 

.. 
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and IJ cp £ d 4J d. /j == 0 ( t zo(-') if 

(¢e.~)\f)jJ ~0 We already have 

}/lj)d· - cpd }( = o(Ezo<-1), Hence 

1/ cpt~ - cpd. )/ = O(t 2~~· J 
We derive the uniform convergence over any finite region of 

¢~J (x, YJ~)- cpd (x, y, ~)== o(t_ 2~-') 
1 
f~+0 1 

from 

IJ cp~d - cpd 1/ = o(Ezo<-'), 
as in the proof of Theorem 3. L We thus have established Theorem 3.2. 

5. Second-Order Approximation; Proof of Theorem 3.3 

We now derive the next order of approximation for eigenvalues 

and eigenfunctions by imposing a further restriction on the function 

p(X, y 1 c), 
Proof of Theorem 3.3. Let[E ( A'V be the resolution of the identity 

for the self-adjoint operator H We define the operator S J 

I 

S = s X-~ A dE( X) 

where s 1 

. means integration except for the point X- ~~(-X,= ··~A.,), 
and eigenvalue of H . S is the reduced resolvent of Hand is a bounded, 

self -adjoint operator. We next define the operators 

. I 

S· 
J 
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where P{ cp 1Q j is the projection on the one -dimensional subspace 
I 

determined by c:p~ . Tlle SJ are bounded, self-adjoint operators. We 

state now a lemma from the perturbation theory of quadratic forms. 

41 
Lemma 3.2 (Kato ). Let the c ondition.s of Lemma 3.1 be satisfied. 

Let the eigenvectors rh , , , , J ~ be in D [:J£ ,J () D [ H J 
't'l ) '+" ~ 

for some ~ 1 > 0 

Then 

A£j A 
\ (II + E 1\. J 

II cp(~- cpi- fcp't 1/ =-a( E), t ~tO 
where 

From condition (3.)0) of Theorem 3.3 we have 

L..W 
) 

J= l, .. ,.,m so cp · is in [) [H'] is in 
d 

D[Y£.] () £) [H '] by Theorem 1.4. 

We then can apply Lemma 3.2. The spectral representation of H is 

) 
fin D[H] 

) 

since w~ have assumed discrete spectra. So we have 

41 
Kato (1) Theorem 20.2 
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CD 

-sH' cp. == L 
d II = YY'l+· I 

where 

hence 

Also we calculate 

S/H'sH'~. 
d ~d 

So we have 

($:) 

¢111 (x,yj~) = L 
V=Wl+t 

+ ~ ¢\ (X, y, :C J Lro 
L ,u• \(IJ 

!\' - 1\k_ 
~< m+l ~ Y=Wl+l 
b.~ d 

We shall now establish the uniform convergenc~ of 

cp'f:j(x, y, :c)= ¢i (X, y,=c) + ~ ¢tfx, y) r) +o(E), 

E---7-+0, 



' 
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(I) ) 
The function cp. {X 1 y 1 ~ satisfies the differential equation 

J 

v· <Pt + {Ad - q rx, y, r:)] cf:lt=- {A/)- po<, y) z:)J ¢d· · 
as in the previous chapter 0 ·Consequently, using the mean-value 

formula (3 011 ), we can represent cpJ" { Xl Y 1 =l:.) 

- ~~R~ jf~R-rY(LRtr)fp-X/}¢d rsmedr-dGd¢, 

r~R 

Using the above representation and the expression for 

4l j {X o 1 Y• 1 ?:.., ) - ¢ j ( Xo J Y• 1 I o ) 

from the proof of Theorem 301, we have 

cp£j (Xo, Yo) "lo) -cpj (Xo; Yo, ro) -E¢/1
(Xo) Yo) ~o) 

= Y;R3 {[{£ cp<J - ¢ i- ~ ¢t}r'-sln edrded¢ 
r-~R 



,.. 
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-~3 ff[rR- r)t(ZR+- r)[ q -J..j][ ¢,j- 44- <-cp}'2rsrnedrdedcp 
r~R 

·• 

-~~~ JffR~rY (zR+d{ E p -(A,J-Aim cp[i -~JsiVJedrdedrp 
(.f R 

- ~R' ~JYR-rWZRt-r)( "·i- AJ- <=An cpi r SJV\ gdrded¢, 
y-f.R 

By the Schwartz inequality the squares of the first two terms are each 

so the first two terms are o(E) 0' The third term isO(t:)fcpfJ·-cpi}=c(c:) 

because £ cpEj - cp J. ~ ~ Q 
The fourth term is Q(~ l.) since 

\ (I) 
AEj - \j - ~ 1\ d 

Hence, we have 

as E.~ +0. 

\ (2. ) ) 
-= t.' /\2 + o(E'" . 

E.~ + 0 uniformly over any finite region, which completes the 

proof of Theorem 3.3. 

This work was done under the auspices of the U. S. Atomic 

Energy Commission. 
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