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ASYMPTOTIC PERTURBATION OF DIFFERENTIAL EQUATIONS
John Killeen

Radiation Laboratory
University of California
Berkeley, California

July, 1955

ABSTRACT

The e1genva1ue problems given by

—gp(x)}u 0, 0<&X<a@,

: and ,
Viu + (= g0y )= epix, y2)u =0,
in ordinary three-dimensional space, are considered. It is assumed
that e isba small real quantity. The expansions for the eigenvalues
and eigenfunctions which are given by formal perturbation theory are -
justified as asymptotic series, valid for a finite number of terms as
¢ = 0. The approximations are established Ytgorously up to second

order by placing certain restrictions on the functipn p-
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ASYMPTOTIC PERTURBATION OF DIFFERENTIAL EQUATIONS
‘John Killeen
Radiation Laboratory
University .of California
Berkeley, California
July, 1955
INTRODUCTION

We consider the eigenvalue problem given by the differential

du+{\—-qm}u—~0

with —0 & d L X< p < +00 and A a

complex number. The function q(x) is a real-valued continuous

equation

f'unétion in (aﬁ b). In this paper we treat the so- called singular case;
that is, the interval (a,b) is infinite, or q(x) is smgular at one or both
end points.

Now Cons1de‘r the above equation perturbed as follow's,,

& TIA— g —epiju =

where § is a small real quantity. The problem of perturbation theory

is to calculate the eigenvalues and eigenfunctions of the perturbed
problem in terms of the known eigenvalues and eigenfunctions of the
unperturbed problem.

In this paper we consider the discrete part of the spectrum of
- the unperturbed problem and assume condificims on p(x) such that the
corresponding perturbed s_pect,r.um is discrete. |

If we take Xn ‘and 4)n()() to be an unpe:rtu;'rbe’d eigenvalue and
- an unperturbed eigenfunction, the formal péffturbation procedure is to

assume that the infinite geries’
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IR g 5 , ,
)\gn:—)\h“*‘g)\( 'TLE/\\ . C

D= Py + el +EB+ ,
give the perturbed etgenvéiﬁe ana eigéxtfunctibn, The coefficients are
computed by substituting the above series 'in the perturbed equation “
and equatmg like powers of E_ N

The Just1f1cat1on of th1s formal pr\ocedure in the case where the
above series are convergent in the us_ual sense is called analyt1c
.' perturbation theory, and has been given for linear operators in a
‘normed hnear space by Relhch (1,2,3,4, 5), Sz. Nagy ("I.-), Wolf (1),
Kato (5 7) and others. In part1cu1ar for Operators of the type we are
cons1der1ng, Rellich (4) and Kato (5) estabhsh the followmg two
independent conditions for convergent series in powers of E . The

first c_onciition is
b h b 2

Tpoaxlx | < x| | T dx |+

%

f C](x )~ (%) (x}dx
a

for;éd(tzof ) €;O | ‘Jand;:w‘F(X) ” such that 'F L'F ar_e in
LZ(O)b> o vahérA'ev L'{:= q'F - 'F” The second

condition is -
Z L v\ * . '
POLFOY x| L f FX)} dx + 8 Ff g0 f(x) = 1K )X
- In this paper we consider cases where the above conditions are .
not fulfilled yet the perturbation method is known to give useful results

by taking a few terms of the perturbation series. ' Mathematically the

series are considered as asymptotic series, valid for a finite number
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of terms as £ — O . This interpretation was first given by
Titchmarsh (2, 3) for differential operators and by Kato (5,6) and
V. Kramer (1) for semibounded operators in an VabStra‘Lct Hilbert
space. Kato (1) has genefalizea t.heb latter to asy.m;:).totic p'ertﬁrbati,on
for sfemibounded‘.quagi_ra.tic forms in Hilbert space. |

| In this paper we delfivje theorems giving asymptotic perturbation
series for ordinary and partial differential operators of second order
which are s_emibqunded, We derive these theorems using the abstract
théOry of Kato _(1),__

Inithe first chapter .wé summarize the theofy of éémibounded,
closed, quadratic forms and the asymptotic pertur'batio'n theory in
Hilbert space,

In the second chapter the eigenvalue and eigenfunction
approximations are established up to second order for singular
ordinary differential operators by placing certain rest;rictions' on the
function p (x). | |

As a by-product of the abstract method used in the second
chapter, approximations for solutions of a nonhomogeneous two=point
boundary value problem are given.

In the t.Hi_rd chapter thé theory is extended to the éq\iation

VU +IA—9O0Y, B —epix Yz U= 0
in ordinary three-dimensional space. The problem of degenerate
eigenvalues occurs and is considered.

I wish to thank Professor Frantisek Wolf, who suggested the
problem and gave me advice aﬁd éncoﬁragemen‘c thrbuéhout,' and

Professor Tosio Kato, whose teaching and guidance were invaluable.
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I.
ASYMPTOTIC PERTURBATION THEORY IN HILBERT SPACE

I Sern1bounded, closed quadrat1c forms

We base the asymptotlc perturbation the'ory of ordinary and
partial differential equatidnsf on the asymptotic perturbation theory
of quadratic .fvofms in Hilbert space which has bbe'en developed by
Kato. 1 The theory developed by Kato is for semibvounded, closed forms.
The theory of se’mibounded quadratic forms was introduced by
Fr‘iedrichsz and applied by Rellich and Friedrichs to differential
opefratofs3 and b§ Rellich to analytic perturbation theory. 4 Katc1
has developed the theory considerably and has applied it to asymptotic
perturbatlon theory. '

We introduce the following definitions:
Definition. Let £ be a dense linear subset of an abstract Hilbert
space,: H— . A functional J [u,»,v] defined for u, v in D is called a
Hermitian bilinear form if

9T Ed -1fd

ii) J {v:.l v:| is linear in u, that is,

T + Uz, v]=xT U, V] +RJ [U:,V]

B is called the domain of J and denoted by g[:;—_]

J{u)lZ J[u,u] is called a quadratic form.

Kato (1)
Friedrichs (1) : v
Friedrichs (1), (2); Rellich (6)

4 ' | ©
Rellich (3) '
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Définition. A quadratic form J is said to be bounded from below if
there is a real number ¥ such that J_fu] > X U//

for all u in BEJ'] This is denoted - J=X . . Such forms

‘are called lower semibounded. Henceforth we shall consider oniy

iower semibounded forms.

Definition. Let Jy, J, be two forms such that B[J-,]C BEJzJ
and IEU,V]:JZEU)VJ : for ‘u,,vin.B[J:]_
Then J, is called an extension: of Iy and J, a restriction osza We

denote this J2 O J, FOP J_IC.J-Z

As an example let K be a linear symmetric operator in A and

let J-[U,V]=(KU, V) :(U/ KV)

with Df:\"]: B[Kj , B &  Jis clearly a Hermitian form and
bounded _f_ro.fn below if K is bounded from below. A symmetric
operator is bounded from below if (KU/ U) = K(Ul U)

for all u in B[Kj where ¥ > — o0© |,

To continue with the necessary theory of quadratic forms we
need a few more définﬁtions. Consider a form J with DEJ'] as its
domaiﬁ alnd a sequence §uh} .such théf each (U, isin BEJ_J
Definition. The convergence .UV,—J—->  means ||Un—U ”—) 0
as V\——)koo " and YJ'EUIV\ .——()mj\a O ‘as N, Mm-—aco .
Definition. A form J is called iciie_d if UH—) v 1mphes u'in 8[3]
and JEUH*UJ—%O

Definiton. A form J is said to be closable if it has a clcsed extension.

With these definitic)ns we can state the following theorem.
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Theorem A (Kato5)~. A necessary and sufficient condition that a form

J be closable is that (n E—)O " imply J—[Um]-—)' O, Then J has
a least closed extension, Jr called the closure of J. .l'has the same
~lower bound as J.: B[J‘J is the set of u in & such that there is a
sequence {Uh} with Un =5 U and J_[U, \/_]= A’i"m cT[Un, Vn]
where Vn V ", arbitrary.

If we consider agam the example J-[U, Vj (K U/ V)
where K is Iower semibounded we shall see that J is closable. Assume
" without loss of generality that K> O . Let Un -—> O .. Then
lunll— O and (K(Un = Un), Un — Um ) —> O .

For &> O there exists an N such that

£ > (K(Un—=Unn), Un = Unm) R
= (KUn,Un ) + (KUm, Un ) —2.Re(K Un, Um)

for m,n >N Let ™M —> © - for a fixed n. As

(KUm,Um) =0 it follows that (Kumu <€
for N >N . so JUn]—>0 .

From now on Qe s‘llall consider only semibounded, closed forms --
or, 'atv any rate, clcsable. forms.  We ehall proceed to state some of
their more lmpoftant proéerties | |
Definiti(‘m A linear subset &) of B[J] of a closed form J is called a

core of J 1f the restriction of J taﬂ has J as its closure

Thegrem B (Kaﬂ;o())° Let Jy, ..... s Jk be forms with dense intersection.
EJl'u“”’ Jkare clqsed s0 is J1+.,.’.. +Jk. lle, ..... Jkare
closable, so is Il ool + Jk’ and ‘

5 Kato (1) Theorem 2.3

6 Kato (1) Theorem 3.1

&)
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(T+ + T I+ +Je
Theorem C (Kato7)v. LetJ, ..... Jk be closable forms derived from

symmetric operators Kl,‘ ..... ,Kk where. DET(] = B[KJ and
Jl[U,\/J:(Klu)\/>‘ _IftheoPeratorK1+.'....,.,+Kk

_is essentially self-adjoint, ~ then

(T4 +3) =T+ + 3.

The main result concerning semibounded, closed forms is

embodied in the following theorem due to Friedrichs.

Theorem D (Kato?). If J is a semibounded, closed form, there exists

a self-adjoint operator, H, such that (i) D[H | (C 5 [J‘]

and J_[U, vj—_; (H u}v) for every u inD[HJand v in D[JT] ;

(i) B[H] is a core of J; (iii) if uin BfT] u* in B and
TUVI=(U*,V)  for all v of a core of J then u in RlH]

* .
and Hu = u ; (iv) H has the same lower bound as J. H is uniquely

determined by (i).

H is called the self-adjoint operator associated with J.

An important consequence of this theorem is stated in the following

theorem.

Theorem E (Kato!®). Let Jbe a semibounded, closed form and let H
be the‘associatea self-adjoint operator. Let ¥< ¥7 ={¢}.  Then
BIT]=R+-¥F]  ana TU,VI=((H=5)0, (H —¥)Fv) +¥(0,V)
for every u, v in B[J‘]' |

Kato (1) Theorem (4.9)

Stone (1) page 51

9 Friedrichs (1), Kato (1) Theorem (4.1}

10 Kato (1) Theorem 4,2



211-
- If we cb‘nsider the example J(u, Vj:(I(L/, V)With 8[—3—]=,8ij
we have ! that H is a self-adjoint extension of K with the same lower
, o L | .
bound as K. D[K] is a core of(H—X)z,fo‘r any ¥ < ¥, In this case

H is called the Friedrichs extension of K.

2. Monotone sequences of forms

We now state some theorems and definitions concerning sequehces
of forms.
Definitton. A form I, is said to be not smaller than a form 3,0 3y 23,

it O] C AT-] and T [V]z J2(U]

holds for every u in BE\T.] .
Definition. A sequence { Jn] of forms is said to be nondecreasing

{nonincreasing) if N (J—M =>Jn ) for M«£LN,

Definition. ‘A sequence {J’n} of forms is said to be dominated or
bounded from above (belowj)i by a form Jif Jn £ J-(JV\ =2 J_)

forA all n. A sequence {Jn} ie. do,r'nvinated from below if and only if
it is uniformly bounded from below, ie. Tn ¥ where & is

real and independent of n.

. Theorem F V(Katcolz), Let {Jnlbe' a nonincreasing.sequence of forms
" uniformly bounded below. Then there is a greatest lower bound, J,

- of the sequence »withﬁ the foilcwving properties:
- .
o BDI]= U BTn]
nN=\

11

Kato (1) Theorem 8.1

12 Kato (1) Theorem 9.3
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) J[u,vV] = lim J—h[u;\/]

n—w J
_ ,
- (iii) J < Jn ~ for all N and J =J
for any J' guch that T Jn for all N . J is

uniquely determined and we write J = inf Jn
We now consider nonincreasing sequences of closed forms and

give the following two theorems.

13

Theorem G (Kato ~). Let {J‘n} be a nonincreasing sequence of closed

forms uniformly bounded from below by Jn > ¥o ., Then there is a

greatest lower bound J of the sequence with the following' properties:

(i) J is closed and J< inf J 5 J BJI for any J’1 such that J’lé~ J for
alln;

(ii) Let H be the self-adjoint operators associated with I and let

H be the self-adjoint operator associated with J. Then for any

¥ < ¥
(Ho—%) —> (H— X>_,
(Ha=¥JU 25 (H—¥)F U
for U in UB[J‘V\‘J )‘

(iii) If in particular iIVl\f Jn is closable,
\ A
. J= (IY\'F JV\\ "~ and
5 L
(Ho=¥FU —s (H=¥)F U for

U inUBD_Y\:) and ¥ < Yo |
N

13 Kato (1) Theorem 10.2
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~

J is uniquely determined by {Ji,} and we write
J=C— “ﬁf\gyh
Note: For a sequence of linear operators {TM} the symbol
Th—>T means I ThU —Tull>0 as n— o for
all u in Q AT ] , ThU=> TU means (TnU,V) —>(Tu, V)
for v in R}, | |

Theorem H (Katol4), In Theorem G let the spectrum of H consist of

di‘s_cret,e eigenvalugs /u. </\42 4/43 & with finite multiplicities
m ) m, My, . . at least in its lowgr part. For e*ach i : and for
sufficiently large n, there are exactly m e’igenvalﬁei‘s of Hp in each
neighborhood of u;, and the's‘e my eigenvalues éonve‘rge to)ui fqr
N—s»00 - The projection on the Vﬁi -dimensional subspace determined
by all the eigenvectors corresponding to 'thes_-e eigenvalues converges

uniformly to the projection on the eigenspace of H corresponding to

the elgenvaluep\

3. Asymptotm perturbation serles for ng and (Hs UV ) ; firgt-order

approximation.

We consider now the asymptotic perturbation theory of semi-
' ~n ~
bounded closed forms. Consider a closed form Je = (J_-f- £ JE/)

¥
£ = 0] where J > | )J_B O. In the cases that we shall consider

' g a4 ~
we have J_g =J +¢ J_‘&' . However, the next three theorems
[ ~ —~ =~
nold if Jg (C J +¢€ \Té and U B[\TS] is a
0li<s,
core of J. ' » ' 4

We wish to study the spectral propérties of the self-adjoint
: v

14 gato (1) Theorem 10.3
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oper'ator_Ht associated with J’\E in the sens_ev of Theorem D. ‘ In the
following theorems we get asymptotic expansions for the quantities
H'u  and (Hg'u,v),

Theorem 1.1 (Kat'c}ls), Let J =) be a closed form. For each¢,

(o]
D<€ <E€o ‘ let JE/Z 0 be a closed form nonincreasing

as £ —> +0 , such that infojrg/ is closable. Let E[j—‘j/) 8[\7’;‘;]
£+

be dense in H. so that J‘~+£j"£' is a closed form for Q< E<E,

o~ A / . ) )
nonincreasing as §—5+0 . Let Je C J + & j! be closed
énd nonincreasing as € -5+0 . Let O/ ﬂ[Jg] be a core of J.
Qcecss
‘ /
Let J_ "‘C—WI{J—E , Let Ha) H) ng H/
E")""O ~ &~ 22, o,
be the self -adjoint operators belonging to Jg , J} J-‘,_- ) J /
\ |
—-— - / /— - a— Z
respectively. Let Ag = H* HE : and BE = HSL Hg
_' -1 v '
. Then (i) HE') H ) AE ) BE are bounded operators and

HHE'// <] A< |, IIBél €€
D pe— | AT s¥R!—0 £TB/— 0,
for E—~>+O_)'

(iii) N | o~
J_ = C — lVYF J_g :
\ £ +0 )
(iv)

. —> H™ e —+ 0,

(v) for any u such that H 1u in B[Jg] |
/% |
HEU‘—“H U—‘EH B QZHU) O<£é£l)
HeU=H'U +o(c%) , e —+ 0,

15 Kato (1) Theorem 15.1
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{vi) for u, v such that'H-"lu, Halv in D):j—z,]) ’
(Mo ) =(Huv) — e (HeE !41_"u)'H£éLH”'v
__,_ EZ(B;*- Hé-z— H-lu)_B/E* éi H—'V>J D ES{‘)
(K ) =(H'uv) — e(HEHU HEH™Y) + o(e),
£—+0,

4, . Improved first order approximation

We can improve the first order of approx1mat1on for the. case
J_E _ J- + £ J_ by restrlctxng the domams of H 14 and
) v to B]_’J&‘]ﬂ B[‘H/rxj ——- £ X < , We establish the

followmg the orem.

Theorem 1.2. Let j;Ql } JIZ O . be closed forms.

. . [ ~ ~
Let B[j’jn Bﬁlj be dense in &b . Let JC J+JT'
be a'closed form, n'onincrea'sing as £€—> O Let Hg H H/

be the self-adjoint operators belonging to J_g_ J J_/ respectively.
% -3t |
Let Cc = H/ L H ﬁ whe‘re p is a real number such
< L .
t_h?.t 0« é( 5 . Then L.
|« e*™

'(i) Cg is a bounded operator and Il Cg_ ” = HCE_ £ € ‘
(@) €% FCE — 0  as £=—>+0]
(iii) for any u such that H 1u is in B[J‘g]/] B[H' _7 O<g§ < &, )

where X -§+—Z_ $o<< | we have

Hlu = HU - zHg"‘SCE HH'y,
Hfu= H'U + o(s%) |, £—+0;
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{iv) Ifu, v are such that e, BV are in ijf) E[Hp(_])
e (He',v ) =(Hu,v) — € (H* Ho, HEHY )
- (A R, HECEHTHTY),
and

(Hiu,0) =(H'u,u) sl WUl + ole*), 5540

Proof: (i) We first prove that C.i is a bounded operator. We need to

give the following definition. Let A, B be linear operators in & .
A is said to be metrically not smaller than B, A >>B, if RR]C B[B]
and [JAUIl = IBUJ| = tor every uin D[A]. We then need the
:following lemma. | | v
- Lemma 1.1, (Heinz (1) Satz 3; Kato (8) Theorem 2) Let A and B be
iself—adjoint operators and let A0, B> 0. ¥ A>>B then A’>> B’
for 0€V < I

We have D[] D[T] and Jg[U] = £ Ul

for u in B[J.gj We also know from Theorem E that

Frul = IHEOP B[R] =BCheT
Frol=wrol® L% = BIHY]

+,% ' =
consequently, we have ¢ ¢ H << HE :

Now, using Lemma 1.1, we have

P IR o< HETF

[ i < 1

Hence

15 ol < 1.



So we have // CE U ¢

The adjoint C D Hs T H”’ /3 aﬁd | //C:”= //Cs ”

(ii) We wish now to prove -
o &Z‘FC£—>O £—>+O |

| ‘We have C U= Hgfﬂs H’z'/eu . for
u in ,/SEJ] ‘and

ictul =l e Ul WPl
because || o | so | Ha‘f“‘(@[/é | | Hence /}Ez‘,@ci = O+
Hence gé*ﬁC’;U 0 as £ —> + 0 : for
win D[F'] which is a dense set in K. . We have that a’-'fGC
is uniformly bounded in £ , || sT P C: <1 by (i) of
the proof. We have then that Nexr (S ul—0 for u in
dense set in B and || Ei"ﬁC *Oll€ | independent of € , so by
Kato (1) page 86 we have |l §*~A Ca ull— 0 for all
win ¥ , which is Z%“/SC:—'.V—»OIE-——>+OA |

. (iii) From Theorem 1.1 (v) we have

HEU‘-H \V} —EHE B H/LHU Huébﬁﬂ]
BL = HHH: ™ = H@H"‘f*H‘”ﬁH
= Hl'e Cg

Let

Then we have HEB C: H/{s - B/: - | Now if we assume
H 1u in B[J-’E] ﬂ D[H'd] that is that Hla( H-Iu

exists; then
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| L - - L=
B;’k H/,_ H 'U — Hiﬁ CZ* H/ﬁ+z H 'L/
- * | X ) =)
LCH Hu. i
On substituting this expression into the previous expansion for Hg o
we get | /B " » |
- - -Z" / =
Heu=Hu—eHe "CcH Hu
We can let -4
--- X = + T 3~ /* 4
EH CH HU_EZFHE ’BCF_H
and since Ez‘/g Cg — O as £ —> 4+, we have
doa L < | = |
HalﬁézﬁC:H/ Huv— 0, e—>+0.
.Consequently, the second term in the expansion is O(ET'_-.;.@) - O(E“)

Hence
Hi'u= H'U +0o(e%) , e—>+0,

. . e ) " -l
{iv) We now derive the asymptotic expansion for (HE U, V> under
the conditions stated in (iv), From (iii) we have, for u such that H°1u

is in D[j:éj e D[HM] ) and for v in B , the following

expansion

(o) = (Huv)—¢ (K CF HH U, v )
=(Hlu,v)=e(H™H"U, Cobe V),
If we take v su;h that H™ lv is in @[j'}j N BD—,'O(J |

then we have

, . - -T+8 -~
CEHEL'sz H /gH?_ /BHE /8\/
/%‘ =
=W H v
——H/r’3 H'v — EH'l{gHz -/BCE H H v
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If we substitute the above express1on back into the expansion for
(HE U, \/) we then have i » |
1% 't -8 )
(Heu,v)=(H'y v )—E(H H'U H H™'v

+—é(w“H}4rw“ﬂ%i*ch“H*v)
=(H'u,v) = (HFHEH U, KPR HY)
T (HH U, B H PHEF G HHY)
=(H'Uv) =€ (HEH U, HEHY)
€ (WU, Ce B HPCEH™HY)

=(Huv)— e[ B0 HER Y )
+¢ (H;ﬂcg H""H U HEC H”‘H"V) '

So we have estabhshed the f1rst part of (iv). To prove the second part

we write

(17 u,0) = (H'u,0) — e IHEHUII
te | He? c HH Ul

We must show that

e[ He? CA HTH Ul = o(e).
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That is, we need to show that

-8 A% /X -1 o
fim  EllH: (e H ol g

£—->+0 3
We can write l_°< - Ei_fg then
) - <
e | He® CeH"‘H'uH“HHz e¥FC HOH Ul
but zf‘ls CE—eO as _g->+0 by(ii), 50

e HECGH H Ul =0 wes o

We then have

(He'u,u) = (H'u,U) -E//H'%H“'u//lm{sz“),

which completes the proof of Theorem 1.2,

5. Second-order approximation

We now state the second-order approximation for HE' ) and
(Hil U)\/) . We assume that J:C_‘ is given by J;: C J_-i- {_J'-}-E J'”
" -~ = o
with j?l ) J_?O) J_g > (),
1 ~ P P o
Theorem 1.3 {Kato 6), Assume J—E C J‘ + £ J-’ + Ez JE”)

20
where J-g = O is a closed form, nonincreasing as £E—>+0 , such
that inf \Tg _is closable, and let J-”= c— nf J—g” . Let
£5+0 £-+0
=1
J-E—J +€J‘£ and let O%D[\TEJ be a core of

=N =y
J! Let " I be the self adjoint operators belonging to J—a J-
g g

Let /\ F*rz F{E ) f{”‘-}ﬁe

Then
(i) AE ) BE ' are bounded operbators and
| L : | -
ALl €T B < 7
le

Kato (1) Theorem 16.1
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) |
n*

?‘A£~—->O £* A€~—>O éBg—-—>O EBE——>O
£ —s> + O
(iii) N
J = anJ;;
(iv) ifu1s s}uch that H 1u is in S[J—gj N 8({-{_7 for some
&> O) then
Hu=HU —eHiHH U= e H B Ry
O<e <k,
He U 1H Y — ¢ H H Hu +O(£) £—>+0,
(v) ifH ‘u, H v1n B[J-EJAB[H] for £, 0. then

(qu V) (H uv)—a(HH U, H'v)
+&*(He H'H™U H H™'v)
~E(HEH U, B H V)
Fe(HH'U, HEER 1™ H"v)
+ (HEBHIEH U HH V)
€ (B HTH U, B HEHY)

- O<a<e.

(H7 U,V =(H"u) \—E(HH U, H'y) |
S HHY)

J

—EZ(H”J{H"U)H”'EH"\/)"*‘O(El)') 6‘9"'0.'

To conclude this chapter we give the following theorem which we

use repeatedly.

2
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=~ &= = ,
Theorem 1.4. If we have J_E = J—+ € J-E , then the condition

alem BIHS] T2 ¥< |, implies H ' in D[/
Proof: H_lu in B[HI;_K] implies H-lu in D[Hg-!z]: D[jz']'
H—'lu is clearly in BEH]C B[j-‘j . Hence H-lu is in

PIFT N BT ] = BT
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II.

PERTURBATION THEORY OF SINGULAR ORDINARY
DIFFERENTIAL OPERATORS OF ‘THE SECOND ORDER

1. Statement of the Problem and Results

ConS1der the differential equation

dxl* {/\“ g(x } =0 ) o

with a < x <b where—o® < a<bg+c0 and A is a complex nu‘rhber,
The function q(x) is a real-valued, continuous function in the open
interval (a,B). When (a,b) is a finite interval and q(x) tends to finite
limits at a and b we have the classical Sturm-Liouville problem.

If {(a,b) is an ihfinité interv;al or q(x)—»C0 at either end point we have

the singular case. There exists considerable theory for this case.

We shall consider only the singular case, since most of the interesting
applications to mathematical physics are of this type. |

We consider the case f,vhere Eq. (2.1) is of the limit-circle1
type at a and the 1imit—point18 type at b, although the results to be
shown will apply to the other possibﬂities, i.e. limit-circle type at
both end points or limit-point type at both end points.

In Eq. (2.1) let a =0and b = +0 ; then for the case we are
considering to be a solvable eigenvalue problem, .i. e., for some A ,
a y(#,)\ ) in LZ(O,(D ) satisfying Eq. (2.1), the solutions y (x, A )

must satisfy a condition of the form

Y(O)COS<>< +y’(o)simo<.= 0. (2.2)

17 Weyl (1), Stome (1), Titchmarsh (1), Kodaira (1)

18 Wevyl (1), Titchmarsh (1) Ch. II, Kodaira (1)
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We shall further assume q(x) real-valued, co_’ntinuo"u‘s‘.in ('0-,'CO )s
and c?(x) > (70 > —0 for all X in (O, @) . (2.3)
Equation (2.1) with conditions (2.2) and (2.3) will be called the

unperturbed pfoblem, As is uswual in perturbation theory, we assume

the unperturbed problem to be completely solved, i.e. there exists a
complete set of eigenvalues and eigenfunctions (discrete or continuous)
that can be calculated.

Now consider Eq. {2.1) to be modified,

d* (2.4)
—_ X)) — } =
T+ A= g —epox)ty =0
where £—»+ () and x is in (0, @ ‘). The term ¢§ ’O(X} >/ ()() is
considered as a perturbation on Eq. (Z,I-); We assume
p(x) real-valued, continuous for x in (0, C© ),
(2.5)

vp(x)2p°>_q3 for x in (0, QO ).
The boundary conditions are given by Eq. (2.2). Equation (2.4) with

conditions (2.2) will be called the perturbed problem. We wish to find

expressions for the eigenvalues and eigenfunctions of the perturbed
problem in terms of those of the unperturbed problem.
Before stating the results of this chapter we need to make some

further assumptions. We assume the inequality

S{q(x)w‘?(x dx;}F/X)dX f{f()\}dx ¥>_oo &

- for all f(x) in Lz(o) (I)) satisfying conditions (2.2). We have from

integration by parts,

j{qu(x L4 £(x)dx f [(L£)+ qoo{f(x) Jdx ~{F (O eotx

For the case -F(O\ O we see that K qo , as given in condition (2.3).
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In addition we assume that at least the lower part of the spectrum of the
unperturbed problem consists of discrete eigenvalues. -That is, there
exists a number )\* < @ such that | L
)\.<,)\z<)\3'<"'<')\”<)\*, (2.7)

where )\'/ oo, >\Y\ are points of the discréf’e sp‘ectz.'um.’
Conéequently if any continuous spectrum exists it lies above )\* . The
nature of the 'spectr_um_of eigenvalue problems in equations of type (2.1)
is determined by the behavior of the function q(x) and also the boundary
conditions. Discussions of this problem, including cx;"iteria for the
disc‘retevnes‘s of s,pectx;um, are given by Friedrichs (3) and .Titchma;rsh ),
chapter V. We have, for example, the criterion that if q(x) —_— D
as .. X—> 100 - | then there is pure point spectrum. In quantum
mechanical problems this corréspond,s to a potential well with sides of
infinite depth, which leads to only bound states. |

With only Assumptions (2.5), (2.6), and (2.7), which in practice
are not very restrictive, we can derive the zeroth-order approximation,
which is given in the following.-

Theorem 2.1. Let )\0 be an isolated eigenvalue of the unperturbed

problem. Then in the neighborhood of Ao there exists an eigenvalue

)\E of the perturbed problem, and in this neighborhood there are

no other points of the spectrum of the perturbed problem provided €

is sufficiently small. Furthermore we have that

de—> Mo , £—+0.

With the above theorem we establish the fact that for an eigenvalue
of the unperturbed problem there exists a corresponding eigenvalue of
the perturbed problem that converges to it, but we cannot make such a

statement concerning the eigenfunctions at this point.
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We shall assume that for the remainder of the chapter, conditions
(2.5);, (2.6), and (2.7) are satisfied. We now proceed to the first-order
approximation and make the following additional assumption: if cbo (x)
is the eigenfunction corresponding to Ao of the unperturbed problem,
then [0 ”
fp(x){m(x)} dx < © | 2.8)
This condiczion assures the existence of the first-order coefficient in the
formal perturbation series.
With Eq. (2.8) we state

Theorem 2.2, Let Ao be an isolated eigenvalue of the unperturbed

problem and let ¢, (X) be the corresponding eigenfunction with

f{)q:o(x)}‘dx = |

Let

then

= o;gcx\{ G, (X)) dX <

(i A
)\E= /\o-i-_EX + o(e) , e—=+0, (2.9)

I q;i(x\ is the eigenfunction corresponding to )\E then we have, uniformly
—

in any finite interval, Cb&‘ (x\ — ¢O (X) = 0 (EJZ_) , E—>+ O‘

With Eq. (2.9) of Theorem 2.2 we have the first-order approximation

to the perturbed eigenvalue rigorously established. It is seen that the
first two terms of Eq. (2.9) agree with the corresponding terms obtained
by identification of coefficients in the formal series expanéion that is
usually assumed. As we shall see in the proof of Theorem 2.2, a bound
can be computed for the error involved in taking the first two terms of
the series to be the perturbed eigenvalue.

The order of approximation can be improved by introducing further



-27-
restrictions. We shall state these in a new theorem.

Theorem 2.3. Let )\o be an isolated .eigenvalue of the unperturbed

problem and let d) (x) be the correSpondmg elgenfunctmn with

( ) dx =
A jp(x){qbo(x)}lc/x £

Furthermore, assume that o
0o
J {P(x’}m{%(x)}zdx L (2.10)
o)
where -'L‘é X £ | then '

de=Ao+ €A +0(e¥) £ —+0

It Cpi (x) is, the eigenfunction corresponding to >\E then we have,

Let

——

uniformly in any finite interval,

Pe (X) — Py(X) = o(e%) , €— + O,

This theorem indicates that if the function p(x) satisfies the more

restrictive condition (2.10), then the approximation to )\5 b.y the
first two terms of the series is a closer one.

We can now proceed to the second-order approximation of the
eigenvalue and first-order approximation of the eigeﬁfuhctio'n. Again
we must introduce further restrictions that the function p(x) rnust
satisfy. In the statement of the next theorem we assume that the un-
perturbed Eq. (2.1) has a complete set of discrete eigenvalues and
eigenfunctions, i.e. pure point spectra. This assumption is not
'necessary for the proof of the seéo_nd-order approximation, but is
taken for convenience in expressing the coefficients of the higher-order

terms in the perturbation series.
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Theorem 2.4, Let {)\y} and {SUV(X)}) V ﬁ'i,2,3, ..... , be the

eigenvalues and orthonormal eigenfunctions of the unperturbed problem.

Consider a fixed n.

o M= [P b Yk <0

Furthérmore, we assume

({poodn0fdx <o e

then
> \(2)

(1) _
)\sn = )\m + E>\n + & An + O(EZ)) £—+0

where

2

{YZ\) = Z 7_!_:/\_1) ]:LP(X) W (x) W, (X)d X

yEn W ,

I WEV\(X) is the eigenfunction corresponding to /\g_m then we have,

uniformly in any finite interval,

W (X) = W (X) +€ Y (x) +o(e), e>10,

where

W () = W (x) PO UL Y) W (Y)Y

— A
A )\V\ V. Jg

Higher -order approximations to the eigenvalues and eigenfunctions
can be obtained by the methods to be employed in this chapter. For
purposes of applicatioﬁs, to.problems in mathematical physics the first-
and second-order approximations are usually all that are employed, as

the difficulty in computing the higher-order coefficients becomes great.
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In fact in many practical problems only a few eigenvalues and eigen-

functions of the unperturbed problem are known from numerical
integfations of the differential equatién. | In thesecas;sonly t}i_e‘first-
order coefficient of the perturbed eigenvalue can be éOmpufed in the
conventional manner. In a later section we give a method for deférmir;ing
the second-order coefficient even though the complete éet of eigen-
functions for the unperturbed problem is not* known.

| The results of Theorem 2.2 and Theorem 2.4 are similar to those

of Titchmarsh, 19

but Conditions (2.8) and (2.11) are less restrictive
than his conditions. Theorem 2.3 is a new appr.oximation,

2. Formulation of the Problem in the Theory of Quadratic Forms in

Hilbert Space.

In orde;‘ to establish the theorems stated in the preceding section
we need to first formulate the problem .as one in the spectral theory of
linear operafors in Hilbert space. As the Hilbert space, =3 » we have the
space of real-valued measurable functions, f(x)-, defined on (OJ (I))
which aré square-summable, i.e. the space L;_(O, aj), Measure and
integration are in the seogse of Lebesg\f. In this space we have the norm,

I£ll = (( {FO}dx [P < oo
and the inner product ° 0 | '

(£, 9) = [#x) 9o dx
for f, g in H. . Actuall?r this space is a set of equivalence classes of
functions. Two functions are equiQalent in this sense if they differ only
‘on a set of’Lebesgue measure zero. So " ¥, (X) = ’Fz (X) allmb.:st

everywhere' is equivalent to ”'F| _{-\Z ” = ) '

19 Titchmarsh (2) Theorems 4,5,6,7
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For the unperturbed problem we are considering the differential

operator, which is formally given by

o= guun—a¢ e

o ux) in le (O,OO) and )< X < 0D. The function q(x) satisfies

‘Condition (2.3). Lu is not defined for all u in H and L is an un-
bounded operator. Consequently, for L to be -properly‘ defined as an
operator in Hilbert space its domain must also be specified. The domain
of L) BEL] is the>set of functioﬁs u(x) such that u(x), u'(x) are absolutely
continuous and u, Lu belong to H . The unperturbed problem can be
written as the following eigenvalue problem in S
Lu=AU | (2.13)
where )\ is a complex number.
In order for Eq. (2.13) to be a solvable eigenvalue problem, i.e.
a complete set of eigenfunctions 'cvorresponding to real eigenvalues that
satisfy Eq. (2.13), we must have a self-adjoint operator. The operator
L with domain B[L] is not self -adjoint. We must find the self-
adjoint contraction HCL/ i.e. the operator H given formally by
Eq. (2.12) with B[H] CE[LJ and such that H is a self-adjoint operator.
The theory of singular second-order ordinary differential opera.i:c;rs’l'7
indicates that since Eq. (2.12) is of the limit-point type at 0O and of the
limit-circlé type at 0 a suitable{boundary condition must be imposed at
C. Only conditions of a certain general» form20 are admissible, The
boundary conditions for the unperturbed problem given by Eq. (2.2) are

self-adjoint boundary conditions. 20

Y Weyl (1), Stone (1) Ch. X, Kodaira (1)
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- We hairé then that the opéra_t'of H -- vgviv*en formally by Eq. (2.12)
a_rid. with domain BElehere BE—{] is the set of functions u(x);
| O ‘< X < o0 such that u('x):, ,.ul"-(x) are abso’lutely continuous, u{x),

»H u belong to H |, and also U(O) CO.SO(-i-U (O)S/V')O( O -=

S is a self ~adjoint. operator in H ~ And the unperturbed problem

/\U ’ (2.14)
is' a self-adjoint eig_envaluef_p‘rpblev_m in Hilbert _s'pac‘je,
o Similarly we can d.e‘fin'ef_th‘e sélf.-;adjoint operator

Hf_:q(x) +£P(x)‘—d)(z )£.>O

for 'O(_Xéwand q{x) as befoi'é and p(x) satisfying Eq. (2.5) real-valued,

(2.15)

cantinuqus‘ in (O} CD) Th'e,domaiti of Hg) BEHg]is t‘he set of ffimctions
, 0« X< CD such that u(x), u'(x) are absolutely c ontinuous, and

u(x),. ng belong to H and also
U(0) cosex + U'0)sihx = O

Then - ,HE is a self-adjoint operator and the perturbed
pro’b]lem‘ ' ' | |
Heu = AU | (2.16)
is a self -adjoint eigenvalue problem in Hilbert space |
We see that Hg is given by , | :
He=H + ¢ HY | (2.17)
*'where Hm the perturbing op'erator, is just the multi;ilication operator

lgiven by H{ )U P(x JU(X) and SEH(')_] is the set of functions u(x)

such that “ H(l) , — (({P(X)U(X} d}( < ®
'We have B[H ] B[H] n BL’HU)J B ,L,et,.H—, be

the restriction of the self - -adjoint unperturbed operator H to the domam

-of the ‘self-adjoint operator Hg.,_ ~We have for u, v in b
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(F‘l- U, V): [Q(X)U(X)—%ﬁ]v(x)dx o

w
f iiaﬁf* GXYUIV(X) [ x — u(0) v(0) cot X
(@] .

/
(U, Av)= {U(x [q(xw
- H’i% +.q(x\u(xw(x)]dx_u(o)v(o)coT°<,

/o

(HU, v)=(U,H\/) , UVel,
We have then that ﬁ is a linear symmetric operator. Now let us
define the form JEU)V] = (H U, \/) where B[JJ: 5.

Then the quadratic form is

J_[U] (Ru,u) |
=£[( ) + 9 U(X}]dx—{u(o}cofo(

We have from condition (2.6) that J is a lower semibounded form.
Furthermore, J is closable, since it is derived from a semibounded

symmetric operator. Denote the closure of J by I The self -adjoint

operator associated with J, in the sense of Theorem D, is denoted H.

It is the Friedrichs extension of H. From the spectral theory of

ordinary differential operators of second order, 21 we have that H

21" Rellich (6), Rellich (7) p 54, Stone (1) Ch. X.
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with domain £ is an essentially self-adjoint operator. Therefore,

~S .

H is its unique self-adjoint extension and consequently coincides with

: g Py

H. That islvwe have , 8
F‘I = } B[ﬁj — 8[1-4_7 _ (2.18)

Now let [:im be the restriction to f) of the perturbing operator

H“)- defined in (2.17). We have u; v in )|

o) :
) ' o
(H'u,v) = f}O(X)U(A)V(X)dX =(u, HV).
~We have then that W" isa linear symmetric operator. Now we
define the form J-MEU, V]: (F,ﬂ)u) \/) with S[J—m]'z 5 .

The quadratic form is

J_(”fu] #(Hmu)u> — p()(‘) {U(X)JLQ/)(

> P ( {uFdx

)

which is seen to be lower 'éemibounded. The form is then closable

and its closure is denoted by ‘3(1), The self -adjoint operator associated

with 5(1) is ITI“) and is the Friedrichs extension of ﬁ(l). Moreover,
o= v —~
H“) coincides with H “); a multiplication operator, with domain Ve,
is clearly essentially self-adjoint. That is, we have |

S
——

A=W B[R = BHD

We can define the form J—E = J_"i" € 'J-'m for &> 0O
where B[\TEJ —— B . It is clear that J-g_ is lower semi-

bounded since J and 'J(l) are lower semibounded. The form J_g is

closable by Theorem B and its closure is denoted by J}_ . We then
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have from Theorem B that \TC C J_ + £ J-(l). We further have
that ji_ = j: +C j‘(l)‘ by Theorem C, since the operator F;—‘I‘E '_7(')
is essentially self-adjoint. The self-adjoint operator associated with

5_'5 is the Friedrichs extension of g'f'E H(') and coincides with HE
defined in Eq. (2.17) since H + € F"(') is essentially self-
adjoint. '

So we have that the self-adjoint operators associated with j j-v(‘}'

j\_g are the operators H) Hm) HE previously defined.
Consequently, we have an equivalent formulation of the perturbation
problem given in Eqs. (2.16) and (2.17), that is, to find the. spectral
properties of a self-adjoint operator Hg associated with a quadratic

form fg where J-E = j— + EJ—M.

For convenience we can assume without loss of generality that

TZ ’ ) j‘(') > O ) and therefore }E?l.(Kat%zzf) This

implies that

(,H Lj) U) ; (u) U),
(H'u,u) = O .

These conditions appear to be much more restrictive than conditions

(2.19)

(2.5) and (2.6); however, the condition (HU) U) = (UJ U) may
be assumed if H is only bounded below, for we only need to add a
suitable constant to H and this means only a change of the origin of the

spectra of Hg by the same amount. We write condition (2.5)
(H'U, U) = —=(u,V) —(s(Hu,u) . «,B82 0,
twe st HY = H4 o 48 H | then (I, ) 20,
Also we see that [ 4 ¢ H("z H+ ¢ (HW — ‘“@H)
=(1—ep)(H + Zgg H" ) ==
=(1—-¢B)H+ ¢/ H") —ex.

22 Kato (1) page 77
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The factor {(1- ¢ (3)) and the added number —¢g | imply only a.change

of scale and of origin of the spectra of Hg . So we could consider the
/
problem of H/ + 8/ H(H where we have (Hb) U)Z(U, u)
’ /
and (kuJu)Z O) and H:’H + ¥+ l)

m__
H =H" +e<+gH,
Consequently we shall assume that condition (2.19) is satisfied for purposes

of convenience in proofs.

3. Zero-Order Approximation; Proof of Theorem 2.1.
In Section 2 of this chapter we formulated the perturbation problem
in the language of semibounded closed quadratic forms. In particular

we have the relationship
J. g = T+eJ ”))
BL3] =031 N B[F"],

which is independent of £ . With this formulation of the problem we

and

can make use of the asymptotic perturbation theory of such forms.
Considering ﬂffg]as a set defined for the continuous parameter £ > O'
we note that B[_Tg] is independent of £ . We can show that -j;E
is nondecreasing in § , that is nonincreasing as £ — + O . by

the following simple argument. Consider the two equations for x in(O, oo)

%%;% +iIA—-q}u=0

)

d*v — Qs —
dxz'+{>\ q ()()}u O )
with U(Q)= O .
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J'[uj § ({42} + qfuonf] dx

_ J'z[uj': [ad;%}z + qz(x)l(u(x)}z] Ix ;
clearl’y J—z[ujo?_ J_‘ Euj ~ for U' in 8[3‘1]/) H[Jz]

“qz ()() = q,()() for ali X in (OJOO)

“‘.Invour case q, ()() = (?(X) + E,/D()()
7= (X)= q(x) + €. p(x)
| o= &

Now from Theorem H, using a continuous parameter £ instead
of the discrete .index,‘we have the lemma.
) ~r
Lemma 2.1. Let J-g = | be a closed form, nonincreasing as £— + 0,

Let J—: C -mlfﬂc\\jlg I Hg ‘is the self -adjoint operator belonging
£—>+0

to J-E and H the self-adjoint operator belonging to }, and if the
spectrum of H consists of discrete eigenvalues at least in the lower part,
- then the same holds for HE and the eigenvalues of Hg converge to the

corresponding ones of H, iie. /\gé - )\d as £—>+ 0
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for '.some )\' < /\* ; the eppe.r bound for discrete spectra.
In Sectmn 2 we noted that J_ > | 'c"o\vxld" be assumed if c_on-dit'i.dns“
| (2 5) and {2.6) are fulfilled. We assumed in Eq. (2.7) that the lower
“part of the spectrum of the unpe\rturbed-prob‘lem is discrete. Consequently,
) Lemma 2.1 applies directly te"‘o".ur..p'r'oblemv Theorem H provides that
'1n each nelghborhood of /\c\ Wthh is a s1mp1e elgenvalue of H, there
' is exactly one eigenva.lue of ,' ‘ }\ EJ - prov1ded €
| - is sufflc1ent1y small, We have thus estabhshed Theorem 2. 1, which

-.,_g1ves the zero-order approxrmatmn to the perturbed eigenvalue.

4, Flrst Order Approx1mat1on Proof of Theorem 2.2.

N We proceed now to der1ve the first- order approximations. We have
If,o'rmulated the problem as one of.finding”the spectral properties of HE
"which is the self-adjoint operator a_s_s,ociated with the closed form J’z)
defined by j\:g_ = j’ +€.j’—m where j;‘ j—’(l) were defined in Section 2.

H and Hl-(l) are the self-adjoint operators belongmg to J J“) We have

assumed for convenience that \T?a | and J>_ O. we have that

ijg] = E[f_] N B[jr('] " isdensein B and
independent of € . ‘Furthermore; in _fhe.pr,evioﬁs section we showed
~ that j& is noniﬁcreasing as E % +0

With these considerations. '.v'v.e 'can“now_make uge of Theorem 1.1
from the perturbation theory of qeaci_ratic- forms.
| In order to derive the fi_r:sf—_er‘d;er and higher-order approximations
to the perturbed eigenvalues aﬁd eigenvectors‘, we use some lemmas
23

.on est1mat1ng elgenvalues and e1genvectors developed by Kato,

Cons1der a self- adJomt operator H w1th the trial eigenvector w.

23 Kato (2)
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Lemma A (Kat_oz4), Let w be in SEH] //W//

let Q “‘(HW) ) ”(H Q) Wl/ - Then for any
K £ VL the 1nterva1 (O( Q + 9?-
point of the spectrum of H, gnd for any ﬁ > VL ~ the interval .

6% |
[Q — (3_ rL ) {5 > . has the same property, 6<£ //(H _g) W//
for any scalar X

Lemma B (Ka‘coZS)° Let (o(,,ﬁ) be an interval in which there is at

I

/ ) and

contains at least one

most one nondegenerate eigenValue of H but no other points of the

spectrum. Let W, V’L ) be as in Lemma A and further let

e pd (VZ'—O(>(/B Q Then the interval (N//B) contains

exactly one e1genva1ue )\o : which is contained in a smaller interval

[Ylﬁm Q°<

elgenvector associated w1th /\Q , Then we have

b, — (_ o
‘~e<g._.._,mmm—o<,@—q) asll=1 (¢, w)=0

Proof of Theorem 2.2. From Theorem 2.1 we know that the interval

Let ¢'o be the

(o() /5) contains exactly one eigenvalue /\E. o]c H£ J S 0 we can

apply Lemma B to Hg with the trial vector W = Qbo the un-

perturbed eigenvector. TO};en y‘L - (H;l ¢OJ ¢O >
From condition (2.8), j P(x){ ¢o(x)}2.d X < 0O )

, A N
we have that (b, is in QEH(»%:J — B[J-MJ and there-
fore ')\aﬁ¢o is in | B[jg'] and a_ls‘QHcl¢o ; consequently H"qbois in@ﬁa:l )

24 Kato (1) Lemma 18.1

25 Kato (1) Lemma 18.2
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by Theorem 1.4 and we can use the asymptotic expansion of

v (H“q)o,d))gwen by Theorem 1.1 {iv). Then

M= (0 - W AT ro)
R [T ey

-We have

o =l(H=n) Pl
(e = K ) boll = He' b= H b, = oY

by Theorem 1.1 (iii). So 6:0(2_7) and B < (= )(ﬁ‘rl)

for suffi‘ciently small & . Using 'Lexpma B., we have
4 ez >\ : ez _ |
SER AN - iR

A = A".—-aA NH S +o(e)

which glve 5

Ae = Ao +EA + o(e) ,£->+o

where }\(n_: H H(”Lq)olll_—-_jp(x)iqb()(X)}zC/X.

Also by Lemma B we have o

\l CPE— Cbo.” < [\:

———

>
— &y
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assuming ”(1)8 H—_: | and (Cbi, Cb'o) ZO . so we have
”d)i——dbollz.o(g'li) g—+0,

It is interesting to note that by using Lemma B in this way we
“actually can get estimates of the errors involved in these approximations.

We see that

o =lI(H'=n) & II" < H(H"—— PN
=X, — EX' Ht B 1", —AT o, Il
= e )PIHTE B H ", "

N AL P AN

<
< e 2IH | = e XA,
because we have ” Hg_ ” 4 I and - ” E-;: B:E*fH é I,

We also have

| Q*# o — a/\f)\mé (S
R Y [T

S0 ' — é '

where

VL-" VC — .
e’- 2
Now from >\£ VL < ’1 and the above inequalities for &
1
and ,,L__g( we have

A ek Nk 87 H 75

-2\ (1) g/\ /\(H
sho A+ =
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Allvthe' quantities on the right<hand side':can be computed easily., We
have a similar inequality for the other side from Lemma B.

 We have established
|
(f{qbs(x (1) dx) = ofe*) | £—+0,
and now wish to derive the uniform convergence over any finite interval.
: We make use of the following f¢:>rmula\;26 which can be verified by

 ‘integration by vpa_z-"ts’, For any -é’outinuous function u(x) with continuous

first and second derivatives we have

X+HoX
u(x (M ([()H—AX y(y ~X) ”()/) (by —6X = 41X u()/de

USmg the above equation together w1th Eqs. (2.1) and (2.4), we have
X+4AX

4>(x) o, ([(xw m 991+ piy)—Adh (3
(AX (by—6X— YoX) ¢ (y) dy
43(7( AX) [()(-I-AX y) (y —X {Q(y }qbo(y)d
| (AX j(by —bX— L/A)()qb()/) Y
 Hence— 43 ()Q C#o()() |

X+AX

=@ §E(X+Ax -y ty=x) ><€<7(r> X}—(ey —bX - ‘/A%R(y) $.(y)dy

26

Titchmarsh (1) p 34
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XX S
’+(A'—x)z (x+ax—y)(y- X){E/"()’)‘(/\E"\‘“)}q%(y)dy'

X ,
By the Schwartz inequality, the square of the first term is

O”dDe— 9’50”2 = o(€)

So the first term is Q(g%)- and the ‘se'cond tjermvis O(é)//%”= O[E)
n
Consequently, we have Cbi (x) —_ ¢O(X) = 0(8 2 ) , £—> + 0)

uniformly over any finite interval. We thus have established Theorem
2.2, giving the first-order approximation to the perturbed eigenvalue

and the zero-order approximation to the perturbed ei'genfunction,.

5. Improved First-Order Approximation; Proof of Theorem 2.3.

We wish now to improve the approximations derived in the

previous section by imposing further restrictions on the perturbing

term p(x). In order to do this we use the results of Theorem 1.2,

Proof of Theorem 2.3. We can apply Lemma B, given in the previous

- . .
section, to HE with the trial vector qSo, the unperturbed eigenvector.

Then Q = (Hz Cpo, C)ba) -

From condition {(2.10) of Theorem 2.3 we have

(TP {8 0dx < o,

'.w_hic'h moeans cjgo is in B[H"b(j also >\‘: (po in B[me_]

consequently, H-u(po . is in D[H”H] and we can use the

o -t .
expansion of (HE qbo,qbo) given by Theorem 1.2 (iv).
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Then

= (W, )=l ool + el HECE HH 4
BT L el 2 HEC A

Che A — oA /1 H‘"m// +o(e®)

We note that

5= (’H;‘"L) </>°l/ =

=Rl =1H ¢ ~Hpul= ofe™),
by Theorem 1.2 (iii). Sé 6= O'(E'“) aﬁd 91<(VL—°<Y(6“’L)

for suff1c1ent1y small E s+ where the interval (O()IS) containg exactly

one elgenvalue /\

Using Lemma B, we have 97' .>\_. _ ' e.a,
_n. = N\& — X
Hence @ VL Q

e o [ )

which g'i.v__é_s.

/\e-—)\ "’E/m + o(e*) ) E‘—""O,)

PTGy . Wv [, (O} dx
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Also by Lemma B we have

| Nfb“q)// < % —
R

”Cbs”:l ) (¢E)¢>°)’>’O.'

Then we have

(e ()= B0 x| = o)

Q

vWe derive CPE(X)_CPO(X): o(ex) ’ S -+ 0 uniformly over any
finite interval from convergence in the mean exactly as in the proof
of Theorem 2.2 in the previou; se‘c‘tion. We have thus established
Theorem 2.2, giving an improved'fifst-orde‘r approximation to the
»per.turbed eigenvalue and an i‘mi)roved zero-order approximation to
the perturbed eigen.func»:tiovn, |

6. Second-Order Approximation; Proof of Theorem 2.4.

We proceed now to derive the next order of approximation for
eigenvalues and eigenfunctions by imposing further restrictions on the
function p(x).

Proof of Theorem 2.4.

" Let {.E ()\“ be the resolution of theidentity for the ‘-self-,a.djoint‘

operator H. We define the operator S,

q :Eﬁ c}E()\))
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! C o
where j means integration except for the point A= /\ ° an

eigenvalue of H. S is called the reduced resolvent of H and is a bounded,
self -adjoint operator. We use the following lemma from the perturbation
theory of quadratic forms.

Lemma 2.2 (Kat027) Let J > \, J-';* 0 be closed forms. Let

ijjﬂ B[fij b"e'. de_t;se‘_in H . Let j:-g = jz:-i— s J’:.'

be a closed form nonincreasing as £—> +0 . Let Hg_ H H

be the self-adjoint operators belonging to J;_ J_ J_ respectively.

Let Ao be the eigenvalue of H and let ¢)° be the corresponding

l . | Let ¢o be in B[H/j | Then

Ll

veigen.vector ; ” Cbo/l

= Ao 4—2)\“+a M oce) £—>+0

43 &b, +£cb“’ +o(e) , e —>+0,
A= (H'o, o)
)\(ﬂ____ __(:SH'¢D) H'¢° ))
qb‘ = — SH'¢. .

‘We assume that the spectrum of the unperturbed operator is totally
discrete and denote { Ay) and { th (X} as the complete_ set of
eigenvalues and orthonormal eigenfunctions. We consider a fixed

h, an& from condition (2.11) of the t.herre'm we have
[ty dx <
=]

Thus LPV\ is in ﬂ[H'j and we apply Lemma 2.2. The spectral

representation of H is

Hf = S)\dE()\ Z(F b)WY,

Kato (1) Theorem 20.1

27
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for some f in B[H] So we have .

~SHY, = 5 & W’;}”’) % %f’ |

YEn

Also we have

nWr 2
“(SH%,HW Z(fv.j_&, = An

From the lemma we" then have

(1)

)‘i“ = An + €A+ E A+ o(€'), e=+0,
) e — Yo — ¢ W&)N =ofe), £ =>+0,
ere )\(: — g;;x){sph(x)-}zdx )
=2 5 A -\ UP(" %(x)%(x)dx]
yen

| W(l)(x 5 WX %(x [y}o()/ Paly) %(Y }]

YN W
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We shall now establish the uniform convergence over any finite
interval, The function (H""'(X:)_ is twice differentiable and satisfies

the following dlfferéntml ‘équatmn

=i ‘"mn 9, :-—-{/\n—P(X}%.

This is not an e1genva1ue prob,lg:m but % ()() must _sa.tlsfy conditions
(2.2) at X=0 and belong to Lz(O, CD) . . We verify that
(1 , »
an ( \ does satisfy the above differe'ntial equati’on by writing it

in the form

H\p"' An%_—me %

Hn n | | / /
= 7%%7%‘2**”%*’*“%
Vv V=1

=7 Fj\:v_)m‘/’v Z Hov ),

Y¥n S VEn

—
—

In v L +HnyA
Z. H y)\ _H)\V/\V] V %

VEFN
H v)\v Hnl/
_ ey = H

an | (1
HZ)\)\V HL/J‘

Now, using the representation for twice differentiable functions given
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(1
in Theorem 2.2 and the differential e quatonf Wr\ (X) , wé have

| X+AX
Y (x) (Ax)ﬁ(XMX v (y-X{9(y) /\n}—(ey bX— L/zsx]t//f,)(y
B +(Ax)f(x+M Y(Y X{P(Y ™ }%()/ y.
Also from Theorem 2.2 we have Win w ()()

X+4&X

Ax)ﬁ(xwx ¥) ()' X){q(y )= Anf—(by —6x- ‘/AX]{%(Y ‘/’(Yﬂy

X+ AX

oL f(““ PCy=Aepty)=Chen=Am L (1)dy
Hence we have %n() Wn(X)—-EWA')(X) |

X+AX

g f[(xmx—y)‘(y—X){Q(y)—Am}-(ey—6x-%xﬂf%n(y)-(ld(y)—%ﬁ"(yﬁcly

Xt+aXx

+<z;‘wf( a1y =X ep ) ~Cher =AYt b

X

g syl = A= A7) 0 ) dy

X
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By the Schwartz 1nequa11ty, the squa.re of the first term is less than

H %n (‘Vn (l)// = o(&),

So the first term is o(g) . The second term is O(é {%V\ } O(E)
since {\'PEH - q)n} - - tends to zero by Theorem 2.2. The
third term is Q(Ez) since : | @)
(1)
)\sy\ )\n $ A = 'Ez)\h +O(£7") ,
Consequently, we have v
ﬂ)( ) ) £ +0

%n(x)--HUn(x)"2 N X =O(£ ) e /
uniformly over any finite in’cervéL We have thus established Theorem
2.4,

7. Higher- Order Perturbatmns

Until now we have cons1dered only the case of a first-order
perturbation. ;W‘eg,consider now higher—order perturbations, that is,

equations of the type

LY 4 (A= 9 Za p(x)Ju=0

d X o
on the interval (O CI)) with £ > O . The. Pd ()()
are assumed to be continuous and real-valued in (O, (1)) and
, Pa()()?:}od >~ for x in (O, OD) . We wish to investigate whether

the theorgms giving first-and second-order approximations to the
eigenvalues are valid for such problems. To do this let us consider.

the more general equation,

)= £'p.(x,€)fu=0

(O,a)) with condition (2.2). The functions (}(X)) P,(x)) }O;(X, E)

are real-valued, continuous in ( 0 J(D) ; also

g0=qo , p(x)=pi, )o;.(x,_i)'a p.
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for all x in (O) 0)) and £ >() . Moreover, let Pz(x, —>ID ()(, 0)

as £ +0 . We shall establish the following two theorems.
Theorem 1. Let /\O be an isolated eigenvalue of the unperturbed.

problem and let q%()() be the corresponding e1genfunct1on with

gi%(X)} dx
fp.(x {qb(x} dx 2o |

Let.

then , ‘
he = Ao + e +o(e)  e—>+0

If Q(;Q is the eigenfunction correspondmg to )\a , then

e (X)— bo(X) = o(€¥) , £— +0,

uniformly over any finite interval.

Theorem II. Let the conditions of Theorem I be satisfied. Furthermore,

assume pure point spectra and

ij(X (X)) dx < jp (X,E){CPM(X}CI)(éoo £<e,
for some €, >0 and fixed N . Then |
en =hn + E)\Q + et N +o(e) | e—>+0,
mhere ] ’-‘Zm AL__AV[i?'(X)CPn(X)Q‘?y(X) dx]z
+§‘q|3z(x 0){pn(x)}dx .

4) (x) is the eigenfunction correspondmg to )\Eh then we have

uniformly over any f1n1te interval

¢£V\(X) cpm(x +E<i>n(x +o(€ , €=>+0,
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~where

Bx) =2 5= Ay[f/o 1) %nly) qby(y dy/
 Asa problefn in the Hilbert space LZ(O o;)) the perturbed
 operator is givenby Hg = H +&H" '+ ¢ 2 He
 withdomain B = D[H] 1 B[HT » BLH!]

" :
The operators H H are defined in Section 2 and Hg is the

multiplication operator, i.e.

Heu = p: (X, E)U()()

for uin B[HE] . B[Hs_ is the set of fu.nc‘tions such that

({px(x,e) U dx < @

Let Hg kbe the restriction of Hg to £ . We have for u,v in 8

(Rt u,v) ‘(;olxsu(x)v(xdx—(uH )

and the domain B is dense in F  so Hg is a symmetrlc operator.

We define the form J_i EU)VJ = (HE U,V

with B[J'é'] =B _ . The quadratic form is

J-s_"Euj;—(ng)u) y}Oz(X ?_-{U()(} d x
e peflumr

and is observed to be lower sem1bounded The form J-i is then
. R :
closable and its closure is denoted by J.;_‘ . The self-adjoint: operator
=0
a.ssoc1a.ted with J-g is Hg and is the Friedrichs extension of Hg

= T
Furthermore 'l coincides with Hs since [l€& is essentially



-52-

self-adjoint.

We can now define the form

Je =JT+eJ '+ | £>0

where D[_—Tg] — B and J‘ and J‘ are defined in Section 2.

J-E is lower semibounded and closable as before, and

JgCJ‘!‘ZJ-i—ZJ_g

by Theorem B. We further have, by Theorem C, that
N o N' ~” P . —_ —
Je=d t&J +e2Js since H + €H + ¢? Hg

is essentially self-adjoint. The self-adjoint operator associated with

e d

' — i T
\TE is the Friedrichs extension of H + € HI ‘f"‘ ElHé .

T 1! T T
It is the unique self-adjoint extension since H + &£ H + £ Hs

[}
is essentially self-adjoint. So the operators H‘g) H) H ) Hg are
e N ’\4' 2
the self -adjoint operators associated with J.-g ) J—) J ) J_Su . We

then have the equivalent perturbation problem of finding the eigenvalues
of a self—adjoint operator Hg associated with a form J;: where
Je=T +¢T' + 37
We assume for convenience J_> l J—‘ =0 , J_s“ =>0.
n o~ =,
Now let J—g J—‘i‘i\]_é ) thenjezJ_+£IE

and ,:_T':-' C—- |n‘F J_E ‘ We can then use the results
£>+0

of Theorem 1.1 to derive Theorem I exactly as in the proof of Theorem
2.2.
To derive the second-order approximation we use the following

lemma, which is a gneralization of Lemma 2.2.
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Lemma 2.3 (Katozs) Let the assumptions of Theorem 1.3 be satisfied.

Let '>\o be the eigenvalue of H and let ¢)° "be the corresponding eigen-

vector,’ ” ¢° //: / Let '¢° be in ﬁﬂj:;'Yf) B[H'j fqr some
€50, Then de= Mo + A" + A7 +0@), e+0

and P, = P, + £ +o(e) | s—>+0,

where A= (H'¢bo, o) }
M= = (SHe, Hpe) +I1H 1
¢'= — SH'¢po. |

A~ N . N‘
The quadratic form J—E = J- + < j,+ E.Z J_EI satisfies -

the conditions of Theorem 1.3 and the convergence of the integrals;

}(0{0}0; (X)®n(x)) dx < o

(}oz XENba i) dx <

means that q)n is in EEHJ /) D[ ”zj , but this impliesk
. Cbn in Q[J-E,] N D[H] by Theorem E and Theorem 1.4.

We can then use Lemma 2.3 to prove Theorem II just as in the proof

of Theorem 2. 4 W1th the assufnptic;n of pui'e point spéctra we have

(2) T z
)\n-z )m__)\v ”HLCPM

V¥En

_Z L [ pndnd,Mdx]
gp (%,0){ n (1)} dx

28 Kato (1) Theorem 20.1
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=7 2 [0 ) da(y) B dy[

VE+n )h -

We have then the first- and second- order approximations for the case
of higher-order perturbations.

8. Local behavior of A("U of the equation

S+ (A-qunlv=0

The theorems established in this chapter can be used to study
" the dependence of the eigenvalue )\ upon a parameter ], assuming

small changes in YL Consider the differential equation
LY+ A - qix,n)}u=0

D« X< with 9’()() VU a real-valued function continuous in
x in (O,CID) and analytic in the real variable VL . Furthermore,
assume q(x)yl-) > q* for x in (O)CD) ) iﬁdependent of Q
We assume the limit-circle case at 0 and limit-point case at OO,

For a boundary condition at 0 we take u(0) = 0.

At the point YL= Qo we are given the lowest eigenvalue,
A( V(o) = Ao | and the corresponding eigenfunction,
U(X)Vlo) = Uo(X) . We wish to find )\(VU in
the neighborhood of Mo . Let N, = Ho -I-AYL . We have

o) =9000e) + 00 0. + ) ¥ 300+

Let

£ =N G )= () q(x)q.)=<>/;(x).
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" We can write the above as

G(X)= Go(X)+£9"(X) + g7 (x,€) .

The problem then is to find )\ and U()() for the equation .'
}\ (2) U 0
¥+ q(x—-aq(x 2(7()@
This equation is of the type cons1dered ‘in the last section; consequently,

we have sufficient conditions that can bé tested to establish the validity
of first- and second-order approx1mat1ons.,
Denote )\(Qn)r/\a and U(X-,Qn)=ue()<)~
. We have q( X, YU = q* for all x in (O,oo) ‘independent of
N+ so qo(x)'} q“’(x) . . and «q(v()&, E) are all greatei than (/7*
We assume further that the lower part of the spectrum for the problem
with qr(X,Qo) is discrete. Then if
A= j q‘”(x ) {Ua(X)}™ clx< o
we have the first- order approximation and

Ae= dot €A +0(e), e—+0,

B . . . .—‘.. . hd -
Us(X) = Ua (X) + o(él) , £=—+0,
uniformly in any f1n1te interval. If, furthermore, we have

r{{q“’(x UoX)fdX < @

then the second-order approximation is valid and we have

)\a= )\o‘f‘ i')\'(” + E’z/\m +0'(£2) £€—>+0,
Us(X) = Us(X) +£ U"(X) + o(€) , € —+0,

uniformly in any finite interval.
The difficulty w.if)h‘ the second-order approximation is that we are

given only the lowest eigenvalue and eigenfunction at Vlo , 8o the
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' ') - fr ’
coefficients )\(7-) ~and U ()() cannot -be computed by the usual formulae.
PR '
We know, however, that the function Uﬁ()() satisfies the differential
equation ) v
U — ) )
d { —qo(x}u =—{ "= 9"k} Uo(x
dx* )

with the conditions Um(O) @)

)

ﬁu("(X)fdx <o

o : :
This was verified in Section 7 of this chapter. This is a two-point

bbundary-value problem. However, ohce U(‘)(X) is computed, then
Us (X) can be com‘puted for any £ sufficiently small. We now wish

to determme /\ . Consider the two equations

oN + i>\o - QO(X)} o =0
GF e =Y =

Multiplying the first equation by UE (x)_and the second by Uo ()() )
subtracting the first from the second, and then integrating gives
o 0 -
Uo(X)Ue (X)dx —( d
o) g UO_ (X) U£ (X) X

()
o}

+ (Ae—=Ao) uo(x) Ue(X)dx

o

= {%.(x)—qo(x)} Us(X) Ut (X )dx
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- The first two terms cancel by integraffon by parts and by the vanishing

.6f<Uo(X) and- UE(X) 'at- O and O .- So.we. have

(Ae )\)fuo(x)ug(x)dx §{q(x qo(x}uo(x Ue(x) d X

(g)\‘”+ N + o(e?) J[{uo(x)} -i—z_uo(x) VM) + o(e _7cf)<

,_f[gq (x) + €29 (x, 0) +O(£3]Euo(x}+suo(x )Jx) +o(ejdx

Now, equating coeff1c1ents of like powers of £ and assummg Uo (x)

.normahzed so that f iuo()(} d)(— I
e jq"’(x )§ U1} dx -

! =i[ §"(R = A" Juet U (M) dx +( §*n0)¢ wolx )} dx.

We thus have a direct method for computing the second-order coefficient
without knowledge of the spectral decomposition of the unperturbed
operator.

9. An example from the quantum theory of .‘[iquicls29

As an example of the method of the previous section consider the
Schrodinger equation for liquid helium (He4)., The one-dimensional

equatlon to be con51dered is

1_1_{5 v(xq}qj 0 S 0<x<l,

V()= AR (X) =B Fa(6)

Example suggested by Dr. Marshall Rosenbluth

29
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Aln) = ZLgQ‘L?? ,N=>0,
B(n)=54.5n"% n>o,

ey = ] J |
() =% [(;—x)”’ (X" Ocx< 1,

J

[ Y S SN
Fz(x):T[(l—X)” G+ 04)(4 B

We note that Fl(x) and Fz(x)tend to finite limits as x - + 0,

in fact Fl(x) - 20, Fz(x) -+ 8asx -+ 0, and Fl(x) and Fz(x) tend
b3

to @O asx —+ 1, So we have V(K)VOZ V for x in (0,1). We have

the boundary condition W(O) = O. For some rL we wish to find E

ﬁW{X,EUZ dX <« oo

The physical problem is to calculate certain physically observable

such that

quantities by use of the prescribed potential \/(X, YO in the one-
dimensional equation, The variable YL is proportional to the density

of liquid He4° The value Ylo = 3,75 corresponds to normal density,
d*E
an*

in liquid He4;, From the previous section we see that this quantity can

From the quantity

at Q: Ylo we can calculate the speed of sound

be computed by second-order perturbation approximation.
By numerical integration or differential analyzer we can find
E(YH and \V(X ) Ylo) which will be considered as the unperturbed
solution. Let =
solution e VL. Qo + AVL ) then
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V%, 1)= V(% ne )+Aq‘—w—(x fz —Aﬁ)— SZY(IXI,?DH..
& =}AV‘L ) '\((X‘):.QD):‘:\/_’O:(X) ” Q—K (XJ_f?o):V(’)(X%

V(Z)(X) ) ;2! MLL(XO 351 irg (X,O )+

We are then solving the perturbed equat1on :

dz ¥ L E — vo(x)—s\/‘”(x)—e \/”(XEW o

We f 1nd that

Mr)o{ V(n(x {W(x VZ°} dx 00 fv(ﬂ(x £ {LP(XO }d)(ZCD :

m
j{v WYX <o, by
o} :
numerical quadrature, Consequentiy the second-order expansion is

valid and

E(Q) = E(Ne)+ € E"lo) + s’-E( () +0(e") , £-+0,
(X,1)= W, No) + €@, + o), ¢ —>+0

" uniformly in any finite interval. The function \P(‘)()( }7 )*c'a.n be computed

- by 1ntegrat10n of the equation

WH-I—{HQ \/(XQ}LP ——{E“’(Q v"’(x\}tp(xq

w1th

| up‘” f{tp“’ xrz dx <00
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=000 = { (Vb= ]y 0900, ) dx
+fv’2’()< O { WX, o)} d X,

_E(z) o) = "‘C_:l_z_E.
(Q ) c d}zz /Q:"lo

can be used to calculate the speed of sound in liquid He .

We have which

. 10. Solution of the equation

CP —g(x)U —ep(X)U = — f(x)

by iterated integral equations.

In this section we digress from the perturbed eigenvalue problem
considered in the first two sections of this chapter. We wish to find the

solution of the equation

‘—i—:% — g(x)u — £p(x) U= — FIX)
(2.20)

satisfying the boundary conditions of Eq. {(2.2), where q(x) and p(x) are
defined as before and f(x) belongs to the class l—z(o)a)) .

Consider first the equation

%;%—-q(x)u = — f(X)

(2.21)
The solution Uo()o of Eq. (2.21) satisfying the condition (2.2) can be

written as the following integral equation,

uo(xyzfz(x)y)n“(y)dy

where G(x, y) is the Green's function determined in the usual way from

(2.22)
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linearly independent solutions of the homogeneous equation =~ ’

a—% o Q(X)u, = 0 | (2.23)

that satisfy the Boundary conditions (2.2).

Considering this problem as one in the Hilbert space .

H = L?_(O) OO) we write Eq. (2.21) as the following
equation in H ':
Hu="T
where H is the unperturbed self-adjoint operator defined in the previous
section. The solution (2.22) is given by |
| H'f

H-l'is then the iﬁtegral operafor (2.22) with G(x, y) as the kernel.

Considér now Eq {(2.20). We can rewrite this as |

2

S — g U = — f(X) +epx)v(x)

In th1s form we see that the solution Ug()() of Eq. (2.20) satisfying

‘conditions (2.2) can be written as the integral equation

Ue(X)= je(xywy)dy--s e(xy))o(y Ue(y)dy.
(2.24)

We see that

Ug(X) = Uo(X) — € e(x Y pylue(y)dy

Proceeding formally, we can, solvelthe above irtegral equation by

iteration, i.e.,

Q)

elX) = Ve (X



U (X) = Uo(X) -gj(:(x Y }O(y Uo()/) Y |

)= () = € (00 YIpH) )y,

[ I T

(n)

Us (X) = Uo(X) — af?:(x,y)}o(y)Ue("'”(y)dy,

which gives the solution

Ue (X) = Uo(X) f_o Lm(x,y)uo(y)dy)

where . K,"-—‘ K) KN(X; >/) :E?(X}Z)Knﬂ (Z,Y)dz )V)>|)

K(x,z2)= Gx,2)p(2),

Of course this procedure is purely formal, and we have no assurance
that the series for UE(X) is convergent in the ordinary sense, since
we have not assumed aﬁything about the smallness of p(x). We can,
hbwever, consider the sefies for Ug (X) from the point of view of
asymptotic .perturbation series.

Now, considering the perturbed equation as 6ne in the Hilbext
space H = Lz_(o) CO) . we can write Eq. (2.20) as the

following equation in H
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}{ELJ 'F

where Hg is the perturbed self -~adjoint operator defmed in the previous
section in Eq. (2.17). The solution is then

G = Hef,
Therefore the problem is to find the inverse operator Hs .

Theorem 2.5. I_J_e_t Uo()() be the solution of the unperturbed Eq. (2.21)

»satisfyi'ng conditions (2.2). If p(x) in Eq. (2.20) satisfies the condition

| j?(x){uo(x)}ldx L

then the solution Usg (X) of the perturbed Eq (2.20) satlsfylng conditions

(2. 2) can be approx1mated as

L
Ue(X) = Uo(X) + O(E‘) , € —>+0,

uniformly over any finite interval,

Proof of Theorem 2.5. In Theorem 1.1 (iii) let u be the function f(x)

in L2 (0, OO\) : on the right-hand side of Eq (2.20). Then if uls

is in B{Jg] we have
= H'f +O(E ), e—+0.
But we know that H‘g = Ug  the solution of Eq. (2.20); and
H'f = Uo,  the solution of Eq. {2.21), so, if Us
_vis in &[j:g] then we have | |
| Usg =Us + 0(E%) ¢ — +0. |
From Theorem 1.4 we have that uo in B[Hm_] © implies Ug

in D[:\_g] , SO we must have Uo in B[H(“']
This means § P(x {Uo }dx Z
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since p(x) is the perturbing multiplication operator and this is the
condition stated in Theorem 2.5. So we have ” UE"'UOH: b(gi)
as &—> +O- We wish to prove uniform convergence over any
finite interval. We use the representation for twice-differentiable

functions that was given in Theorem 2.2. Making use of Eq. (2.20)

X+8X
Ue(X)-—f(-A-'—)ﬁ(xmx— V) (y—x{q(y)= plyl=(ey-6x- 48X)[Ue(y)dly
(()H-AX y) (Y= X HY dy,

and using Eq. (2.21), we have

Us (X)= =R 5[(X+AX y(y )ary) (6>/ —bX- ‘%AX)](JD()/

X

S ((X +ax—y) (y=X x)F(Y) dy

X
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Hence Ug()() — U ()()

L X+HOX

/N {&Xﬁ-AX y(y x)Q(y (ey 6X - A/Ax]{ug(y uo(y)dy

o X

-’r(l j(-(_gx y (y X)EP(Y UE(W >/

By the Schwartz inequal’it‘y the square of the first term does not exceed
X+A4ax
Ax ([(x Fax-y) (y=X) 9ry)=(by~6x- L/Ax]dy

| B ({UE (y) = Usty)} oy
= O(/Us—-uo/ = o(&)

So the first term is o(g‘f and the second term is clearly O(g) and

therefore we have

Ug(X) — Us(X) = o(s'f) , §—+0,

uniformly over any finite interval. Thus we have established Theorem
2.5.

We can impi'ove this approximation by imposing a further restriction
on p(x), as we see in the following theorem.

Theorem 2.6. vlﬁt Uc(x)be the solution of the unperturbed Eq. (2.21)
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satisfying conditions (2.2). If p(x) in Eq. (2.20) satisfies the condition

gip(x)}z"‘{uo(mfduoo ,Fex<,

[o]
then the solution Ug(X) of the perturbed Eq. (2.20) satisfying conditions

(2.2) can be approximated as

Us(h) = Uo(x) + 0(€%) | €—+0,

uniformly over any finite interval.

Proof of Theorem 2.6. In Theorem 1.2 (iii) let u be the function f(x)

-
in Lz(o,w) on the right-hand side of Eq. (2.20). Then if H 70

is in B[HMJ we have
f = H'f + o(g*) , £—>+0.

-1
But we know that Hg 'F-_—_ Ue , the solution of Eq. (2.20), and
-
H 'F = Ubo the solution of Eq. (2.21), so if Uo is inﬂ[H'dj
then '

Ug = Uo + 0(€%) | £ =+0.

The condition Uo in E[H'o(] means

j{p(x)j“{uo(x)}ldx < @,

which is the condition assumed in Theorem 2.6. So we have
® /.
= o
fU(x) = Ue(x)} dx | =o(e") , e—=>+0

We derive 4 UE (x)_UO(X) = O(Ed> ) E—> +O)
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uniformly over any finite interval from the above convergence in the
mean exactly-as in the proof of Theorem 2.5.

By further restricting the function p(x) we can derive the next-
order approximation.

Theorem 2.7.. Let Us(X) be the solution of the unperturbed Eq. (2.21)

satisfying the conditions (2.2) and let G (x,y) be the Green's function

for the homogeneous Eq. (2.23),, If p(x) in Eq. (2.20) satisfies the

j{ p(x) Uo(x) )} dx < @

conditior ondition

then the solution UE(X) of the perturbed Eq. (2.20) satisfying conditions

(2.2) can be approximated as

Us(X) = uom- s\ G(X, y)_}O()/)Uo()/)dy +o(t),

o)

E—'e'f- O)

uniformly over any finite interval.

For the proof of Theorem 2.7 we make use of the following lemma,

which is a special case of Theorem 1.3

Lemma 2.4. Let f?.‘\ )fl?_ 0] be closed forms. Let
D[j}j/) D[j\‘/’j .bedenseinbl' . LetJ—g J_‘f‘iJ

be a closed form, nonincreasing as E—>+O . Let HS ) H’) H be

the self -adjoint operators belonging to j‘s)j-\', T r_eép‘ectively.

Then if u is such that H—lu is in D[H'] we have

He u = H'u — EH—'H'H"U +org) , E—+0.
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Proof of Theorem 2.7. In Lemma 2.4 let u be the function f{x) in

L?. (O CO) oh the right-hand side of Eq. (2.20). Then if

H-I'F is in D{H] we have
fF=H'YY - s H'HH F+—O(£) ¢ —+0,

We know that Hg *F (s  the solution of Eq.(2.20), and H~ f= Uo

the solution of Eq. (2.21), so if Ug is in Q[H']_then ‘
. ~1 ] ,
UEZUO_EHHUO —’—O(E),E%-I-O.
From Theorem 2.7 we have the condition

j{p(x) Uo(X)dX} dX < 00|

which 1mp11es Up in £ [H’] We have

H'H' Uo = ge(x,y) p(y ) Us(y)dy = g(”(x),

Then we have proved so far that
’)- o
\Ug*‘Uo""’gu _O(E) , E—>+ U

We wish to establish uniform convergence over any finite interval.

From the proof of Theorem 2.5 we have

— Uo(X)

X+aX

%"x‘»‘([(xﬂwy)‘(y—x)q( f1-ley-r= Uty -t }dy

j(x-i-AX y) (y X EP(Y Us(}’ Y-
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We have that U H_' H Uo

The function u( )(x) is a solution of the dlfferentlal equatmn

dl — MU = ~ p(x)_uo(x)}" |

with the boundary conditions (2.2). . That is, we have. H um:— H o .
The representation for twice-differentiable functions, which was given

in the proof of Theorem 2.5, can bé applied td u(l)(x). Hence

X+AX
JX)= J[(xmx-y)(y x)q(y (ey —bX- Haxjum(y
“@‘f(mx-wl(%x)ﬂwWy)dy-

Then e (X) — Uo(X) + < u(n(X)

3
X

A (Kfix-w(y 90 -(ey-- swfuty-cges by

+(AX j(x.H;x y (y -X E]D(y {Ua(y UO(Y}dY

X
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By the Schwartz inequality, the square of the first term is less than

Ollus = Us + €0V = o(e™) .

So the first term is O(E) . The second term is O(g ) since

Ug(y)‘ —_ Uo(y ) tends to 0 by Theorem 2;5., Thus we have

Ue (X) = Uo (X)- zfe(x) V) ply Vel y)dy +oe),

©
as ¢ — -f—O) uniformly over any finite interval.
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I

: PERTURBATION THEORY OF .
PARTIAL DIFFERENTIAL OPERATORS OF" SECOND ORDER

1. Statement of the Problem and Results

Consider the Hilbert space, Lz (E-_:,» J ~ --that is, the space
~of real-valued, measurable funct1ons -F X >/, z ) defined in
ordmary three - d1men$1ona1 spacey wh1ch are square summable,

measure and. integration are in the sense of ‘Lebesgue.. In A= L’L/E3>

we have the norm

V2

00]

Il = {F(X;Y)Z)jzdxdydz

~00 <o Z oo
and the inner product

(F,9)=1{ | |flx.y2) g% Y} Jdxdydz
FgcH

The operator, Ho) is defined by
HOU = q(x)y) Z)U(X,Y,Z) — VZU
for u in D[HD]C B . D[Ho] is the set of functions U(X, y, 2)

(3.1)

such that u vanishes for " < R, and ¥V >R, where
- = : ke 2 and R, , R 2 are positive numbers;
+ 2 ) P
U, Uy ) uy ) UE are absolutely continuous in

x, ¥, z and u, Ho U belong to B . The function (7()(,y, -L")
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is real-valued and continuous in x, y, z except possibly at the origin.

We have

I

(Hou, V) fg[uxvx +UyVy + Uz Vg +qu*dxdydz
for u; v in D[HD] and B[HD:{ is dense in hl , 80 Ho is symmetric.
'~ We assume that the function (7()(,)’,2-) is such that the operator
Ho is lower semibounded, that is, _
(H'SU;U)Z'C(U)U> ) C>—co (3.2)
for all u in D[Ho] . An example of a symmetric, semibounded operator

is given by the Sch;édinger operator for the hydrogen atom,

= q
which is defined for functions in the domain B[Hu] that we are

considering. We note that30

‘(Au,U)=§‘g[u; + Uy +Uz — QF Uljdxdych =-20%U,u)

Every symmetric, semibounded operator has a self-adjoint
extension, the Friedrichs extension, which preserves the semi-bound.

We take the Friedrich's extension of Ho) denoted H) to be the
unpeftufbéd obperxb'ator. The unperturbed eigenvalue problem is then

expressed by the equation
Hu = Au

Riesz-Sz. Nagy, p 328

50
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for u in D[Hj . Then u satisfies the differential equation

VU + {A— gy, 2 U=

The above eigenvalue equation is solvable because H is self-adjoint, so

(3.3)

we assume that the complete set of eigenvalues and eigenfunctions is
known for the unperturbed problem.

Consider now the operator H' defined by
= p(x, Y, 2)U(xy,2)
for u in B[H']C H . B[Hlj is the set of functions u in hL such that

ﬁf {p(x, Y, 2)U(X, Y, 2 )}zdxdydzzoo,

The function ’0(}( Y 2—) is a real-valued function, continuous in x,y, z

(3.4)

We assume thatP(X,)’)% is such that H' is a lower semibounded operator,

(Hu,u) = ¥ (U,U) | ¥>—c0, 03

for all u in BEH]
Consider now the common domain B E[H] /) D[Hj

which is dense in H‘ Let H be the restriction of H to@ The

operator H -on B is a symmetric, semibounded operator_. The

. . . ! ! ., . /o,
Friedrichs extension of H denoted H co1nc1de_s with H , i.e.,

H=H , B[A 1= B[H],

Now let ﬂ be the restriction of H , the unperturbed operator,

to the common domain B . H onB is a symmetric, semibounded

~
— —

operator; its Friedrichs extension is denoted byH . We assume H

o d

on B to be essentially self-adjoint, then H - is its unique self -

r
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adjoint extension31 and coincides with H , i.e. ‘

T D(H = D[H]

H - H ) H - '
The theory of partial differential operators in Hilbert space has been
treated by several authors. 32 In particular, Ka’co33 gives the conditions
for the Schrodinger operator for N particle systems with Coulomb
interaction to be an essentially self-adjoint operator. He also applies

these conditions to the helium atom equation.

—

The operator H— + < HI defined on ) with £>0 is then
a symmetric, semibounded operator. We denote the Friedrichs
extension of F} ‘f“ 13 "_"' by HE . Moreover,q‘i‘a H' is essentially
self-adjoint so Hg is its unique self—adjoint extensi‘on. Wé take the
self -adjoint operator. Hg to be the perturbed operator.. The perturbed

eigenvalue problem is then expressed by the équétion

Heuw = AU

for u in B):Hg] Then u satisfies the differential equation

VUt fA=qgx, Y, 2)—ep&, v, B)lu=0

We wish to find the eigenvalues and eigenfunctions of Eq. (3.6) as

{(3.6)

asymptotic perturbation expansions.

31 Stone page 51

32 Friedrichs (4), Halperin (1), Kato‘(3), Murray (1)

33 Kato (3)

34 Kato (4)



-75-

Using the methods. emplpyed in the preceding chapter, we can
éqrive theorems analogous to Theorems 2.2, 2.3, 2.4.

A _complﬁicatioﬁ tﬁat arises in partial differential eigenvalue
problems is the phenomen of degeneracy. That is, a par.ti'cular eigen-
value may haVe-morg than one eige‘nfun_ction associated with it. We
shall treat the case of first-order splitting, We assume the llower part
of the spectrum of the unperturbed problem is discrete. We take the

lowest eigenvalue to have multiplicity m -, i.e.,

)\== /\| ==>)Vz = = /an < /\hn+: . (3.7)
The functions CP' (X, y,z-)) Cuooa Cbm ()(/)/’z) are

associated eigenfunctions. We shallv show that the perturbed problem
has ™ discrete eigenvalues )\gl < )\ga-é e L )\QW\,
which are perturbatio_hs_of the value )\ and we shall derive the first=
and second-order approximations to these M  eigenvalues.

We assume for the remainder of this chapter that conditions (3.2),
(3.5), and (3.7) are satisfied. We now proceed to state the theorem
that gives the first-order approximation and make the following
assumption. If

qp:('x) Y 2:); PRt P (X, y; 21)

are the eigenfunctions corresponding to A qf the unperturbed problem,

we assume

p(x,y)z){d:J(x,y,z)}?dxdydz e

(3.8)

foré:l U 14

) )
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With Condition (3.8) we can state:

Theorem 3.1. Let )\ be an eigenvalue of the unperturbed problem

multiplicity m; let ¢, (X, Y, 2), o, D (X, )/;Z-)'

be the corresponding eigenfunctions, that are determined so that

(CPJ ) Cbh) = gd‘h )

j( P(X, Y %),(ba‘ (X,)l; z) Sbk (X, y)Z)CI)(dyC/Z-:)\d{” &Jk

where g“Q - {? J =\:-IQ
J=\Q

and J)lQ=') e,

- |
We take )\" 4 )\{2 4 v 4 )\W\ ,

| 0l .
Then )\zg=>\ -{-g)\é +o(e),€—>+0, j=1 M.

Let q> ‘ (X %> be the corresponding eigenfunctions with
- EC} ) 1)

Iogll=1 (&, ¢,)=0,

then

¢—+0

Il‘m {4%3(&%%3 “Cba' (X,y) 25}: O

-uniformly in any finite region.
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The first two terms of the eigenvalue expansion agree with the
corresponding terms obtained by idéntificatipnf of coefficients in the
formal series expansion that is usually assumed. The condition (3.8)
guarantees the existence of the first -order coefficient.

The .order of approximation can be improved by introducing a
| further restriction on the function ;0()() Y’ 2),

Theorem 3.2, Let all the conditions of Theorem 3.1 be satisfied. In

addition assume that

fpoy 27 (e (%, Y;%)}Lc{xdy dz <@ (39

fjﬁ’é:])‘w-)m Where -lé.-éo<< l«

T heh we have

- I ;
/\25 = A+ E)\J + o__(EZ"()/ £ 10, y=L"uM,

and

Cbg_é (X, Y, 2) = b, (X, y,’Z> +o(e™ ) £%+O)

uniformly in any finite region.

We now .proceed to the -sec‘ond‘order approximation of the eigen-
value and first-order approﬁimation of. the eigenfunction. Again we
must introduce a further restriction that the function P(X,y) 2) must
satisfy. In tﬁe statement of the next theorem we assﬁme the unperturbed
Eq.. (3.3) has pure point spectra. This assumption is not necessary
for the proof of the second-order approximation, but is taken for

convenience in expressing the coefficients of the higher-order terms .
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in the perturbation series.
Theorem 3.3. Let {)\V} and {d)y ()(/ )/) z)} ) V=12, 3, e |

be the eigenvalues and orthonormal eigenfunctions of the unperturbed

Let_)\ be an eigenvalue of the unperturbed problem with

.problem,
>\= )\I:-\« =/\VV\ a_nd_l_eth,(X, y;?_’))"'/¢m/)(/y}2)
be the corresponding eigenfunctions, which are determined so that

(i}

mfo/x, 12) &) (4, ,2) du(x, y,2)dxdydz = A G
=100, m

- In addition we assume

((fiptoy 20,00y, 2 dedycs <co o

'::’, Voo, M,
Then d )
: (i} (2)

M:Aﬁ— N + €A to(et) , €= +0,

wher; : | 3““' IPILALY
o 1z
=5 __Hy
3 Aé-)\v ‘

H,, = ﬂf}omy) 2) &, (X, Y,2) (%, Y, 2)dxdydz,

Let d)ic) (x’ )/’ Zz) be the eigenfupctions corresponding to AEA with |

| CPEAH:l and (CIDEJ)(Z)J-)z O)then
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4353‘ (X, Y, 2)= CP} (x,y,z)_+ a#’(x,y, z) +o(e), £+,

uniformly in any finite region, where

Six,y,2) = L b, (x v, 2)

V=m+I )\a
Cbh(x v, 2 H,, Hoe
R e i
ke Mm=+1 | Y=M+i

k=]

The results of Theorems 3.1 and 3.3 are similar to those of
Titchmarsh, 35 but the conditions (3.8) and (3.10) are less restrictive

" than his conditionis. Theorem 3:2 is new.

2. Formulation of the Perturbation Problem in the Theory of Quadratic

Forms in Hilbert Space.

In order to establish the theorems stated in the previous section
we make use of the theory given in Chapter I; consequently we formulate
the perturbation problem in the language of quadratic forms.

—

Consider the restriction H of the self-adjoint, unperturbe‘d
operator H to the common domain B BEH] ﬂ BD"’ :]
We noted in the previous section that H is a symmetrlc ‘operator. Now
we define the form : o

Jluvl=(Guv) , AIF]

35 Titchmarsh (3)
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Then

J[v]l=(Auu)= c(uu) , (>,
by condition (3.2) so J 1is lower semibounded. Furthermore, J

is closable, since it is defined by a semibounded, symmetric operator.
[

Denote the closure of J by J . We assumed in the previous section

that H is essentially self-adjoint. The self-adjoint operator

[ d

associated with J— in the sense of Theorem D is then H’ because an

essentially self-adjoint operator has a unique self-adjoint extension.

) —
We define the form J [u) \/j = ( HI U,V ) where

mn !

H' is the restriction of H , defined in Eq. (3.4), to the domain

B . Then

T'l=(Fuu)s ¥(UU),¥>-o

. I |
by condition (3.5) so J is lower semibounded. J is closable since
!
H is a lower semibounded, symmetric operator. Denote the
! [y} : oy
closure of J byJ . The self-adjoint operator associated with J
t !
is H , since H is essentially self-adjoint.
We now define the form
, —_—
Je=JT+¢J' ,e>0 ,D[FE[=5H,
‘ o
The form J_E is lower semibounded, since J andJ_ are lower semi-
bounded. jg is closable by Theorem B and its closure is denoted by
-~ sy ~ ~
J-i . We have J_EC\T"'EJ/ We also have
~ ey ’ ~
\TE =J +s J" by Theorem C, because the operator
H +¢ H' is essentially self-adjoint. The selfv-adjoinbt o’perator.
- = 7/
associated with J—g is the Friedrichs extension of H =+ & H

and is the perturbed operator Hg defined in the previous section.

As we noted in Section 2.2, we can assume without loss of
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generality that
o~ o~ ~
JEI)J“;O, J—g?_ }.
We now have the perturbation problem formulated as a problem
in the theory of quadratic forms, that is, to find the spectral properties

e -
-of a self-adjoint operator HZ associated with a quadratic form JE

where

k=J+¢J ,e>0,

3. First-Order Approximation; Proof of Theorem 3.1

In the previous section we formulated the perturbation problem

in the language of semibounded, closed forms. In particular we have
Jde=3J+ &J ,

With this formulation we can make use of the asymptotic perturbation

theory of such forms.

We first establish the fact that for the M eigenvalues of the
unperturbed problem )\I = = )\m there correspond exactl.y
M eigenvalues of the perturbed problem >\g\ < /\gz L v £ >\£VV\,
To do this we wish to make use of Theorem H given in the first chapter.

We consider the form J—g. defined for the real variable £ > O,

Considering %{j:g] ‘as a set defined for £ >0 , we note that

pl%1= DTN DET]

and is independent of & . We show that J-E is nondecreasing in &

by the following argument. Consider the forms

J\ [U]=§ [U; + Uy +Uz + c;/u‘l +£,/Mﬂdxdydz)

W
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"We have for E > O that J-Z[U_] J—, [uj
for u in D[\TI] /7 D[J—Z], )
We now can apply Theorem H, using a ‘continuous parameter £
instead of discrete index N , because we have shown that J_E is
nonincreasing as £ — +0 . We thus have exactly M perturbed
eigenvalues of Ha corresponding to the M eigenvalues of H
and these M perturbed eigenvalues converge to .the unperturbed
eigenvalues as £ — 4 O.
We shall now derive the first-order approximation to these m
eigenvalqes.

Proof of Theorem 3.1 We make use of the following lemma from

the perturbation theory of quadratic forms:

Lemma 3.1 (Kato36), Let J > I) J = O be closed forms with

DET]A DET'] dense in H . Letjcj—v+i'fi£>o)

be a closed form nonincreasing as £ —>+0. Let Hi) H) H' be the

self-adjoint operators associated with Jg‘) J-) J" respectively. Let
)\be an eigenvalue of H With multiplicity m . Let le R (pm

the eigenspace of H corresponding to )\ , be a subset of

_ B[J—E.] ) &> O . | Let , PEREEN d)m be determined

(I)

so that (qbd)cblq): chQ . and (H'quJ)H’-q) ) J JlQ

o 0 0 n
and let /\l < Az < L < A nA
30 Kato (1) Theorem 19.3
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Then

Aej = A+ 2/\;-” t+ o(¢) , £ —=>+0,
//43;5 — qb(; | =o() .5.—‘>+O;

for J - |) W, m where ¢)E‘ is the eiger_lfunction

corlresponding to )\gd and ”¢EJ ”= ' J ((pg&', de' ) = O :

From condition (3.8) of Theorem 3.1 we have

Wp(x, V, 20 (x,y) 2 Fdxdydz < o0

| -I -l
which means; ¢J is in D[H z] so )\ CPJ — H de is in
D[H'Tl and thus in D[j&g‘] by
Theorem 1.4. From this we get that qﬁd in D[-j\';j -
The other conditions of Lemma 3.1 are fulfilled in Theorem 3.1, so

we have the first-order expansion of the eigenvalue given by

/\ZAI =\ + EA;'”‘ +o(se) | £— + 0,
)\g‘ = H H,%de ”z=§f IO(X/. Y} %)L{q)é (X, >’/ 2)}2d)(d\/0/2

From // Cbsa —_— (bd “ - O(,) , E—a-}-o we wish to

where

establish

¢93(X; Y 2) — QbJ‘(X,)’f z)=o(l) , €=>+0,
uniformly in any finite region. From C_.ourant-Hilbert?’7 we have
for  U(X, Y) z) : ‘which satisfies 7*( = — 9/77‘/1,: )

the following mean-value formula:

37 Gourant-Hilbert (1) page 250 (5)
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3
U(Xo, a,zo):HTrngfu(r, ©,¢)r*sinedrdede

r<R o ) (3,//)
(R-v) " (2R+r 3
+ H - M 5medrd9d¢
r<Rr ,
which gives the value of u at the center (Xo, YD,zo) of a’finite sphere
with .radius R . From the above formula and Eq. (3.6) we have
2 )3 |
Cbaé(xw Vo, Z-O)_L”TRB’EY(CPEJ (r, o, Cl)) r*sin lef‘dgdcp
r< R

@T\'R3 g R=rP(2R+)g +Ep —hef] b rsingdrdadg

and from (3.3) we have

B3 -2f((@,(r, 6, ¢) r*sin edrded

r<R

g(R ) (2R+r{q Mcp(ne,qb rsinSokdedg

r<R

@sé{ (X, Yoo ‘t;) - qu' (Xe, Yo Z°) |

r<R

S’TT R?’
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"‘*'%%Eg (R~ (2 R +r){ q _/\d}{ ¢EJ"“‘ de} rSingdre d9d¢
r<R |

ZTI'R"’E( (R ) (Z R+ {EP (/\sd'—)\ )}% smec!rcledqb

reR.
By the Schwartz inequality the square of the f1rst term and the square
of the second term < O “ / O(, So the first
| |

two terms are O(I) . The third term is O(E) since 6’0 and

/\58 - )\a _are O(E) . The above holds for any point (Xo,Yo, o)
cowenase G (6 ,2) = 8,062 ) =) |

s— +0 uniformly in any finite region. . We thus have established
’I;heorem 3.1, giving the first'-order;approximatidn to the perturbed
eigenvalues and the zero-order approximation to the perturbed eigen-
function.

4. Improved First-Order Approximation; Proof of Theorem 3.2.

We now improve the approximations derived in the previous
section by imposing further. restrictions on the function P(X, y)z )‘

For the proof of Theorem 3F.Z‘W,e make use of some additional
lemmas for the estimating of eigenvalues and eigenvectors in Hilbert
space.

Lemma C (Kavt638}. Let Hm be a finite dimensional Hilbert space

with dimension M\ . Let H be a self-adjoint operator in Hm and
let W, v ) W be N ve‘ctor-s df hlmwit.h‘ ” WJ H: l,

Let ‘ :
Ni=(Hw,w)) e =lI(H-wll , j=1m

38

Kato (1) Ex. 18.1
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We a’ssume rZI <& Qz'< o & Qm ) Let
/\l < /\2. L 0 L )\M be the eigenvalues of H
Then |

. <L L '
};3 - /\J T jc} )

whe're gd' - QJ - (}31-, - VZJ )—l SJ’Z)
="+ (Qa “""jj{“')—l 5,

provided ed are sufficiently small.

Lemma D ('Kato?’9

}. Let H be an infinite dimensional Hilbert space.
Let H be a self-adjoint operator in H . Let M vectors

W, o, Waa in B[H] be such that

(HWJ)Wh)zrld'&a‘h ) (WJ"Wh)-:gﬂo.-

We assume Let
N Q‘ é VZ‘Z— é | Y ] 13 é Q m R .

9 = “(H-Qd)\/\/a“ , LetX be ;number such that

X L }’L‘ and let )\l £ )\Z &£ v v be the eigenvalues of H

which are larger than X . Then

Mg max (u,p) -, R=lom

39 Kato (1) Lemma 18.3



-87-
where (DE is the largest root of the ‘equation :

| 6? |
i (’/Za‘_‘x({p ) !

-—l

In partlcular

P "l "‘Z Qa—o<

Similarly let @ }’zm and 1et e <AM - 4 )\m be eigen-

values of H smaller than ﬁ Then
)\L = mm(Qh)O‘b_\ o 'h—-‘ |, M

where O—_IQ is the srnallest root of the equation
g :

m 9
Z (3 ng) VZJ“_‘T ~

In partlcular we have : 2
m . .
> g
Vlh T (6 — Q j
40

Lemma E (Kato ). Let Wd ) Vlé , 0, be as in LLemmma D. Let

( )/g\ be an interval contammg at most M eigenvalues of H)
but no other points of the spectrum of H If <L Vl, | /3 > Vzm

and

7.

>

=1 (VZA_CXY? Qa < |

)

*Y Kato (1) Lemma 18.4
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then there are exactly ") eigenvalues /\, < )\7_ <o
in (o( )(8 ) and |

an(Yz‘Q G—‘h\) )\h ma X ('Zh)(ob

C 4 Am

‘Q — l) Coa m with (Dh ) 0"’; as defined in Lemma D. Let
¢VY\ be the eigenvectors ofH belonging to
vy
>\.)-’,' ) )\m respectively, such that

<¢3 ) Cbh\=gék'

Let '
gd.—__—.mm(m-—d,ﬁ——qd')
Ti=mn [N, — A, |
ok { .|

Then

1_ e'l. @~z . X

— (o wi)'E % 4_4?(@_ 9m)

I )(‘de d>' SJ 7?4 Sf- + + 5;: )

J‘:,)“")m

Proof of Theorem 3.2.

From condition (3.9) of Theorem 3.2 we have

M A } {Cb (XY, }dxdyd%<oo

o = Lo, M T XKL y

which
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means q)d' is in D[H’Vﬂj‘A‘lso )\-'CbJ and thus H"’CPJ.
are in B[H/d] and hence in B[H""]m ﬂ[j\-a.]

by Theorem 1.4. We can then use the asymptotic expansions of

Hg_' CPJ and (H; ¢d j : ) A .giveh by

‘Theorem 1.2(iii) and (iv). In partlcular :

He'd, = H'g; + o(e*) = A", +o(e¥),

(K, dy)=(H's; ¢ ) - (H™H %)H“H%Wo(e”‘)
= X' — e H 0, H ) +ae™)
=(X'— e XA )&, + ofe).

We wish to use Lemma E; however, we cannot take the d); to be

the trial vectors because ( Hg de ) Cbh\ is not a diagonal matrix,

as is seen above. The proof is divided into two stages.
1. In the first stage we diagonalize the matrix (H; de ) Cbh)
B —
by diagonalizing the operator E Hg E = K) where
E:P{¢|,““)qu}, Kisaself-
adjoint operator on an /) -dimensional Hilbert space. We apply

Lemma C to —K with trial vectors CPI y (Pm .



We set Qd'z (- K q)d‘ ) de- ) : o ( Hgl CZ)J' ,'de')
— AN+ ¢ )\-Z/\j-) T o(e™)
8} =ll(-x—-n)& I’

=X —e XA &)

Wehav<e_K+)\|_£)\ /\ jq)d _Zm}/ K+\- )\/\"’}Cp ¢kz)/

by the Riesz-Fischer theorem because CP,, ¢w\ is a complete

orthonormal set in EH- Moreover

i ’ { K+A' =g\ )\(:,) de,¢> ,-o(&”"‘

so 9 _— O(EZ’() Consequently, ; and :fd in

= f; + o (Eqd—')

)

I=n + O(EW—W ;

We prove this by induction. tf, = V'Ll , and assume

L/o(—n)

=" +ol(c
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o= Mo+ e _o(e*)

Qa+| Q‘H" )\ /A”‘)\“ _/_O(sz)
= M +O(€”°‘").

_ Similarly for gd. “If /M, é/‘/lz L o0 ,é/ﬂm

are the eigenvalues of — K,”then

Lep T L g=lem
- (1)
=N, +o(e™ )= —\ —}-g)\z)\ —f—o(Ez"()

Let k’}d be the eigenvectors of"—K corresponding to /MJ such that

therefore,

(LVJ ) \‘sz) oy gc) o Usin)g Lemma B of the preceding

chapter we have 9,
’ ‘ d

lv, =1 < (- ?_GL)Z)'M ’

.= min (Qd fd—n )§3+_:“‘VZJ>= Q(g) |

Since @d = 0 (E Zd) we have

v, =& = o).
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‘ =i
2. In the second stage we apply Lemma E to — HE , using

LH).'.‘)(’UM s trial vectors. We ha

(- He v, Wi ) ( K% Wn) /Md ik
OTAY
In E let //1

8= [-H-n)w I = N(—H;""/‘/‘J)%//.

We note that

E(— He /‘”a)qj (- K“/‘/‘a $i=0.
(H /%) =(I—E)—He /“a>%
=(T-El-H JE W,

Henc
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because the expression E l T % // ) © 7 ‘the trace of T, for

T, a bounded operator; is 1ndependent of the orthonormal system. Then

Z ;= Zm Ir-e¥-+) e I

;//(I E)K—H;’M)cp//
i I(H; - > = o(a”’),

by Theorem 1.2 (111) Thus we have 9 = O(i ) and we can apply

Lemma E. We can choose (o( 5 (—-,5 o() in such a
way that yzd. —_ c></ /I }’u are all > O , We see
by Lemma D that (ph Qh + I (E ) | and

> Q‘Q + O(E 2 > i W Thus we have by

Lemma E

"“)\:‘Q = — AT E)\-L)\(;l +°(E >

Nk = A + £y +o(e)

‘which is the required result

hence

"Also by Lemma E we estunate ’(CPEd ) \P )l
We have g >O
- (ll U\ (l) _ )\(” ) zp()
T, = amm( | } M a+',)+0(5

4
~is of the order O(E) Hence

l‘_{ d)sé/ d , = O(sz-l) )



wa || b =Wl = o)

( q%a' ,' &}JJ> =0 . We already have
I, — b, [|=ofe?"), Hence

I be; — ¢, [ =o(e*) o (G 4;)=0

We derive the uniform convergence over any finite region of

| Cpsa (X'-ylz')— qbd ()(; Y)Z)z 0(52d-1> ) €>+0,
Ibe; =, = o(e*),

as in the proof of Theorem 3.1. We thus have established Theorem 3.2.

5. Second-Order Approximation; Proof of Theorem 3.3

We now derive the next order of approximation for eigenvalues
and eigenfunctions by imposing a further restriction on the function

pX,y,z).

Proof of Theorem 3.3, Let{E()\/)}be the resolution of the identity

for the self-adjoint opera.tor H . We define the operator S}
S = j dE(X)
where means integration except for the point /\ )\( == )\M),

and eigenvalue of H . S is the reduced resolvent of M and is a bounded,

self-adjoint operator. We next define the operators

| _ ] |
- Z >\(')__}\(I_I P{CPK} )é': Ly, m,
TR
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where P{(I)b} is the projection on the one-dimensional subspace

!
determined by Cph . The S are bounded, self-adjoint operators. We

d

state now a lemma from the perturbation theory of quadratic forms.

Lemma 3.2 (Kato41). Let the conditions of Lemma 3.1 be satisfied.

Let the eigenvectors CP, RN CPM be in D[fg,] /) D EH’j

for some ¢, > O

Then

‘ ) ()
/\53 = A\ + E>\(; + €° AJ t+o(ef) , £ +{O)

“ qDEé_q)J‘,_‘ECP?)U:»O(E)' ¢« —>+0 )&'sz..‘)mi

where

== (SHS; He)

$'= —sH' &, + (H'S{]"sH'e, .

- From condition (3.10) of Theorem 3.3 we have

ﬁ(fp(x,y,%) P, (%, )/.,2)}lol>< dydz 2w
J = \; e, M 5o CbJ is in D[Hl] and d)d' is in
D{j:s,] ﬂ B[H'] by Theorem 1.4, A

We then can apply Lemma 3.2. The spectral representation of H is

‘ HF= é (F)¢v ) b, ) f i Dij}

since we have assumed discrete spectra. So we have

<1 Kato (1) Theorem 20.2
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[42)

'_—5 H/ : | W er;a

¢, = Zm. N, — /\y §DV , h

! | ' ' i
HJV: (H CPJ )C;b)/) ) renee
® /2. .

: (Z) H*.y

S N . Also we calculate
/\J V'—ZV;TH >\J — Av

Z - Hg'v Hyk
= Xn___ AT - )\J — A

k<m+ V=m+)
k¥ |

So we have

"(xy,=) Z v~ MX%)

V=m+i
%(X. Y;i‘) HAV HV}Q
+kZ A — A Z i — Ay
<M+ Y=m+
S

- We shall now establish the uniform convergence of

(XY, 2) =, (XY, 2) + £ ¢'(X, ), 2) +ofe),

§—+0,
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(I)
The function 95 (X y, ) satisfies the differential equation

v Cb(l)+{)\ . Q(X y, jq").(l)____(()\(l) p(x y Z}qbd_

as in the previous chapter. Consequently, using the mean-value

formula (3.11), we can represent dem(x yl%) .

0 3 | 2
¢ (Xo»Yo»zo)jWRJﬁc}%’.’(ne,cp)r Slﬂedrdédgb\

r<R

gTTR>

r<R

] gng)z(ZRﬂ—r){q~)\J'}¢3.“;rsm9'dfded¢

gTrR3 g{‘? i (2R+r Jtp - A, }CP rsm@drd@dcp

r<R

Using the above representation and the expression for

ol (Xo,yu,z) b, (o, Yo, 2o )

from the proof of Theorem 3.1, we have

CPEa (X°;y9120> CPJ (XO/ )/01 ZO)—ECPM(XO/ ym Zo)

N

réR
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—%#3§((R f (ZR‘f‘r [(q )\3}{%3 i m}ﬂSthQ’FdBd(j)

reR

TrRBﬁ(R ¥ (2R+1IRep —(Agj = }5% cb,}rsmedrdedcp

YR

mkagf(lz r\(ZRw)(/\g) i z%“‘)d)rs:h@drdec/gs

Y <R
By the Schwartz inequality the squares of the first two terms are each

less than Q//CPEJ _qb&, — &P, //:O(S ))

so the first two terms are O(?.) . The third term is O(E){(’bq—-(l)d} 20(5)

becausefd}sa"—'CbJ'}—%O as,E—%-I-O.
The fourth term is O(E )since
‘ !
Ay — A — e = A7 +orer)

Hence, we have

bej(X, Y, 2)= B, (%,y,2) — £ B (XY, 2 )=ofe),

E—> 4 O uniformly over any finite region, which completes the

proof of Theorem 3.3, .

This work was done under the auspices of the U. S. Atomic

Energy Commission.
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