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changing throughout the hierarchy. I define promotion hierarchies with and without
memory, where memory means that promotion depends on the entire history of success.
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surviving non risk-takers at any stage where they have a higher probability of survival.
However, that will not apply in the limit. With a common set of promotion standards,
risk-takers will survive with lower probability than non risk-takers, and will have
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affirmative action, in light of considerable evidence that males are more risk-taking
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1 Introduction

In this paper, I study the effect of risk-taking on promotion in hierarchies, where

promotion at each stage depends on a signal of ability. The motivation comes from a

substantial body of evidence that males are more risk-taking than females, and from

the continuing controversy about why males and females have different patterns of

success in labor markets. Granting the premise that the genders differ in risk-taking,

does this have explanatory power for labor markets? The answer is mixed, partly

because the theorems below can be applied to labor markets in different ways.

The theorems proved below compare promotions drawn from two subpopu-

lations, one of which generates accurate signals of ability and the other of which

generates noisy signals of ability. The premise is that true abilities (which may be

defined differently in different hierarchies) have the same distribution in both pop-

ulations, at least initially, but that agents in one population give a noisy signal to

the decision maker. This is a reduced-form hypothesis which might follow from pref-

erences and optimizing behavior, or might reflect behavior that is hard-wired. This

distinction does not matter for the theorems that I prove, although it may matter for

the interpretation.

The main point of the paper is to understand how promotion plays out for the

two populations in a hierarchy with a large (infinite) number of stages, under various

assumptions about the promotion standards, which may or may not be gender blind.

I define two types of promotion hierarchies: those with memory and those

without memory. In a hierarchy without memory, promotion at stage t depends only

on the signal of ability generated in stage t. With memory, promotion can depend

on the entire history of signals. Hierarchies such as sports tournaments do not have

memory, since survival depends only on winning the current match. Hierarchies such

as academic labor markets have memory, although promotion would typically depend

more heavily on current performance than on past performance. To maximize the

difference between hierarchies with memory and those without, I assume for the case
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of memory that all past signals are used symmetrically. There is no extra weight given

to recent performance. The thrust of the discussion below is that memory does not

matter very much for the main conclusions.

In section 2, I discuss some of the evidence that males are more risk taking

than females, and draw out some contradictions among the promotion objectives of

(a) promoting according to gender-blind standards, (b) promoting equal numbers, and

(c) promoting populations with equal average abilities. There is no promotion policy

that equalizes both the numbers of survivors and their average abilities.

In sections 3 and 4, respectively, I develop formal results about hierarchies with

and without memory. In both cases, if the objective is to equalize abilities, then more

of the non risk-takers (females) must be promoted than risk takers. Risk taking can

boost the probability of survival, but a surfeit in the number of surviving risk-takers

at any stage coincides with a deficit in their ability, regardless of how the standards

are chosen.

Under gender-blind standards that are relatively stringent at the beginning,

so that fewer than half the population survive, the surviving risk takers will be more

numerous and less able than non risk takers. However, this cannot persist in the limit.

The ratio of surviving risk-takers to surviving non risk-takers declines until risk-takers

are eventually underrepresented. At the same time, their average ability increases,

and eventually exceeds that of non risk-takers.

Standards chosen to equalize either the numbers or abilities of survivors will

not be gender blind. If the goal is to equalize numbers or abilities, it may be either the

males or females who need an affirmative action boost in the beginning, depending on

whether the standards are relatively lenient or stringent. However, to achieve either

equal numbers or equal abilities, it is the males (risk takers) who need an affirmative

action boost at the end.

The approach of this paper is to take the promotion standards as exogenous,

characterized by weak properties such as nondecreasing or bounded, and to compare
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the statistical properties of two populations of survivors. This approach can be seen

as a complement to the literature that seeks to explain how promotion standards are

chosen in the first place, e.g., Sobel (2001), and to papers on promotion hierarchy

where other aspects of behavior are being selected, e.g., Harrington (1999).

2 Risk-Taking and Promotion in a Hierarchy

One of the motivations for this inquiry is the considerable evidence that males are more

risk-taking than females. In particular, see Eckel and Grossman (2005a). Their own

experiments (2002) show that males and females have different gambling behavior.

In other experiments (2005b) they show not only that females are more risk averse,

but that other agents (not just researchers on gender) perceive this to be true. Eckel

and Grossman (2005a) argue that the evidence on a discrepancy in risk-taking is

especially strong in “field studies” (natural experiments such as observing behavior

in placing bets), but less conclusive in “contextual environmental” experiments such

as experiments involving insurance choices. One of the most interesting risk-taking

contexts is investment. In a study that used measures of risk tolerance reported in the

Wall Street Journal, and measures of personality traits developed by psychologists,

Stanford and Vellenga (2002) found that males have much higher risk tolerance than

females. Jianakoplos and Bernasek (1998) came to the same conclusion by observing

investment portfolios. Much of the experimental evidence comes from disciplines

other than economics. For example, psychologists Ginsburg et al (2002) observed

children at a zoo in contexts where the children could choose to engage in a risky

activity or not. They concluded strongly that young boys were much more inclined

to put themselves at risk than young girls.

Many scholars have suggested evolutionary arguments for the discrepancy in

risk-taking behavior. For example, Dekel and Scotchmer (1999) postulated that males

play “winner-take-all” games, and explored a precise sense in which such games do (or

do not) lead to riskier behavior. The premise in that paper, which is also the easiest
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interpretation of the model below, is that risk taking is genetically coded. But this

does not preclude that agents make choices. For example, in academic life, a risk-taker

might work on new and unfashionable topics, while a non risk-taker might extend the

work of others. If the risk-taker fails to find an audience, he or she will fail to get tenure.

To some extent, the risky choice can follow from cold, hard calculation about the

merits of risk-taking, but if males and remales have different genetic predispositions,

they will make different tradeoffs. That is why I refer to the hypothesis on risk taking

as “reduced form.”

Affirmative action policies have been justified and evaluated on both efficiency

grounds and equity grounds. For the most part, economists have focussed on efficiency,

especially productive efficiency. For example, Holzer and Neumark (2000) argue from

an extensive empirical literature that “affirmative action offers significant redistribu-

tion toward females andminorities, with relatively small efficiency consequences” (page

559). Among the ingenious theoretical arguments for why affirmative action policies

enhance efficiency are those of Lundberg and Startz (1983) and Lundberg (1991), who

consider a model of statistical discrimination where wages depend on imperfect signals

of ability. They show, among other things, that if workers with different signaling

ability are pooled, there is more incentive to invest in human capital. Milgrom and

Oster (1987) argue that affirmative action policies can efficiently prevent employers

from underpromoting females and minorities. The incentive to underpromote derives

from a fear of revealing the worth of their employees to rival firms, a threat which is

higher for the more “invisible” workers, such as females and minorities.

Hierarchies introduce a new dimension to the affirmative action problem, since

the relative success of two populations at any stage is importantly determined by

policies at previous stages, and risk-taking matters due to randomness. I consider

labor market hierarchies, in which promotion to stage t requires prior promotion to

stage t − 1. I take investments in human capital as exogenous, and assume that

wages at each stage of the hierarchy are immutable. My focus is entirely on rates of

promotion and whether the “right” workers are promoted, if the objective is to select
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on ability.

Examples of such hierarchies might be

• law, where law students are promoted to associates in law firms, associates are
promoted to partner, and some partners eventually become judges;

• the executive hierarchy of corporations;

• academic life where undergraduates are promoted to graduate student, gradu-
ate students are promoted to assistant professor, and assistant professors are

promoted to full professor.

The modern legal environment prohibits discrimination in labor practices. How-

ever, discrimination is hard to define. Figure 1 shows that the following three objec-

tives are pairwise inconsistent:

• equal promotion standards

• equal numbers of promotions

• promotion of a pool of agents with equal average ability.

In Figure 1, the distribution of true ability a is shown by density g. The

distribution of true ability is assumed to be the same in both populations, a risk-

taking population (say, males) and a risk-averse population (say, females). The density

g̃ represents the distribution of signals that the risk-taking population will generate,

when their true ability a is confounded by noise. The signal of a random male will be

σ = a+ u, where a is his true ability, and u is distributed according to a cumulative

distribution function Φ with mean zero.

Consider the first round of promotions. Suppose that the promotion standard

for males is c̄. That is, every male who generates a signal above c̄ is promoted. The
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a, σ=a+u 
    f a      f e        c  

g 

g)  

Figure 1: First Stage of a Hierarchy

other promotion standards are for females: The promotion standard f e will ensure

that females are promoted with the same probability as males, and the promotion

standard fa will ensure that the expected ability of promoted females is the same as

that of promoted males. If the promotion policy is gender blind, then females are also

promoted according to the standard c̄. In the example of figure 1, where more males

than females are promoted (because c̄ is above the mean), the promoted females have

higher expected ability than promoted males.

The average ability of promoted females is higher in figure 1 because there are

fewer of them. To promote more males, it is necessary to reach further down into the

ability distribution. In addition, some of the male promotions are mistakes. This

insight is formalized below in Lemmas 1 and 6 below. At every stage of the hierar-

chy, surviving females have higher expected ability whenever the expected number of

surviving males is at least as large, regardless of what proportion of the total pool is

promoted.

A gender-blind policy that promotes more males than females, such as the one

shown in figure 1, is inhospitable to women, however reasonable it may seem from

a procedural point of view, due to the gender-blind promotion standard. Consider

instead an “affirmative action” policy to promote equal numbers, as shown by the
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promotion standard f e in Figure 1. Then

• if equal numbers are promoted, the promoted females have higher ability than
the promoted males; and

• the promotion standard for females is lower than for males if fewer than half are
promoted at stage 1, and otherwise higher.

An affirmative action policy aimed at equal numbers is still inhospitable to

females in the sense that, on average, promoted females have higher ability. Their

superior ability is due to the fact that, in promoting males, mistakes are made in

both directions. Low-ability males are promoted, and high-ability males are excluded.

Females could reasonably argue that the system should impose an even lower bar for

females, in order to remedy the discrepancy in average (and marginal) ability.

Consider then an affirmative action policy aimed at ensuring equal ability of

both promoted groups, instead of equal numbers. The female standard is shown as fa

in figure 1. Then

• fewer males than females will be promoted; and

• the standard for female promotion should be even lower than the one that equal-
izes numbers.

The much lower promotion standard for females is a bit paradoxical, especially

when fewer than half of the pool are promoted, as shown in figure 1. The lower

promotion standard appears to favor females of lower ability than males, but a higher

standard must be applied to males in order to compensate for the mistakes.

The graphical discussion only illuminates the first stage of promotion. The

question, however, is what happens in subsequent stages, as the distribution of abilities

in the pool changes. At the second stage, some high-ability males have been eliminated
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due to randomness, and some low-ability males remain. Males who survived stage

one have another opportunity to eliminate themselves at every stage. Despite their

good start, fewer and fewer males are promoted as the hierarchy progresses, and

the statistical properties of the surviving populations may invert, as discussed in the

introduction.

The theorems in the next two sections, which are the main content of the paper,

can be interpreted in several ways. I return to these various interpretations in section

5.

3 The Hierarchy without Memory

Each agent’s ability, denoted a ∈ R, is drawn independently from a distribution G

with density g. An agent generates a signal of ability σt ∈ R in period t. If the agent

is female with ability a, we assume that σt = a (the signal is nonrandom). If the

agent is a male with ability a, σt = a + ut, where the random noise ut is distributed

according to a cumulative distribution function Φ with mean zero and finite variance,

and the random draws of noise in different stages of the hierarchy are independent.

The designations “male” and “female” refer to the riskiness of the signals that are

produced. This analysis would obviously apply to any two groups that differ in the

randomness of their signals. In that sense, the designations male and female are only

illustrative, and can even be reversed (see below).

Promotion standards are a sequence of real numbers, c = c1, c2, ...ct... If the

hierarchy does not have memory, a male agent with ability a survives to stage t if

σd ≥ cd for each d ≤ t (or a+ut ≥ cd for each d ≤ t) and a female agent with ability a

survives to stage t if a ≥ cd for each d ≤ t. We say that the promotion standards are

gender-blind if males and females face the same promotion standards. When we do

not assume gender-blind promotion standards, we will refer to the males’ promotion

standards by m = m1,m2, ...,mt, ... and to the females’ promotion standards by f =

f1, f2, ..., ft, ....
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For females, we can assume without loss of generality that the promotion stan-

dards are nondecreasing. If at any point a higher cutoff is followed by a lower cutoff,

that is, ft+1 < ft, then ft+1 can be replaced by ft with no consequence. If f is

nondecreasing, a female survives to stage t if a ≥ ft and does not survive otherwise.

Hence the probability that a random female survives to stage t isZ ∞

ft

g(a)da (1)

A male with ability a survives to stage t if a + ud ≥ md for all d ≤ t. Hence the

probability that a random male survives to stage t isZ ∞

−∞
g(a)Πt

d=1(1− Φ(md − a))da (2)

The expected ability of a random female who survives to stage t isZ ∞

ft

a
g(a)R∞

ft
g(a)da

da =

Z ∞

ft

a
g(a)

1−G(ft)
da (3)

and the expected ability of a random male who survives to stage t isZ ∞

−∞
a

g(a)Πt
d=1(1− Φ(md − a))R∞

−∞ g(a)Πt
d=1(1− Φ(md − a))da

da (4)

We use the following assumptions, which are assumed throughout.

1. The distribution G is symmetric2 and strictly increasing, has a density g that is

strictly quasiconcave and continuous, has the real line as support, and has finite

variance.

2. The distribution Φ is symmetric and strictly increasing, has a density φ, has the

real line as support, has zero mean, and has finite variance.

We begin with two lemmas. The intuition for the first lemma is that the

promoted males include mistakes in both directions. Lower-ability males are promoted

2For all x in the support, G(x) = 1−G(−x) and g (x) = g (−x) .
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by mistake, and higher-ability males are excluded by mistake. Since no mistakes are

made in promoting females, the only way to ensure that promoted males have as high

ability as females is to promote fewer of them.

Lemma 1 Let m, f be promotion standards for males (risk-takers) and females (non

risk-takers) in a hierarchy without memory. The expected ability of a random surviving

male is lower than the expected ability of a random surviving female at any stage t at

which males have at least as high a probability of survival.

Proof: With a change of variables, y = a− ft, the females’ expected ability

conditional on survival to t, (3), can be written:Z ∞

0

(ft + y)
g (ft + y)R∞

0
g (ft + y) dy

dy = ft +

Z ∞

0

y
g (ft + y)R∞

0
g (ft + y) dy

dy (5)

For males, with a change of variables y = a−ft, the expected ability conditional
on survival to t, (4), can be written:Z ∞

−∞
(ft + y)

g(ft + y)Πt
d=1(1− Φ(md − ft − y))R∞

−∞ g(ft + y)Πt
d=1(1− Φ(md − ft − y))dy

dy

= ft +

Z ∞

−∞
y

g(ft + y)Πt
d=1(1− Φ(md − ft − y))R∞

−∞ g(ft + y)Πt
d=1(1− Φ(md − ft − y))dy

dy (6)

= ft +

Z 0

−∞
y

g(ft + y)Πt
d=1(1− Φ(md − ft − y))R∞

−∞ g(ft + y)Πt
d=1(1− Φ(md − ft − y))dy

dy + (7)Z ∞

0

y
g(ft + y)Πt

d=1(1− Φ(md − ft − y))R∞
−∞ g(ft + y)Πt

d=1(1− Φ(md − ft − y))dy
dy

Since the middle term of (7) is negative, to show (5) is greater than (6), it is

enough to show that the following inequality holds for y ≥ 0 :
g(ft + y)Πt

d=1(1− Φ(md − ft − y))R∞
−∞ g(ft + y)Πt

d=1(1− Φ(md − ft − y))dy
<

g (ft + y)R∞
0

g (ft + y) dy

Since g(ft+y)Πt
d=1(1−Φ(md−ft−y)) ≤ g (ft + y) , and since by hypothesis the

denominator of the lefthand side is no smaller than the denominator of the righthand

10



side (these are the probabilities that a random male and female survive, respectively),

it holds that (5) is greater than (6). ¤

In the next lemma, the first part reflects the fact that, regardless of the promo-

tion standards, each male has positive probability of being eliminated at each stage.

Since excluded agents cannot re-enter the pool, only few males survive in the long run.

The second part reflects the fact that, regardless of the promotion standards,

only the males with very high ability are likely to survive many opportunities to be

eliminated. Thus, in the “long run”, it does not matter very much what the promotion

standards are, as long as there is a possibility to be eliminated at each stage. Males

who survive will likely have very high ability. In contrast, a female survives with

probability one if her ability is above the maximum promotion standard. This means

that more females survive in the long run even without extraordinary ability.

Lemma 2 Let m, f be promotion standards that are bounded above and below in a

hierarchy without memory. Then

(1) Given ε > 0, there exists t̃ such that for t > t̃, the probability that a male (risk-

taker) survives to stage t is less than ε; and

(2) There exists t̂ such that for t > t̂, the expected ability of a random surviving

male (risk-taker) is larger than the expected ability of a random surviving female (non

risk-taker).

Proof: Let m ≤ mt ≤ m̄, and f ≤ ft ≤ f̄ for all t = 1, 2, ...

(1) Let ε > 0. Let ã > 0 satisfy 0 < 1 − G(ã) < ε/2 and let t̃ satisfy
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Φ(a−m)t̃ < ε/2 for all a ≤ ã. Then for t ≥ t̃,Z ∞

−∞
g(a)Πt

d=1(1− Φ(md − a))da

=

Z ã

−∞
g(a)Πt

d=1(1− Φ(md − a))da+

Z ∞

ã

g(a)Πt
d=1(1− Φ(md − a))da

≤
Z ã

−∞
g(a)Φ(a−m)tda+

Z ∞

ã

g(a)Πt
d=1(1− Φ(md − a))da

< G(ã)ε/2 + (1−G(ã) < ε

(2) Let āf be an upper bound on the expected ability (3) of surviving females

at each stage:

āf =

Z ∞

f̄

a
g(a)

1−G(f̄)
da

Let 1 > δ > 0. Let ã > 0 satisfy −ã − m < ã − m̄ and āf

1−δ < ã. Let â satisfy

ã−m < â− m̄ Let t̂ be such that for t > t̂

āf

1− δ
G(ã) Φ(ã−m)t < (ã− āf

1− δ
) (1−G(â)) Φ(â− m̄)t

and
µ
Φ(−ã−m)

Φ(ã− m̄)

¶t

< δ

To give a lower bound on the expected ability (4) of surviving males we will use the

following inequality:

[1−
µ
Φ(−ã−m)

Φ(ã− m̄)

¶t

] ã

Z ∞

ã

g(a)Πt
d=1Φ(a−md)da

<

Z ∞

ã

ag(a) Πt
d=1Φ(a−md) [1−

Πt
d=1Φ(−a−md)

Πt
d=1Φ(a−md)

] da

<

Z ∞

0

ag(a) [Πt
d=1Φ(a−md)−Πt

d=1Φ(−a−md)] da

=

Z ∞

0

ag(a) Πt
d=1Φ(a−md)da+

Z ∞

0

(−a)g(a)Πt
d=1Φ(−a−md) da

=

Z ∞

−∞
ag(a) Πt

d=1Φ(a−md) da (8)
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Then

āf

1− δ

Z ã

−∞
g(a)Πt

d=1Φ(a−md)da <
āf

1− δ
G(ã) Φ(ã−m)t <

(ã− āf

1− δ
) (1−G(â))Φ(â− m̄)t ≤ (ã− āf

1− δ
)

Z ∞

â

g(a)Πt
d=1Φ(a−md)da

< (ã− āf

1− δ
)

Z ∞

ã

g(a)Πt
d=1Φ(a−md)da

which implies

āf

1− δ

Z ∞

−∞
g(a)Πt

d=1Φ(a−md)da < ã

Z ∞

ã

g(a)Πt
d=1Φ(a−md)da

Hence, combining with (8):

āf

1− δ

Z ∞

−∞
g(a)Πt

d=1Φ(a−md)da < ã

Z ∞

ã

g(a)Πt
d=1Φ(a−md)da

<
1

(1−
³
Φ(−ã−m)
Φ(ã−m̄)

´t
)

Z ∞

−∞
ag(a)Πt

d=1Φ(a−md)da

Since 1 < (1−
³
Φ(−ã−m)
Φ(ã−m̄)

´t
)/(1− δ), the result follows:

āf <
(1−

³
Φ(−ã−m)
Φ(ã−m̄)

´t
)

1− δ
āf <

Z ∞

−∞
a

g(a)Πt
d=1Φ(a−md)R∞

−∞ g(a)Πt
d=1Φ(a−md)da

da

For t > t̂, female ability (3) is less than male ability (4). ¤

I use these lemmas to characterize the consequences of gender-blind promotion

standards.

Proposition 3 (Gender Blind Promotions) Let c = c1, c2, ... be gender-blind promo-

tion standards in a hierarchy without memory that are bounded above and below and

satisfy G (ct) < δ < 1 for some δ ∈ (0, 1) and all t. Then
(1) At the first stage, if c1 > EG(a), a random male has a higher probability of survival

than a random female, and a random surviving female has higher expected ability than

a random surviving male.
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(2) At later stages, t > t̃ for some appropriate t̃, the probability that a random male

survives is smaller than the probability a random female survives, but the expected

ability of surviving males is larger than the expected ability of surviving females.

Proof: (1) At stage 1, the probability (2) that a male survives can be written

as follows with a change of variables x = a− c1, and using symmetry of Φ :Z ∞

−∞
g(a)(1− Φ(c1 − a))da =

Z ∞

−∞
g(c1 + x)Φ(x)dx

=

Z 0

−∞
g(c1 + x)Φ(x)dx+

Z ∞

0

g(c1 + x)Φ(x)dx

=

Z ∞

0

g(c1 − x)Φ(−x)dx+
Z ∞

0

g(c1 + x)(1− Φ(−x))dx

=

Z ∞

0

[g(c1 − x)− g(c1 + x)]Φ(−x)dx+
Z ∞

0

g(c1 + x) dx

>

Z ∞

c1

g(a) da

The inequality holds because [g(c1 − x) − g(c1 + x)]Φ(−x)dx > 0 at every x.

Due to the strict quasiconcavity and symmetry of g and c1 > Eg(a), g (c1 − x) >

g (−c1 − x) = g (c1 + x) . Hence (2) is larger than (1) at t = 1. Using Lemma 1, the

expected ability of a surviving male is lower than the expected ability of a surviving

female.

(2) follows directly from Lemma 2 by choosing ε > 0 such that (1−G (ct)) > ε

for all t. ¤

We now turn to alternative policy goals. We first consider the goal of equalizing

the probabilities of promotion at each stage, and then consider the goal of equalizing

the average ability of the survivors at each stage.

It follows directly from Lemma 2(1) that if the promotion standards m, f are

bounded, and a nontrivial fraction of females survive in the limit, the survival rates of

males and females in the limit are different. Proposition 4(2) says this in a different
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way: If survival rates are the same, the males’ promotion standards cannot be bounded

below, and in particular, the promotion standards cannot be increasing. Increasing

standards would be the natural interpretation of a promotion hierarchy.

Proposition 4 (Promoting Equal Numbers) Let m, f be promotion standards in a

hierarchy without memory such that males and females have the same probability of

survival at each stage t.

(1) If f1,m1 > EG(a), then f1 < m1.

(2) If the sequence f converges to a finite limit, then the sequence m is not bounded

below.

Proof: (1) follows from Proposition 3(1), which implies that if m1 = f1, males

have a higher probability of survival than females. Since the probability of survival

is decreasing in m1, the probabilities can only be equal if m1 > f1.

(2) Since the sequence f converges, the sequence of female survival rates {1−
G(ft)}t=1,... also converges, and, by hypothesis, the sequence of male survival rates
{
R∞
−∞ g(a)Πt

d=1(1 − Φ(md − a))da}t=1,... converges to the same limit, say L. Choose

an ε > 0 such that ε < L. Suppose, contrary to the proposition, that the sequence m

is bounded below by m. The male survival rate at stage t satisfiesZ ∞

−∞
g(a)Πt

d=1(1− Φ(md − a))da

≤
Z ∞

−∞
g(a)(1− Φ(m− a))tda (9)

Choose ã, â such that â < ã and

1−G(ã) < ε/3

G(â) < ε/3

Choose t̂ such that (1 − Φ(m − ã))t̂ < ε/3. Then if t > t̂, the upper bound on the

male survival rate at stage t, (9), can be writtenZ â

−∞
g(a)(1−Φ(m− a))tda+

Z ã

â

g(a)(1−Φ(m− a))tda+

Z ∞

ã

g(a)(1−Φ(m− a))tda
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<

Z â

−∞
g(a)da+ [G(ã)−G(â)](1− Φ(m− ã))t +

Z ∞

ã

g(a)da

< ε/3 + (1− Φ(m− ã))t + ε/3 < ε < L

This is a contradiction. ¤

Proposition 5 (Promoting Equal Average Ability) (1) Suppose that the expected

abilities of surviving males and females are the same at stage t̂ under the promotion

standards m, f in a hierarchy without memory. Then the survival rate of females at

stage t̂ is greater than that of males. (2) In a hierarchy without memory, there are no

bounded promotion standards m, f for which promoted males have the same average

ability as promoted females at each t.

Proof: (1) By Lemma 1, if the expected number of surviving risk-takers

(males) at stage t̂ is greater than or equal to the expected number of surviving non

risk-takers (females), then the average ability of surviving risk-takers is lower. Part (1)

is implied by the following equivalent statement: If the average ability of surviving

males is as great or greater than surviving females, then there are fewer surviving

males.

(2) follows from Lemma 2(2), which says that, for any bounded sequences,

the average ability of surviving males is higher than the average ability of surviving

females for late stages of the hierarchy (large t). ¤

4 The Hierarchy with Memory

Say that the hierarchy has memory if promotion depends on the performance in all

periods up to the promotion date. In the hierarchy without memory defined above,

promotion depends only on performance since the last promotion.

I will study the special case in which promotion depends symmetrically on

the signals generated in the entire history to date. Non risk-taking (female) agents
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generate the same signal in each period, so the survival condition is the same as

without memory. If the promotion standards are c, a female agent with ability a

survives to stage t if a ≥ cd for each d ≤ t. A risk-taking (male) agent survives to

stage t in a hierarchy with memory if (1/d)
Pd

k=1 σk ≥ cd for each d ≤ t, which means

that a + (1/d)
Pd

k=1 uk ≥ cd for all d ≤ t when the agent’s ability is a. Hence the

probability that a male with ability a survives to stage t is given by St (a, c) below.

St (·, c) is a continuous and increasing function.

St (a, c) =

Z ∞

c1−a
φ (u1)

Z ∞

2(c2−a)−u1
φ (u2) ...

Z ∞

t(ct−a)− t−1
i=1 ut

φ (ut) dut...du2 du1

At each a, the probability of survival St (a, c) is decreasing with t, and bounded

below by zero. Hence the sequence converges at each a. Let

S (a, c) = lim
t→∞

St (a, c) for each a ∈ R

The limiting expected ability of surviving risk takers is the following, provided

the probability of survival in the limit (the denominator) is positive.Z ∞

−∞
a

S (a;m) g(a)R∞
−∞ S (a, c) g (a) da

da (10)

For hierarchies with memory, Lemma 6 is the analog of Lemma 1.

Lemma 6 Let m, f be sequences of promotion standards for males and females, re-

spectively, in a hierarchy with memory. The expected ability of a random surviving

male is lower than the expected ability of a random surviving female at any stage t at

which males have at least as high a probability of survival.

Proof: With a change of variables, y = a− ft, the females’ expected ability

conditional on survival to t, (3), can be written as (5) above.

For males, with a change of variables y = a−ft, the expected ability conditional
on survival to t, (10), can be written:Z ∞

−∞
(ft + y)

g(ft + y)St (ft + y,m)R∞
−∞ g(ft + y)S (ft + y,m) dy

dy
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= ft +

Z ∞

−∞
y

g(ft + y)St (ft + y,m)R∞
−∞ g(ft + y)St (ft + y,m) dy

dy (11)

= ft +

Z 0

−∞
y

g(ft + y)St (ft + y,m)R∞
−∞ g(ft + y)St (ft + y,m) dy

dy (12)

+

Z ∞

0

y
g(ft + y)St (ft + y,m)R∞

−∞ g(ft + y)St (ft + y,m) dy
dy

Since the middle term of (12) is negative, to show that (5) is greater than (11),

it is enough to show that the following inequality holds for each y ≥ 0 :

g(ft + y)St (ft + y,m)R∞
−∞ g(ft + y)St (ft + y,m) dy

<
g (ft + y)R∞

0
g (ft + y) dy

Since g(ft + y)St (ft + y,m) ≤ g (ft + y) , and since by hypothesis the denom-

inator of the lefthand side is no smaller than the denominator of the righthand side

(these are the probabilities that a random male and female survive, respectively), it

holds that (5) is greater than (11). ¤

For hierarchies without memory, we showed in Lemma 2 and Proposition 4 that

most risk-takers will eventually be eliminated, provided the standards are bounded

below. Each risk-taker has infinitely many opportunities to throw himself out of

the pool, and if any risk-takers survive, it is only those with exceptional ability. The

expected ability of risk-taking survivors is therefore higher than that of non risk-taking

survivors in the limit.

I now show that, with memory, risk-takers survive in the limit. Nevertheless,

it is still true, as in hierarchies without memory, that surviving risk-takers (males)

will be less numerous than surviving non risk-takers (females), and will have higher

average ability. This must be proved in a different manner than Proposition 4, since

the analog to Lemma 2 does not hold. Further, Proposition 8 only holds for promotion

standards that are nondecreasing. With decreasing promotion standards, all non-risk-

takers with ability above c1 would survive, and none would be eliminated after stage

one. This is not true of risk-takers. If the performance standards decrease rapidly,

risk-takers with abilities lower than c1 might survive in large numbers, and the limiting
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Figure 2: Survival of Risk Takers in a Hierarchy with Memory

expected ability of risk-takers could be lower than that of non risk-takers.

In any case, increasing promotion standards are the more natural case.

Proposition 8 follows from the shape of the limiting survival function S, de-

scribed in Lemma 7 and shown in Figure 2, where the promotion standards converge

to c̄.

Lemma 7 Suppose that c1, c2...ct.. converges to c̄. For each a ∈ R such that c̄−a ≥ 0,
S (a, c) = 0. For each a ∈ R such that c̄− a < 0, S (a, c) > 0. The limit function S

is nondecreasing, and there exists a > c̄ such that S (a, c) > S (c̄, c) = 0.

Proof: That S (a, c)→ 0 for a < c̄ follows because (1/t)
Pt

i=1 ut+a converges

in probability to a. Since a < c̄, it also holds that (1/t)
Pt

i=1 ut +a < c̄ with probability

arbitrarily close to one for large t. That S (c̄, c) → 0 follows because the limit

distribution of
¡
1/
√
t
¢Pt

i=1 (ut/v) is normal, centered at 0, where v
2 is the variance

of Φ. If a = c̄, then for large t, ct− a = ct− c̄ is close to 0. With positive probability

it holds that
¡
1/v
√
t
¢Pt

i=1 ut < ct − c̄ < 0, or that (1/vt)
Pt

i=1 ut < (ct − c̄) /
√
t < 0.
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But since survival at t requires that (1/t)
Pt

i=1 ut ≥ 0, this implies that the agent

survives at each t with probability strictly less than one, so that the joint probability

of survival at all t is zero.

To show that S (a, c) > 0 for a > c̄, we argue instead that S (a, {c̄, c̄, ...}) > 0,
since S (a, c) > S (a, {c̄, c̄, ...}) . An agent with ability a fails to survive if (1/t)

Pt
1 ui <

c̄−a for some t. Using Lemma (6) of Dubins and Freedman (1965, p. 801), if b1, b2 > 0,

Pr

"
1

t

tX
i=1

ui ≤ −b1v2 −
b2
t
for some t = 1, 2, ...

#
≤ 1

1 + b1b2

Thus,

Pr

"
1

t

tX
i=1

ui > −b1v2 −
b2
t
for all t = 1, 2, ...

#
≥ 1− 1

1 + b1b2
> 0

Choose b1, b2 > 0 so that −b1v2 − b2 = c̄− a. Then

S (a, c) > S (a, {c̄, c̄, ...}) = Pr
"
1

t

tX
i=1

ui ≥ −b1v2 − b2 = c̄− a for all t = 1, 2, ...

#
>

Pr

"
1

t

tX
i=1

ui ≥ −b1v2 − b2/t for all t = 1, 2, ...

#
≥ 1− 1

1 + b1b2
> 0

¤

Proposition 8 (Gender Blind Promotions with Memory) Let c = c1, c2., , , ct, ... be a

nondecreasing sequence of gender blind promotion standards that converge to c̄ in a

hierarchy with memory. Then

(1) At the first stage, if c1 > EG(a), a random risk-taker (male) has a higher probability

of survival than a random non risk-taker (female), but lower expected ability.

(2) At later stages, t > t̂ for some appropriate t̂, the probability that a random risk-

taker (male) survives is smaller than the probability that a random non risk-taker

(female) survives, but the surviving risk-takers (males) have higher expected ability.

Proof: (1) That risk-takers have a higher probability of survival at stage 1

is proved in Proposition 3, since S1 (a, c) = [1− Φ (c1 − a)] . The risk-takers’ lower

expected ability follows from Lemma 6.
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(2) First, fewer risk-takers (males) than non risk-takers (females) survive in

the limit. For a < c̄, neither risk-takers nor non risk-takers survive. For a > c̄, the

probability that a non risk-taker survives is one, while, for risk-takers, the survival

probability is less than one: S (a, c) < 1− Pr [u1 < c1 − a] < 1.

Because the risk-takers’ limit probabilities of survival are nondecreasing with

a, the limit distribution of their abilities first-order dominates the limit distribution

of non risk-takers’ abilities. Thus, the expected ability of surviving risk-takers is no

smaller than that of surviving non risk-takers. But since S (a, c) > S (c̄, c) for some

a > c, the limiting expected ability of surviving risk takers is strictly greater than that

of surviving non risk-takers. ¤

For hierarchies with memory, there is no analog to Proposition 4, but the

following is the analog to Proposition 5.

Proposition 9 (Promoting Equal Average Ability with Memory) Suppose that the

expected abilities of surviving males and females are the same at stage t̂ under the

promotion standards m, f in a hierarchy with memory. Then the survival rate of

females at stage t̂ is greater than that of males.

Proof: By Lemma 6, if the expected number of surviving risk-takers (males)

at stage t is greater than or equal to the surviving non risk-takers (females), then

the average ability of surviving risk-takers (males) is lower than that of surviving

females. The proposition follows from an equivalent statement: If the average ability

of surviving males is as great or greater than the average ability of surviving females,

then the expected number of surviving males is lower. ¤

For completeness, the following proposition gives some insight into how the

promotion standards must differ with and without memory, in order to equalize the

number of survivors.

Proposition 10 Let ĉa and c be promotion standards in hierarchies with and without
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memory, respectively, which yield the same probabilities of survival at each t for a

risk-taking agent with ability a. Then it holds that ĉa1 = c1 and ĉat > (1/d)
Pt

d=1 cd for

each t > 1.

Proof: A risk-taking agent with ability a will have a sequence of random

errors in his signal, {ut} . With and without memory, respectively, the agent survives
the first stage in the events

{u1 ≥ c1 − a} , {u1 ≥ ĉa1 − a}

so c1 = ĉa1. Without memory, the agent survives two stages in the event

{u1 ≥ c1 − a and u2 ≥ c2 − a} (13)

With memory the agent survives two stages in the event

{u1 ≥ c1 − a and u2 ≥ c2 − a+ (c1 − a− u1)} (14)

Since 0 ≥ (c1 − a− u1) , the event (13) implies the event (14), but not vice versa.

Thus, the probability of the event (13) is lower than the probability of the event (14).

There exists c̃2 > c2 such that the probabilities of survival are equalized at the first

two stages, when ĉa1 = c1 and ĉa2 = (1/2) (c1 + c̃2) > (1/2) (c1 + c2) :

Pr {u1 ≥ c1 − a and u2 ≥ c2 − a} = Pr {u1 ≥ c1 and u2 ≥ c̃2 − a+ (c1 − a− u1)}

Similarly, at stage t = 3,

Pr {u1 ≥ c1 − a and u2 ≥ c2 − a and u3 ≥ c3 − a}

< Pr

½
u1 ≥ c1 − a and u2 ≥ c̃2 − a+ (c1 − a− u1)
and u3 ≥ c3 − a+ (c1 + c̃2 − 2a− u2 − u1)

¾
since 0 ≥ (c1 + c̃2 − 2a− u2 − u1) . Thus, there exists c̃3 > c3 such that

Pr {u1 ≥ c1 − a and u2 ≥ c2 − a and u3 ≥ c3 − a}

= Pr

½
u1 ≥ c1 − a and u2 ≥ c̃2 − a+ (c1 − a− u1)
and u3 ≥ c̃3 − a+ (c1 + c̃2 − 2a− u2 − u1)

¾
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Thus, there exists a sequence c̃1, c̃2, ... such that c̃1 = c1, c̃t > ct for t > 1, and

for each t,

Pr {ud ≥ (cd − a) for all d ≤ t} = Pr
(

dX
i=1

ui ≥
dX

i=1

(c̃i − a) for all d ≤ t

)
Thus, the promotion standards with memory ĉa defined by ĉa1 = c1, ĉ

a
t =

1
t

Pt
i=1 c̃i for

t > 1, yield the same probabilities of survival at each t as the promotion standards

without memory c, and ĉat > (1/d)
Pt

d=1 cd for all t > 1. ¤

Proposition 10 does not assert that the promotion standards ĉa are the same

for agents with different abilities. However it does imply that to maintain the same

overall promotion rate with and without memory, the standards must satisfy ĉt >

(1/d)
Pt

d=1 cd for each t > 1, since otherwise the promotion rate would be higher at

some t for every a.

5 Interpretations and Open Questions

Even if we accept the hypothesis that males generate riskier signals than females, these

conclusions are difficult to verify empirically. At most we can observe promotion rules,

signals, and proportions promoted, but we cannot in general observe true abilities. In

addition, it is hard to identify hierarchies where the same proportions of females (non

risk takers) and males (risk takers) have wanted to stay in the pool. Instead, women

and men drop out at different rates for self-motivated reasons such as child bearing.

Nevertheless, if we assume that the initial numbers and abilities of males and

females are the same, and that they drop out for exogenous reasons at the same rate

and in a way that is uncorrelated with ability, then the following implications would

be consistent with this model:

1. If the promotion policy is gender blind and has stringent standards at the be-

ginning (fewer than half are promoted), the ratio of surviving females to males

is lower at the beginning than at the end.
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2. Under an equal-abilities promotion policy, more females survive at every stage

than males.

3. If fewer than half the females are promoted at the beginning of the hierarchy,

and if the surviving males and females are equally numerous or have the same

average ability at each stage, then the standards for males are more stringent at

the beginning but more lenient at the end.

4. If more than half the females are promoted at the beginning of the hierarchy, and

if surviving males and females have equal average abilities at each stage, then

the standards for males are more stringent at the beginning but more lenient at

the end. If the surviving males and females are equally numerous at each stage,

the standards for males are more lenient at both the beginning and the end.

The hypothesis that males generate riskier signals than females might be in-

verted. Suppose, for example, that males and females are equally risk-taking, but

males generate more evidence in each period about their true ability than females,

or are observed more closely. Females are relatively “invisible” in a manner similar

to the phenomenon discussed by Milgrom and Oster (1987). This would reverse the

hypothesis that males generate riskier signals than females.

If the hypothesis on riskiness of signals is reversed, then the interpretation of

the above propositions is reversed. Instead of being disfavored in numbers at the

early stages of the gender-blind hierarchy and favored in later stages, females may be

favored in early stages and disfavored in later stages. That would give credence to

the 1970’s slogan, that women have to be “twice as good to get half as far.”

The analysis above is positive rather than normative. The motive behind af-

firmative action is a normative one, namely, to redress the apparent inequity of pro-

moting more males than females. This leads to the question of whether there is an

“efficiency/equity” tradeoff.

Efficiency is hard to define in a partial model of a labor market such as this. In
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fact, since affirmative action has many faces, its efficiency effects are hard to identify

in general, as discussed by Holzer and Neumark (2000). I will think of efficiency as

being served by the promotion of the most able agents.

If the males’ signals are so random that the truth is mostly obscured, it is

probably better to promote only females, for whom the ability is more observable.

This wisdom is particularly compelling if the number of agents required at the next

level of promotion is small relative to the pool, so that ability is not compromised

by promoting enough females to fill the slots. The main prescription in this regard

is given by Propositions 5 and 9, which point out that, if equal abilities are desired

in the promoted pool, more females (non risk-takers) than males (risk-takers) must

survive at every stage.
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