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Abstract
Motivation: Computer-assisted methods are essential for
the analysis of biosequences. Gene activity is regulated in
part by the binding of regulatory molecules (transcription
factors) to combinations of short motifs. The goal of our
analysis is the development of algorithms to identify regu-
latory motifs and to predict the activity of combinations of
those motifs.
Approach: Our research begins with a new motif-finding
method, using multiple objective functions and an
improved stochastic iterative sampling strategy. Combi-
natorial motif analysis is accomplished by constructive
induction that analyzes potential motif combinations. The
hypothesis is generated by applying standard inductive
learning algorithms.
Results: Tests using 10 previously identified regulons from
budding yeast and 14 artificial families of sequences
demonstrated the effectiveness of the new motif-finding
method. Motif combination and classification approaches
were used in the analysis of a sample DNA array data set
derived from genome-wide gene expression analysis.
Availability: Programs will be available as executable
files upon request.
Contact: yhu@ics.uci.edu or yhu@cse.ttu.edu.tw

Introduction
Intensive study of the regulation of individual genes has
provided us with a useful working model of gene regu-
lation at the single gene level. The combination of DNA
microarray technology (DeRisi et al., 1997; Wodicka
et al., 1997) which can be used to monitor expression
of many genessimultaneously, and computational ap-
proaches to data analysis are now providing an entry into
a more global appreciation of gene regulation. Budding
yeast Saccharomyces cerevisiae is a useful model system
for a test application of DNA arrays genomic analysis

3Now with Tatung University, Taipei, Taiwan. To whom correspondence
should be addressed.

algorithms to gene regulation. Not only has the complete
genome sequence of Saccharomyces cerevisiae been
determined (Goffeau et al., 1996), but gene organization
is relatively simple compared with the organization of
metazoan organisms. Because microarray experiments
provide comprehensive information about the levels of
mRNA in the cell which are critical determinants of
gene activity, it becomes theoretically possible to identify
sets of genes that are similarly regulated under a given
condition. This allows:

1. inferences about functions of genes that are not of
known function which are co-regulated with genes
of known function,

2. discovery of regulatory motifs and combinations of
motifs,

3. improved understanding of the biology of the cellu-
lar response to particular environmental stimuli.

Computational approaches are described here which,
coupled with the output of gene array experiments, can
be used to identify regulatory motifs and combinations of
those motifs that contribute to gene regulation.

Biologists have traditionally studied the regulation of
genes selected for a particular type of activity or func-
tion. Although this approach has allowed the identifica-
tion of regulatory proteins that affect the expression of
those genes, it has tended to focus attention on specific
sets of genes and inferences concerning the regulation of
those genes that have by necessity been extended to less
well understood genes. It is likely, given the number of
genes for which no function is known (estimated at one-
third of the yeast genome), that regulatory proteins remain
to be identified. In addition, due to the relatively intensive
study of exemplary genes, certain aspects of regulation,
including positional effects, multiplicity of regulatory mo-
tifs, orientation of motifs and the role of combinations of
different motifs, although appreciated conceptually, have
not been explored comprehensively. Emerging knowledge
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Motif analysis and hypothesis generation

of genome-wide gene activity, combined with the algo-
rithms to infer motifs and to correlate activity and motifs,
could broaden our understanding of gene regulation into
under-explored areas.

We first present a new approach for the detection of
potential regulatory motifs in sequences. This presenta-
tion expands upon work by others by combining multi-
ple types of objective functions with an improved iterative
sampling technique. It extends our previous report (Hu et
al., 1999) describing motif identification by demonstrat-
ing the results of applying a constructive induction algo-
rithm and a decision tree algorithm to the problem of iden-
tification of combinations of motifs. To demonstrate the
effectiveness of the motif-finding algorithm, we compare
its performance with the performance of other algorithms
on 10 families of yeast genes which share known regula-
tory motifs and on 14 artificial test sets of sequences. Sec-
ond, we report the experimental results of applying that
algorithm to families of genes identified by clustering the
genome-wide gene expression results of a thermal stress
time course.

System and methods
All programs are written in ANSI C, including the Detect-
ing Motifs from Sequences (DMS) software, the construc-
tive induction system GALA (Hu and Kibler, 1996) and
the decision tree learning program C4.5 (Quinlan, 1993).
Programs have been tested on Sun SPARC workstations
running UNIX, and on Intel machines running Windows
98, Windows NT and Linux†.

Genes are grouped into families based on previously
known collective behavior or based on temporal expres-
sion patterns determined by DNA array analysis. Our anal-
ysis of gene regulation focuses on the search for sequence
motifs and combinations of motifs which are implicated in
the regulation. This type of analysis suggests further bio-
logical tests on the genes through the inference from the
hypotheses produced by the analysis.

There are four basic steps in our method.

• First, the genes are categorized into families according
to their expression patterns. Some of the gene families
used in this study were previously described, some are
synthetic, and others were defined by cluster analysis
of the results of a DNA array experiment. Cluster
analysis was applied to identify genes, the RNAs
of which were consistently positively and negatively
regulated over the time course.

• Second, for any cluster of genes of interest, the control
regions are extracted for each gene and a motif-finding
algorithm is applied to the family to find significant

† C4.5 requires minor modification to run under Windows platforms.

motifs. Several methods have been developed for
detection of patterns shared by a set of functionally
related biosequences (Bailey and Elkan, 1995; Eddy,
1995; Hertz and Stormo, 1995; Hertz et al., 1990;
Hughey and Krogh, 1996; Lawrence et al., 1993; Hu,
1998b; van Helden et al., 1998) We will introduce a
new motif-finding algorithm called DMS, which will
be applied in our gene regulation analysis.

A particular challenge for finding regulatory motifs is
that they can be quite short and thus not statistically
distinctive per se. As genes can be regulated in many
ways, redundancy, location and combinations have to
be considered to distinguish regulatory motifs. Finding
motifs alone is not sufficient for the analysis of gene
regulation. The motifs found will serve as the building
blocks for representational transformation in the next
step. The change of representation is required to
reveal regularity originally implicit in the sequence
data.

• Third, based on the motifs found by DMS, the
original sequences are transformed into a higher-level
representation. It includes

1. the locations of the motifs,
2. the total number of repeats of each motif,
3. the number of repeats of each motif within a

selected location range or upstream region,
4. the distance between motifs,
5. combinatorial motifs as Boolean combinations.

The objective of this step is to transform the raw
string-based representation into one better suited for
understanding and additional analysis. The new repre-
sentation is used to reveal the regularity originally im-
plicit in the raw string-based data. All the information
described by the new representation can be either used
as a whole or partially used for further analyses.

• Fourth, after the raw sequence data are transformed
into the appropriate higher-level representation, a suit-
able standard inductive learning algorithm is applied
to the data to generate hypotheses. There are many
inductive learning algorithms available. Each has its
own advantages and limitations. In our experiments,
we applied a decision tree learning algorithm to con-
struct hypotheses represented as decision trees. These
hypotheses predict whether a gene will be expressed
or not. The hypotheses are easily understood and pro-
vide a micro view of the families as they suggest rea-
sons for different behaviors of the genes to comple-
ment the macro view of the genome-wide gene expres-
sion changes.
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A 0 7 0 7 7 0 A 0.00 1.00 0.00 1.00 1.00 0.00
G 6 0 0 0 0 7 normalized G 0.86 0.00 0.00 0.00 0.00 1.00
C 1 0 0 0 0 0 C 0.14 0.00 0.00 0.00 0.00 0.00
T 0 0 7 0 0 0 T 0.00 0.00 1.00 0.00 0.00 0.00

Fig. 1. A six-base motif matrix example.

Algorithm
DMS: Detect Motifs from Sequences
The sequence segments, such as binding sites for a partic-
ular protein, are not necessarily accurately represented by
a single sequence pattern because modest variations in the
motif are important for controlling the differential bind-
ing of the protein to different regulatory regions. Conse-
quently, the weight matrix was adopted for motif repre-
sentation. By running an iterative sampling optimization
process, DMS finds a user-specified number of motifs.

The weight matrix method approach has been used in
various pattern-identification problems (Harr et al., 1983;
Hertz et al., 1990; Lawrence et al., 1993; Staden, 1984)
It is usually built from the base frequency of example
biosequences. For example, in the seven-member NIT
regulatory family (van Helden et al., 1998) a possible six-
base motif matrix is illustrated in Figure 1. By dividing
every element of the matrix by the number of sequences,
we construct a normalized matrix illustrated in Figure 1.

Based on the normalized motif matrix, we can calculate
the match score of any six-base sequence by dividing the
sum of the value for each position by the width of the
motif. For example, given a six-base sequence, GATAAG,
its match score is

0.86 + 1 + 1 + 1 + 1 + 1

6
.

The success of these analyses confirms the fact that the
frequencies of bases at positions within sites are related to
the importance of the bases to the functioning within the
sites (Stormo, 1988). The challenge is to find a matrix that
best represents the motif.

We propose a new motif-finding algorithm, DMS. Un-
like other approaches, DMS uses multiple types of ob-
jective functions, the motif consensus quality, the motif
multiplicity significance and the motif coverage. The con-
sensus quality guides the search for well-conserved motif
candidates, the motif multiplicity significance reflects the
value of multiple copies of a single motif, and the motif
coverage addresses the importance of a motif being com-
monly shared by a given family of sequences. The con-
sensus quality of a matrix is derived from the entropy. The
lower the entropy, the better conserved the motif. The en-
tropy is calculated from the probability that each base oc-
curs at each position in the motif, Pmbase. More precisely,

the entropy for a particular column n in the matrix is given
by:

En = −
b4∑

i=b1

Pmi log2 Pmi

where b1 . . . b4 are the bases A, G, C, T. If the bases are
uniformly distributed over a position, then the maximum
value of 2 is obtained. If only a single base appears in a
position, then the minimum value of 0 is obtained. Thus
we define the consensus quality of column n as:

Cn = 2 − En.

The final consensus quality of a matrix b, is defined as
the average of all position quality

con(b) = 1

W

W∑
n=1

Cn

where W is the width of the motif. The multiplicity
significance is derived from the measure of precision as
defined in the information retrieval literature. It is simple
and empirically effective. We define the multiplicity
significance of a motif b as:

mul(b) = occS(b)

occG(b)

where occS(b) is the occurrence of b in a given family
S, and occG(b) is the occurrence of b in a genome. This
measures therepresentativeness of a sequence in a family
relative to the entire genome and, consequently, discounts
sequences which are common everywhere, such as tandem
repeats or polyA.

The motif coverage is defined as the ratio of the number
of the sequences containing b to the total number of
sequences given.

cov(b) = contS(b)

|S|
where contS(b) is the number of sequences in S that
contain b, and |S| is the total number of sequences in S.

Given a set of N biosequences, DMS carries out an it-
erative improvement search that attempts to find a user-
defined number, d, of matrices that maximize the consen-
sus quality. These d matrices are motif candidates. These
motifs are then ranked by DMS according to a merit mea-
sure based on the combination of the consensus quality,
the multiplicity significance and the motif coverage. Given
the d motifs, we first normalize the consensus quality, the
multiplicity significance and the motif coverage of each
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motif b, using the maximum value, as defined below:

Connormal(b) = con(b)

MAX(con)

Mulnormal(b) = mul(b)

MAX(mul)

Covnormal(b) = cov(b)

MAX(cov)

where MAX(con) is the maximum consensus quality of
the d motifs, MAX(mul), the maximum multiplicity sig-
nificance of the d motifs, and MAX(cov), the maximum
motif coverage of the d motifs.

Combining all the objective functions introduced above,
we propose the final merit measure of a motif b, Merit(b),
as defined below:

1

1
3

(
1

Connormal(b)
+ 1

Mulnormal(b)
+ 1

Covnormal(b)

) .

The value of merit is in the range between 0 and 1.
It reflects the synergy of the consensus quality, the
multiplicity significance and the motif coverage.

There are three steps in DMS which are detailed in the
following subsections.

Translating subsequences into matrices. If we knew the
motif location(s) in every sequence, we could generate a
probability matrix corresponding to these positions. As
these position are unknown, we take a different approach.
We begin by allowing each subsequence of length W
to be a candidate motif. Like most current algorithms,
such as CONSENSUS, the Gibbs sampler, and MEME,
etc., the length W is specified by the user. We convert
this particular subsequence into a probability matrix in
two steps, adopting an idea from Bailey and Elkan
(1995). First we fix the probability of every base in the
subsequence to some value 0 < X < 1, and assign
probabilities of the other bases according to 1−X

4−1 (four
nucleic bases). Following Bailey and Elkan, we set X to
0.5. This gives us a set of seed probability matrices to
be used as starting points for iterative improvement. For
a given family of sequences, we can either exhaustively
translate every subsequence into a matrix for analysis
or we can select a random subset of the sequences and
only generate candidate starting points from this subset.
Because significant motifs are generally well conserved
and thus occur in most sequences, this subsetting strategy
is effective without empirically losing generality.

Filtering possible motif occurrences. Rather than mak-
ing the common assumption that each motif occurs only
once per sequence, we allow for the possibility that a mo-
tif may occur multiple times in a single sequence. For each

matrix and each sequence, we find the position that max-
imizes the match score and adds it to the list of poten-
tial motif positions. Then we set the threshold for decid-
ing if a motif occurs at any position as the mean of the
match scores. Finally we add to the list of motif positions
any other position whose match score is greater than this
threshold. Occurrence overlap is allowed. This process de-
fines a set of potential motif positions.

Finding and ranking motif candidates. After the likely
motif positions are determined, DMS performs an itera-
tive optimization procedure to find the motif probability
matrix. Unlike current approaches, such as the Gibbs sam-
pler, that search all possible positions within a sequence,
DMS only considers the potential motif positions deter-
mined in the previous step. This strategy significantly con-
strains the search space. For initialization, DMS randomly
selects a position from the set of potential motif positions
that are determined in the previous step to form the initial
probability matrix.

A sequence is then chosen at random for optimization
and DMS optimizes the consensus quality of the matrix by
checking every potential motif position within the selected
sequence. For each position, we compute the consensus
quality (as defined above) of the corresponding matrix.
The position that achieves the maximum consensus quality
is chosen to update the matrix. The process is repeated
until no improvement is noted. In each optimization
cycle, the order of sequences is randomly shuffled. The
randomization in each trial cycle is important to remove
implicit biases, such as the order of the sequences, that
can be harmful in search algorithms (Hampson and Kibler,
1996). At this point, in each sequence, the subsequence
that contributes to the last updated matrix is determined.
We then compute the mean of the match scores of the
subsequences that form the matrix, and use the mean
as a threshold to select all subsequences with a match
score over this threshold as possible motif occurrences in
each sequence. We find that DMS is not biased toward
any predefined motif occurrences, e.g. one or more motif
occurrences per sequence. The occurrence of a motif is
determined by the match threshold as defined above. All
these motif occurrences in sequences are used to form the
final motif matrix, and it becomes a motif candidate.

The same procedure is performed on all matrices to
produce the candidate motifs. Finally, DMS ranks the
candidate motifs according to its merit measure.

A pseudo-code description of matrix optimization pro-
cedure is given in Figure 2.

Representational transformation
Two types of additional motif information become avail-
able after DMS identifies motifs from the given family of
sequences, the motif occurrences and the motif locations.
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Given: a set B of biosequences

a random subset S of B

the width W of a motif

Return: a set C of ranked candidate motifs

Step 1. Translation

For each subsequence b in S Do

Translate b into candidate probability matrix m via:

m(i,base) = .50 if base occurs in position i

= .17 otherwise

Step 2. Filter possible motif positions

For each m in S Do

For each sequence s in B Do

Find Position p with highest match score in s

Add p to Potential Positions

Compute the mean of the highest match scores in B

For each sequence in B Do

Set Potential Positions to those with match score > mean

Step 3. Find and rank motif candidates

Randomly choose a Potential Position in each sequence to

initialize matrix M

Repeat

Randomly pick a sequence s in B

Check if M’s consensus quality can be improved by using a

different Potential Position in s

Update matrix M

Until no improvement in M’s consensus quality

Compute the mean of match scores of subsequences contributing to M

For each sequence in B Do

Select subsequences with match score > mean as motif occurrences

Form the final matrix FM with all occurrences in B

Put FM in C

Sort all motif candidates in C according to merit

Return C

Fig. 2. Pseudo-code of DMS.

Based on the information available, we can transform the
original sequence data into a higher-level representation.
Each sequence is transformed into a vector that contains
the motif information associated with the sequence, in-
cluding the number of motif repeats in the entire sequence
and the number of motif repeats within a selected segment
of the sequence. This vector representation was chosen be-
cause it is the most widely used representation for standard
inductive learners in the machine learning community. It
increases the applicability of machine learning techniques.
Given only one family of sequences, the particular seg-
ment is selected based on the background knowledge, i.e.
it is specified by the user. If two or more families of se-
quences are provided, the sequence segment can be either
specified by the domain expert or determined by DMS. It
is computationally prohibited to find the optimal segment
that gains the maximum discrimination between families

by checking all possibilities. Therefore, we divide the se-
quences into equal intervals. For each interval, we com-
pute the information gain according to the number of mo-
tif repeats in that interval. Thus, DMS selects the interval
that attains the highest information gain.

For example, assuming three motifs are found, M1, M2
and M3, an original nucleic sequence can be represented
as a vector, (Mtotal1 , Mtotal2 , Mtotal3 , M[100–150 bp]1 ,
M[350–400 bp]2 , M[50–100 bp]3 ). The first three elements are
the total number of repeats of M1, M2 and M3. The fourth
element presents the number of repeats of M1 within the
range 100–150 bp in the upstream region of the sequence.
The last two elements present the number of repeats of
M2 and M3 within the range 350–400 bp and 50–100 bp,
respectively. For instance, a sequence can be transformed
into (5, 2, 3, 3, 1, 2). This means that the sequence has a
total of five repeats of M1, two repeats of M2 and 3 repeats
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of M3. There are three copies of M1 located 100–150 bp
upstream of the sequence, one copy of M2 in 350–400 bp
upstream, and two copies of M3 50–100 bp upstream.

Given multiple families of genes, after the transfor-
mation, the original sequence data is represented as
sets of vectors. These vectors are used as the training
examples for GALA (Hu and Kibler, 1996; Hu, 1998a)
to further analyze motif combinations. From the point of
view of GALA, each element of a vector is a primitive
attribute. The purpose of applying GALA here is to find
combinations of attributes as new attributes to improve
the quality of the hypotheses that will be later generated
by a standard inductive learning algorithm. GALA applies
Boolean operators to construct new attributes represented
as Boolean combinations. As a data-driven approach, it
iteratively constructs and evaluates new attributes by ana-
lyzing the training examples. Short Boolean combinations
are reasonably understandable. Comprehensibility allows
domain experts to explore the new attributes either for
further improvement or for justification.

Hypothesis generation
The final hypothesis for different gene behaviors in the
same environment is produced by the standard inductive
learning algorithm C4.5 (Quinlan, 1993). The input to
C4.5 is a set of vectors transformed from the original
sequence data combined with the combinatorial motifs,
i.e. Boolean combinations of motifs, generated by GALA.
With the input as the training examples, C4.5 produces
a classification hypothesis that could be used to explain
why these families of genes behave differently under the
same condition as well as suggesting additional biological
questions.

Implementation
Finding motifs in real regulons
Yeast metabolism has been widely studied, and in some
cases the transcription factors involved in the regulation
of members of a common pathway are known. Those
families of co-regulated genes provide ideal data sets on
which to test the systems designed to detect regulatory
motifs.

From the study of the literature, van Helden et al.
(1998) defined 10 families of genes that have known
common regulatorysite(s) or motif(s). There are many
additional motifs involved in regulation generally, but the
known ones in these regulons define 10 learning tasks
for comparing the various algorithms. These families are
described in more detail in Table 1. The first column
in Table 1 denotes the name of the regulatory family,
column 2 shows the number of genes in that family, and
column 3 presents the published motifs. It is assumed for
this exercise that the regulation of a gene is determined by

Table 1. Ten regulatory families with published motifs

Family Size Published motifs

NIT 7 GATAAG
MET 11 TCACGTG

AAAACTGTGG
PHO 5 GCACGTGGG

GCACGTTTT
PDR 7 TCCGCGGA
GAL 6 CGGNNNNNWNNNNNCCG
GCN 38 RRTGACTCTT
INO 10 CATGTGAAWT
HA 8 CCAAY
YAP 16 TTACTAA
TUP 25 KANWWWWATSYGGGGW

motifs in the upstream region. The 800 bp upstream region
was used for each gene, as this is the same sized region
used by van Helden et al. (1998) in their experiments.

Our objective was to test whether DMS can identify the
published motifs. As the biological literature only pub-
lishes regulatory motifs in the IUPAC code, a method was
needed to construct a way to credit the algorithms that de-
termined a probability matrix. The following procedure
was used for determining a match. From each probabil-
ity matrix we constructed a consensus pattern. If this con-
sensus pattern matched the published motif in 80% of the
positions of the motif, it was counted as a correct match.
A base in the consensus sequence was allowed to match a
disjunction of bases (as described by the IUPAC code) if
the disjunction contained the base.

There are two parameters used by DMS. One is the motif
width, and the other is the random subset size (see the
pseudo-code of DMS). To maintain consistency, for those
families with more than 10 members, we set the subset size
to be 10; otherwise, we set the subset size to be equal to the
family size. The motif width is set to that of the published
motif in each family. Except for these two parameters,
we did not tune DMS or modify the sequence data in
any way, e.g. by prespecifying the expected number of
motif matches/occurrences. To test the stability of DMS,
we ran DMS on each family five times, using different
random seeds. The results showed that DMS identified
all the published motifs in all regulatory families in each
run. By ‘identified’ we mean that the published motifs are
found and ranked in the top 40 motifs according to the
merit measure as defined earlier. Most of the published
motifs are ranked top, except for some weak motifs or
short motifs, e.g. the motif in the HAP family, CCAAY,
is ranked 34th, and the less conserved motif in the PHO
family, GCACGTTTT, is ranked 18th.
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Analysis
The motif-finding problem can be viewed as finding the
patterns common to a given family of sequences. The
difficulty of finding the biologically meaningful motifs is
increased by the variability in

1. the bases at each position in the motif

2. the lack of alignment of sites among the sequences

3. the multiplicity of motif occurrences within a given
sequence.

With these uncertain factors, the search space of motifs
is generally computationally intractable. Moreover, as the
characteristics of a given family are usually unknown
in advance, and there is no universal measure of the
significance of patterns, the biological meaning of a given
motif must be verified empirically. The objective functions
used by the current motif-finding algorithms are based on
either heuristics or statistics which, at this time, are not
equated with biological significance. Features considered
likely to correlate with significance of computationally
defined motifs include:

1. degree of conservation,

2. consistency of occurrence of the motif across the
members of a family,

3. distributional difference between the rest of the
genome and the regulatory regions.

Systems using different measures of motif significance
have been proposed. However, most of them cannot com-
pletely meet the criteria described above without certain
assumptions. For example, the Gibbs sampler (Lawrence
et al., 1993) and MEME (Bailey and Elkan, 1995) are
both sensitive to the assumption of the expected number
of motif matches. Weak assumptions cause breakdown of
the systems. The reason for the failure is that the objective
functions upon which the systems are based do not
meet the criteria above without the assistance of specific
settings of program parameters. Relative information and
likelihood are good measures of the motif consensus qual-
ity, but their values both vary with changes in the expected
number of motif matches. Typically, the expected number
of motif matches affects the performance of this type of
measure. A new significance measure proposed by van
Helden addresses the importance of motif multiplicity in
terms of over-representation (van Helden et al., 1998).
This measure avoids the burden of making assumptions
of the expected number of motif matches, butit is based
on the number of motif occurrences and does not consider
the motif location. Therefore, it does not discriminate
the difference between a high count motif located in one

sequence and a high count motif distributed among many
sequences.

The above-mentioned limitations are overcome by using
DMS in combining multiple objective functions, the motif
information content, multiplicity and coverage. Unlike
some current approaches that require the setting of the
expected number of motif matches, DMS automatically
computes the match threshold based on the mean match
scores to determine the motif occurrences (see Figure 2).
The information content is used to guide the search
for conserved candidate motifs; the motif multiplicity
addresses the value of the copy number of a motif; and
motif coverage reflects the importance of distribution of
a motif among many members of a family. The synergy
of these objective functions refines the predictions of
the algorithm with respect to biological significance.
First, the information content is used to measure the
consensus quality. The higher the information content
(i.e. lower entropy), the better conserved is the pattern.
Based on the information content, DMS can identify
motif candidates of high consensus quality. Motifs with
high information content are not necessarily significant.
To mitigate this limitation, DMS applies other objective
functions to measure the significance of motifs. Com-
bined with information content, the motif multiplicity
and the motif coverage help detect motifs not only of
high consensus quality, but also of high representation
and coverage in a given family. The strategy of using
multiple complementary objective functions can alleviate
the common limitations.

To verify the synergy of multiple objective functions,
the merit measure was compared with two other objective
functions, relative entropy‡ and the significance measure
introduced by van Helden et al. (1998). We substituted
relative entropy and van Helden’s significance measure,
respectively, for the merit measure in DMS, and checked
the motif ranking according to the measure we used in
DMS. In this way, we kept the same search strategy,
and only varied the objective functions. The motif match
threshold was also determined in the same way to maintain
consistency. In Table 2, we show the rank of the published
motifs in some real regulons according to the measure that
was applied. Column 1 presents the families tested, and
column 2 shows the published motifs or the seeded motifs.
Columns 3–5 show the rank of the motif according to the
measure applied. The rank of the motif given by the merit
measure is generally more predictive than other single
measures. This suggests that combining multiple comple-
mentary objective functions is a better ranking strategy
for DMS. To further compare the significance of relative

‡ Relative entropy (and its variant) has been widely used in several algorithms
such as CONSENSUS and the Gibbs sampler. (Bailey, 1993) reported
maximizing relative entropy is equivalent to maximizing likelihood ratio
when the assumed probability distribution is multinomial.

228



Motif analysis and hypothesis generation

Table 2. Ranking of motifs by different measures

Family Known motif van Helden’s Relative Merit
significance entropy of DMS

NIT GATAAG 30 339 1
MET TCACGTG 2 12 1

AAAACTGTGG 5 6 1
PDR TCCGCGGA 148 56 2
INO CATGTGAAWT 3 13 1
HAP CCAAY 149 97 34
YAP TTACTAA 14 187 1

entropy with that of the consensus quality as defined
earlier, we replaced the consensus quality with relative
entropy in the merit measure, and re-ran DMS on the same
families. The results showed no significant difference, i.e.
the motif rankings were about the same. Note that we do
not claim that the merit measure is necessarily better than
relative entropy or van Helden’s significance measure
in general. As we know the value of relative entropy or
van Helden’s measure is dependent on the number of
motif matches, with appropriate settings of the expected
number of motif matches, algorithms based on relative
entropy, e.g. CONSENSUS, will also rank the motifs
correctly [G. Stormo, G. Hertz, J. V. van Helden, (1999)
personal communication]. The above experimental results
only suggest that for DMS, the merit measure is more
predictive than relative entropy or van Helden’s measure
alone.

Analyses of global gene expression
The advent of microarray technology makes it possible
to simultaneously measure the activity of most genes (in
this case defined as levels of corresponding mRNA) under
various test conditions. These data can then be used to
computationally define, by cluster analysis, new families
of genes, which can be analyzed for common regulatory
motifs. Implicit to this analysis is the assumption that
genes which behave similarly are more likely to share
common regulatory motifs.

In the experiment performed here, yeast gene expression
was probed using the Affymetrix GeneChip System. The
yeast YE6100 array interrogates over 6200 yeast genes,
defined as ORFs longer than 100 codons, using multiple
complementary 25mers per gene. These are synthesized
in situ on four silica wafers using a photolithographic
process (Wodicka et al., 1997). The sequences of the
oligonucleotide probes are designed to maximizespecific
hybridization to the target RNAs. The mixture of RNA
is hybridized to the microarray and hybridized RNAs are
then stained with streptavidin-phycoerythrin conjugate.
The pattern of hybridization is detected as fluorescence

using a Hewlett Packard scanning argon laser. Affymetrix
proprietary software is used to process the image file,
resulting in the values for each gene reflecting the absolute
level of mRNAs in control and stressed cells.

Budding yeast cells were submitted to a thermal stress
by shifting the culture from 23 to 39◦C. Samples were
collected at 0, 5, 10, and 20 min and RNA was ex-
tracted. These RNA samples were analyzed as previously
described (Wodicka et al., 1997) using an Affymetrix
GeneChip machine and Affymetrix GeneChip 3.0 soft-
ware. These results were output as values that displayed
the absolute levels of RNA for approximately 6200 genes
over the time course. Cluster analysis was performed in
order to identify families of genes which behave similarly.
These families were analyzed using DMS in order to
identify potential common regulatory elements.

The heatshock response in yeast was chosen as the sub-
ject of the microarray experiment described here because
it regulates a large number of genes, is effected by con-
served families of proteins, and has been relatively inten-
sively studied. Regulation of the stress response occurs at
many levels and includes transcriptional, translational and
post-translational mechanisms. Based on the expression
time course, 82 ORFs for which RNA levels increased and
39 ORFs for which RNA levels decreased were identified
for further analyses. The 82 heat-shock genes were cho-
sen to include only genes having a maximum expression
level of greater than four-fold increase, and the 39 heat-
stroke genes have a maximum expression level of greater
than three-fold decrease . Because yeast genes tend to have
transcriptional regulatory regions that are upstream of the
ORF within 500 bp, the 500 bp upstream region for each
gene was used for analysis. It should be noted that because
of the fold thresholds chosen, there were genes which were
regulated that were not included in the analysis.

DMS analysis was performed and motifs were detected
based on the 82 genes which displayed a greater than four-
folds increase in RNA levels during the heat shock. As
we focus on short motifs in our current study, for DMS
we set the motif width to be five, and the subset size to
be 20. According to the merit values, we selected the top
14 interesting motifs for further analyses. In addition to the
14 motifs, the background knowledge of the previously
defined heat-shock element (Fernandes et al., 1994) was
applied in the subsequent decision tree analysis for a total
of fifteen motifs as listed in Figure 3. Including the heat-
shock element, there are two known motifs on the list.
Motif 1 is a sub-motif (AGAA) of the heat-shock element
(Fernandes et al., 1994), and Motif 2 is the stress element
(STRE) (Kobayashi and McEntee, 1993). The heat-shock
element is an inverted repeat of TTC and GAA. As the gap
between these two sub-motifs may vary, and a T (or A) is
favored after C (or ahead of G), we added the sub-motif,
TTCT, of the heat-shock element in our study.
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Motif 1 = TTCT Motif 2 = AGGGG
A 0.000 0.000 0.000 0.000 A 1.000 0.000 0.195 0.012 0.000
G 0.000 0.000 0.000 0.000 G 0.000 1.000 0.768 0.988 1.000
C 0.000 0.000 1.000 0.000 C 0.000 0.000 0.012 0.000 0.000
T 1.000 1.000 0.000 1.000 T 0.000 0.000 0.024 0.000 0.000

Motif 3 = CCCTT Motif 4 = TCCCT
A 0.000 0.085 0.000 0.000 0.000 A 0.000 0.000 0.000 0.000 0.000
G 0.000 0.024 0.012 0.000 0.000 G 0.000 0.000 0.000 0.000 0.000
C 1.000 0.890 0.988 0.000 0.000 C 0.061 1.000 0.866 1.000 0.000
T 0.000 0.000 0.000 1.000 1.000 T 0.939 0.000 0.134 0.000 1.000

Motif 5 = ACAAG Motif 6 = GAAGA
A 0.732 0.000 1.000 1.000 0.000 A 0.000 1.000 0.780 0.000 0.000
G 0.195 0.000 0.000 0.000 1.000 G 0.963 0.000 0.134 1.000 1.000
C 0.012 1.000 0.000 0.000 0.000 C 0.037 0.000 0.000 0.000 0.000
T 0.061 0.000 0.000 0.000 0.000 T 0.000 0.000 0.085 0.000 0.000

Motif 7 = TATCA Motif 8 = TCTTG
A 0.000 1.000 0.061 0.000 0.988 A 0.024 0.000 0.000 0.000 0.000
G 0.000 0.000 0.000 0.000 0.000 G 0.037 0.000 0.000 0.000 1.000
C 0.000 0.000 0.122 1.000 0.000 C 0.122 1.000 0.000 0.000 0.000
T 1.000 0.000 0.817 0.000 0.012 T 0.817 0.000 1.000 1.000 0.000

Motif 9 = TAAAG Motif 10 = GCAAA
A 0.000 1.000 0.817 1.000 0.000 A 0.000 0.000 1.000 0.768 0.976
G 0.000 0.000 0.000 0.000 1.000 G 1.000 0.000 0.000 0.000 0.000
C 0.000 0.000 0.037 0.000 0.000 C 0.000 1.000 0.000 0.159 0.024
T 1.000 0.000 0.146 0.000 0.000 T 0.000 0.000 0.000 0.073 0.000

Motif 11 = CTTCT Motif 12 = AAGGA
A 0.000 0.000 0.000 0.134 0.000 A 1.000 1.000 0.000 0.000 0.963
G 0.000 0.000 0.000 0.000 0.000 G 0.000 0.000 1.000 0.890 0.037
C 1.000 0.000 0.000 0.866 0.012 C 0.000 0.000 0.000 0.000 0.000
T 0.000 1.000 1.000 0.000 0.988 T 0.000 0.000 0.000 0.110 0.000

Motif 13 = CTTAT Motif 14 = AATCT
A 0.000 0.000 0.000 0.963 0.000 A 1.000 1.000 0.012 0.000 0.000
G 0.134 0.000 0.000 0.037 0.000 G 0.000 0.000 0.000 0.171 0.000
C 0.866 0.000 0.000 0.000 0.000 C 0.000 0.000 0.037 0.829 0.000
T 0.000 1.000 1.000 0.000 1.000 T 0.000 0.000 0.951 0.000 1.000

Motif 15 = GGCAG
A 0.000 0.000 0.366 0.878 0.000
G 1.000 1.000 0.024 0.000 0.988
C 0.000 0.000 0.610 0.000 0.012
T 0.000 0.000 0.000 0.122 0.000

Fig. 3. Fifteen significant motifs in 82 heat-shock genes.

Based on these selected motifs, we transformed each
raw DNA sequence into a vector representation. Each vec-
tor indicates for each motif the number of total motif oc-
currences in a sequence, and the number of motif occur-
rences within a specific range in that sequence. Note that
the motif occurrences are determined by DMS with the
mean match score as the threshold, as explained earlier.
From the point of view of inductive learning, after the
transformation, we have a set of pre-classified data, i.e.
heat-shock genes and heat-stroke genes. We first applied
GALA (Hu, 1998a; Hu and Kibler, 1996) to the new data
set to analyze motif combinations, and used the inductive
learning program C4.5 (Quinlan, 1993) to generate a hy-
pothesis, represented as the decision tree shown in Fig-
ure 4. The output of GALA is a list of combinatorial mo-
tifs represented as Boolean combinations. These Boolean

combinations will be used by C4.5 to construct a decision
tree hypothesis. For example, the three nodes described as
Boolean combinations in the decision tree shown in Fig-
ure 4 are part of the output of GALA. We modified the
original output of C4.5 by directly putting in the motif
Boolean combinations learned by GALA to increase read-
ability. The decision tree describes features that are found
and not found in genes that are positively or negatively
regulated by the heat treatment. This description can be
applied to other genes in order to predict their behavior
under thermal stress.

There are three condition nodes in the hypothesis. Each
node describes a condition with two outcomes, true or
false. In each node, ‘∗’ means an ‘AND’ and ‘+’ means
an ‘OR’. For example, the root (i.e. node 1) describes a
condition: (if there is one or more Motif 2 and Motif 14)
OR (if there is one or more Motif 4 located 100–200 bp
upstream) OR (if there are two or more Motif 7 located
in 200–300 bp upstream) OR (if there are two or more
Motif 5 and one or more Motif 8 located 400–500 bp
upstream) OR (if there are three or more Motif 6) OR
(if there is one or more Motif 2 located 100–200 bp
upstream). To classify a gene’s behavior, the decision tree
was traced from the top (i.e. node 1), to the bottom, (i.e.
a class). Note that when classifying a new gene, to keep
theconsistency, we used the same threshold as used by
DMS during its searchfor motif occurrences to determine
motif occurrences (refer to pseudo-code of DMS).

To verify the usefulness of the motif combinations
generated by GALA, we performed two iterations of
10-fold cross validation by running C4.5 on the same
data set with and without using the motif combinations
generated by GALA. To perform one 10-fold cross
validation, we first randomly shuffle the total data, i.e.
the 82 heat-shock genes and the 39 heat-stroke genes, to
remove the ordering bias. We then divide the data into
10 equal-sized sets, i.e. each set contains 10% of the total
data; the distribution of the heat-shock genes and the
heat-stroke genes in each set will be at random. Each set
of data will be iteratively used as the validation data to
test the accuracy of the predictor, and the remaining nine
sets of data will be used for training the predictor. The
final predictive accuracy of the predictor is the average
of the accuracy of the total 10 runs of experiments. Our
experimental results showed that motif combinations
significantly improved the predictive accuracy by about
10% (80.85% with combinations compared with 70.84%
without combinations) in paired t-test (confidence level
�99%). We also tested the significance of the added
sub-motif, TTCT, of the heat-shock element. We com-
pared the predictive accuracy before and after removing
this sub-motif, TTCT, based on the same 10-fold cross
validation to keep the consistency. We found that the
predictive accuracy significantly dropped by 2.69%
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Motif analysis and hypothesis generation

NODE 1 : (M2=1)*(M14=1) + (M4 in [100,200] = 1) + (M7 in [200,300] = 2) +
(M5=2)*(M8 in [400,500] = 1) + (M6=3) + (M2 in [100,200] = 1)

=== TRUE
NODE 2 : (M1 in [0,100] = 3) + (M9=1)*(M10=1) + (M7=3) +

(M11 in [400,500] = 1) + (M9=1)*(M2 in [100,200] = 1)
=== TRUE

Class: Heat-Shock {76 heat-shock genes }
{ 0 heat-stroke genes}

=== FALSE
Class: Heat-Stroke { 1 heat-shock genes }

{ 4 heat-stroke genes}
=== FALSE

NODE 3 : ((M9<=0) + (M10 in [400,500] = 1))*
((M3=1)*(M7=3)+(M3=1)*(M13 in [200,300] = 1))

=== TRUE
Class: Heat-Shock { 5 heat-shock genes }

{ 0 heat-stroke genes}
=== FALSE

Class: Heat-Stroke { 0 heat-shock genes }
{35 heat-stroke genes}

Fig. 4. The hypothesis of heat-shock and heat-stroke genes (represented by a decision tree).

(78.16% compared with 80.85%) in the paired t-test
after we removed TTCT (confidence level >95%). These
results suggest that appropriate background knowledge
can improve the quality of the hypotheses.

Discussion
Computational tools for detecting subtle similarities and
classifying sequences have become an essential compo-
nent of the research process. Large databases of biological
information create challenging data-mining problems and
opportunities, each requiring new ideas. Conventional
computer science algorithms have been useful, but are in-
creasingly unable to address many of the most interesting
sequence analysis problems. This is due to the inherent
complexity of biological systems. Machine-learning ap-
proaches, on the other hand, are ideally suited for domains
characterized by the presence of large amounts of data,
noisy patterns, and the absence of general theories. The
fundamental idea behind these approaches is to learn the
theory automatically from the data, through a process
of inference and model fitting. These methods provide
a complementary approach to conventional methods. It
is the confluence of all three factors—data, computers,
and theoretical framework—that is fueling themachine-
learning expansion, in bioinformatics and elsewhere
(Baldi and Brunak, 1998).

We propose using multiple objective functions to detect
meaningful motifs in sequences. Our experimental results
demonstrate the synergy of using information content and
the multiplicity significance helps maintain the balance
between the consensus quality and the over-representation
of motifs. The strategy of using multiple complemen-
tary objective functions extends the power of current
approaches.

Yeast genome-wide expression studies provide data
sets which can now be used for the global analysis of
gene expression. One example has been provided here
where such a data set was used together with DMS to
generate a ranked list of candidate regulatory motifs.
Nevertheless, such regulatory motifs (including known
regulatory sequences) are known to be relatively short
and thus are not likely to be sufficient to fully specify
the regulatory properties of sets of genes under particular
conditions. From experiments on particular genes it is
clear that combinations of motifs play an important role
in gene regulation at the transcriptional level. In order to
begin to address this problem computationally, a decision
algorithm was used to develop an hypothesis which
describes the regulated expression of a set of genes in
terms of the candidate regulatory motif combinations. This
description can now be tested and improved algorithms
developed. This study and other recent studies suggest the
potential power for biological prediction of computational
analysis of experiments performed on a genomic scale.
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