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 | Mycology | Short Form

Olorofim demonstrates in vitro activity against Coccidioides 
species, including isolates against which fluconazole has 
reduced activity
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ABSTRACT We evaluated the in vitro activity of olorofim against Coccidioides species. 
Olorofim demonstrated potent in vitro activity against all isolates tested with a minimum 
inhibitory concentration (MIC) range ≤0.008–0.06 µg/mL and geometric mean MIC of 
0.010 µg/mL. This activity was also maintained against isolates with elevated fluconazole 
MICs (≥16 µg/mL), including strains with MICs ≥32 µg/mL (olorofim MIC range ≤0.008–
0.06 µg/mL and geometric mean MICs of ≤0.009 and ≤0.013 µg/mL, respectively).
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C occidioidomycosis is a fungal infection that is caused by dimorphic, saprobic fungi, 
Coccidioides species, that are endemic to areas of Arizona, California, New Mexico, 

Utah, Nevada, and Texas within the United States, as well as parts of Mexico, Guate
mala, Honduras, Venezuela, Brazil, Argentina, and Paraguay (1–3). Although Coccidioides 
species are found in warm, arid climates, disease can occur outside of these regions 
in individuals who have visited or temporarily relocated to these regions. In addition, 
the endemic area of the United States appears to be spreading both northward and 
eastward, with some predicting that the endemic area may double by 2100 due to 
climate change (4–6).

Clinically available treatment options for patients with coccidioidomycosis remain 
limited. The azoles itraconazole and fluconazole are primarily used, and fluconazole 
remains the preferred triazole due to its excellent absorption following oral adminis
tration, low adverse effect profile, penetration into the central nervous system (CNS), 
and relative affordability as a generic medication (7, 8). However, there is concern 
for reduced in vitro susceptibility of Coccidioides isolates to fluconazole (9, 10). In a 
retrospective review of the in vitro susceptibilities of various antifungals against clinical 
isolates, members of our group reported that over a third of the isolates had fluconazole 
minimum inhibitory concentrations (MICs) of ≥16 µg/mL (9)—an MIC value in other fungi 
typically associated with dose-dependent susceptibility or resistance to this triazole, 
although data correlating in vitro results against Coccidioides with clinical outcomes 
are lacking. Olorofim (formerly F901318) is an investigational antifungal within the 
orotomide class that interferes with the biosynthesis of pyrimidine within fungi through 
the inhibition of the dihydroorotate dehydrogenase enzyme (11). This agent is active 
against many genera of pathogenic molds and dimorphic fungi, including Blastomyces, 
Histoplasma, and Coccidioides species (11–16). We have previously reported that olorofim 
has good in vitro against a limited number of Coccidioides clinical isolates, and this 
translated into in vivo efficacy in a murine model of CNS coccidioidomycosis (15). Here, 
we report the in vitro activity against a larger collection of clinical isolates, including 
those for which fluconazole has reduced in vitro activity against as evidenced by elevated 
MICs.
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Clinical isolates of Coccidioides species (n = 201), including both C. immitis and C. 
posadasii, sent to the Fungus Testing Laboratory at the University of Texas Health 
Science Center at San Antonio from institutions across the U.S. were used. Antifungal 
susceptibility testing was performed by broth microdilution methods as described 
in the Clinical and Laboratory Standards Institute (CLSI) M38Ed3 document (17). The 
starting inoculum was 1 × 104 arthroconidia/mL, and RPMI-1640 [0.165M 3-(N-morpho
lino) propanesulfonic acid (MOPS), pH 7.0, without bicarbonate] served as the growth 
medium. Stock solutions at 100× concentrations of olorofim (F2G, Ltd), amphotericin B, 
fluconazole, posaconazole, voriconazole, itraconazole, and isavuconazole (Sigma) were 
prepared in dimethyl sulfoxide (DMSO) with further dilutions made in RPMI such that the 
final DMSO concentration within the in vitro assay was 1% (vol/vol). The concentration 
ranges tested were 0.008–4 µg/mL for olorofim, 0.125–64 µg/mL for fluconazole, and 
0.03–16 µg/mL for the other azoles. MICs of olorofim, amphotericin B, posaconazole, 
voriconazole, itraconazole, and isavuconazole were read at 100% inhibition of growth 
compared to drug-free control after 48 hours of incubation at 35°C, and fluconazole MICs 
were measured at 50% growth inhibition. MIC ranges, MIC values at which 50% and 90% 
of the isolates were inhibited (MIC50 and MIC90, respectively), geometric mean (GM) MIC, 
and modal MIC values were determined. Differences in GM MICs, calculated following 
log2 transformation of individual MIC values, were assessed for significance by ANOVA 
with Dunnett’s post-test for multiple comparisons. MIC values greater than the highest 
concentration tested were assigned a value one dilution higher for statistical purposes. 
A P-value of <0.05 was considered statistically significant. Fluconazole was considered to 
have reduced in vitro activity against strains with MICs of ≥16 µg/mL.

Of the agents tested, olorofim demonstrated the most potent in vitro activity with 
a GM MIC value of ≤0.010 µg/mL, followed by amphotericin B (≤0.051 µg/mL), posa
conazole (≤0.054 µg/mL), itraconazole (≤0.095 µg/mL), voriconazole (≤0.128 µg/mL), 
isavuconazole (0.261 µg/mL), and fluconazole (9.18 µg/mL). The olorofim GM MIC values 
were significantly lower than those of all other antifungals (P < 0.0001 for all compari
sons). The enhanced in vitro potency of olorofim is also reflected by the MIC50, MIC90, 
and modal MIC values, which were numerically lower than those of the other antifungals 
(Table 1). The MIC distributions are graphically shown in Fig. 1.

Olorofim also maintained in vitro potency against 42 isolates with elevated flucona
zole MICs (olorofim GM MIC ≤ 0.009 µg/mL), including 12 isolates with fluconazole 
MICs ≥ 32 µg/mL (olorofim GM MIC ≤ 0.013 µg/mL). The GM MIC of olorofim was also 
significantly lower than those of posaconazole, voriconazole, itraconazole, and isavuco
nazole (P < 0.0001 for all comparisons; Table 1). Although the MICs of the extended-spec
trum azoles remained relatively low against isolates with fluconazole MICs ≥ 32 µg/mL, 
the GM MIC values of each of these azoles against these strains were higher compared 
to those of isolates with lower fluconazole MIC values (GM MIC range 0.116–0.648 μg/mL 
vs 0.041–0.261 μg/mL; fold-change 2.48–2.83) and were higher than those of olorofim (P 
< 0.0001). Not unexpectedly, amphotericin B also demonstrated potent in vitro activity 
against those isolates with elevated fluconazole MICs.

These results are consistent with those we previously reported against a smaller 
number of isolates. In the earlier study, the olorofim GM MIC was 0.011 µg/mL, and all 
strains were inhibited at olorofim concentrations of ≤0.06 µg/mL. The current study is not 
without limitations. We did not confirm the species level (C. immitis vs C. posadasii) for 
all isolates tested. However, previous work reported by members of our group has not 
demonstrated difference in the in vitro activity of fluconazole, voriconazole, or olorofim 
between these two species when tested against a limited number of strains (15, 18, 
19). Also, the concentration ranges used for olorofim, amphotericin B, and posaconazole 
were not low enough to accurately measure the in vitro activity of these agents. Thus, 
these three agents may have more potent activity than demonstrated here. The ranges 
used for amphotericin B, posaconazole, and the other azoles were consistent with those 
recommended in the CLSI M38 standard (17). The range recommended for olorofim has 
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FIG 1 MIC distributions of olorofim, amphotericin B, fluconazole, posaconazole, voriconazole, itraconazole, and isavuconazole 

against Coccidioides species isolates. Results are shown for all isolates tested and those with higher fluconazole MIC values 

(≥16 µg/mL and ≥32 µg/mL, respectively).
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not yet been established. Further work is also needed to understand the mechanisms 
underlying the elevated fluconazole MICs observed against some strains.

Olorofim is currently in late-stage clinical development and has been used to treat 
a limited number of patients with coccidioidomycosis who have failed to respond to 
clinically available antifungals. In an open-label phase 2 study, 75.6% of patient with 
extrapulmonary coccidioidomycosis demonstrated clinical benefit by day 42 of olorofim 
treatment and 73.2% by day 84 (20). Further studies are warranted to fully understand 
the utility of olorofim against Coccidioides infections, including infections caused by 
isolates with reduced azole susceptibility.
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TABLE 1 MIC of olorofim (OLO), amphotericin B (AMB), fluconazole (FLC), posaconazole (PSC), voriconazole (VRC), itraconazole (ITC), and isavuconazole (ISC) 
against Coccidioides species isolatesa

Antifungal OLO AMB FLC PSC VRC ITC ISC

All isolates
  No. of isolates 201 196 201 200 200 138 91
  Range ≤0.008–0.06 ≤0.03–0.5 4–>64 ≤0.03–0.5 ≤0.03–2 ≤0.03–>16 0.06–4
  MIC50 ≤0.008 ≤0.03 8 0.06 0.125 0.125 0.25
  MIC90 0.015 0.125 16 0.125 0.25 0.25 0.5
  GM MIC ≤0.010 ≤0.051 9.30 ≤0.055 ≤0.128 ≤0.097 0.261
  Mode ≤0.008 ≤0.03 8 ≤0.03 0.125 0.125 0.25
Fluconazole MICs ≤8 µg/mL
  No. of isolates 159 159 159 159 159 139 91
  Range ≤0.008 ≤0.03–0.06 4–8 ≤0.03–0.06 ≤0.03–0.25 ≤0.03–>16 0.06–4
  MIC50 ≤0.008 ≤0.03 8 ≤0.03 0.125 0.125 0.25
  MIC90 ≤0.008 0.06 8 0.06 0.125 0.25 0.5
  GM MIC ≤0.008 ≤0.037 7.14 ≤0.041 ≤0.098 ≤0.097 0.261
  Mode ≤0.008 ≤0.03 8 ≤0.03 0.125 0.125 0.125
Fluconazole MICs ≥16 µg/mL
  No. of isolates 42 41 42 42 42 32 24
  Range ≤0.008–0.06 ≤0.03–0.5 16–>64 ≤0.03–0.5 0.06–2 ≤0.03–>16 0.125–4
  MIC50 ≤0.008 ≤0.03 16 0.06 0.25 0.125 0.5
  MIC90 0.03 0.25 >64 0.25 1 0.5 2
  GM MIC ≤0.009 ≤0.066 23.8 ≤0.079 0.234 0.138 0.417
  Mode ≤0.008 ≤0.03 16 ≤0.06 0.125 0.06 0.5
Fluconazole MICs ≥32 µg/mL
  No. of isolates 12 11 12 12 12 7 8
  Range ≤0.008–0.06 ≤0.03–0.5 32–>64 ≤0.03–0.5 0.06–2 ≤0.03–>16 0.25–4
  MIC50 ≤0.008 0.125 64 0.125 0.5 --- ---
  MIC90 0.03 0.5 128 0.5 2 --- ---
  GM MIC ≤0.013 ≤0.090 >64 ≤0.116 0.528 0.247 0.648
  Mode ≤0.008 ≤0.03 32 ≤0.06 0.5 0.125 0.5
aMIC values (mg/mL) were measured according to CLSI M38Ed3 guidelines as the lowest concentration of each agent, except fluconazole, which resulted in 100% inhibition 
of growth compared to growth control. Fluconazole MICs were read at 50% growth inhibition. MIC50 and MIC90 – MIC concentrations at which 50% and 90% of the isolates 
were inhibited.
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