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ABSTRACT OF THE DISSERTATION

Scalable Scientific Computation Acceleration Using Hardware-Accelerated Compression

By

Gongjin Sun

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Sang Woo Jun, Chair

Hardware accelerators such as GPUs and FPGAs can often provide enormous computing

capabilities and power efficiency, as long as the working set fits in the on-board memory

capacity of the accelerator. But if the working set does not fit, data must be streamed

from the larger host memory or storage, causing performance to be limited by the slow

communication bandwidth between the accelerator and the host. While compression is an

effective method to reduce data storage and movement overhead, it has not been very useful

in solving this issue due to efficiency and performance limitations. This is especially true

for scientific computing accelerators with heavy floating-point arithmetic, because efficiently

compressing floating-point numbers requires complex, floating-point specific algorithms.

This dissertation addresses the host-side bandwidth issue of accelerators, specifically FPGA

accelerators, using a series of hardware-optimized compression algorithms. Since typical com-

pression algorithms are not designed with efficient hardware implementation in mind, we ex-

plore and implement variants of existing algorithms for high performance and efficiency. We

demonstrate the impact of our ideas using two classes of applications: Grid-based scientific

computing, and high-dimensional nearest neighbor search. We have implemented a scientific

computing accelerator platform (BurstZ+), which uses a class of novel error-controlled lossy

floating-point compression algorithms (ZFP-V Series). We demonstrate that BurstZ+ can

xiii



completely remove the host-accelerator communication bottleneck for accelerators. Evalu-

ated against hand-optimized kernel accelerator implementations without compression, our

single-pipeline BurstZ+ prototype outperforms an accelerator without compression by al-

most 4×, and even an accelerator with enough memory for the entire dataset by over 2×.

We have also developed a near-storage high-dimensional nearest neighbor search accelerator

(ZipNN) which uses a hardware-optimized Group Varint compression algorithm to remove

the host-side communication bottleneck. Our ZipNN prototype outperforms an accelera-

tor without compression by 6×, and even much costlier in-memory multithreaded software

implementations by over 2×.
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Chapter 1

Introduction

While heterogeneous computing systems equipped with application-specific hardware acceler-

ators are becoming staples in datacenters due to their high performance and power efficiency,

their performance is often limited not by computation capacity, but by host-side communica-

tion bandwidth. For ease of deployment, accelerators such as General-Purpose Graphics Pro-

cessing Units (GPGPU), Field-Programmable Gate Arrays (FPGA), Tensor Processing Units

(TPU), and others, are often packaged as a PCIe-attached expansion card, equipped with

fast on-board memory. Such accelerators deliver extremely high performance if the working

set fits on their on-board memory resources, but once the working set exceeds their memory

resources so that data needs to be dynamically transferred over PCIe, the limited bandwidth

of the PCIe link often becomes the critical performance bottleneck [118, 27, 19, 5, 41, 117].

Due to this reason, many existing research on scientific computing accelerators have focused

on problem sizes which can fit on the on-board memory resources [39, 129, 23, 26, 143, 111].

Figure 1.1 shows this issue. On the host side, we have large volume and fast memory

devices. On the device side, the computation engine can work very fast and the engine may

be equipped with fast memory device as well. However, PCIe communication bandwidth

1



becomes the performance bottleneck between them due to its low bandwidth.

+ Fast computation+ Fast

Device 
memory PCIe

+ Large
+ Fast

- Slow
- Small

Figure 1.1: PCIe bandwidth becomes the bottleneck between Host and Accelerator

Data Compression is a commonly used technique that can effectively save storage space and

the overhead of data movement. If the data movement over the communication channel can

be in compressed form, and if the compression and decompression can be done fast enough

to keep up with the computation and memory performances, the accelerator can enjoy a

sufficiently high effective bandwidth over the communication channel. This brings us to an

important challenge regarding compression design and implementation: How can we achieve

high enough performance to remove the communication bottleneck, while maintaining effi-

cient compression, and also while minimizing accelerator resources utilization? During the

exploration, we face several key questions:

• Which algorithm can achieve the necessary compression efficiency?

• Can this algorithm achieve high performance on the accelerator?

• Can this algorithm be implemented efficiently on the accelerator, leaving enough re-

sources for the actual computation?

• If the algorithm cannot achieve high performance with low resources in its original

form, how can it be modified for better performance and resource utilization?

2



In this dissertation, we explore the use of high-efficiency compression schemes to solve the

above-mentioned issue by integrating one or multiple compression components into the ac-

celerator platform. We focus mainly on FPGAs as the target accelerator due to their ex-

tremely high power efficiency and performance [104, 51], which not only makes them popular

as stand-alone accelerators, but also opens up many new venues for systems architectural

exploration, such as near-storage [67, 38, 68] and near-network [45, 137] accelerators. As

a result, our compression algorithm explorations also focus on efficient implementation as

application-specific hardware accelerators.

We demonstrate our approach using two important application case studies: Grid-based

scientific computing, and high-dimensional nearest-neighbor search. The grid-based scientific

computing application predominantly involves floating point data and operations, and we

explore the use of highly efficient, error-controlled lossy compression algorithms for faster

data movement of intermediate state. Algorithmic exploration was especially important for

this application as general-purpose dictionary-based copression algorithms such as the LZ

series of algorithms are notoriously ineffective at compression floating point data [82]. The

nearest neighbor search application involves quickly scanning a database of sparsely encoded

data elements, and we explore the use of column-wise Varint compression for faster access

into the database.

For both approaches, we notice that the original compression algorithms are designed for

efficient software implementation, and are not well-suited for effective hardware accelera-

tor implementation. We noticed that in many cases, only a minimal amount of changes

to the algorithm are necessary for more efficient hardware implementation. This disserta-

tion presents the approaches we took to improve the hardware implementation efficiency

of these algorithms, and demonstrate the benefits they have on the end-to-end application

performance.

Given the same resources, the introduction of efficient compression results in impressive
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performance improvement which goes beyond merely removing the communication band-

width limitations. Not only does our compression-enabled accelerators vastly outperform

accelerators that suffer from communication bandwidth limitations, they often significantly

outperform even much costlier systems configurations with sufficient memory capacity for

the entire working set of the application.

1.1 Case Study: Lossy Floating-Point Compression

The use of compression for scientific computing acceleration has traditionally been limited

because of the high performance overhead of floating-point compression algorithms. General-

purpose lossless compression schemes such as DEFLATE [33] and LZW [133] are typically

not very efficient with floating point data, which often make up a large part of scientific

datasets [82, 34]. On the other hand, floating-point specific lossy compression algorithms

such as ZFP [82, 36] and SZ [34] are widely used to compress scientific data, due to their

very efficient compression as well as their capability to limit the error bound of each data

element.

Previous research have shown that use of these error-bound lossy compression schemes do

not cause meaningful quality degradation of computation [10, 65], even for iterative algo-

rithms compressing intermediate data [46]. However, these complex algorithms also have

high performance overhead compared to lightweight data-oblivious compression algorithms

like LZ4 or LZO, making their demonstrated performance insufficient to keep up with the

internal computation capabilities of scientific computing accelerators.

One natural solution to this problem is to re-implement them on hardware. We choose ZFP

as our target algorithm because most of the algorithm is easily parallelizable. This is in

contrast to SZ [34], the other prominent lossy floating point compression algorithm, which

4



is organized around individual data prediction.

However, our evaluation on FPGA implementations of ZFP showed that a straightforward

FPGA implementation of ZFP cannot bring significant compression/decompression through-

put improvement over its software version due to the inherently serial characteristic of a

single stage (“embedded coding”) in the algorithm. To address this problem, we made mi-

nor, hardware-aware changes to the algorithm for easier parallelization, resulting in higher-

efficiency hardware implementations. We have created a family of hardware-optimized ZFP

variant, which we call the ZFP-V family, and it includes ZFP-V1 (1D) and ZFP-V2 (2D)

targeting 1D ZFP and 2D ZFP, respectively. The two designs solve the serial aspect of the

original algorithm in different ways.

As a result, both ZFP-V implementations are capable of providing wire-speed compression

and decompression of floating point data while using only a small fraction of on-chip re-

sources. The new coding schemes do trade a small amount of compression while obtaining

an order of magnitude performance improvement. However, this proved not to be an issue for

us, as the goal of our hardware compressors is removing the host-accelerator communication

bottleneck, which the compression efficiency of both ZFP-V designs more than achieve.

A high-level overview of the algorithmic modifications are provided below, and more details

about the ZFP-V algorithm design, as well as the accelerator implementation and perfor-

mance evaluations are given in Chapter 2.

1.1.1 Optimizing ZFP For Hardware Implementation

ZFP is a block-based algorithm, which processes input in d-dimensional (d = 1/2/3) blocks of

size 4d. During compression, the input floating-point data go through multiple stages of pre-

processing and transformation and are turned into a list of decorrelated fixed-point numbers
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where earlier values in the list have statistically larger values. This list is compactly encoded

taking advantage of the statistically large number of zero bits near the most significant bits.

The algorithm also takes advantage of the relaxed, lossy, compression requirement, only

encoding a subset of the upper bits of the data until the required error control is satisfied.

During data encoding, the original ZFP algorithm adopts a technique called “group testing”

to encode the transformed block, and this is the stage which is the most difficult to parallelize

as-is. This approach repeats a simple process of emitting individual nonzero bits and then

checking if the remainder of the value being encoded is now zero. Figure 1.2 uses a simple

example to show how group testing is used to compress a bit plane that has 16 bits. For a

given n-bit bit plane value, the algorithm scans bits one by one from the LSB (least significant

bit) position until the remaining bits become all zeros. If the remaining bits are not all zero,

a test bit “1” is emitted, then the LSB bits until a nonzero bit are emitted. This process is

repeated until all remaining bits are emitted, after which the done bit “0” is emitted.

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
Given a 16-bit x value

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0x !=0, emit a test 
bit ‘1’, and 1

0 0 0 0 0 0 0 0 0 1 0 0 0
x !=0, emit a test 

bit ‘1’, and 01

Current x

0 0 0 0 0 0 0 0 0
x !=0, emit a test 
bit ‘1’, and 0001

x ==0, emit a 
done bit ‘0’

All 0s

Encoded result: 1 1 1 0 1 1 0 0 0 1 0

test bit

done bit
11 bit

Figure 1.2: One example of Group Testing Encoding

Since the algorithm cannot know the remaining bits before the current sequence of nonzero

bits are emitted, this portion of the algorithm is inherently sequential. As a result, in the
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worst case only 1 bit can be processed per cycle when it is implemented on hardware, which

gives a 31.25 MB/s speed based on a 250 MHz FPGA design. On the other hand, our

scientific computing engine (e.g., stencil computing engine) can handle data ingestion at

wire-speed, which is 8 GB/s on a 256-bit datapath clocked at 250 MHz. As a result, a single

pipeline of the unmodified ZFP algorithm is insufficient to match the data ingestion speed

of the computing engine.

We modify the embedded coding stage to use a header to specify the position of the most

significant nonzero bit, instead of a sequence of test bits interleaved with data. This way,

there is no internal dependency when processing a single data element, and a single data

element can be either encoded or decoded within a single clock cycle. By doing so, we can

achieve a processing speed of 16 bits/cycle (500 MB/s) on a 250 MHz design, which is a

significant improvement over the original approach.

However, allocating a fixed-size header for each data element results in a significant degra-

dation of compression efficiency. We address this problem using a variable-length header

scheme, which is described in more detail in Chapter 2.

This design not only improves the performance of a single pipeline implementation, but also

drastically reduces the chip resource utilization per unit bandwidth. As a result, we can afford

to implement a multi-pipeline design to eventually achieve wire-speed processing, matching

the data ingestion and emission bandwidth requirements of the computation engine.

1.2 Grid-Based Scientific Computing with Compression

With these high-efficiency hardware compressors, we are able to design and implement

BurstZ+, a scientific computing accelerator platform that integrates one or multiple hard-

ware compressors/decompressors and a high-speed scientific computation engine. It ad-
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dresses the communication bandwidth issue of scientific computing accelerators by providing

the computation engine with highly efficient compression engines.

BurstZ+ is able to sustain high performance regardless of the size of the working set relative

to the on-board fast random access memory. If the intermediate data size exceeds the

memory capacity, the overflow data is exported to either the memory or storage of the host

server, in a compressed and randomly accessible format. The compressed data is fetched

and decompressed piecemeal at the accelerator side only when required.

We evaluate the performance of BurstZ+ using three realistic grid-based scientific computing

applications with widely differing characteristics. Grid-based scientific computing applica-

tions process data organized into a grid of cells, where the data type of each cell may be

widely different for each application. A kernel or stencil is run on each cell, where the kernel

can read values of neighboring cells within a fixed distance. Many important and difficult

non-linear systems can be decomposed into kernels and stencils, which supports effective

parallelization. Each kernel can have high or low operational intensity based on the amount

of computation required by the algorithm per every byte of data I/O. We use the three

following applications for evaluation:

• 3D Heat Dissipation: 3D stencil kernel with high memory bandwidth requirements but

relatively low operational intensity.

• 2D Speckle Reducing Anisotropic Diffusion (SRAD): 2D stencil kernel with high oper-

ational intensity.

• 2D Fluid Dynamics via Lattice Boltzmann Method (LBM): 2D stencil kernel with high

operational intensity, and also large cell sizes in bytes.

Using these applications, we demonstrate that the ZFP-V accelerators have both high per-

formance enough to supply the accelerator cores with enough bandwidth, as well as achieves
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high enough compression efficiency to close the bandwidth gap between the PCIe and on-

board DRAM bandwidth. As a result, our compressor is efficient enough to remove not only

the PCIe performance bottleneck, but also improve the effective performance of the on-board

DRAM by storing compressed data even on the fast on-board DRAM, and decompressing

on the fly. Evaluated against hand-optimized implementations of kernel accelerators with-

out compression, our single-pipeline BurstZ+ prototype outperforms an accelerator without

compression by almost 4×, and even an accelerator with enough memory for the entire

dataset by over 2×.

1.3 Case Study: Integer Stream Compression

We also explore the difficult problem of high-dimensional nearest-neighbor search, and ap-

ply the approach of hardware-optimized compression algorithms to the application. High-

dimensional nearest neighbor search suffers from the so-called curse of dimensionality, where

the effectiveness of indexing algorithms quickly degrades for data types with high dimensions.

As a result, search into such datasets cannot take advantage of efficient indexing, devolving

into linear search. In such a situation, the performance of the search system depends on how

fast the database to search can be streamed from storage to the processing engine.

For this application, we encode the high-dimensional data using typical sparse multi-column

encoding, and apply integer stream compression to the individual columns. Data is stored

in a compressed format, and decompressed on-the-fly and entered into the comparator en-

gine. Each decompressor contains a configurable sequence of integer stream compression

algorithm implementations, including a Delta Encoder, Run-Length Encoder (RLE) [103],

and Group Varint Encoder [29]. Since each column shows different statistical distributions,

the decompressor can be configured with a subset of provided compression algorithms to

achieve maximum compression efficiency. For example, Delta encoding calculates and stores
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the difference between two consecutive integers in a given integer list instead of the original

integers. So it is beneficial for an ascending and small difference list.

Varint encodes an integer by just storing the bytes that contain non zero bytes instead of

the fixed number of bytes, coupled with a small header describing the actual number of

encoded bytes. So each 32-bit integer needs 2-bit header that denotes the number of bytes

stored. Obviously, it is only useful if the data being compressed is composed of typically

small integers. Group Varint is an optimized variant of Varint that groups headers of 4

32-bit integers together (called a prefix). As a result, the 4 headers in the prefix occupy one

byte and can be read at once, which provides higher decoding speed than Varint by reducing

the amount of dependencies between each encoded value. Figure 1.3 shows the encoding

process.

0x1 0xf 0x1ff 0x1fff

Varint 0000000001 0000001111 010000000111111111 10000000011111111111111111

2+8 bits 2+8 bits 2+16 bits 2+24bits

Group Varint 00000110 00000001000011110000000111111111000000011111111111111111

prefix: 8 bits encoded data bits: 56

32-bit integers

header bytes

00 1

01 2

10 3

11 4

Figure 1.3: Varint and Group Varint Encoding

These three encoders can be combined as a chained structure to achieve excellent compression

effect, such as a Delta-RLE-GroupVarint encoder or Delta-GroupVarint encoder depending

on the needs and available hardware resources.

While the run-length compression and the delta compression algorithms can be effectively

implemented for a necessary wide datapath in a straightforward manner, the Varint com-

pression algorithm involves dependencies between data elements, limiting the performance

and efficiency of the hardware implementation. For example, even with the Group Varint

algorithm, at most 4 integers can be decoded at once, after which a multi-cycle shifting

process is required to find the beginning of the next encoded set.
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In order to achieve higher decoding speed we introduce a wider Group Varint algorithm

where we group more encoded data into each header, allowing the algorithm to pre-calculate

and shift the input stream while the data decompression process is still ongoing. With this

minor adjustment, we demonstrate that the decompression engine can achieve wire-speed

performance at a very low chip resource utilization.

We use this algorithm implementation to construct an accelerator for high-dimensional near-

est neighbor search, ZipNN. Another characteristics of ZipNN is that it is implemented as

a near-storage accelerator, enjoying the relatively higher internal bandwidth of the storage

device, which is often 2× faster than the under-provisioned host-side PCIe bandwidth. Our

system demonstrates using three column decompressors, that the near-storage accelerator

is capable of supporting high enough decompressed bandwidth to saturate the comparator

engine, achieving over 6× the performance compared to the same accelerator without com-

pression, and over 2× the performance of multi-threaded software running on much costlier

systems with enough fast random-access memory capacity to store the entire dataset.

1.4 Dissertation Contributions and Organization

This dissertation explores the use of hardware-optimized compression to solve the host-

accelerator communication performance issue. The claimed contributions are listed as fol-

lows:

1. Design and implementation of high-efficiency hardware accelerated floating point com-

pression algorithms (ZFP-V series).

2. Demonstrate a bandwidth-efficient scientific computation platform BurstZ+ that com-

pletely removes the host-accelerator communication bottleneck using ZFP-V.
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3. Demonstrate ZipNN, which designs and implements a hardware-optimized library of

heterogeneous integer compressors/decompressors to accelerate high-dimensional sim-

ilarity search.

The rest of this dissertation is organized as follows:

Chapter 2 and 3 present how our ZFP-V algorithms solve the performance issue of hardware

ZFP implementations using hardware-optimized design changes, and its application to grid-

based scientific computation. Chapter 2 presents a detailed breakdown of inefficiencies of

the original ZFP algorithm and how it can be improved with a minor algorithmic change, as

well as the performance and resource utilization analysis of the hardware implementation.

Detailed evaluation against software ZFP and unmodified hardware ZFP are conducted.

Chapter 3 presents the BurstZ+ framework and evaluates its performance by three scientific

computing accelerators.

Chapter 4 explores hardware-optimizing a high-throughput integer stream compression al-

gorithm, and applies it to the high-dimensional similarity search application. The resulting

system is called ZipNN, which uses a near-storage accelerator configuration of a heteroge-

neous library of hardware-optimized compression algorithms for integer streams, in order to

accelerate high-dimensional similarity search.

Chapter 5 concludes this dissertation and discusses some potential future research work.
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Chapter 2

ZFP-V: Hardware-Optimized Lossy

Floating Point Compression

2.1 Introduction to Compression

Traditionally, compression is an effective method to reduce the storage cost and the overhead

of data movement. As the amount of data processed by many important applications exceed

the DRAM capacity of reasonable single-node machines, the limiting factor of processing

capacity has become the data transfer speed between machines in a cluster, as well as the

capacity and transfer speed of secondary storage devices.

Compression reduces cost and improves performance of computing by reducing the amount

of data that must be stored and transported. Therefore, high-performance data compression

algorithms are some of the critical components of high-performance computing.
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2.1.1 Lossless Compression and Lossy Compression

Generally, compression algorithms can be categorized into two types: lossless compression

that allows the original data to be reconstructed without any loss from the compressed data,

and lossy compression that implements the compression by discarding partial original data.

With lossy compression, there always exist an error between the decompressed data and the

original one.

Common lossless algorithms include dictionary-based algorithms including the LZ series (e.g.,

LZ77/78, LZW, LZO, LZ4, etc.) and others, such as huffman coding, deflate, snappy, gzip,

and so on. These algorithms find repetitions in the data stream and encode them using a

shorter code. These algorithms are typically data-agnostic, and can provide high compression

efficiency in a wide range of data types spanning from text to binary data. There are data

type-specific algorithms as well, such as delta encoding, run-length encoding (RLE), Varint

and Group Varint encoding, which can effectively compress integer numbers with specific

distribution patterns. These algorithms typically do not provide as high compression ratios

as the more complex dictionary methods, but are typically much simpler to implement, and

provide very high performance.

On the other hand, lossy compression tolerates a certain amount of noise during the com-

pression and decompression process, and are used for data types that can tolerate such noice,

such as images, video, and sound. There are a lot of related industry standards, such as

JPEG, MPEG, H.264/265, Xvid, and VP8. These algorithms can either be configured to

achieve a certain compression ratio regardless of the introduced error, or to maintain noise

below a certain level. If noise can be maintained below a user-defined level, the algorithm is

considered error-controlled.

Another interesting area for lossy compression is floating point compression. Due to the

high entropy involved in the floating point representation, they are notoriously difficult to
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compress. For example, gzip and other lossless compression methods typically achieve no

compression on floating point data [121]. Floating point numbers are often used in the

scientific computing and hence their compression is the focus of this dissertation.

2.1.2 Floating Point Compression

Traditional data-oblivious compression algorithms (based on Huffman coding, LZ77/78, and

other methods) are typically unable to achieve high compression ratios on scientific data,

which are often composed mainly of floating point (FP) values. Floating point data in-

troduces a large amount of variation in the byte-stream which makes it difficult for data-

oblivious algorithms to compress efficiently.

Recently proposed lossy floating-point compression algorithms take advantage of how a small

amount of error is tolerable with floating-point operations, and provide very high compression

ratios while ensuring data retrieval with errors within a user-specified margin.

Many lossy floating-point compression schemes have been researched, including ZFP [83, 37],

SZ [35, 124, 81], FPZIP [84], ISABELLA [75], SSEM [115], and others, each with strengths

and weaknesses.

These algorithms specifically targeting multi-dimensional floating point data, and allow the

user to make a trade-off between compression ratio and error margin. They typically achieve

an order of magnitude better compression ratios compared to data-oblivious algorithms

like gzip, while controlling error below an acceptable margin for many scientific computing

applications. Such highly efficient compression algorithms have improved the performance

of high-performance computing while lowering the cost, by reducing storage and network

requirements [11, 101, 57].

Of the many proposed algorithms, ZFP, proposed by Lindstrom et al.[83], and SZ, pro-
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posed by Di et al.[35] are two most commonly used algorithms in the scientific computing

community [1, 88, 123, 101], with different strengths and weaknesses on different data types.

These two are based on different principles: the former is based on block transformation

and the latter is based on value prediction. For diverse scientific datasets, they play a

complementary role. Tao et al. [125] points out that for some dataset ZFP is better, for

others SZ is better.

2.1.3 Why Accelerate Floating-Point Compression Algorithms?

While these floating-point compression algorithms have been designed with performance in

mind, running them on general-purpose processors does impose a limitation in performance.

Our profiling of ZFP shows that neither a single thread compressor or decompressor on a high-

end Intel Xeon processor can achieve 1 GB/s of throughput even for favorably compressed

data, often processing 200 MB or less per second. With SZ, according to benchmarks, a

single-thread software version of SZ on a high-end Intel Xeon was able to process data at

less than 100 MB/s [136]. Considering the multi-GB/s bandwidth of modern network and

storage devices, software implementations of these algorithms will not be able to sustain the

high throughput of modern system infrastructure.

Naturally, hardware-accelerated implementations would be desirable. There are not many

prior work on floating-point compression algorithms for scientific data. GhostSZ [136] is

a state-of-the-art FPGA implementation of SZ on the Arria-10 FPGA platform, and has

demonstrated single-pipeline throughput of over 800 MB/s. To the best of our knowledge,

there does not yet exist an FPGA implementation of ZFP. One system, TerseCades [101],

uses ZFP in some of its pipelines, but it does not use a hardware version of the algorithm.
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In this dissertation, We select ZFP due to its high efficiency on the datasets of our interest.

In addition, most components of ZFP were readily parallelizable numerical operations.

2.1.4 Straightforward Hardware Implementation is not Enough!

While a hardware accelerator is a natural way to achieve high throughput while freeing up

the CPU cores for useful work, a straightforward implementation of the ZFP algorithm is

unable to achieve very high performance due to the inherently serial nature of some of its

sub-components. Specifically, the “group testing” step is a completely serial process which,

in the worst case, can emit a single bit per cycle.

To overcome the above-mentioned weaknesses, this paper presents ZFP-V, a hardware-

optimized error-controlled lossy floating-point algorithm which modifies the ZFP algorithm

to achieve higher performance on hardware accelerators. ZFP-V replaces the serial group

testing step with a new algorithm using variable-length headers, which allows the accelerator

to invariably handle a bit plane per cycle.

In the following sections, we will first introduce the basic principle of ZFP algorithm, then

introduce the design and implementation of ZFP-V, and finally evaluate the performance of

ZFP-V.

2.2 ZFP Compression Algorithm

ZFP is a lossy floating-point (both single- and double-precision) data compression scheme and

was designed specifically for the high-precision numerical data used in scientific computing. It

provides multiple compression modes including bit rate, error tolerance or precision control,

making it very flexible. In our work, we use the most recent version 0.5.4 as the starting
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point of our development.

ZFP applies compression/decompression on a block level, where it divides a 1D, 2D or 3D

array into a series of small, fixed-size blocks which are processed independently. Each block

consists of 4d values, where d is the dimension of the block. For example, a 3D block contains

4x4x4 values and a 2D block contains 4x4 values. The choice of block dimensions is up to the

user, trading performance for better compression with higher dimensions. Block processing

allows efficient compression at an arbitrary point in data, and also can achieve a very high

throughput because multiple blocks can be processed in parallel.

For each block, compression is performed in four steps: (1) Fixed-point conversion via

block-floating point representation [92], (2) Block transform to de-correlate the integers,

(3) Sequency ordering to roughly order the transformed values according to their magni-

tude, and (4) Embedded coding to compactly encode data in the order of significance.

The rest of this section describes each step in more detail, and describes how the embedded

coding step design causes a performance bottleneck in a hardware implementation.

2.2.1 Fixed-Point Conversion

In this step, each floating-point value in a block is converted to a block-floating point

(BFP)[132] representation, which is a floating-point representation where all values share

the same exponent. By calculating the largest exponent in the block and expressing all

values with respect to it, each value in the block is represented with a signed integer.
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2.2.2 Block Transform

ZFP uses a 4d orthogonal linear transformation that is similar to the discrete cosine transform

(DCT) used in JPEG and other algorithms, to decorrelate the values in a block. Decorrela-

tion results in many near-zero coefficients, which can be compressed efficiently. The unique

structure of the linear transformation used by ZFP allows it to use the “lifting scheme”,

which factorizes the transformation into a series of simple filters, greatly simplifying its

computation.

2.2.3 Sequency Ordering

Next, the values in the block are reordered by its “sequency”, which is the sum of the indices

of each value in each of its dimensions, i.e., by x + y + z for a 3D matrix. The ZFP

authors show that after the block transform, the sequency ordering roughly corresponds to

the magnitude ordering of the data, without having to perform a costly sort. The nearly

sorted characteristic of sequency ordered data makes the embedded coding scheme highly

efficient in terms of compression ratio.

2.2.4 Embedded Coding

In this step, ZFP applies embedded coding to compactly encode the current block and write

the compressed bits to the output bit stream. There are many embedded coding techniques,

such as zero-tree coding [24], set partitioning [109], etc. ZFP adopts a modified version of a

technique called “group testing” to encode multiple bit planes.

Embedded Coding Using Group Testing

Put simply, group testing efficiently encodes a word by repeatedly testing if the remainder
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of the word is zero, and only encoding it if there are nonzero bits present. As a result, group

compression generally demonstrates good compression performance when there are enough

zeros in the data. The group testing algorithm encoding a word x can be described via the

following pseudocode:

while x != 0 do
Emit 1 ; ▷ Emit test bit (x not zero)
repeat

b = x[0] ;
Right shift x by 1 ;
Emit b ; ▷ Emit bits until a 1

until b == 1 ;
end
Emit 0 ; ▷ Emit done bit

Algorithm 1: Group testing algorithm used by ZFP to encode a word

The algorithm repeatedly checks if x is zero, and terminates with a done bit 0 if so. If not,

it emits a test bit 1, and emits bits one-by-one until a 1 is emitted, and repeats the process.

Given a 16-bit x value of “00000000001000101” in binary, x can be encoded as 11101100010,

which requires only 11 bits. The underlined bits are test bits. It should be noted that this

particular value of x can be efficiently compressed because it contains many leading zeros. As

a counter example, if x is, say, “00001000001000101”, which has a small number of leading

zeros, the encoded result would be 111011000110000010. The encoding requires 18 bits,

which is more than the uncompressed bit width of 16.

Bit Plane Encoding Using Group Testing

We use a simple example to show how group testing is used to compress a block of data.

Fig. 2.1 shows the layout of a 2D block after the sequency ordering step. Here we use the

double data type, so each value has a 64 bit width. The kth bit of all values form a bit

plane (0th bit plane is marked by a red ellipse). With a 4x4 block, we have 16 values. So

each bit planes contains 16 bits, and we have 64 bit planes. ZFP encodes bit planes one by

one from the most significant bit plane to the least significant.
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Recall that ZFP allows users to specify the error tolerance and precision control, not all bit

planes are encoded here. According to the parameters provided by users, ZFP first calculates

a bit plane lower bound called “kmin”, which means only the bit planes from 63 to kmin will

be encoded. The greyed bits in Fig. 2.1 represents the bits to be encoded. The rest are

simply ignored.

... ...

... ...

... ...

...

... ...

63 62 61 kmin 0

Value 1

Value 2

Value 3

Value 16

bit plane

Figure 2.1: The bits distribution of a 2D block with double type

ZFP takes advantage of the data distribution of sequency ordering to further reduce data

size. ZFP encodes parts of each bit plane verbatim before applying group testing, and the

number of bits emitted verbatim is the MSB index of the previous bitplane. Because the

sequency ordered data is roughly ordered by size, this scheme prevents group testing from

being inefficiently applied to data with many nonzero bits. In other words, having roughly

sorted numbers thanks to sequency ordering can result in an early exit per bit plane, after

emitting all the nonzero least significant bits.

2.2.5 Inefficiency of Group Testing For Hardware

While group testing can result in efficient encoding, it has a high performance overhead in

a hardware implementation, especially on a reconfigurable platform such as an FPGA with

lower clock speed compared to ASICs.
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Because each loop iteration in Algorithm 1 depends on the results of its previous iteration,

and because each iteration emits only one bit of data, a straightforward hardware implemen-

tation can only emit one bit per cycle and in the worst case may require 4d cycles to emit a

single bit-plane.

While this problem can be somewhat mitigated during compression by parallelizing each

bit-plane encoding, such an approach is less feasible for decompression. Because the offset of

the next encoded bit plane depends on the encoding results of the current plane, we cannot

start decoding the next bit plane until the current one is completely decoded.

In this dissertation, we have designed and implemented multiple algorithms based on ZFP,

which result in more efficient hardware implementations on reconfigurable fabric. They

not only improve a single bit plane’s compression and decompression performance, but also

achieve parallelism across multiple bit planes by replacing the group testing-based encoding

algorithm with a header-based encoding scheme. The collection of our proposed algorithms

is called ZFP-V. ZFP-V consists of 1D and 2D variants of ZFP-V, which we will denote as

ZFP-V1 and ZFP-V2. Different optimization methods were employed for the two variants

due to the differences in data distribution.

We describe these optimizations and their effects in the next sections.

2.3 ZFP-V Design and Implementation

In this section we describe the design and optimizations of our ZFP-V compression step by

step. The first three steps in ZFP can be easily parallelized to support deterministic wire-

speed operation without major design changes when implementing it on FPGA. For the

last step “group testing” which is hard to parallelize, we introduce a novel and high-efficient

algorithm to accelerate it.
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We first describe a simple algorithm that uses a fixed-length header to improve performance,

but loses compression efficiency. Then we provide a sequence of further optimization ap-

proaches we employed to both reclaim compression efficiency and also improve performance.

Our optimizations include the variable-length header as well as the multi-level header ap-

proach for the 2D algorithm, and the coarse-grained header for the 1D algorithm. We also

describe and compare the actual compressed bitstreams generated by these algorithms, as

well as describe coarser-grained parallelism approaches using padded chunks of compressed

data.

2.3.1 Fixed-Length Header-Based Encoding

As can be seen from last section, group testing can only process one bit at a time in the

worst case, and therefore is often a completely serial process. As a result, the group testing

step was usually the biggest performance bottleneck of our optimized ZFP implementation

efforts.

By analyzing group testing encoding, we found that the low efficiency is from the fact that

the test bits are mixed with the data bits. And because of the dependency relation, each bit

plane has to be scanned serially bit-by-bit until a “1” is seen.

To expose more parallelism, we decided to use a header to store the number of data bits to

be written for each bit plane. Algorithm 2 describes the encoding algorithm using headers.

Because encoding each bit plane no longer requires an irregular loop, each bit plane can now

be processed at once.

One weakness of a fixed-length header-based algorithm is that it could increase the size

of compressed bit stream due to the fixed overhead of the header bits, reducing the

compression ratio. Given a favorable example word “00000000001000101”, we can write a
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for k = 64 to kmin do
bitplane = extract_bitplane(block, k) ;
msb = msb_index(bitplane) ;
emit_bits(msb, sizeof(header)) ;
emit_bits(bitplane, msb+1) ;

end
Algorithm 2: Encoding a block using a header-based algorithm

header “7” and “1000101” to the bit stream. Since a bit plane contains 16 bits for a 2D block,

a naive header needs at most 4 bits. As a result, we need 4 + 7 = 11 bits, which is equal

to the number of the result generated by the group testing. However, if the bit plane is a

string with many leading zeros, e.g., “0000000000001001”, group testing just needs 6 bits to

encode it, but the new algorithm needs 4 + 4 = 8 bits. The header consumes 4 bits which

are too much for this string.

As an improvement, we can partition this string into 8 substrings with each one containing

2 bits, like “00|00|00|00|00|00|00|01”. In this scheme, we just need 3 bit to store the number

of nonzero substrings. In this case, we store the data bits in substring units. As a result,

we need 3 + 4 = 7 bits and the compressed bits are “0101001”. The underlined bits are

the header and represent 2 2-bit substrings that followed. Similarly, we can partition the

string into 4 4-bit substrings, then we just need 2 bits to store the header. However, our

experiments show it is not better than the 3-bit substring. If a substring is "0001", for

example, we will waste 3 more bits than the 4-bit header scheme, and 2 more bits than the

3-bit scheme.

We call these schemes with fixed header width fixed length header (FLH) algorithms. Though

they can simplify the original group testing algorithm and increase the parallelism, they cause

the compression ratio to drop significantly. In next section, we will introduce a variable length

header (VLH) algorithm that can achieve as much bit-level parallelism as the FLH algorithms

while causing negligible compression ratio loss.
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2.3.2 Variable Length Header (VLH) for ZFP-V2

We showed that fixed-length headers can cause much extra bit overhead by using a header

for each bit plane. The biggest problem in this is mostly from adding a fixed overhead to

bitplanes that consist entirely of zeros, which are not only very common, but also can be

very efficiently compressed in the original algorithm. Actually, we observed that for many

benchmarks, both real-world and synthetic, the distribution of MSB indices were skewed

towards either lower or higher indices, without many values in the middle1. In order to solve

the issue caused by FLH, based on this observation, we partition the binary string of a bit

plane into 5 sets of exponentially increasing width, and assign each of them a unique code

word as its header. As a result, different sets can have different header lengths. This is called

variable length header (VLH) scheme. Fig. 2.2 shows the 5 sets with different colors, and

Table 2.1 shows the variable length header coding scheme. For example, if the word has no

nonzero bits, we use “0” to represent the header and write only one header bit and one data

bit to the stream; if msb is 1, we use “100” to represent the header and write three header

bits and two data bits to the stream; if the msb is 2 or 3, we use “101” to encode the header

and write three header bits and 4 data bits to the stream. The reason encoding is skewed

in this way is because we wanted to improve the common case where a bit plane has zero or

only one nonzero bit.

This encoding efficiently handles bit planes with one or less nonzero bits using two bits,

and also requires only a three-bit header in all other cases. Though VLH needs a little bit

more logic to encode or decode the header before processing the data bits than FLH, both

of them can process one bit plane at a time, which provides much better performance than

the original group testing algorithm.
1For the eight real-world datasets we evaluated in Section 2.5, 80% of all encoded bitplanes had MSB

indices that were either less than 1, or more than 11. (46% less than 1, 34% more than 11)
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Figure 2.2: The MSB distribution of the binary string in a bit plane

Table 2.1: Header Coding of the bit plane

MSB Code word #header_bits #data_bits
0 0 1 1
1 100 3 2
2 - 3 101 3 4
4 - 7 110 3 8
8 - 15 111 3 16

2.3.3 2-Layer Header for ZFP-V2

Though VLH effectively improves 2D ZFP’s encoding/decoding performance, the introduc-

tion of a variable-length header introduces dependency between the offsets of each encoded

bit-plane, limiting parallelization and potentially harming performance. For example, while

each bit plane can be invariably decoded in a single clock cycle, we cannot start working on

the next bit plane at the same time because we cannot start decoding the next header before

we know the encoded length of the header and data bits in the previous bit plane. Since a

bit plane is only 16 bits for 2D, this approach as-is cannot achieve our performance goals.

In order to overcome this limitation caused by inter-bit plane dependency while maintain-

ing high compression efficiency, we implement a 2-layer header structure. This is a new

algorithmic improvement over the originally published 2D ZFP-V algorithm [121].

We observe from Table 2.1, only the bit planes whose MSB is 0 need a 1-bit header and all

others need a 3-bit header. So we extract the first bit of all original headers to group them to

a "header-of-headers" called "header level 1", and then group the rest of the original headers

to a "header level 2". Since at most 64 bit planes need to be encoded or decoded, header

level 1 encodes at most 64 bits, and header level 2 encodes at most 192 bits. The number
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of encoded bit planes are also encoded in the compressed format. This is described in more

detail in Section 2.3.5. When decompressing, we can conduct completely parallel bit-level

operations on header level 1 to get each bit plane’s header size, and hence the size of all

headers. We can then immediately read all header level 2 headers to reconstruct the headers

of all bit planes, within one cycle. With the decoded headers, we can calculate the size of

each compressed bit plane in the next cycle, and decide how many bit planes to decompress

in parallel. While theoretically this approach can decode all 64 bit planes in parallel in a

single cycle, we have decided on a narrower datapath to avoid the high resource utilization

and routing difficulty of very wide datapaths. Our current implementation decompresses

8 bit planes (128 bits) per cycle. On our prototype running at 250 MHz clock speed, this

guarantees a 4 GB/s of decompression bandwidth lower bound per pipeline.

2.3.4 Coarse-Grained VLH for ZFP-V1

VLH is used in ZFP-V2 and effectively improves its throughput. However, this approach

would not be very efficient for the 1-dimensional algorithm ZFP-V1 because of the following

observations: First, putting a header per bit plane is too expensive, because each block in

the 1D ZFP only has four values, resulting in only four bits per bit plane. Second, after

block transform and sequency ordering, the first 64-bit element of the four has a very high

index of the first nonzero MSB bit.

In order to address the first issue of header overhead, ZFP-V1 uses a coarse unit of encoding,

and attaches a 2-bit header per 6 bit-planes instead of attaching a header per each bit-plane.

The six bit-planes are simply concatenated, to keep the nonzero bits in the lower bits as

much as possible.

However, the second issue of a high MSB in the first element harms the compression effective-

ness of this scheme, because almost all sub-groups described below would have nonzero bits
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in upper bits because of the first element. To solve this second issue, ZFP-V1 treats the first

element specially, and encodes it first before encoding other elements. Only the remaining

three elements, which often have many leading zeros, are encoded using the coarse-grained

header.

Region 1

Region 2 Region 3

Figure 2.3: Three different encoding schemes are used for three different regions (Blue, green,
red)

Figure 2.3 shows the resulting different regions of the four-element unit with different encod-

ing methods, using an example block after sequency ordering. The first, top-most element is

first encoded separately. The number of bits from the first element that is encoded depends

on the requested error margin. The remaining three elements are divided into two groups

(region 2 and 3), which are in turn divided into four sub-groups. Each group is assigned a

two-bit header, representing how many sub-groups need to be encoded. If the desired error

margin is achieved within the first group (region 2), encoding can stop after encoding the

first element (region 1) and valid sub-groups of the green group. If the error margin requires

more bit planes to be encoded, region 3 is encoded as well.

In most cases, we only encode up to the first 48 bit-planes in order to ensure efficient

compression, as seen in Figure 2.3. In extremely rare cases when more than 48 bit-planes

need to be encoded, we simply encode the whole block uncompressed, in order to simplify

the compression accelerator.

The design of ZFP-V1 encoding ensures that one block of four elements can be encoded in
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at most three cycles, where one cycle is spent for each of the blue, green, and red regions.

This fact, coupled with pipelining, allows ZFP-V1 to achieve very high throughput with very

small on-chip resources.

2.3.5 Bitstream Structure

Figure 2.4 shows what the encoded block looks like for the original ZFP, ZFP-V1 and ZFP-

V2, respectively. For all methods, the first two encoded elements are a 1-bit zero-block flag

bit, and an 8 or 11 bit emax field. The zero-block flag denotes whether all elements in this

block are zeros or not. If this block is a zero block, ZFP just simply writes a ’0’ to the

bitstream and processes the next block without any more action. If it is not a zero block,

it stores an 8 bit (single precision floating point) or 11 bit (double precision floating point)

emax value that represents the maximum exponents among all the floating point values in

this block, encoded with an offset similarly to the floating point encoding. This emax value

is used to recover the number of bit planes encoded, by comparing it against the error margin

requested during compression.

The encoding scheme for the three approaches begin to differ after this point. For the original

ZFP, it then proceeds to encode bit planes one by one, where each bit plane is encoded in

a 1 to 31-bit variable-length format with mixed flag and data bits. On the other hand,

ZFP-V1 first encodes the first element of the 4-element block (region 1), and then one or

both of regions 2 and 3, each coupled with a 2-bit header. ZFP-V2 encodes the level 1 and

2 headers, and then the 1 to 64 encoded bit planes in sequence.
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Figure 2.4: The encoded block layout of the original ZFP, ZFP-V1 and ZFP-V2

2.3.6 Independent Aligned Chunks

Despite the increased performance thanks to the header-based encoding scheme, a single-

pipeline performance of ZFP-V is likely still not enough for very fast PCIe or memory. While

each pipeline can process a steady state 4 to 8 GB/s of uncompressed data, due to the high

compression efficiency of ZFP-V the compressed data rate is likely not high enough to make

full use of the PCIe or memory bandwidth. ZFP-V solves this issue by organizing compressed

data into independent, aligned chunks, enabling straightforward parallelism across multiple

pipelines even for a single stream of data. In our prototype implementation of BurstZ+, ZFP-

V uses chunk sizes of 6 KBs. Each chunk is independent because compressed data is aligned

and padded such that compressed data is aligned to the beginning of the chunk, and no

block is encoded across the boundary of two chunks. Padding results in a negligible amount

of wasted space (less than 32 bytes per 6 KBs), but allows simple parallelism of compression

and decompression of a single stream of data. This design allows our ZFP-V core to achieve

high enough performance to easily saturate even on-board DRAM performance.

2.4 ZFP-V Accelerator Architecture

In order for compression to be useful, it must be able to keep up with the bandwidth of the

memory and computation engine. Ideally, it should achieve wire-speed, meaning it adds no

performance overhead regardless of how fast the other components become. ZFP-V1 and
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ZFP-V2 employ different methods to achieve wire-speed, due to the differences in how they

balance compression and performance.

2.4.1 ZFP-V1 Decompression Accelerator

For decompressing ZFP-V1, the major performance bottleneck is the decoding stage, as

described in Section 2.3. This is because the algorithm can’t know the bit offset of the

next encoded 4-element block until the current block is decoded. All other stages of the

decompression algorithm, including the block transform and floating-point conversion, can

easily support wire-speed processing with a single pipeline.

Taking advantage of this insight, our implementation first replicates the decoder modules

to achieve wire-speed per pipeline, before starting to replicate the entire pipeline. The

internal architecture of a decompressor accelerator can be seen in Figure 2.5. The input

stream is broken into 6 KB chunks, and distributed in a round-robin fashion to an array

of decoders. The decoded results are collected at the block transform stages in-order, after

which everything else can be processed at wire-speed.

Decoder

Decoder

Decoder

…

Block 
Transform

Float 
Convert

last?

Figure 2.5: A multi-pipeline ZFP-V decompressor accelerator

Because we cannot predict how much uncompressed data will be generated from a chunk -

sized compressed input, the decoder module is programmed to tag each output element with

a last? flag, telling the block transform stage if this element is the last to be decoded from a

chunk. When the block transform stage encounters a last element, it can move on to the next
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decoder. In order to support high performance not bottlenecked by any particular decoder,

each decoder has both a chunk-size input buffer, and an output buffer of size chunk × 4, so

that each decoder can work at its own pace without causing head-of-line blocking.

2.4.2 ZFP-V1 Compression Accelerator

The design of a wire-speed compressor pipeline is much simpler compared to a wire-speed

decompressor pipeline. Since encoding each 4-element block still takes up to 3 cycles, the

encoder is still the bottleneck, similar to the decompressor. However, because the size of

each uncompressed 4-element block is constant, each can simply be round-robin distributed

to each encoder without having to wait until each is encoded. The encoder array does not

need to work in terms of aligned chunks, but with individual elements.

Shuffler

Encoder

…

Fixed-Point
Convert

Block 
Transform

Encoder

Encoder

Figure 2.6: A multi-pipeline ZFP-V compressor accelerator

Figure 2.6 shows the internal architecture of the compression module. After block transform,

the transformed blocks are distributed round-robin to an array of encoders. After encoding,

the encoded blocks are received in the same round-robin way by the shuffler, which bit-packs

the compressed blocks, as well as handles chunk-alignment via padding.

2.4.3 ZFP-V2 Decompression Accelerator

By dividing the header into a level 1 and a level 2 header, the decoding module of ZFP-

V2 can achieve wire-speed even with a single pipeline. The decompressor cascades header
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parsing, as well as the multi-cycle variable-length shift operations necessary for encoded bit

plane extraction. As a result, it can always keep the output datapath full.

Time

Slack

data chunk
Input Stream

…

data chunk

header level 1

Decoding Window

Reading Window

8 decoded bit planes

Emitted per cycle

stall
header level 2

merge header 

1 & 2

calc data 

chunk size
shiftDecoding

Parse

header 1 & 2

shift
shift

shift
shift

shift

…

Figure 2.7: The decoding module of ZFP-V2 cascades multiple block decoding to achieve
wire-speed output

Figure 2.7 shows the cascading decode process over two compressed blocks. Since the bit

offsets of the compressed bit planes are all pre-calculated at the beginning of block decoding,

each cascading shift operation can trivially extract multiple encoded bit planes at once,

instead of having to wait until one bit plane is decoded in order to know the offset of the

next one. In our current implementation, each shift operation handles a group of 8 encoded

bit planes at once, which will transform into 128 bits of decoded data every cycle. If the cycle

count required to emit the decoded data is larger than the cycle count required to ingest the

encoded data (slack is larger than header parsing latency), the input pipeline may even be

stalled.

2.4.4 ZFP-V2 Compression Accelerator

Compression of ZFP-V2 is trivially parallelized similarly to ZFP-V1. In our current imple-

mentation, the compressor module supports wire-speed performance on a 256-bit datapath.
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2.5 Evaluation of Compression Efficiency

In this section, we first present the change of compression efficiency introduced by our

hardware-optimization approaches to ZFP-V1 and ZFP-V2.

2.5.1 Compression Efficiency with with Fixed Error Bound

We first present the compression efficiency impact of ZFP-V2 compared to unmodified ZFP,

with a fixed error bound.

Benchmark Datasets

We use benchmarks from the “Scientific Data Reduction Benchmarks”[2], which is a real world

dataset collection and covers various scientific areas. We exclude two small size datasets that

are less than 100 MB and one that is of 16-bit floating point precision. ZFP supports both

32-bit and 64-bit precision. Finally, eight benchmarks (CESM-ATM, HURRICANE, HACC,

NYX, NYChem, SCALE-LETKF, QMCPACK, and Brown Samples) are used to evaluate

ZFP and ZFP-V2. We use the fixed-accuracy mode because this is the mode the ZFP’s

authors recommend [86]. In this mode, we use 1E-3 as the error bound for all input dataset.

This error bound is used in the examples provided by ZFP. Usually the higher the error

bound, the lower the compression ratio. More details can be found in[83, 37].

Compression Efficiency Against Unmodified ZFP

The compression ratio is calculated as the ratio between the original data size and the

compressed data size. We compressed all individual data files in each dataset, and calculated

the arithmetic mean (average) of the compression ratios of all files in each datasaet. Fig. 2.8
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shows the compression ratios of the original ZFP, ZFP-V2, and GZIP, for all datasets tested.

For easier comprehension, we ordered the data points according to the compression ratio

achieved by the original ZFP. As a result, the results for ZFP displays a straight line of y=x.

As we can see, ZFP-V2 has a very close compression ratio compared to ZFP, with negligible

loss. For comparison, GZIP, as an integer-based lossless compression algorithm, does not

compress floating point data very well.
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Figure 2.8: The Compression ratio distribution of ZFP, ZFP-V2, and GZIP

2.5.2 Compression Efficiency with Changing Error Bounds

As the error bound of ZFP may change according to application, we also demonstrate the

impact of error bounds on the compression effectiveness. In this section, we only evaluate

against a subset of the SDR benchmarks targeted for iterative grid-based scientific computing
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applications, which is our ultimate target for the ZFP-V accelerators.

Figure 2.9 shows the efficiency of the original ZFP, ZFP-V1 and ZFP-V2 compression algo-

rithms across benchmark datasets and error bounds. Each colored bar represents a compres-

sion algorithm configuration. For example, 1D3 is ZFP-V1 with 1-dimensional blocks, used

with an error bound of 1E-3, and 2D6 is ZFP-V2 with 2-dimensional blocks, used with a

much stricter error bound of 1E-6. Orig-2Dx represents the original ZFP with 2-dimensional

blocks. We also provide comparison against gzip (the first bar in each benchmark).
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Figure 2.9: Compression efficiency of ZFP-V, across four datasets, with varying error bounds

First of all, gzip performs badly with floating point numbers, achieving less than 2x compres-

sion across all datasets. The original 2D ZFP achieves the best compression efficiency among

the four algorithms tested, but 2D ZFP-V2 also consistently performs very closely. As we

will show later, this small loss of compression efficiency is a worthwhile trade-off considering

the order-of-magnitude superior throughput of the ZFP-V2 accelerators compared to the

best effort ZFP accelerators. This is especially true considering the goal of ZFP-V is not

to achieve the best possible compression for archiving purposes. Its goal is to achieve high

enough compression at high enough throughput to close the performance gap between PCIe

and memory. The compression efficiency needs only to be hide enough for that purpose.

Similarly, while ZFP-V1 demonstrates worse compression than ZFP or ZFP-V2, it does still

consistently provide 3× – 4× compression, which is often sufficient to remove the host-side

communication bottleneck, at a much lower chip resource utilization. In Section 3.5.3, we will

show that these compression efficiency numbers are sufficient to remove the communication
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bottleneck.

2.5.3 Stability of Accuracy

S3D NWChem Brown CESM
2D3 *19 *5 27 *20
2D4 23 *8 31 24
2D5 26 *11 34 27
2D6 29 *14 37 30

Table 2.2: Number of bit planes encoded on average

Table 2.2 shows the average number of bit planes encoded during ZFP-V2 compression.

Existing research has shown that when more than 24 bit planes are encoded for ZFP, the

error from lossy compression accumulated over iterative algorithm execution is actually less

than the error caused by the accuracy limitations of double-precision floating point [46].

We can see from Table 2.2 that many of the configurations we evaluated will actually re-

sult in reliable accuracy even while compressing intermediate data. We also include some

cases where that is not the case, to evaluate the performance impact in such situations.

Configurations with less than 24 bit planes encoded are prefixed with an asterisk (*).

2.6 Evaluation of Accelerator Performance

In this section, we evaluate the performance impact of our ZFP-V algorithm optimizations

in two scenarios: Implementation using OpenCL High-Level Synthesis (HLS), and hand-

optimized implementation using RTL.
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2.6.1 OpenCL Implementation Evaluation

We first present a detailed performance evaluation of ZFP-V2 compared against our best-

effort hardware implementation of the unmodified ZFP algorithm, a well as multithreaded

software.

FPGA Platform

We conduct our evaluation on the Intel HARP[3] platform, where an Arria 10 GX FPGA

(10AX115N2F40E2LG) is connected to a host system through PCIe. The host side has

two sockets and each one has an Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz. The

available host memory capacity is 376 GB.

Evaluated Implementations

We evaluate our FPGA implementation of ZFP-V2 against both software version of ZFP

and our best-effort FPGA implementation of ZFP:

• Software ZFP: Multiple parallelized implementations of ZFP with different threads are

evaluated. We use Para-N to denote an implementation with N threads. All software

versions are compiled with “-O3" by gcc. These versions are denoted Para-N in the

following sections, where N is the number of threads.

• FPGA-based ZFP: We have developed a best-effort version of the original ZFP al-

gorithm using OpenCL. All optimizations we attempted for ZFP-V2 except VLH is

applied here. The version of Intel FPGA SDK for OpenCL used is 17.1.1.
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Table 2.3: FPGA Resource Utilization of ZFP and ZFP-V

Versions ALUTs FFs RAMs DSPs Compile time
ZFP-float 31% 12% 12% 2% 5h48m
ZFPV-float 27% 14% 13% 2% 2h29m
ZFP-double 33% 12% 9% 6% 5h21m
ZFPV-double 31% 12% 9% 6% 2h41m

Hardware Resource Utilization

Table 2.3 shows the Arria 10 resource utilization of ZFP and ZFP-V2 for both float and

double versions. This table includes both compression and decompression pipelines. Com-

pression and decompression pipelines by themselves consume about half of the numbers

reported here. We can see ZFP-V2 uses less resource than ZFP because our VLH algorithm

is less complicated logically. In addition, their respective compile time are also listed. As we

can see, a simpler algorithm can significantly reduce the compile time required.

Compression Speed

Compression throughput is measured using how much uncompressed data volume is pro-

cessed per second. Note that each dataset actually contains multiple input data files that

have a great distribution diversity. Therefore we compress them individually and use the

arithmetic mean of all of them as the average speed of this dataset.

Fig. 2.10 shows the average compression speed across 8 benchmarks. Each benchmark con-

tains 7 implementations: Para-1, Para-4, Para-8, Para-16, Para-32, FPGA-ZFP and FPGA-

ZFPV. We can see that for all benchmarks, FPGA-ZFPV shows significantly faster perfor-

mance compared to FPGA-ZFP, and shows performance close to 2x in benchmarks QMC-

PACK and NWCHEM. Furthermore, FPGA-ZFPV shows comparable or better throughput

even compared to Para-32, which is the 32-thread software version, in the benchmarks CESM-

ATM, HACC, NYX, and QMCPACK. ZFP-V2 performed over 1 GB/s on all benchmarks
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tested, and over 2 GB/s on three of the 8 benchmarks, and over 4 GB/s on NWCHEM. While

the tested datasets were different, it consistently performed significantly better compared to

the state-of-the-art FPGA implementation of SZ on the same FPGA platform [136], which

demonstrated less than 850 MB/s compression on all published datasets.

The benchmarks HURRICAN, NWCHEM, and SCALE show better throughtput on Para-32

than FPGA-ZFPV, but we discovered this is because of some extreme data characteristics

in some of the input data files, which we will analyze in detail in Section 2.6.1. In all

benchmarks, a single pipeline of FPGA-ZFPV showed better performance compared to a

4-thread software implementation.

Another point of interest is that the software performance scaling levels out, or even becomes

slower after 16 threads. The reason appears that contention in hardware shared resource

(e.g., last level cache (LLC) and memory bandwidth) becomes more aggressive and severe

as the concurrent running threads increase.
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Decompression Speed

As the original ZFP uses block offset to identify the beginning of a compressed block bit-

stream, the para-N divides the whole bitsteram into N regions and stores N offsets to achieve

high performance. FPGA-ZFPV uses the same method with a small ratio between N and

the whole bitstream size.

Fig. 2.11 shows that FPGA-ZFPV has a higher average decompression throughput compared

to FPGA-ZFP in all benchmarks, and significantly faster compared even to Para-32 in all

benchmarks except BRSAM. For many benchmarks including HACC and NYX, FPGA-

ZFPV demonstrates over 3x performance compared to Para-32, achieving over 10 GB/s on

NWCHEM.
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Case Study on Fast Software Compression

In this section, we explain how Para-32 was able to perform compression faster than FPGA-

ZFPV for some datasets, by analyzing an example case: HURRICANE.

This dataset contains 20 input data files and they show great diversity of the data distri-

bution. We observe that most blocks are identified as a “Zero Block” in some files because

all values are extremely small (say, 1E-90). For a Zero Block, ZFP just simply writes a “0”

and returns immediately. No subsequent phases like transformation and embedded coding

is performed. In this case, ZFP-V2 does the same operations as the original ZFP and does

not show any advantage. For such a simple computation, the CPU with its fast memory

access across multiple threads is able to achieve very high performance, compared to a single

FPGA pipeline with a fixed memory access pipeline.

0

0.2

0.4

0.6

0.8

1

1.2

Ratio of Zero Blocks

Figure 2.12: The Zero Block distribution of the benchmark Hurricane

Fig. 2.12 shows the Zero Block distribution of all data files in this benchmark. As can be

seen, there are seven data files whose most blocks are Zero Blocks. When we compare it

against Fig. 2.13 where the compression speed of each individual file is shown, we can see

clear corresponding relation between the number of the Zero Blocks and the compression
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speed: the more the former, the lower the latter. For files that are not predominantly zero,

we can see that FPGA-ZFPV shows better performance compared to Para-32.
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Figure 2.13: The Compression Speed of all data files in the benchmark Hurricane

Since files almost entirely consisting of zeros are somewhat extreme, we performed another

performance evaluation of HURRICANE after removing these seven files, which can be

seen in Fig. 2.14. We can see from these new results that the performance relations are now

similar to the other benchmarks: FPGA-ZFPV shows better performance compared to Para-

32, and software performance scaling levels out after 16 threads. Similarly, the benchmark

NWCHEM and HACC contain similar, almost entirely zero data files that are very efficient

with the multithreaded software implementations.

2.6.2 RTL Implementation Evaluation

Besides the HLS implementation, we also implemented unmodified ZFP, ZFP-V1, and ZFP-

V2 using Bluespec, an RTL-level HDL, on a Xilinx VC707 FPGA development board. RTL

implementations allows us to have finer control over the resulting hardware, and apply more
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Figure 2.14: The Average Compression Speed of non Zero-Block data files in the benchmark
Hurricane

fine-grained optimizations.

We measured the performance of the system with four different configurations where the

error bound of the compression algorithm was set to either 1E-3, 1E-4, 1E-5, or 1E-6. These

are typical compression parameters used in real-world scientific computing scenarios [89]. It

has also been shown that at the compression levels achieved by these configurations, there

is no significant amount of accumulated error as a result of lossy compression [46]. In fact,

the error introduced by compression is typically lower than the error caused by the

limited accuracy of double precision floating point, for the more stringent of the

presented error bounds. This has been demonstrated in more detail in Table 2.2. In the

rest of this section, we will denote the ZFP-V configuration using the dDe notation, where

d is the dimensions of the compression unit, and e is the error bound, in terms of 1E-e. For

example, ZFP-V2 with an error bound of 0.0001 would be denoted as 2D4.
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2.6.3 Compression Accelerator Performance

Figure 2.15 shows the compression performance of a single pipeline of three accelerators: our

best-effort accelerator for the unchanged 2D ZFP algorithm, ZFP-V1, and ZFP-V2. Each

system is prefixed with Orig-2D, 1D, and 2D, respectively. Each accelerator is configured

to run with four different error bounds presented earlier. Our prototype accelerators use a

256-bit datapath running at 250 MHz, wire-speed can be achieved at 8 GB/s per pipeline.

Both ZFP-V1 and ZFP-V2 either approach or exceed wire-speed in most cases.
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Figure 2.15: Compression performance of ZFP-V, across four datasets, with varying error
bounds

The reason the ZFP-V2 accelerator exceeds the 8 GB/s wire-speed is because it actually has

a wider input datapath (512 bits) compared to the rest of the system (256 bits). Normally

it connects to the rest of the system through a deserializer, but we have benchmarked its

raw performance using the natively wide dataset. For the compression accelerator, we can

see that the performance across all benchmarks exceeds the wire-speed of 8 GB/s.

Especially the benchmark nwchecm, its speeds across 4 error bounds achieve 16 GB/s, 16

GB/s, 15.307 GB/s and 13.873 GB/s, respectively. This is because due to the data distri-

bution, nwchem has very few bit planes that actually need to be compressed for each block.

On average, the numbers of bit planes compressed of each block across the four error bounds

are 4.517, 8.083, 11.038, and 14.034, respectively. Take the first error bound for example,
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on average the variable length header algorithm just needs to process 4.517 bit planes and

then immediately throw away the rest of the input block, which allows the next input block

to be processed immediately and does not cause much back pressure to the front end of the

pipeline (before variable-length header encoding).

We also can see that the throughput drops as the error bound becomes smaller for some

datasets. This is because more bit planes need to be encoded for a smaller error bound for

these datasets.

From the figure, we see that both ZFP-V1 and ZFP-V2 vastly outperform the unmodified

ZFP accelerator. We are confident that our best-effort implementation of the unmodified

ZFP is comparable to the state-of-the-art, since the performance demonstrated is similar

to both our best-effort implementation using OpenCL on an Intel FPGA [121], as well as

the published numbers for the unmodified SZ algorithm accelerator [136]. The source of the

slow performance of ZFP is presented in Section 4.4, and is due to the inherent inefficiencies

of the group testing-based encoding scheme when implemented in hardware. We also note

that single-thread software performance of unmodified ZFP is even slower than the FPGA

accelerator performance.

This performance difference is especially significant considering the chip resource utilization

numbers presented in Table 3.3. Even considering the larger resource utilization of the ZFP-

V2 accelerator, ZFP-V2 demonstrates almost an order of magnitude better performance per

LUT compared to unmodified ZFP. ZFP-V1 requires even less resources than ZFP, but at

the cost of lower compression efficiency as shown in Figure 2.9.
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2.6.4 Decompression Accelerator Performance

Figure 2.16 shows the decompression performance of a single pipeline of the same three

algorithms, with the same four error bound configurations. Similarly to the compression

performance, both ZFP-V algorithms vastly outperform the unmodified ZFP algorithm,

achieving much higher throughput per LUT. Figure 2.16 shows that a single pipeline of the

decompressor often does not achieve wire-speed. This is due to the relative complexity of

the decompression algorithm. Of course, thanks to the high throughput per LUT of the

ZFP-V algorithms, wire-speed can be trivially reached with more pipelines. Similarly to

the compression performance, the throughput drops as the error bound becomes smaller for

some datasets.
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Figure 2.16: Decompression performance of ZFP-V, across four datasets, with varying error
bounds

2.7 Summary

This chapter presents ZFP-V, a hardware-optimized floating point compression algorithm,

which replace the ZFP algorithm’s inherently serial embedded coding scheme with a higher-

efficiency header based scheme.We implement and evaluate multiple variants of ZFP and

show ZFP-V can achieve wire-speed compression/decompression on multiple real scientific
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benchmarks with a small amount of compression ratio loss.

ZFP-V is capable of providing compression and decompression performance that can keep

up with the high throughput of modern network and storage devices without having to

consume valuable CPU performance. Furthermore, because the on-chip resource requirement

of ZFP-V is low, it either frees up the FPGA for more application-specific acceleration, or

multiple ZFP-V pipelines for faster throughput. Using ZFP-V, we plan to both improve the

performance of high-performance scientific computing applications while also lowering the

cost of storage and network requirement.
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Chapter 3

BurstZ+: Scientific Computing

Acceleration with ZFP-V

3.1 Introduction

The overall goal of this dissertation is to solve the communication bandwidth bottleneck

between host and high-speed accelerators via compression. In the previous chapter, we

demonstrated that minor algorithmic adjustments can result in an acceptably high perfor-

mance accelerator of the traditionally performance-intensive lossy floating-point compression

algorithm. In this chapter, we describe the impact of integrating hardware compressors and

decompressors with application-specific accelerators, specifically in the area of grid-based

scientific computing.
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3.1.1 The BurstZ+ Platform

We present BurstZ+, which addresses the communication bandwidth issue of scientific com-

puting accelerators by providing the computation engine with a highly efficient compression

engine. Specifically, ZFP-V accelerators. BurstZ+ supports large-scale data processing by

storing data in either the memory or storage of the host server in a compressed, randomly

accessible format, and decompressing it piecemeal within the accelerator side when required.

The compression engine uses a novel error-bound lossy compression algorithm with high

enough compression ratio to improve the effective PCIe bandwidth to DRAM-levels.

This approach is especially valuable for the widely-used iterative method of scientific

computing, where the output of a computation iteration is the input to the next iteration,

across many thousands or millions of iterations [119, 106, 62, 116]. The initial and final state

of the data for our prototype is currently compressed offline by a software implementation

of the compression algorithm. Once the compressed initial data is entered into the system,

the decompression and compression required for the subsequent iterations of computation

is performed entirely by the accelerator. Data is always stored in a compressed format

regardless of whether it is stored in memory, storage, or host, and it is also streamed to

and from the accelerator in a compressed format without involving software compression.

In fact, in many real-world scientific computing scenarios, lossy compression of collected

scientific information is already applied before archiving, in an attempt to save storage

resources [10, 32]. The compression accelerators on BurstZ+ can also be trivially retargeted

to compress the initial and final states.

While some existing work has explored the use of lossless floating-point compression accel-

erators to improve the effective bandwidth of accelerator memory [128] for scientific com-

putation, BurstZ+ is the first work to take advantage of the order-of-magnitude higher

compression efficiency of error-bound lossy compression algorithms to close the much larger
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bandwidth gap between the host and accelerator.

The novel compression algorithm ZFP-V, used in BurstZ+, is a variant of the lossy, error-

bound compression algorithm ZFP. ZFP can regularly achieve compression ratios of 4× to

10× and beyond on multi-dimensional matrices of floating point data, but some of its design

features prevents efficient hardware implementation. ZFP-V modifies ZFP and introduces

a new embedded coding scheme which allows very efficient hardware implementation. As a

result, it is capable of providing wire-speed compression and decompression of floating point

data while using only a small fraction of on-chip resources. The new coding scheme trades a

small amount of compression ratio for an order of magnitude performance improvement. As

a result, our ZFP-V implementation is both high performance enough to supply the accel-

erator cores with enough bandwidth, as well as achieves high enough compression efficiency

to close the bandwidth gap between the PCIe and on-board DRAM bandwidth. In fact,

our compression accelerator is efficient enough to remove not only the PCIe performance

bottleneck, but also improve the effective performance of the on-board DRAM by storing

compressed data even on the fast on-board DRAM, and decompressing on the fly.

3.1.2 Applications: Stencil Computation on a Structured Grid

We evaluate the benefits of BurstZ+ using three typical iterative HPC applications with a

wide range of operational intensities, which represents the amount of computation per mem-

ory access. All three applications belong to the Structured Grid class of applications, which

is a popular method of scientific computing commonly used in areas including climate and

seismic simulation, as well as approximate solutions of many other systems of partial differ-

ential equations. Complex partial differential equations can be systematically translated to

multiple iterations of stencil computation application, where each cell in a multidimensional

array is updated according to some fixed pattern, called a stencil. A stencil updates each
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cell it is applied to, based on the values stored in a small number of surrounding cells. Since

the same stencil is independently applied to every cell, the resulting computation pattern is

very regular, as well as theoretically easily parallelizable.

The applications of focus in this work are: 3D heat dissipation simulation, computational

fluid dynamics using the Lattice Boltzmann Method (LBM), and signal noise reduction using

Speckle Reducing Anisotropic Diffusion (SRAD). These three applications have been selected

to represent various characteristics of stencil-based applications including operational inten-

sity, which can determine whether the application performance is limited by computation or

memory [102, 71]. The operational densities of our implementations span between 0.8 and

12 FLOP/Byte, which covers a realistic range presented in existing research.

For example, the 3D heat dissipation kernel involves memory access complexity due to its

three-dimensional nature, but has a low operational intensity of less than 1 FLOP/byte,

which puts relatively more pressure on the memory system. On the other hand, 2D LBM

is a more computation-bound application with larger, multidimensional tuple sizes per cell,

with a high operational intensity of over 12 FLOP/byte. SRAD represents kernels with low

data dimensions as well as a moderately low operational intensity of 7 FLOP/byte. We

think these three kernels can do a good job of demonstrating performance and effectiveness

of BurstZ+ in various real-world conditions.

Stencil computing acceleration has been already researched extensively on various technolo-

gies including FPGA, GPU and CPU, and have produced efficient implementation techniques

including architectural optimizations, performance modeling, and cache-optimization tech-

niques [26, 129, 91, 30, 28, 96, 90, 130, 113, 112, 114, 9]. However, many previous works on

stencil accelerators tend to focus on highly optimizing the stencil computation unit imple-

mentation, and do not directly address the bandwidth issue between the accelerator and the

host.
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Caching algorithms such as temporal blocking help mitigate the communications bandwidth

issues by improving the data movement to computation ratio. However, these solutions

still suffer linear performance degradation as problem size becomes larger [117,

40]. Furthermore, they are orthogonal solutions to directly removing the communications

bottleneck such as what BurstZ+ aims to do. All ideas related to caching and temporal

blocking can also be applied to the BurstZ+ platform to achieve synergistic results.

3.1.3 Prototype Implementation and Evaluation

We have implemented BurstZ+ on a Xilinx VC707 FPGA development board, with a PCIe

Gen2 x8 link to host with a maximum bandwidth of 4 GB/s duplex. The accelerator card

includes a Xilinx Virtex 7 FPGA chip, as well as an on-board DDR3 DRAM card capable

of peak measured performance of over 11 GB/s. While the VC707 board is not as capable

as newer devices such as those used by the Amazon F1 cloud instances, we argue that the

insight from our prototype is directly applicable to the newer platforms, since the capabilities

of device components have scaled at a similar rate. We describe this further in Section 4.5.

On the BurstZ+ prototype, we have implemented the three stencil application examples:

7-point 3D heat-transfer, 2D Lattice Boltzmann Method for computational fluid dynamics,

as well as a 2D noise reduction using Speckle Reducing Anisotropic Diffusion. As described

earlier, these three applications have varying computation requirements and data structures,

and will help show a comprehensive evaluation of BurstZ+.

In this environment, our BurstZ+ platform was able to deliver almost 32 GB/s of effective,

steady-state bandwidth to our stencil core while streaming large-scale data from the host

over PCIe. Such a bandwidth is sufficient to support the peak computation capability of our

stencil core. This is almost 4× the performance compared to the same hardware platform

without BurstZ+, where the performance is restricted by PCIe communication and memory

53



access overhead. Even compared to a platform with enough on-board DRAM to hold all

required data, our prototype still achieves over 2× the performance. This is especially

impressive because a system with enough on-board DRAM requires no communication over

slow PCIe. Even compared to such favorable conditions, BurstZ+ is able to achieve higher

performance by improving even the effective bandwidth of the on-board DRAM module via

wire-speed compression. As a result, BurstZ+ is able to move the performance bottleneck

away from the PCIe link, turning it into a desirable situation where performance is bound

only to the amount of actual useful computation the stencil accelerator can do.

We also evaluate the projected end-to-end performance of a faster stencil accelerator imple-

mented on a larger FPGA platform, with and without BurstZ+ support. We show that the

BurstZ+ system can continue to scale with more internal computation capacity, while the

same accelerator without compression will quickly saturate the PCIe bandwidth, until the

BurstZ+ system achieves almost 7× the performance of a conventional accelerator.

We note that stencil core implementations often use various optimizations, such as temporal

blocking, to improve caching effectiveness and achieve higher performance within the memory

bandwidth budget. However, as long as the performance is being limited by communication

bandwidth such optimizations are equally beneficial to all above configurations. As a result,

the performance relations between them will show similar patterns regardless of applied

optimizations.
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3.2 Background and Related Work

3.2.1 Stencil Computing and its Acceleration

Stencil computing is an iterative computing method, which operates on a multidimensional

grid representation of data. The contents of each cell varies according to the application re-

quirements, spanning from single floating point values per cell for the simple heat dissipation

application and SRAD, to 9 floating point values for 2D LBM, 19 floating point values for 3D

LBM, and even beyond. Computation is expressed in terms of stencils, which update a cell

in the grid based on the values of a small number of cells in the surrounding area. Figure 3.1

shows a graphical representation of a 2-dimensional 5-point stencil and a 3-dimensional 7-

point stencil. At each time step, the stencil code sweeps across the entire grid, updating each

grid value. There is no dependency between each stencil operation within a single sweep, a

characteristic which allows straightforward parallelization.

(a) 2D 5-point stencil (b) 3D 7-point stencil

Figure 3.1: Example 2D and 3D stencils

Many useful partial differential equation systems can be systematically translated to a stencil

form, which can achieve high accuracy with much less computational overhead. A wide

variety of stencils have been designed depending on the application, including 9-point 2D

stencils for 2D Laplacians, 25-point 3D stencils for 3D Euler equations, and many more.

Each stencil kernel defines the computation to perform using the surrounding input points,

and each grid point can store multi-dimensional data depending on the nature of the problem
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being solved.

For example, the Lattice Boltzmann Method (LBM) is an important stencil computation

method for computational fluid dynamics. Grid cells in the LBM method store a multidi-

mensional tuple with values including floating-point representations of particle distribution

in multiple grid directions, typically spanning 9 to 19 directions for particle movement. It

also must handle many corner cases that make implementation more complex than simple

stencils such as heat dissipation. One of the most prominent special cases is handling bound-

ary conditions when fluid particles run into solid bodies: Depending on specific applications,

several different boundary condition models with different complexities have been proposed,

including Bounce Back, Boundary Conditions with Known Velocity, Periodic Boundary Con-

ditions, and Imposed pressure Difference Boundary Conditions. Figure 3.2(a) shows a graph-

ical representation of a D2Q9 LBM with 9 speed directions, and Figure 3.2(b) shows the

boundary cells. For example, the top boundary cell must calculate f4, f7, f8 using the given

boundary condition in order to represent the interaction in high fidelity. In this work, we

used the Heat Diffusion implementation introduced in [93].

Speckle Reducing Anisotropic Diffusion (SRAD) [140, 122, 22] is another important stencil

which is used for ultrasonic and radar imaging applications to remove locally correlated

noise, known as speckles, without destroying important image features. The value of each

point in the grid depends on its four neighbors. Specifically, it needs to calculate each

point’s four direction derivatives with its four neighbors and then conduct a series of follow-

up operations including gradient, laplacian, diffusion coefficient and divergence calculation.

Compared with a 2D 5-point stencil, it needs more floating-point operations. It conducts a

2-stage update of the whole image: the first stage calculates the diffusion coefficient of each

point and the second stage calculates the divergence of each point and eventually updates

the image.

Due to their importance in many scientific applications, there have been a great amount
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Figure 3.2: Example 2DQ9 LBM and its boundary cells

of previous studies on its optimization and acceleration on various computation platforms

such as multi-core CPUs, GPUs and FPGAs. Both FPGA and GPU-based accelerators have

demonstrated very high performance, but here we focus on FPGA-based acceleration as they

often demonstrate very high power efficacy [144, 98, 70].

Thanks to the simple nature of individual stencil code and ease of parallelization, the perfor-

mance of stencil code accelerators are typically not bound by their computational capacity,

but by the speed in which grid data can be accessed [56, 95, 30]. As a result, a large amount

of work has focused on memory access and re-use methodologies, aiming to improve the ratio

between the amount of memory access and computation. Despite these efforts, one of the

primary performance limitations of stencil accelerators is still the communications bottleneck

when data spills over the accelerator memory capacity.

Improving Memory Re-Use

Two major methods of improving memory re-use is (1) tiling, which improves spatial re-use,

and (2) temporal blocking, which improves temporal re-use. Tiling loads and processes data

in units of multi-dimensional tiles which can fit in on-chip memory, allowing most cells in

a tile to be loaded once, except for a relatively small number of cells located at the edge

of each tile, which requires data from neighboring tiles to compute. These cells are called
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the halo. Tiling in the stencil context is analogous to tiling for cache efficiency in matrix

multiplication [107, 14, 21]. Temporal blocking performs multiple sweeps of computation

on a tile while they are loaded on on-chip memory, before the results are written back to

large main memory. One caveat of temporal blocking is that the size of the halo becomes

larger with more sweeps, as illustrated in Figure 3.3. This is because with each sweep,

more cells near the edge of each tile depend on the updated data of the original halo in the

first sweep. This limits the use of temporal blocking, especially with high dimensions or

high-order stencils which depend on a relatively large number of neighbor cells.

Stencil Core 1 Stencil Core 2 Stencil Core 3

Time Halo

Valid data

Figure 3.3: Deep temporal blocking increases the size of the Halo, reducing the amount of
valid data

Most modern stencil accelerator designs take advantage of both tiling and temporal blocking,

and more [41, 129, 39, 23, 143, 111]. A large body of work has focused on determining an

optimal tiling and temporal blocking methods given the accelerator platform [111, 26, 30],

as well as devising performance models and characterization methods about various memory

optimizations [31, 39]. There has been research into efficient generation of stencil accelerator

on FPGAs using high-level languages such as OpenCL [129, 143, 144].

Communication Bottleneck between Accelerators and Host

Most of existing research on stencil accelerators have focused on problem sizes which can fit

in the fast on-board memory capacity available on the accelerator device. Once the problem

size becomes too large, data access starts spilling over into host-side memory or storage over

58



a relatively slow interconnect such as PCIe, which immediately becomes the bottleneck of

performance.

While the same tiling and temporal blocking optimizations can be applied at the scale of the

on-board memory to make the problem less bandwidth-bound, the same problem still exists

as the problem sizes become larger. This is because issues including the aforementioned halo

growth limit the effectiveness of temporal blocking. As a result, it has been shown that even

temporally blocked kernels suffer linear performance degradation as the problem size

becomes much larger than on-board memory capacity [117, 40]. This is the situation we are

interested in.

Some existing work have explored the use of floating-point compression to reduce the size of

intermediate data [128]. However, we note that the goals of this project and ours are different.

The custom, lossless floating point compression algorithm presented in [128] achieves high

throughput, and successfully improves the effective bandwidth of on-board memory. How-

ever, our goal of closing the bandwidth gap between PCIe and on-board memory requires

the higher compression efficiency of lossy compression algorithms such as ZFP.

In this work, we mainly focus on the issue of removing the host-side communication bot-

tleneck, as it impacts both temporally blocked and non-blocked implementations. To the

best of our knowledge, BurstZ+ is the first system which completely removes the host-side

interconnect bottleneck using fast compression.

3.2.2 Error-Bounded Lossy Compression of Floating-Point Data

A traditionally effective method for reducing the overhead of data movement is compression.

Lossless, data-oblivious compression methods including DEFLATE [33] and LZW [133] have

been very effective in compressing enterprise data. High-throughput compression algorithms
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such as LZO [97], LZ4 [25] and Stream VByte [79] sacrifice varying amounts of compression

efficiency for speed, and has been useful in many high-performance processing environments,

in applications including compressing network traffic [44, 134] and operating system swap

space compression [74] for distributed processing. For example, stream VByte has demon-

strated over 16 GB/s decompression throughput on a 3.4 GHz Haswell processor. However,

such data-oblivious lossless algorithms cannot efficiently compress scientific data, which of-

ten consists largely of floating point numbers [82, 34]. Floating point encoding can incur a

large entropy (i.e., irregularity), which general-purpose pattern-matching compression meth-

ods struggle with. Tested on real-world data, effective lossless compression schemes such as

gzip struggle to achieve even 2-to-1 compression [82].

Another class of algorithms is floating-point aware, taking advantage of the knowledge of

floating-point encoding schemes. Furthermore, an effective class of compression algorithms

for floating point values is lossy compression algorithms such as ZFP [82, 36] and SZ [34].

If the domain expert knows that the data and application can tolerate a certain amount of

precision loss, such lossy algorithms can achieve extremely high compression efficiency while

ensuring the user-defined error bound on each value. This error bound guarantee makes

lossy compression much more desirable compared to simple quantization of values to 32-bit

or 16-bit floating point values, which may have accuracy losses oblivious to the actual scale

of the individual data elements, leading to large, unexpected errors. Under realistic levels of

error tolerance for HPC scientific data, these lossy algorithms regularly achieve compression

ratios of over 10x [89].

Research has shown that these methods do not cause meaningful quality degradation for

realistic workloads [10, 65], even for iterative algorithms where the intermediate data is

compressed and decompressed between every iteration [46]. As a result, such algorithms have

been used in a wide array of applications including medical image reconstruction [52], extreme

weather simulation [99], extreme-scale scientific frameworks [55], and many more [87].
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In Chapter 2, we have already addressed how these algorithms can have high computational

requirements, and are often not sufficiently fast even with hardware accelerator implemen-

tations. We have also presented how minor, hardware-aware modifications to the algorithm

can result in sufficiently fast hardware accelerators.

3.3 Performance Analysis of Stencil Acceleration

Let’s assume a system configuration with a host server and a stencil accelerator device

plugged into its PCIe port. The accelerator will have a certain amount of on-board memory,

as well as a much smaller amount of fast, on-chip memory. If the dataset for stencil compu-

tation is very large, it will not fit in the on-board memory of the accelerator, and will be held

at the host, either in-memory or in-storage. Assuming an ideal scenario where tiling doesn’t

have halo overhead, all of the stencil data needs to be streamed from host to the accelerator

and back, exactly once. Unless this data rate is too high for the stencil implementation on

the accelerator to handle, the ideally achievable maximum performance will be limited by

this data movement rate.

Under this model, we perform a simple roofline analysis to illustrate the theoretical upper

bound of performance achievable under various system configurations. We compare five

following scenarios, which are described in Table 3.1. The baseline performance numbers

are modeled after our prototype FPGA environment, the Xilinx VC707 FPGA development

board. Largemem and Largemem2 assume the data size is small enough to fit in the on-board

memory capacity, and therefore is not affected by PCIe performance limitations. compress4

assumes the existence of a wire-speed compression accelerator with an average compression

ratio of 4×, which alleviates the performance bottleneck of both PCIe and memory.

Figure 3.4 shows the roofline analysis of these configurations, comparing the end-to-end per-
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PCIe4 4 GB/s PCIe, 10 GB/s DRAM
PCIe8 8 GB/s PCIe, 20 GB/s DRAM

Largemem Large capacity DRAM at 10 GB/s
Largemem2 Large capacity DRAM at 20 GB/s
compress4 4 GB/s PCIe, wire-speed 4x compression

Table 3.1: Different configurations for roofline analysis

formance of the accelerators as the computation performance improves while other systems

characteristics remain the same. Once the peak internal performance of the accelerator grows

beyond a certain point, the performance of each configuration is either limited by PCIe band-

width, or by on-board memory bandwidth. For example, PCIe4 assumes data size exceeds

the on-boad memory capacity, and must be streamed over PCIe. Its improves with computa-

tion performance of the accelerator hardware until the throughput it can sustain exceeds the

PCIe bandwidth of 4 GB/s. On the other hand, largemem assumes data size does not exceed

memory capacity, and performance continues to improve until data rate hits the much higher

memory bandwidth limitation of 10 GB/s. While one could of course use newer accelerator

cards with faster PCIe or memory, the performance characteristics will remain similar, as

demonstrated in many previous works on out-of-core stencil acceleration [117, 40].
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Figure 3.4: The stencil accelerator’s performance is limited by both PCIe and DRAM’s
bandwidth

The analysis presented in Figure 3.4 shows that a system with fast, efficient compression can

be an attractive solution to the bandwidth issue, as it can circumvent the communication
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bottleneck and achieve much higher end-to-end performance even compared to systems on

more capable platforms. The question now becomes, can we implement a floating-point com-

pression accelerator with high compression ratio (ideally 4x or more), capable of achieving

wire-speed?

3.4 BurstZ+ Architecture

Host
(Memory
/Storage)

Memory
(+ Arbiter)

Compressor

Decompressor

Computation
Engine

PCIe

Decompressor
Decompressor

Compressor
Compressor

Accelerator

Compressed Data Uncompressed Data

Figure 3.5: The overall architecture of BurstZ+. Data is stored compressed until it is used
by the computation engine

Figure 3.5 shows the overall architecture of the BurstZ+ platform. The key point of BurstZ+

is that the data exists in compressed form both on the host-side, as well as on

the on-board device DRAM. Compressed data is only decompressed on the fly when

the computation engine requires it, and generated data is compressed immediately before

it is stored in memory. A BurstZ+ implementation consists of a host server, as well as

one or more FPGA accelerators connected to the host server over PCIe. The BurstZ+

platform implementation programmed on the FPGA includes functionalities including PCIe

and on-board memory access, as well as access arbitration for both PCIe and memory. The

platform also includes multiple pipelines of compressor and decompressors, through which

the computation engine can read and write data to on-board memory as well as host. Each

compressor and decompressor presented here can contain one or multiple internal encoder(s)

or decoder(s). The internal architecture of compressors and decompressors are described in
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more detail in Section 2.4.

Thanks to the low on-chip resource overhead of our compression/decompression accelerators,

we can afford to deploy many compressor/decompressor accelerators depending on both the

bandwidth requirements as well as the data access characteristics of the kernel. For example,

if a particular computation engine naturally has an access pattern of multiple input streams

and multiple output streams, BurstZ+ can deploy multiple compressors and decompressors

corresponding to each input and output stream, instead of the computation engine having to

include logic to multiplex a single input/output stream. Similarly, if the computation engine

internally has multiple pipelines for parallel performance, each pipeline can have a pair (or

more) compressor and decompressor accelerators assigned to it.

Furthermore, we note that our optimized compressor and decompressor accelerator per-

formance is fast enough to not only make use of the maximum PCIe performance with a

compressed stream, it is fast enough to make the maximum use of the on-board DRAM

bandwidth. This is why the compressor and decompressor arrays are located between the

on-board DRAM and the computation engine, and not between the PCIe and DRAM. This

way, the computation engine has access to the fast on-board DRAM bandwidth multiplied

by the compression accelerator, which is much faster than simply moving the data over PCIe

in a compressed format, and using the DRAM as-is.

3.4.1 Memory Arbiter

One important module in the BurstZ+ platform is the memory arbiter, which provides con-

venient shared access to the on-board DRAM while assuring high performance. As multiple

entities access memory, including multiple compressor and decompressor pipelines as well as

the host software via PCIe, some arbitration of memory resources is absolutely required in

the platform for ease of development.
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The issue is aggravated by the fact that the on-board DRAM performance is effected heavily

by the access pattern. Due to memory device characteristics such as row buffers and burst

lengths, memory access is typically much faster for sequential accesses compared to random

access. On our prototype hardware platform, we measured an order of magnitude perfor-

mance difference between 64-byte accesses (minimum burst length) and 8 KB accesses (row

buffer size). This is the case not only for accelerator memory but for general server mem-

ory as well, and many high-performance software systems try their best to optimize their

memory accesses to the underlying architecture. Intelligent arbitration is important because

when multiple entities are accessing memory at the same time, the access requests arriving

at the memory may be very random even if each entity’s access pattern is sequential.

To achieve high performance, our memory arbiter exposes a burst interface, where each

endpoint must first send a burst request before reading or writing data. The scheduler

inside the memory arbiter performs memory access in burst units, so that high performance

can be achieved as long as burst sizes are relatively large. The internal architecture of the

memory arbiter can be seen in Figure 3.6.

The arbiter is parameterized so that the number of endpoints can be configured at compile

time. Each endpoint interface also includes enough buffer space and corresponding flow

control to ensure deadlocks cannot happen by an endpoint’s mistake. The scheduler will

only start a burst only when there is enough read buffer space to either accommodate a read

request, or enough data in the write buffer to finish a write burst.

3.4.2 Example Stencil Application Accelerators

To evaluate BurstZ+, we accelerate three different stencil applications on our BurstZ+ pro-

totype: a 3D 7-point stencil computation core and two 2D 5-point cores with different data

types per element. To support these applications we implement flexible 2D and 3D sten-
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Figure 3.6: The memory arbiter provides high-performance multiplexing to multiple end-
points

cil accelerators on BurstZ+, each of which can be configured at compile time with various

parameters including computation between the cells, as well as the data type of each cell.

The 2D accelerator also implements temporal blocking to further improve the operational

intensity of the accelerator. The 2D and 3D cores are used to run the algorithms described

in Section 4.1. The 3D stencil core executes a 3D heat dissipation simulation workload, and

the 2D cores execute a D2Q9 LBM fluid dynamics simulation, as well as SRAD. Table 3.2

describe the characteristics of the three stencils. Previous research has placed most stencil

applications of interest at operational intensities between 0 and 10, with the memory band-

width bottleneck becoming a more serious issue with lower operational intensities [102, 71].

At a glance, we can expect applications such as the 3D heat dissipation stencil with, low

operational intensities, to be more sensitive to communications bottleneck issues, whereas

applications such as LBM with high operational intensities should be more resilient. With

these three realistic accelerators, we expect to present a comprehensive evaluation on the

effectiveness of BurstZ+.
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3D Heat SRAD LBM
Dimensions 3D 2D 2D

Points 7 5 5
Cell Size (Bytes) 8 8 72

Operational Intensity (FLOP/Byte) 0.88 7 12.12

Table 3.2: Various characteristics of the benchmark stencils

3D Heat Dissipation Stencil

Figure 3.7 shows the view of the working data set from the accelerator point of view. A

3D stencil operates on a 3-dimensional grid of values, as seen in Figure 3.7(a). We use nX,

nY and nZ to denote the number of values in the dimensions x, y and z, respectively. A

2-D space of size nX × nY is called a "plane". There are nZ planes in total. As seen in

Figure 3.7(b), a 3D 7-point stencil reads three planes (e.g., z = 0, 1, 2) from the on-board

DRAM, in order to update plane 1 point by point. While this processing is ongoing, we can

load a new plane (e.g., z = 3) to the space used by plane 1. Once plane 1 is done, we can

begin to update plane 2, and so on.

We implement a simple stencil core without in-memory tiling, which must read each cell

three times, once for each input plane. But we would like to note that, thanks to the

high memory bandwidth made possible by wire-speed compression, we demonstrate our

implementation outperforms even the projected performance of an ideally tiled

accelerator by over 2×. We emphasize that we do not argue that our stencil core design

is superior to existing tiling-based methods. Our implementation is merely an example to

demonstrate the capabilities of BurstZ+ with multiple I/O pipelines, and to emphasize that

the compression/decompression cores provide such high data bandwidth, they allow us to

outperform highly optimized cores even with such a simple design.

In order to support memory re-use and make better use of memory bandwidth, we maintain

three most recently accessed rows of each plane in fast on-chip memory queues, so that each
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stencil operation can be done from on-chip memory. The conceptual location of example

buffered rows can be seen in Figure 3.7(c).

Figure 3.8 shows how we load the three planes’ contents to on-chip memory row by row.

Since we need three consecutive rows to begin the computation, we create two row buffers

for each input plane. The two buffers are used as a circular buffer that always hold two

most recently input rows in its plane. The two buffers, coupled with the input, are fed into

the stencil core, inserting 9 elements into the stencil core every cycle. These 9 elements are

the points in each 2-dimensional yz-plane of the 3-dimensional cube bounding the 7-point

stencil. The stencil core is designed such that it takes each 2-dimensional yz-plane per cycle

in a pipelined manner.

Because our stencil core does not implement in-memory tiling, the three input planes must

be read from on-board memory in parallel. BurstZ+ supports this using three separate

decompressor pipelines. The stencil core requires only one compressor pipeline because only

one plane is output at once. The three decompressors and one compressor is connected to

the memory via four endpoints in the memory arbiter. Including the host interface via the

PCIe, the memory arbiter is configured with five endpoints for this application.

In order to facilitate high parallelism and bandwidth, each element in the row buffer actu-

ally consists of multiple floating point values. For example, the datapath in our prototype

implementation is 32-bytes wide, meaning four double-precision floating point values are

Figure 3.7: The basic principle of 3D stencil computation
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entered into the stencil core every cycle, per input element. The internals of the stencil

core is designed such that it can achieve wire-speed processing via an array of floating point

operators.

2D Stencil Core

Since 2D stencils do not need to access other z-planes, they require much less data to be

streamed between computational iterations, making core design significantly simpler. Fur-

thermore, 2D stencils have relatively low memory requirements for temporal blocking, by

pipelining two accelerators to process two time steps in parallel. For 2D stencils, only two

rows need to be streamed between accelerators, unlike 3D stencils, where enough memory

for two whole z-planes need to be provisioned to stream intermediate data between cores.

Two rows are typically small enough to cache either in on-chip or off-chip memory.

Our 2D accelerator is designed to pipeline a variable number of stencil cores to achieve

parallelism as well as temporal blocking. Within the pipeline, the intermediate datapath

can be configured according to the application characteristics. It is set to be wide enough

that at least one cell can be forwarded every cycle, or 256 bits per cycle, whichever is larger.

For the LBM implementation, the intermediate pipeline width is 576 bits, enough to store

the nine double-precision floating point numbers per cell required by the LBM algorithm.

For the SRAD implementation, it forwards 4 cells per cycle. Figure 3.9 shows a 3-stage

Stencil
Core

Circular row buffer

Circular row buffer

Circular row buffer

Plane N

Plane N+1

Plane N+2

Plane N+1

Figure 3.8: Three sets of two on-chip BRAM row buffers are used by the stencil core
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LBM Core1 LBM Core2 LBM Core3

Time Step 1 Time Step 2 Time Step 3

576 bits/cycle 576 bits/cycle
256 
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256 

bits/cycle

Buffered

rows

Figure 3.9: The Architecture of a 3-stage LBM pipeline

pipeline architecture with the LBM application, consisting of 3 cores numbered from 1 to 3.

The decompressor can feed 256 bits to core 1 per cycle (8 GB/s) and the last core of the

pipeline, core 3, can also output 256 bits per cycle.

On our prototype implementation, we instantiate two cores per pipeline for both applica-

tions, achieving state-of-the-art performance. For example, a previously published, opti-

mized implementation of SRAD using OpenCL-based high-level synthesis on the Intel Arria

10 FPGA [142] has a run time of 4.17s when running for 100 iterations on an input of a

4000×4000 single-precision floating-point grid. This corresponds to a data ingestion through-

put of 1.535 GB/s (4000×4000×4×100Bytes÷4.17s). On the other hand, 2-stage pipeline

achieves a steady 8 GB/s on a similarly placed Xilinx Virtex-7 FPGA.

3.4.3 Implementation Details

We have implemented a BurstZ+ prototype on a Xilinx VC707 FPGA development board.

The VC707 board is equipped with a Xilinx Virtex-7 FPGA, as well as 1 GB of on-board

DRAM capable of up to 11 GB/s of DDR3 bandwidth. The board plugs into the host via

a PCIe Gen2 x8 link, which is capable of a theoretical peak of 4 GB/s duplex bandwidth.

Our PCIe hardware module and driver delivers 3.1 GB/s of effective bandwidth over DMA.

The accelerators and the intermediate datapaths are implemented to run at 250 MHz.
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The VC707 is not a high-end FPGA by modern server standards, but we believe this is still

a good platform for evaluating BurstZ+, because the relationship between PCIe bandwidth,

FPGA capacity, and DRAM bandwidth has maintained relatively constant with future gen-

erations of FPGA development boards. For example, the FPGA accelerator installed on the

Amazon F1 instances are based on the Xilinx VU9P chip, with over 2.5 million logic cells,

about 5× the capacity of the VC707. Meanwhile, the F1 FPGA delivers over 15 GB/s of

PCIe DMA bandwidth (~5× vs. VC707), as well as 68 GB/s of DRAM bandwidth (~6×

vs. VC707) [131]. While some of these numbers cannot be accurately compared one-to-one

(e.g., each logic cell of the Ultrascale+ and Virtex 7 chips are different), we do believe the

approaces introduced by BurstZ+ will have similar scale of benefits on a more modern FPGA

environment.

Table 3.3 shows the breakdown of on-chip LUT resource utilization of various components in

the BurstZ+ platform, including the PCIe, memory, arbiter, three decompressor pipelines, as

well as one compressor pipeline. The total resource utilization is based on using one compres-

sor and one decompressor. When using the simpler ZFP-V1 cores, The BurstZ+ platform

consumes about 24% of the on-chip resources of our prototype platform, and less than 3%

of the on-chip resources of a modern, high-end FPGA such as the Virtex Ultrascale+. We

also present the resource utilization of our best effort unmodified ZFP accelerator imple-

mentation, the performance of which we will present in Section 4.5 in relation to ZFP-V.

We note that the resource utilization of the single unmodified ZFP accelerator pipeline is

comparable to the published resource utilization numbers of an unmodified SZ accelerator

pipeline [136], as well as the best-effort OpenCL implementation of ZFP on an Arria 10

FPGA [121]. Besides LUTs, the BurstZ+ platform consumes less than 500 KB of on-chip

Block RAM resources, leaving the majority of on-chip memory resources to the computation

engine. While using more complex ZFP-V2 cores results in slightly more resource usage,

it is still a small amount of overhead in a more modern FPGA device such as the Virtex

Ultrascale+.
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Accelerators with higher-performance FPGAs will support more, faster compute engines,

which in turn will require more compression pipelines. Thanks to the very low resource

requirements of BurstZ+, we project this platform will be able to scale to the computation

capabilities of modern and future accelerator platforms.

Module LUTs VC707% VCU118%
Platform (PCIe+DRAM+Arbiter) 22K 7% <1%

1x ZFP-V1 Decompressor 26K 9% 1%
1x ZFP-V1 Compressor 25K 8% <1%

1x ZFP-V2 Decompressor 40K 13% <2%
1x ZFP-V2 Compressor 41K 14% <2%

1x Unmodified 2D ZFP Decompressor 29K 10% <2%
1x Unmodified 2D ZFP Compressor 32K 11% <2%

Total (using ZFP-V1) 73K 24% <3%
Total (using ZFP-V2) 103K 33% <4%

Table 3.3: FPGA LUTs usage breakdown of the BurstZ+ platform for stencil computation

3.5 Performance Evaluation

We demonstrate the effectiveness of our BurstZ+ platform, emphasizing the application

performance benefits of BurstZ+ on our target stencil applications. The application perfor-

mance benefit is demonstrated by comparing the measured performance of our prototype

implementation against various other, conventional architectures implemented on the same

hardware. The comparison includes the projected performance with ideal tiling and caching,

which achieves the upper bound performance achievable on the same hardware platform.

We also present the negative performance impact we would suffer, if we were to use an

unmodified ZFP accelerator instead of our optimized ZFP-V.
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3.5.1 Benchmark Datasets

In order to evaluate our system under realistic scenarios, we use real-world datasets from

the Scientific Data Reduction Benchmarks (SDRBench) [2], which includes various real-

world datasets from fields including climate simulation, molecular dynamics, and cosmology

simulations. We selected three datasets from SDRBench which represent multi-dimensional

data using double-precision floating point data (S3D, NWChem, and Brown), and selected

one which uses single-precision floating point data (CESM-ATM), and cast it to double

precision values. When a dataset was too small for realistic evaluation, we simply replicated

the whole dataset multiple times to obtain a larger dataset.

3.5.2 Making Efficient Use of the Host-Side Link Bandwidth

Figure 3.10 shows the average bandwidth pressure put on the host-side PCIe link, when

compressed data is being streamed over the PCIe link and decompressed by a single de-

compressor pipeline at the FPGA. The decompressed data rate and compression ratio used

is the geomean of the configurations presented in Section 2.6.4. If the bandwidth pressure

exceeds what is available from the PCIe link, compressed data cannot be supplied to the

decompressor fast enough, and the decompressor will no longer function at maximum per-

formance. This situation is depicted with the red hatch pattern. With only one pipeline, all

configurations put less pressure on the PCIe link than is available. In such a situation, we

can say the performance bottleneck has been moved away from the PCIe.

However, the balance between performance and communication may change if the gap be-

tween the accelerator performance and communication bandwidth continues to grow, rep-

resented by the increasing number of pipelines while the PCIe bandwidth is constant. The

communication bottleneck may return if the required data rate of the compressed file to

support normal operation is higher than the PCIe bandwidth, as the decompressor will be
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Figure 3.10: The communication bandwidth required for the full performance operation of
multiple decompressor pipelines, for various fault tolerance settings of ZFP-V1 and ZFP-V2

unable to function at its best performance.

Given two algorithms emitting a decompressed stream at the same rate, an algorithm with

higher compression ratios will put less bandwidth pressure on the communications link com-

pared to one with lower compression ratio. We can also see this in Figure 3.10, where

ZFP-V1 puts more bandwidth pressure on the link on average compared to ZFP-V2. As

a result, the performance of ZFP-V1 will hit the PCIe bandwidth bottleneck quicker than

ZFP-V2. For example, the PCIe bandwidth can only support 51.9% of the required com-

pressed bandwidth to four pipelines of 1D3, meaning the decompressed data rate will also

decrease by that much. However, four pipelines of ZFP-V2 in the 2D3 configuration can still

run at full speed, delivering 21.04 GB/s of decompressed, effective data throughput from a

mere 3.1 GB/s available from the PCIe. Considering the typical ratio of PCIe bandwidth

and the amount of on-chip resources on modern FPGAs, we can confidently say that the

compression efficiency and performance achieved by ZFP-V can still remove the bandwidth

bottleneck of PCIe.
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3.5.3 End-to-End Application Performance

Evaluation Configurations

Table 3.4 lists the system configurations for BurstZ+ and others. For evaluation, we use the

ZFP-V1 accelerators since its relatively low compression ratio is still good enough to close

the bandwidth gap between the PCIe and the accelerator bandwidth. With more pipelines

of stencil accelerators, the host-side bandwidth requirement may exceed the available PCIe

bandwidth as described in Figure 3.10. We also present the projected performance scaling

of BurstZ+ with various number of pipelines as well as different compression algorithms, in

Section 3.5.4.

We compared the performance of BurstZ+ against various other accelerator architectures

that could be implemented on a hardware platform with the same components. Com-

pared configurations include the ideal, unrealistic systems such as those with ideal tiling

and caching, as well as accelerators with large enough memory to always accommodate the

whole dataset. Ideal and IdealLarge represents performance upper limits a stencil accel-

erator can achieve on the same hardware platform, when either the dataset is realistically

large (Ideal), or if the dataset is smaller than on-board memory capacity (IdealLarge). Both

systems assume ideal situations with ideal tiling and caching, as well as no halo overhead,

meaning the entire dataset is scanned by the stencil core exactly once, and this memory

movement is the only performance bottleneck. For Ideal, the on-board memory bandwidth

is shared across PCIe data loading to memory, as well as the stencil core reading the loaded

data exactly once.

Figures 3.11, 3.12, and 3.13 show the end-to-end performance of the various system con-

figurations described in Table 3.4, on 3D heat dissipation, LBM, and SRAD, respectively.

All performance is normalized to Largemem, an unlikely situation when the working set
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Name Description
Configurations with ZFP-V compression

B’z3 BurstZ+ with ZFP-V1, error bound of 1E-3
B’z4 BurstZ+ with ZFP-V1, error bound of 1E-4
B’z5 BurstZ+ with ZFP-V1, error bound of 1E-5
B’z6 BurstZ+ with ZFP-V1, error bound of 1E-6

Configurations with no compression
Nocomp BurstZ+’s stencil core with no compression
Fastmem BurstZ+’s stencil with unlimited DRAM bandwidth
Largemem BurstZ+ stencil with enough memory to hold dataset

Ideal Core with ideal tiling and caching
IdealLarge Ideal with enough memory to hold dataset

Table 3.4: Evaluated accelerator configurations

is small enough to fit entirely in on-board memory. For each benchmark column, the left

four bars represent the BurstZ+ system using each of the error bounds for compression. The

remainder of the bars are different stencil accelerator architectures implemented on the same

hardware platform, using the same application accelerator architecture. For application eval-

uations, BurstZ+ systems use a pair of one ZFP-V1 compressor and one decompressor for

the 2D stencils, and three decompressors and one compressor for the 3D stencil.

As seen in Figure 3.10, a single compressor and decompressor pipeline running at full band-

width do not fully saturate the back-end PCIe bandwidth, meaning there is more opportunity

for higher communication bandwidth in such situations, unlike conventional configurations

like Nocomp and Largemem, whose performance has already reached its limit due to

PCIe and DRAM bandwidth limitations. We explore scenarios with more pipelines taking

full advantage of the back-end communication bandwidth in Section 3.5.4.

3D Heat Dissipation Evaluation

Figure 3.11 shows the performance evaluations of the 3D heat dissipation kernel. In terms

of raw performance, Largemem corresponds to 2.4 double-precision GFLOPS, meaning the
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measured BurstZ+ systems measure between 5.25 to 7 double-precision GFLOPS. This cor-

responds to 11 to 14 single-precision GFLOPS as performance is entirely memory bound.

Considering that the Intel stencil reference implementation on an FPGA of similar scale

demonstrates 7 single-precision GFLOPS with a single pipeline [60], we can be confident our

stencil accelerator has a reasonable design. Higher GFLOPS can be achieved using the same

temporal blocking methods used in the Intel design. However, these optimizations will affect

all compared system configurations similarly, and are orthogonal to the data movement issue

we are addressing. So in the interest of clarity, we instead present normalized performance

results.
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Figure 3.11: 3D stencil evaluation: BurstZ+ outperforms even in-memory systems with ideal
caching

It can be seen that even with the most stringent error bound (B’z6 with error bound of

1E-6), the BurstZ+ system outperforms all other configurations, and performs on par with

IdealLarge. IdealLarge is an unrealistic system with not only ideal tiling, caching, and no

halo overhead, but also on-board DRAM large enough to accommodate the entire dataset.

When compared against Ideal, which is an upper-bound performance projection of a system

streaming data from the host, even the slowest B’z6 system consistently achieved almost

2× the performance, with B’z3 achieving almost 3×. This is a significant performance

improvement, considering that the BurstZ+ systems have an inherent disadvantage of lacking

in-memory tiling, and must read the input data from on-board memory three times, once for

each read plane. These results show that BurstZ+ is able to achieve benefits beyond what

conventional caching approaches can achieve.
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When compared against systems with similar data access patterns, but lacking compression,

all BurstZ+ configurations achieve over 3× the performance of Nocomp, over 2× the per-

formance of Largemem, and consistently outperforms even Fastmem. A significant point

to note is that BurstZ+ even outperforms Largemem, which is an entirely in-memory con-

figuration, without the performance limitations of PCIe. These results show that BurstZ+

is able to move the performance bottleneck away from the PCIe into the accelerator itself.

As a result, for all measured BurstZ+ systems, the biggest performance limiting factor is not

the PCIe, but the on-board DRAM performance, unlike systems like Fastmem, which is

limited only by PCIe bandwidth. This means that for BurstZ+, the problem has now moved

away from communication bandwidth, and has become a more classical scientific computing

issue of optimizing memory accesses. The memory arbiter serves six endpoints: PCIe read,

PCIe write, three decompressors, and one compressor. All endpoints have roughly the same

sustained throughput, which limited each endpoint’s throughput to 1.8 GB/s on our platform

with 11 GB/s total memory bandwidth. After compression, this translates to over 6 GB/s of

throughput per I/O port on the computation engine side, which is lower than the wire-speed

of 8 GB/s. A traditional solution of a more optimized stencil with better tiling and caching

will reduce the memory pressure, further improving performance.

2D LBM Evaluation

Figure 3.12 shows the performance of the 2D Lattice-Boltzmann Method. Unlike a 3D stencil,

which can require complex caching to avoid having to stream a z-plane multiple times, a

2D stencil only needs to maintain a small number of one-dimensional rows on-chip to turn a

kernel sweep into a single sweep over the dataset. As the size of a row is typically small enough

for on-chip buffers, we do not consider special caching approaches in this application. As a

result, projected ideal caching performances represented by Ideal and IdealLarge are not

presented. Instead, we implement Nocomp to stream data directly from PCIe DMA input
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to PCIe DMA output, achieving maximum bandwidth with the given hardware. Largemem

has the usual implementation of streaming data directly from memory.
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Figure 3.12: LBM evaluation: BurstZ+ outperforms an accelerator with no compression by
over 2×, and often outperforms even in-memory accelerators

Our results show that the same favorable performance relations continue even on a 2D

kernel, which puts even more pressure on the PCIe due to the small number of cell value

re-use, as well as the much higher operational intensity. Compared to Nocomp, BurstZ+

consistently demonstrates over 2× the performance. BurstZ+ even consistently outperforms

Largemem, which does a single scan over the fast on-board memory. We can see that

the ZFP-V compression is effective enough, while also being fast enough, to remove the

communication bottleneck of not only PCIe, but also from on-board memory.

We emphasize the performance presented is only for a single-pipeline, and BurstZ+ per-

formance can scale further with more pipelines, unlike all other systems compared against.

Unlike with the 3D stencil application, the DRAM is not the performance bottleneck in this

scenario, as compressed data is streamed directly from PCIe to the decompressor and from

the compressor to the PCIe. As a result, a single BurstZ+ accelerator pipeline does not

fully saturate the back-end PCIe bandwidth, due to the effective bandwidth improvement

via compression. This can be seen in more detail in Figure 3.10. This leaves open opportu-

nities for BurstZ+ to further scale performance with more pipelines, unlike Nocomp

and Largemem, whose performance has hit its limit due to PCIe and DRAM bandwidth

limitations, respectively. In the BurstZ+ systems, we see that the performance bottleneck

has been successfully moved away from communication to computation.
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2D SRAD Evaluation

Figure 3.13 shows the performance of 2D SRAD accelerator systems. As with the LBM

example, all BurstZ+ configurations outperform Nocomp by over 2×, and often even out-

performs Largemem. While performance relations are somewhat different compared to the

LBM application, the high-level observations are the same. BurstZ+ has successfully moved

the performance bottleneck away from PCIe communication to computation, as can be seen

from its superior performance while not saturating the back-end PCIe bandwidth.
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Figure 3.13: SRAD evaluation: BurstZ+ outperforms an accelerator with no compression
by over 2×, and often outperforms even in-memory accelerators

Performance Impact of a Slower ZFP Compression Accelerator

Figure 3.14 shows the performance of the computing engine when a single pipeline of the

original, unmodified ZFP accelerator is applied in place of ZFP-V. Due to the slow perfor-

mance of the ZFP accelerators, the accelerator’s performance is completely limited by the

compression accelerator performance. Replicating the compression pipeline is not a viable

solution, since a pair of ZFP compression and decompression accelerators consume more

than 20% of the chip resources, putting a limit on how many compression/decompression

pipelines can be instantiated. Even with 5 pipelines, the performance of BurstZ+ with the

unmodified ZFP algorithm will be slower even compared to Nocomp.
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Figure 3.14: The performance of the computing engine when the original ZFP is used in
BurstZ+

3.5.4 Scalability Analysis

As seen in Figure 3.10, a single ZFP-V pipeline running at full bandwidth does not saturate

the back-end PCIe communication bandwidth, leaving opportunities for continued perfor-

mance scaling beyond the single pipeline. This is in contrast to non-compressed configura-

tions that have already hit their performance limitations due to bandwidth issues. While

2D stencils have the option of improving computation throughput using a deeper pipeline

of stencil cores, such opportunities are less available to 3D stencils due to on-chip memory

constraints.

Figure 3.15 shows the projected performance of various BurstZ+ configurations with one or

more pipelines, normalized against Nocomp, which is limited by PCIe bandwidth. Each bar

group represents the geomean of performance across the benchmark datasets, using either

ZFP-V1 or ZFP-V2 with varying error bounds. For clarity, we assume a 2D stencil scenario

where data is streamed directly from PCIe to PCIe. All configurations are over 2× faster

than Nocomp, and reaching almost 7× with 2D3, with ZFP-V2 at an error bound of 1E-3.

The figure shows that with efficient compression configurations like 2D3, BurstZ+ can con-

tinue scaling performance well beyond a single pipeline, unlike configurations without com-

pression. Interestingly, although the single-pipeline performance of ZFP-V2 cores are slower

than ZFP-V1, having more efficient compression like ZFP-V2 with a lenient 1E-3 (2D3)
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Figure 3.15: More efficient compression using ZFP-V2 allows good performance scaling
within a strict bandwidth budget

allows better performance scaling under stringent PCIe bandwidth limitations, ultimately

reaching higher performance. From our experience, it was difficult to fit more than four

processing pipelines on typically available FPGA platforms, meaning even while saturating

the computation performance of FPGA platforms, we are still not fully utilizing the PCIe

bandwidth. This again shows that BurstZ+ is capable of successfully moving the perfor-

mance bottleneck away from PCIe bandwidth to computation, achieving the goal of

the system.

3.6 Summary

We present BurstZ+, a bandwidth-efficient scientific computing accelerator platform for

large data. BurstZ+ uses a class of novel, hardware-optimized compression algorithms called

ZFP-V, and successfully removes the communication bottleneck between the host

and the accelerator, which is conventionally the primary performance limiting factor of

large-scale scientific computing acceleration. In fact, BurstZ+’s ZFP-V accelerators are so

efficient that it drastically increases the effective on-board memory bandwidth, which allows

our example accelerator to outperform even completely in-memory systems.
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We believe the impact of a BurstZ+-like system on scientific computing will be significant

for multiple reasons. First, it will reduce the cost of computation and datacenter operation,

as accelerator performance becomes less bound to expensive on-board memory capacity.

Second, it will also allow handling of much larger problems than was possible before, because

removing the PCIe bottleneck also means fast secondary storage devices such as NVMe flash

can support the full computation performance of an accelerator. Furthermore, we project

that improving the effective performance of communication via compression can also remove

the network bottleneck of distributed systems.

We have designed BurstZ+ as a general infrastructure which will be beneficial for not only

stencil computation, but also many other data-intensive scientific applications. In the future,

we plan to use BurstZ+ to explore various scientific computing workloads to improve the

speed and reduce the cost of scientific discovery.
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Chapter 4

ZipNN: High-Dimensional Similarity

Search with Compression

4.1 Introduction

Last Chapter introduced the BurstZ+ platform, which uses high-efficiency floating point

compression and decompression to overcome the PCIe communication bandwidth bottle-

neck between host and high-speed FPGA accelerator. In this chapter, we continue this line

of exploration to another class of applications, which processes streams of integer values. We

explore how minor modifications to integer stream compression algorithms can also allow

accelerators to achieve sufficiently high bandwidth for accelerators. This chapter introduces

the resulting accelerator, ZipNN, which uses combined integer compressors/decompressors

to improve the performance of high-dimensional similarity search. In ZipNN, we imple-

ment multiple hardware-optimized compressors: Delta Compression, Run-Length Encoding

(RLE), and a pipelined Group Varint encoding. This is based on an important observa-

tion: while a complex general-purpose compression algorithm such as DEFLATE has a high
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overhead of implementation and operation, competent compression can be achieved with a

combination of much simpler algorithms configured based on the statistical distribution of

input data.

Many important applications including content-based search [17], plagiarism detection [20,

12], and bioinformatics [138, 141] depend on fast search into a large, high-dimensional

dataset. A common formulation of this problem is the K-nearest neighbors (KNN) algo-

rithm. This algorithm’s basic idea is to search a high-dimensional dataset, represented as

a set of vectors, in order to find K vectors that are closest to a given query vector based

on a distance metric. Common distance metrics include Euclidean, Manhattan, Hamming,

cosine similarity, and Dynamic Time Warping (DTW), and their selection depends on the

data type and application requirements.

Due to the so-called curse of dimensionality [59], conventional indexing methods such as

kd-trees increasingly become inefficient as the target data has more dimensions. As a result,

instead of pin-pointing a query target via an index as a database would, high-dimensional

similarity search must scan through a large amount of data and calculate the similarity

between each data element in the dataset against the query, in order to keep track of the most

similar elements. While approximate methods such as Locality-Sensitive Hashing (LSH) [59]

can help reduce the search space, the majority of the time taken during a high-dimensional

similarity search is still spent calculating similarities and keeping track of the top results, as

opposed to traversing index structures [80, 126].

Due to the sheer size of the datasets of interest in this area, it is often required to store

and access them from secondary storage [73, 18]. Since most secondary storage devices are

much slower compared to DRAM, this results in the performance of the whole system being

limited by the capability of the secondary storage device to supply the computation unit

with data quickly enough. Furthermore, storage access granularity is typically in the order

of kilobytes, much coarser than system memory, which further impacts indexing efficiency.
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As a result, a great amount of effort has been put into creating optimized indexing and data

layout schemes for storage access, as well as approximate methods [15, 59, 69].

This issue is aggravated with the introduction of computation acceleration engines such

as Graphic Processing Units (GPUs) [47, 48] and Field-Programmable Gate Arrays (FP-

GAs) [4], which further moves the bottleneck away from computation to data transfer. As

a result, accelerator-based architectures can deliver extremely high performance when the

dataset fits in the on-board memory resources, but quickly becomes bottlenecked by the

storage bandwidth when the dataset becomes larger [66].

Compression can help overcome storage bandwidth limitations by increasing the effective

bandwidth of existing storage, as long as the compression algorithm is fast enough

to keep up with the storage and accelerator bandwidth. Unfortunately, most popular

compression algorithms including DEFLATE and LZ4 are designed with software implemen-

tations in mind, and their straightforward FPGA implementations are often not fast enough

to support storage or computation bandwidth.

In order to address these issues, we present ZipNN, which explores mitigating the storage

performance bottleneck of hardware-accelerated high-dimensional similarity search via two

approaches:

1. Compression accelerators optimized for the application, as well as for hard-

ware implementation.

2. Deploying the accelerator near-storage.

Many high-dimensional datasets are sparsely encoded, meaning a large part of these datasets

are columns of integer streams, representing index values such as user index, vertex ID, or

document index. To efficiently store and process these data types, we have designed a very

high performance accelerator for integer stream compression, which consists of a configurable
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pipelined chain of delta compression, run-length compression, and a hardware-optimized

Group Varint compression accelerator. A compression accelerator is assigned per column,

and each accelerator can be configured to use a subset of the available compression algorithms

according to the observed data distribution of the column.

Even for such simple algorithms, some hardware-optimized re-design was necessary to get

sufficient performance on FPGA accelerators. Delta compression and run-length compres-

sion can be easily implemented and achieve wire-speed on FPGA. However, a straightforward

implementation of a conventional Group Varint compression algorithm cannot achieve suffi-

cient decompression speed, due to the small size of the group. As described in Section 1.3,

a group in a conventional Group Varint encoding contains 4 integers, whose 2-bit headers

are grouped together into an 8-bit byte. For software implementation, this byte-aligned for-

mat is shown to achieve significant performance improvement over the original non-grouped

format.

However, a single-byte header is still too small for efficient FPGA implementation, because

a variable-width shifter in an FPGA requires multiple cycles of latency in order to shift the

input stream and discover the next header block. Our original implementation’s variable-

width shifter took 6 cycles to discover the next header from a 256-bit datapath, limiting the

performance of a 4-block Group Varint algorithm to 4 32-bit integers per 6 cycles, which

corresponds to a meager decoding speed of 0.67 GB/s under a 250 MHz design.

To overcome this limitation, we further modify the Group Varint encoding to group a much

larger number of headers, in order to overlap the shifter latency with payload processing.

The resulting large header is organized into a two-level hierarchy of headers so the shifter

can start the shifting operation even before the entire header is consumed.

ZipNN instantiates an instance of this accelerator for each column of the target dataset, and

each accelerator pipeline can be configured to use a subset of the compression cores depending
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on the data distribution. Tested on real-world datasets, each decompressor pipeline can

achieve efficiency comparable to gzip with over 4× compression, while achieving wire-speed

performance. On our FPGA prototype, this is 8 GB/s per pipeline. This is an order of

magnitude faster performance compared to FPGA implementations of gzip [76].

Furthermore, ZipNN is designed as a near-storage accelerator. Due to the very fast per-

formance of modern flash storage devices, modern SSDs typically show a large performance

difference between its peak bandwidth and the host-side PCIe link provisioned for it. A near-

storage accelerator can take advantage of this high internal bandwidth. Thanks to the high

performance of both the compression accelerators and the similarity calculation accelerator,

ZipNN demonstrates efficient performance scaling with faster internal bandwidth.

We have evaluated our implementation on the MIT BlueDBM platform [67], and demon-

strated the effectiveness of the ZipNN approach compared to standalone accelerator cards.

When limited by the NAND flash bandwidth of BlueDBM, ZipNN demonstrated over 3×

performance compared to the same accelerator without compression. We also projected the

performance of faster storage devices by emulating it with its on-board DRAM. When con-

figured with a reasonable 2× difference between internal and link bandwidth [63], ZipNN

demonstrated a further 40% performance improvement, resulting in a total of 6× perfor-

mance improvement over a standalone distance calculation accelerator. This is also an order

of magnitude faster than a purely software implementation.
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4.2 Background and Related Work

4.2.1 High-Dimensional Similarity Search

High-dimensional similarity search suffers from the so-called "curse of dimensionality". This

describes a situation where indexing structures such as kd-tree and variants [15, 69] become

rapidly less useful as the dimensionality of data becomes larger, because the relative im-

portance of each dimension becomes rapidly lower. Approximate nearest-neighbor search

algorithms address this issue by giving a statistical guarantee on the correctness of the re-

sult [85, 59, 80, 7]. Despite these optimizations, the majority of effort for high-dimensional

nearest neighbor search is spent on computing the distance between the query and a sizable

set of candidate neighbors [47].

There are various distance metrics used to calculate the distance between two data points,

and their selection depends on the application and data type. For high dimensional data such

as bag-of-words, images, and time series, popular metrics include Dynamic Time Warping

(DTW) [16, 105], and cosine similarity [139, 95]. Since these algorithms are computationally

bound, their performance depends on the performance of the computation engine.

To move the bottleneck away from computation, there have been many successful attempts

accelerating high-dimensional similarity search using accelerators such as GPUs or FP-

GAs [120, 58, 47, 48]. As distance calculation became faster, the bottleneck moved from

computation to memory. For large datasets that were stored in secondary storage, the stor-

age performance quickly became the most primary bottleneck [66].
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4.2.2 Compression Algorithms on FPGAs

Compression is an effective method for reducing the overhead of data movement, by reducing

the amount of data to be stored and transferred. If data is stored in a compressed format

and decompressed on the fly, the effective bandwidth of the decompressed data may be much

larger than the pressure put on the storage or memory device. However, this will only be

beneficial if the decompression algorithm throughput is at least as fast as the memory and

the nearest-neighbor computation unit. There is a wide range of selection for performance-

optimized compression algorithms deployed in the datacenter, including Simple9 [6], LZ4 [25],

Snappy [49], Run Length Encoding (RLE) [103], and Varint and Group Varint [29]. Many

compression algorithms typically represent a trade-off between compression efficiency and

performance, where compression ratio needs to be sacrificed to reduce the amount of work

done during compression and decompression.

In the FPGA context, this means the decompression module needs to be fast enough, or

at least small enough to fit enough parallel units in the target FPGA chip. However, this

is difficult to achieve with complex compression algorithms like DEFLATE, which is used

for GZip. A best-effort GZip implementation on a Virtex Ultrascale+ FPGA can sustain

less than 500 MB/s while consuming 10K LUTs. Similarly, an optimized implementation

by Xilinx consumes more than 40K LUTs on a Virtex Ultrascale+ FPGA while delivering

less than 2 GB/s [135]. While this is much faster than a software implementation of the

algorithm, it is nowhere fast enough to saturate the nearest-neighbor computation unit.

Even simpler algorithms like LZ4 do not do much better, with single-pipeline performance

rarely rising over 2 GB/s [43].

Compression can be especially natural for storage, since the coarse sector- or page-granularity

of access fits well with the grouped operations of most compression algorithms, which can

be aligned to page boundaries. For example, LSH on secondary storage must already deal
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with page granularities, and generality is not hurt by introducing page-aligned compression.

4.2.3 Near-Storage Acceleration

Due to the very fast performance of modern PCIe-attached storage devices, as well as engi-

neering cost, modern storage devices often have a discrepancy between the peak bandwidth

attainable from the chips, and the host-side PCIe link provisioned for it. For SSDs available

on the market, the difference is often 2× or larger [63]. As a result, if an application has

very good access patterns into storage, the performance of the storage device may be limited

by its host-side link, making suboptimal use of the storage fabric performance.

Near-storage processing, where some computation is offloaded to a computation unit on

the storage device itself, is a practical solution to this problem. Modern SSDs handle very

complex flash management functionalities, such as bad block management and garbage col-

lection, on their flash controllers. Some classes of near-storage processing platforms opted to

use the computation already available on the flash controller, since these resources are not

always busy [72, 68, 38, 64]. While this approach can sometimes reduce the data rate in real

time and remove the PCIe bottleneck, the computational capacity of embedded controllers

are nowhere as fast as desktop or server CPUs, limiting their efficacy. Near-storage process-

ing using reconfigurable hardware accelerators such as FPGAs is an attractive solution that

is being actively explored, as FPGAs can deliver very high performance while maintaining

a low power budget [50, 67, 61, 77, 110, 127, 108].

4.3 ZipNN Accelerator Architecture

Figure 4.1 shows the overall architecture of the ZipNN design. The FPGA-accelerated storage

device is connected to a host server via PCIe. Each column of the dataset of interest is
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Figure 4.1: The Overall Architecture of ZipNN

stored separately in a compressed form, and are streamed independently into its own column

decoder. All decoded streams are merged together, and are fed into the K-Nearest Neighbor

(KNN) accelerator for processing.

4.3.1 Column Decoder Architecture

Each column decoder is equipped with three pipelined decoder accelerators for the follow-

ing compression algorithms: Delta compression, Run length encoding, and pipelined Group

Varint. ZipNN exposes an interface to the user to either enable or disable delta compres-

sion or run length encoding, according to the observed distribution of the column data.

For example, if many consecutive values are known to be the same, run length encoding

can be enabled. If the difference between consecutive values are known to be small, delta

compression can be enabled to make Group Varint more effective.

In order to keep up with the full storage bandwidth, each pipeline stage must function at wire-

speed on a wide pipeline. While designing wide, wire-speed delta and run length decoders is

trivial, we discovered that is not the case for Group Varint. We describe the issues involved

in Section 4.4, and present our design that invariably supports wide, wire-speed decoding.
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4.3.2 K-NN Accelerator Architecture

Generally, the K-NN consists of two parts: (1) distance calculations and (2) top-k sorting.

Distance calculation computes the distance between the query and each of the candidate

neighbors in the dataset according to some distance metric, and top-k sorting incorporates

this newly calculated results into a sorted list of top-k values. In this work, we present the

design of a hardware K-NN accelerator on sparsely encoded data, which can support the

very high bandwidth provided by the multiple column decoders.

We would like to emphasize that we are not arguing that our K-NN accelerator is the best

possible design. The major contribution of this work is not an optimized design of

the K-NN accelerator, but rather a demonstration of the benefits of hardware-optimized

compression algorithm for this application.

Distance Calculation Engine

The ZipNN system expects the input dataset to be encoded in a sparse format, as it is a

natural way to represent sparse data elements in a very high dimensional space. For example,

the bag-of-words dataset in the UCI machine learning repository [8] represents each word

occurrence as a 3-tuple consisting of a document ID, word ID, and occurrence count. Each

document is represented as a variable-length stream of these 3-tuples, which can be thought

of as three sparsely encoded columns.

We implement the cosine similarity distance metric, as it is a popular and high-functioning

distance metric for high-dimensional datasets [94], although it has a much higher complexity

than simple hamming distance. Since cosine similarity returns a larger value for similar pairs

of data, top-k now must keep track of the k elements with the largest cosine similarity.

Figure 4.2 shows the internal architecture of the distance calculator engine. In order to
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achieve high performance, it contains multiple calculation pipelines working in parallel. Each

pipe is connected to a QVM (Query Vector Memory) module, which stores a separate copy

of the query vector. In order to support parallelism across different queries, each QVM can

be configured to have a different value. Because the dataset consists of sparsely encoded

data elements of variable length, the accelerator also includes a router before the distance

calculators which identifies the delineation between each data element and sends it to an idle

engine.

Each element of the input stream consists of a tuple, which would be a 3-tuple in the bag-

of-words example. Meanwhile, the entry of a QVM contains multiple 2-tuple: <word id,

frequency>. At each cycle, a distance calculator pipeline can accept 8 3-tuple input, or a

2-tuple entry from the QVM, or both. Since all data is sorted within a sparsely encoded

data element as well as within a query, the distance calculator pipeline can use a comparator

behaving like a merge sorter to quickly compare each 3-tuple and 2-tuple. Because the data

ingestion rate of single distance calculator is limited by the 3-tuple datapath of the input

data, ZipNN uses multiple calculator pipelines to achieve wire-speed performance, as seen

in Figure 4.2.
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ZipNN uses simple insertion sorting to maintain the top-k values. Figure 4.3 shows the

architecture of the insertion sort accelerator. A wide tuple of the current top K <distance,

document> pairs are stored in a buffer queue implemented using on-chip Block RAM. Every

time a new calculated distance needs to be inserted into the buffer, the insertion sorter does

a full sweep of the data currently in the queue, in order to insert the new data in a sorted

location. Compared tuples are re-inserted into the queue to maintain ordering.

The width of the buffer queue must be wide, in order to reduce the number of cycles required

by the insertion sorter to scan through the entire buffer. If, say, the width of the queue is

four elements, we only need up to K/4 cycles to scan the buffer as opposed to K. The

fact that each tuple is sorted also simplifies scanning logic. Assuming the queue is sorted in

descending order, if the newly calculated distance is smaller than the smallest value of the

tuple, the whole tuple can simply be skipped without further processing.

In order to avoid the multi-cycle latency of scanning the buffer queue for every distance

calculation, we maintain a separate register Global Minimum as a further optimization. The

global minimum register is updated with new input data, and if the newly calculated distance

is smaller than the global minimum while the buffer queue is already full, the new data can

be discarded without going through the costly process of scanning the buffer. As the data

size relative to K became larger, the ratio of new data hitting the top-k buffer decreases,
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effectively hiding the performance impact of insertion sort. To efficiently smooth out the

performance impact of the rarely occurring insertion sort, we place a large on-chip Block

RAM buffer between the distance calculator engine and the insertion sorter, so that distance

calculation can continue uninterrupted even when a small number of insertion sort must

happen.

Larger

Smaller

Insert
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…
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Figure 4.4: FIFO walking to insert a new data element into the top-k buffer

During insertion sort, once we discover the location where the new distance should be in-

serted, we may need to insert the new value into an already full tuple. Figure 4.4 shows

this process when the FIFO is full. If the new value is inserted into the current tuple, all

elements in the tuple smaller than the new value is shifted down by one spot. The smallest

value in the current tuple is evicted to the next tuple, which we will process at the next

cycle. This can continue until the very last element in the queue is evicted and discarded.

4.4 Hardware-Efficient Integer Stream Compression

4.4.1 Choice of Compression Algorithms

The choice of compression algorithm typically involves a trade-off between compression

efficiency and performance. For example, an algorithm optimized for compression effi-

ciency, such as DEFLATE, will achieve much lower performance compared to a performance-
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optimized algorithm such as LZ4, even with FPGA acceleration [76, 42]. However, even

FPGA-accelerated implementations of performance-optimized compression algorithms typ-

ically report sub-GB/s performance, and are not fast enough to support high-throughput

accelerators and NVMe storage devices.

In order to achieve compression and decompression performance fast enough to move the

performance bottleneck away from the storage device, we have chosen to use a simple but

effective compression algorithm based on Group Varint [29]. Since a large portion of high-

dimensional data is streams of integer values representing indices such as dimension index,

we have chosen an algorithm optimized for it. We also augment group varint with delta

compression and run-length encoding based on the observed data distribution for further

compression efficiency. Our evaluation shows it works well with multiple real-world datasets,

including the bag-of-words UCI machine learning repository [8], MovieLens 25M rating [53],

as well as the Stack Overflow temporal network [100].

All of the above datasets consists of three columns, and we instantiate three column decoders

in ZipNN to handle it. The three decoders are configured to be optimized for each column’s

data distribution.

4.4.2 Optimizing Heterogeneous Decoders to Data Patterns

All three compression algorithms used in ZipNN are very sensitive to the data distribution

for effective compression. Delta encoding stores the difference between each value and the

previous value in the stream, making it a good fit if the stream is in incrementally ascending

order with small deltas. Delta encoding does not reduce the encoded size by itself, but

is useful to transform the data stream to better fit the other two compression algorithms.

Run length compression encodes a repeated sequence (a run) of values as a 2-tuple <value,

count> and stores the 2-tuples instead of the original run. The count represents the length of

97



the repeated sequence, where a single symbol has a count of 1. Run length compression can

achieve effective compression as long as the run length is longer than two. Varint encoding

removes zero bytes from the MSB, and only encodes the nonzero LSB bytes, coupled with a

two-bit header for a 4-byte integer. Obviously only small positive integers can benefit from

this compression. When processing 32-bit integers, numbers larger than 224, as well as all

negative numbers cannot benefit from it because they use the full 32 bit. In this case, the

extra header overhead can actually increase the encoded data size.

ZipNN allows the user to observe the data distribution of each column and configure each col-

umn decoder to best match the patterns of its column. For example, the first column, which

is the document/user/vertex ID column, consists of long stretches of identical IDs. This col-

umn is very efficiently compressed via a sequence of delta compression, runlength compres-

sion, and then Group Varint compression. Delta compression can make each value smaller,

resulting in both elements of the run length compression output’s 2-tuple (<value,length>)

typically small enough to be effectively encoded by varint.

The second column, the word/movie/vertex ID column, consists of stretches of values in-

creasing by small amounts, which is a good fit with delta compression pipelined with Group

Varint. The semantics of the last column differ across datasets, and for some datasets like

the movielens rating dataset, there is not much integer compression can do. As a result, the

third column, is simply compressed via Group Varint, for better or for worse.

In our current design of ZipNN, this decision of compression algorithms must be made by

the user based on human observation and manual statistical analysis. One potential future

research topic is to automate this optimization process.
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4.4.3 Limitations of a Hardware Group Varint Decoder

The baseline varint algorithm adds a 2-bit header per 32-bit integer specifying how many

least-significant bytes in the integer has nonzero values. Group Varint is an improvement

which reduces the overhead of header processing, by grouping 4 header-value pairs into

one, making each header group a nicely aligned one byte in size. Single-thread software

implementation of Group Varint have reported multi-GB/s of performance, especially when

using SIMD extensions of modern CPUs [79].

Unfortunately, it is tricky to achieve high Group Varint performance on an FPGA, due to

its relatively low clock frequency, as well as the high cost of variable-width shifters. Shifting

a value by a variable width defined by a runtime variable is a costly operation in the FPGA

fabric [13], which may significantly bring down clock speed. To remedy this, a pipeline shifter

is often used, which can have multi-cycle latency but wire-speed throughput. Because the

input bitstream must be shifted by a variable amount in order to decode the headers of

successive groups, each header-payload pair may take multiple cycles to decode. FPGA

accelerators are typically clocked in the orders of hundreds of MHz, compared to multi-GHz

speeds of CPUs and GPUs. As a result, multi-cycle decoding of Group Varint results in an

unacceptably slow performance.

4.4.4 Pipelined Group Varint

In order to solve this issue, we propose a new group varint design called "Pipelined Group

Varint (PGV)", which introduces an even larger group size for hardware efficiency. Headers

are grouped into large enough units that their payload can fill the width of the target

datapath. Because our accelerator design had a 256-bit datapath, headers are grouped into

16-bit units (such a 16-bit unit is called a header group). These header groups are in turn

grouped into units of N , which we call a "header chunk". Each 16-bit header corresponds
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to 8 32-bit integer payloads, with a total size of 256 bits. This group of N payloads groups

is called a "data chunk". We call a pair of "header chunk + data chunk" a section, and a

compressed bitstream is composed of a stream of sections. The value of N could be 8, 16,

32 or more depending on the performance requirement, which we describe in Section 4.4.5.
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Figure 4.5: Pipelined Group Varint decoding across sections

This data layout allows us to read a large number of headers per cycle. For example, decoder

implementation can accept a 512 bit input data per cycle, so at one cycle at most 32 8x2-bit

headers (or 32 header groups) can be read and their corresponding payload sizes calculated.

Once we process this one header chunk, we can decode 32x8 4-byte integers without having

to wait for the results from the pipeline shifter, because we can instantly calculate the offset

of the next encoded payload from the header values. With the header group size of 16, we

can decode 8 integers, or 256-bits of decoded data coming out every cycle. As a result, a

group of N payloads (i.e., a data chunk) needs N cycles to be decoded. Figure 4.5 shows the

decoding process of Pipeline Group Varint. However, the Figure also shows that although

this new design improves the decoding efficiency, it is still not ideal because it still has to

wait for the shifter whenever it starts a new section.
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4.4.5 Fully Pipelining Hardware Group Varint

Note that each header group corresponds to enough decoded payload data to fill the datapath.

As a result, a data chunk of a section can be decoded within N cycles if completely pipelined.

For example, if the output datapath is 256 bits as described before, a data chunk of size N

payloads will emit a 256-bit decoded value every cycle, for N cycles. On the other hand,

since each encoded integer can occupy 1 to 4 bytes, the compressed 8 integer in a group will

occupy 8 to 32 bytes. For each header chunk, its payload size (i.e., data chunk size) will

range from 8×N to 32×N bytes. If we design our decoder to have a wider input datapath,

say, 512 bits, it will take the decoder N/8 to N/2 cycles to read the data chunk.

We can take advantage of the gap between the time it takes to read the encoded data (reading

window), and the time it takes to emit the decoded data (decoding window). Figure 4.6 shows

the relationship between these two time scales. We call the time gap between reading and

decoding the slack period. As long as we can locate the start position of the next header

within the slack period, we can avoid stalling and always keep the output datapath full.
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Figure 4.6: Optimally pipelined Group Varint using a lookahead buffer

In order to achieve this, we create a small look-ahead queue in the decoder so that while

decoding is happening, we can keep reading successive section data looking for the next
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header chunk. As soon as a header chunk is read, the offset of the next header chunk

can be calculated by adding all N × 8 2-bit headers together. In our implementation, we

hierarchically sum N × 8 2-bit headers using a three-level pipelined adder tree that has a

latency of 3 cycles. We also need reading window cycles to reach the 512-bit word which

has the next header chunk, after which we need to pipeline-shift it to get the next header.

Since pipeline-shifting 512 bits at byte granularity can take log264, or 6 cycles, the maximum

latency for obtaining the header is N/2 + 9 cycles. As long as this is less than the decoding

window of N cycles, our decoder will always have wire-speed throughput. In this situation,

the N should be larger than 18. Also, the larger the N, the longer the slack period. In this

paper we use a N of 32.

4.5 Performance Evaluation

4.5.1 Implementation Details

We use the MIT BlueDBM [67] platform to evaluate our system. The BlueDBM platform is

equipped with 1 TB of NAND-flash storage, capable of delivering 2.4 GB/s per node. The

flash storage is augmented with a Xilinx VC707 FPGA development board for application

acceleration, which is also equipped with 1 GB of on-board DRAM capable of up to 11 GB/s

of DDR3 bandwidth. The board plugs into the host via a PCIe Gen2 x8 link, which has a

maximum bandwidth of 4 GB/s duplex.

This device was a perfect fit to emulate our target storage device. It not only provided an

actual, large-capacity SSD over a PCIe connection, but also provided fast enough on-board

DRAM to emulate faster internal bandwidth compared to the PCIe link. The on-board

DRAM bandwidth is over 2.5× faster than the PCIe connection, which is similar to the

performance differential seen in the Samsung accelerated storage device [63].
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Our prototype FPGA implementation of ZipNN runs on a 250 MHz clock. Each decom-

pressor pipeline consumed 40,490 LUTs, about 13% of the VC707’s FPGA. Removing the

runlength decoder at compile time for columns that did not use it reduces the LUT use to

29,513, or about 10%. Such low space overhead leaves the majority of the chip for useful

acceleration.

4.5.2 Benchmark And Configuration Details

Table 4.1 presents the datasets we used to evaluate ZipNN. We have tested seven high-

dimensional datasets from three sources, the bag-of-words dataset of the UCI machine

learning repository [8], MovieLens 25M rating [53], as well as the Stack Overflow tempo-

ral network [100]. The three sources have distinct characteristics, each being bag of words,

recommendations, and a graph. The datasets span a wide range of sizes, compression ra-

tio, as well as the size of each multi-dimensional data element, supporting a comprehensive

evaluation of our system.

Dataset Documents Encoded Size Tuples per
(Uncompressed) Document

enron 39,861 42.46 MB 160.55
kos 3,430 4.04 MB 553.93
nips 1,500 8.54 MB 311.80

nytimes 300,000 0.77 GB 333.33
pubmed 8,200,000 1.5 GB 89.02

movielens 162,000 300 MB 154.32
stackoverflow 2,601,977 435 MB 13.92

Table 4.1: Datasets used to evaluate ZipNN

For the top-k sorter, we have chosen a K value of 128, according to the guideline in [54].

We have also tested much smaller and larger numbers of K, spanning from 64 to 512, with

no significant difference in performance. We have tested the system using a set of random

queries selected from the dataset.
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4.5.3 Compression Effectiveness

Compression Ratio

Figure 4.7 shows the compression efficiency of our column compression methods, and a com-

parison against gzip. The figure presents the compression ratios of the individual columns,

followed by the total compression ratio, and the compression ratio of gzip. Thanks to the

compression accelerators configured for affinity to data distribution, our column compres-

sion scheme manages to achieve considerable compression, within 30% of the compression-

optimized gzip algorithm. We think this is a completely worthwhile trade-off, considering

the orders-of-magnitude performance improvement compared to the best-effort gzip decom-

pressor accelerator on a comparable FPGA [76]. Interestingly, for the Stack Overflow dataset

our encoder even did slightly better than gzip.
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Figure 4.7: Per-column and total compression ratios

Decompressor Accelerator Performance

Because every part of the column decoder accelerator was designed to have non-blocking

wire-speed performance, each of the column decompressors was invariably able to deliver full

throughput, which is 8 GB/s on our configuration of 256-bit datapath running at 250 MHz.

As a result, the three column decoders are able to provide a total of 24 GB/s of decom-

pressed throughput across the total dataset, at which point the question becomes whether

the backing storage can keep up with it.
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For context, this is much faster than the best-effort CPU implementation of Group Varint [78]

using SIMD extensions. While software can achieve parallelism with more cores, the small

footprint of the hardware decoder means that the hardware decoder can also scale with

higher requirements.
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Figure 4.8: Storage bandwidth required to support wire-speed decompression exceeds the
PCIe bandwidth.

An interesting factor to consider is how much backend storage bandwidth is required to

support this wire-speed decoding, and whether a typical SSD is capable of supporting it.

Figure 4.8 shows the throughput required of the backend storage in terms of compressed data,

in order to support wire-speed decompression bandwidth of 8 GB/s. The figure presents the

backend throughput required, broken down into each of the columns. Compared even to the

ideal performance attainable by a modern NVMe SSD storage connected over a PCIe Gen3

x4, it can be seen that the backend storage does not have enough throughput to support

wire-speed decompression.

This means the 3× compression ratio translates directly to 3× effective storage band-

width, and that we can also achieve further storage performance by using a near-storage

architecture and take advantage of the higher internal bandwidth.
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4.5.4 K-NN Accelerator Performance

Of the two components in the K-NN accelerator, the distance calculation module implement-

ing cosine similarity is wire-speed via parallelized distance calculation engines. As a result,

the performance of the K-NN accelerator performance depends on the number of times in-

sertion sort must be performed. If the data organization is extremely friendly, for example,

if the distances calculated are continuously decreasing, vast majority of data elements will

not require insertion sort because it will be filtered out by the global minimum register. In

this situation, the whole accelerator will achieve wire-speed. Since insertion sort into a top-k

buffer where K is 128 requires 32 cycles, a ratio that is less than 1/32 = 0.031 would on

average not cause stalls, supporting wire-speed performance. Figure 4.9 shows the ratio of

data elements which incur insertion sort. It can be seen that the ratio of data elements

requiring insertion sort is very small, especially for larger datasets, with a geomean of 0.03.

This is small enough to support wire-speed on average.
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Figure 4.9: Ratio of data elements requiring insertion sort. Note the range of Y is 0 to 0.2

4.5.5 End-To-End Application Performance

With BlueDBM Flash

We first evaluated the performance difference between ZipNN, and the same KNN acceler-

ator without compression support(Acc). The results can be seen, normalized against our

best-effort single-thread, in-memory software implementation in Figure 4.10. The software
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Figure 4.10: Normalized performance of ZipNN, using BlueDBM storage
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Figure 4.11: Normalized performance of ZipNN using emulated, high-performance storage.
Ideally scaled software performance is also limited by PCIe.

implementation was hand-written, compiled using gcc with -O3 optimizations. Software8 is

an upper limit projection assuming ideal performance scaling.

In this scenario, both our KNN accelerator, as well as the decompressor array were capable

of much higher speed than the 2.4 GB/s the BlueDBM flash could support. As a result,

the increase in effective bandwidth as a result of compression were directly reflected to

performance, and ZipNN was able to achieve over 3× performance compared to Acc, over

11× faster than single-thread software. However, because both hardware modules were

capable of much more than the flash bandwidth, we are operating under the capacity of the

ZipNN hardware accelerators.
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With Emulated Flash Using DRAM

A more interesting scenario is when we emulate a much faster storage device using the on-

board DRAM. Table 4.2 shows the system configurations evaluated. The backend storage

performance of standalone accelerators was emulated by limiting the memory bandwidth to

4 GB/s, which is the upper limit bandwidth of a PCIe Gen3 x4 link, popular with contempo-

rary PCIe SSDs. The near-storage systems were configured to support up to 8 GB/s. This

performance differential is similar to the real-world numbers from Samsung [63].

Name Description
ZipNN-N ZipNN with compression, near-storage
ZipNN-S ZipNN with compression, standalone
Acc-N Non-compressed accelerator, near-storage
Acc-S Non-compressed accelerator, standalone

SoftwareN N -thread software

Table 4.2: System configurations evaluated

Figure 4.11 shows the performance comparisons between these systems, normalized to a

single-thread software implementation. Compared to Acc-S, which is completely bottle-

necked by the projected PCIe bandwidth, the near-storage ZipNN-N is able to achieve 6×

performance improvement. Even the standalone ZipNN-S device is able to achieve 4× the

performance compared to Acc-S. However, the performance of ZipNN-S is limited by the ca-

pability of the backend storage as described in Figure 4.8. These results show the definitive

benefits of both our compression scheme, as well as the near-storage configuration.

ZipNN-N achieves almost 30× performance compared to a single-thread software imple-

mentation. While Figure 4.11 shows multithreaded software performance exceeding storage

bandwidth, in reality software performance will also be limited by the storage performance

limitations.
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4.6 Summary

We have presented ZipNN, a near-storage accelerator which uses low-overhead, hardware-

optimized integer stream compression algorithms to remove the storage access bottleneck

from a high-dimensional similarity search application. We have shown that by modifying

the Group Varint compression algorithm to be better suited for the FPGA architecture,

coupled with other low-overhead algorithms such as delta and run length encoding, ZipNN

is able to achieve wire-speed data throughput while significantly reducing the performance

pressure put on the backend storage. Thanks to these improvements, ZipNN was able to

sustain wire-speed throughput in an FPGA accelerator with the storage throughput available

to a near-storage accelator, demonstrating 6× the performance compared to a standalone

FPGA accelerator without compression, and almost 30× the performance compared to a

single-thread software implementation. In summary, ZipNN demonstrates the benefits of

high-performance compression coupled with a near-storage acceleration architecture for high-

throughput applications.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Modern high-performance hardware accelerators have been widely used to offload computing-

intensive workloads from CPU. However, the whole system performance is often limited by

the host-accelerator bandwidth, especially when large scale data sets have to travel back

and forth between host and accelerator frequently. The data movement overhead gradually

becomes the bottle of the system.

This dissertation proposes compression-based solution to overcome the above issue. By

transferring compressed data between host and accelerator, the data movement overhead

is reduced significantly. Implementing such an idea is not easy and must solve multiple

challenges: how to implement high-efficiency compressors/decompressors while using small

chip area and hardware resources, how to design high performance computation engine and

let it interact with compressors/decompressors, and more.

We propose that a class of compression algorithms, with minor modifications made with
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awareness of how the algorithms will be realized in hardware, can achieve sufficiently high

performance and efficiency to remove the communication bandwidth issue. We first explored

the hardware design and implementation of high-efficiency floating point compression algo-

rithms, then integrate them with high performance scientific computation engines. We also

explored hardware-optimized compression algorithms for integer streams, and applied them

to a near-storage nearest neighbor search accelerator. We conducted intensive evaluation

of both the compressor/decompressor and the whole compressor-computation system. The

evaluation proves our idea is effective in removing the overhead of data movement on PCIe

between host and FPGA accelerator.

The proposed framework consumes very few hardware resources on high-end FGPA boards

and hence is very promising in large-scale computing platform (e.g., in scientific computing

centers). In addition, it is flexible and can support combinations of various compressors/de-

compressors and computation engines depending on the real needs and the available hardware

resources.

5.2 Future Work

Though this system proposed in this dissertation solves an important problem in the scientific

computing accelerator area, there is still room for further improvement. Some potential

exploration directions are as follows:

• Explore similar hardware-optimized modifications of more compression algorithms:

As the compression algorithms we explored are datatype-specific, applications that re-

quire different data types will inevitably require different compression algorithms. Our

goal in this regard is twofold: Explore and optimize more datatype-specific algorithms

to cover more imporant application scenarios, and explore similar optimizations for
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more general-purpose lossless compression algorithms, such as LZMA and DEFLATE.

• Supporting multiple concurrent computation engines:

Currently, the system only supports one computation engine due to limited resources.

With a larger board, it is possible to deploy multiple computing cores that can share

the compressors. With this, a compressor may maximize its throughput by receiving

interleaved data blocks from different application streams.

• Programmable, software-defined accelerators:

We believe our compression-based approaches can dramatically reduce the cost of

hardware acceleration on scalable problems. However, the accessibility of application-

specific accelerators using FPGAs is limited not only by the accelerator scalability,

but also the difficulty of programming the accelerators themselves. To address this

issue, we are actively researching the software-defined accelerators. This line of re-

search is guided by a wealth of insight and design patterns we have obtained while

exploring the various accelerators presented in this dissertation. Our goal is to provide

a high-level programming interface which can be used to easily generate and evaluate

application-specific accelerators.
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