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Polygenic height prediction for the Han
Chinese in Taiwan

Check for updates

Chih-Hao Chang1,27, Che-Yu Chou1, Timothy G. Raben 2, Shih-Ann Chen3,4,5, Yuh-Jyh Jong 6,7,8,9,
Jeng-YihWu10, Shun-FaYang 11,12, Hsiang-ChengChen13, Yen-LinChen14,MingChen15, Gwo-ChinMa15,
Chih-Yang Huang16,17,18,19, Tso-Fu Wang20,21, Sing-Lian Lee22, Chen-Fang Hung23, See-Tong Pang24,25,
Erik Widen2,26, Yao-Ming Chang 1, Erh-Chan Yeh1, Chun-Yu Wei1, Chien-Hsiun Chen1,
Stephen D. H. Hsu2,26 & Pui-Yan Kwok 1,28

Human height prediction based on genetic factors alone shows positive correlation, but predictors
developed for one population perform lesswell when applied to population of different ancestries. In
this study, we evaluated the utility of incorporating non-genetic factors in height predictors for the
Han Chinese population in Taiwan. We analyzed data from 78,719 Taiwan Biobank (TWB)
participants and40,641TaiwanPrecisionMedicine Initiative (TPMI) participants using genome-wide
association study and multivariable linear regression least absolute shrinkage and selection
operator (LASSO)methods to incorporate genetic and non-genetic factors for height prediction. Our
findings establish that combining birth year (as a surrogate for nutritional status), age at
measurement (to account for age-associated effects on height), and genetic profile data improves
the accuracy of height prediction. This method enhances the correlation between predicted and
actual height and significantly reduces the discrepancies between predicted and actual height in
both males and females.

Humanheight is awidely studied polygenic trait because it can bemeasured
accurately and is readily available from large cohorts1–4. Besides sex differ-
ences and genetic factors, however, adult height is also influenced by
nutrition, age, and environmental factors. For example, from 1985 to 2019,
the average height of males and females in Taiwan increased from 169.2 cm
to 173.5 cm and from 158.3 cm to 160.7 cm, respectively; those for males
and females in the United Kingdom increased from 176.4 cm to 178.2 cm
and from 162.7 cm to 163.9 cm, respectively5–10. In addition, height is
associatedwith several human diseases, including cancer11,12, coronary heart
disease13, stroke14, and macular degeneration15. It is speculated that genetic
loci associated with height may be pleiotropic and influence one’s sus-
ceptibility to diseases. Genome-wide association studies (GWAS) and
machine learning techniques have been used to identify genetic variants
associated with height16–22.

Polygenic prediction of height has been examined extensively in Eur-
opean populations19,23,24 and briefly in admixed populations25,26, but com-
pared with studies in European populations, fewer studies have examined
polygenic height prediction innon-Europeanpopulations27.Here,we report
our findings of height prediction based on genetic and other factors in two
large Han Chinese cohorts as part of the Taiwan Biobank (78,719 indivi-
duals) and the Taiwan Precision Medicine Initiative (40,641 individuals).

Methods
Sample characteristics
The Taiwan Biobank (https://www.twbiobank.org.tw/; TWB) is a
community-based prospective community cohort study of the Taiwanese
population. Those between 30 to 70 years old and without cancer can join
the project, but there is no age limitation for tracking cases. A standard
questionnaire is used at 44 recruitment centers in all counties and cities
across Taiwan to collect participants’ demographics, socioeconomic status,
environmental exposures, lifestyle, dietary habits, family history and self-
reported disease status. Anthropometric measurements and blood / urine
samples are collected at the time of enrollment, and genetic profiling is
performedon customgenome-wide single nucleotide polymorphism (SNP)
arrays, TWBv1 with 653,291 SNPs and TWBv2 (also named TPM1) with
752,921 SNPs28.

The Taiwan Precision Medicine Initiative (TPMI; https://tpmi.ibms.
sinica.edu.tw/www/) is a cohort study of the Taiwanese population in
partnership with 33 hospitals across Taiwan. Participants consent to pro-
viding their electronic medical records (EMR) and residual blood samples
for genetic profiling.TheEMR includes outpatient and admission/discharge
notes, surgical records, together with imaging, pathological, and blood test
reports. Genetic profiling was performed on two custom genome-wide SNP
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arrays. Thefirst array, TPM1, also known as TWBv2, has 752,921 SNPs and
was used for early participants (before 2022). The second array, TPM2, has
755,191 SNPs and was used for subsequent participants29.

This study includes 81,061 TWB participants genotyped on the
TPM1/TWBv2 arrays as a training and testing set, and 68,610 TPMI par-
ticipants genotyped on the TPM1/TWBv2 arrays as a validating set and for
subsequent analysis. The latest height measurements are used in the ana-
lyses for those TWB and TPMI participants with follow-up data.

Written informed consent was obtained from all participants, with
ethics approval granted by the Academia Sinica Institutional Review Board
(AS-IRB01-23066). This study was conducted in accordance with the
Declaration of Helsinki and relevant ethical regulations. Summary statistics
are available from the corresponding author upon reasonable request, and
individual data and biomaterials can be accessed through the Taiwan Bio-
bank following established procedures.

Quality control
We conducted standard quality control (QC) for the two datasets30–32

(Supplementary Figure 1). Individuals with gender error, genotyping miss
call rate > 0.1, birthdate outside 1946–1986 range, and 3rd degree or closer
kinship relationship with other participants were excluded, resulting in
78,719 QC-passed samples from 81,061 TWB participants in the training
and testing sets, and 40,641 QC-passed samples passed from 68,610 TPMI
participants in the validating set. Next, we removed SNPs with call rates of
<0.9, minor allele frequency (MAF) < 0.01, and deviation from Hardy-
Weinberg equilibrium(HWE < 10-8), resulting in543,064and543,701high
quality SNPs in the training/testing and validating sets, respectively. Finally,
542,988 SNPs in common between the training/testing and validating sets
were selected for subsequent analyses.

Statistical analysis
Males and females are analyzed separately due to known height differences
between them. Height predictors are developed using the following process
(Supplementary Figure 2): (I)We employed the “10-FoldCross-Validation”
method33–36 to randomly divide all TWB samples into 10 subgroups, labeled
G1,G2,…, G9, andG10. (II)When theG1 subgroupwas used as the testing
set then the other 9 subgroups, G2-G10, were used as the training set.
Similarly, G2 was used as the testing set and the other 9 subgroups, G1, G3-
G10, were used as the training sets and so on. In this step, 10 analysis groups
of training and testing sets were obtained. (III) The genome-wide associa-
tion study (GWAS) was conducted by regressing height (dependent vari-
able) on the single nucleotide polymorphism (SNP) (independent variable),
one SNPat a time, on the training set in each analysis group.Manhattanplot

results for males and females were presented in Supplementary Figure 3.
(IV) Next, we filtered out SNPs with P-values greater than 0.05 in the 10
analysis group training sets and further selected the intersecting SNPs that
were present in all 10 groups for subsequent analysis. (V) To select a subset
of informative SNPs that illustrate the relationship between the genome and
height, the maximumR-square stepping algorithm least absolute shrinkage
and selection operator (LASSO)37 method was used (via a least angle
regression) in the 10 analysis group training sets.Only SNP informationwas
included to select the most appropriate SNP combination. (VI) We then
picked out the intersecting SNPs that were selected by the step (V) LASSO
method in all the 10 analysis groups training set. There were 5,878 SNPs in
the male groups and 20,311 SNPs in the female groups in the final com-
bination of SNPs (Supplementary Table 1). (VII) Multiple linear regression
was used to calculate the weights of four different combinations in the 10
analysis groups training set: SNPs (polygenic score, PGS) only, SNPs
(PGS)+ birth year in Anno Domini (AD), SNP (PGS)+ age at measure-
ment, and SNP (PGS)+ birth year in AD+ age at measurement. The
weight, beta value, of each SNP, birth year in AD, and age at interviewwere
used for subsequent height prediction. (VIII)Weused theweights from step
(VII) to calculate the average of the predicted heights over 10 runs for the
TWB training and testing sets and, TPMI validating sets, respectively. The
descriptive statistics of height and age, mean, standard deviation (SD),
median, and range are presented in TWB training and testing and TPMI
validating sets. All data analyses were performed using PLINK30, KING38,
SAS 9.4 (SAS institute, Cary, NC, USA), and R 4.2.2 (R Foundation for
Statistical Computing, Vienna, Austria).

Results
Clinical Characteristics of Taiwan Biobank (TWB) and Taiwan
Precision Medicine Initiative (TPMI)
After performing quality controlmeasures, a total of 119,360 individuals
are included in this study (TWB: 54,064 females and 24,655 males;
TPMI: 22,508 females and 18,133 males). There is no significant dif-
ference between the distribution of height in the TWB and TPMI
datasets (Table 1 and Fig. 1B). Tabulation of the average height based on
birth year (between 1946 and 1986) clearly shows an increase in average
height in participants born in later years (Fig. 1A). The trendline slopes
of the height are: 0.2258 in TWB males, 0.1890 in TWB females, 0.1789
in TPMI males and 0.1766 in TPMI females, respectively. Birth year is
therefore included in the model to account for the effect of nutritional
and other improvement in Taiwan between 1946 and 1986 on height. As
height also varies with age, age at measurement is included in the model
to account for this.

Table 1 | Clinical characteristic of Taiwan Biobank (TWB) and Taiwan Precision Medicine Initiative (TPMI) participants

TWB TPMI

Female Male Female Male

Number 54064 24655 22508 18133

Age at measurement (years)

Mean ± SD 51.68 ± 10.40 51.96 ± 11.16 53.09 ± 12.15 55.90 ± 11.64

Median 52.91 53.02 54.03 57.94

Range 30.00–73.79 30.00–73.57 30.00–74.99 30.01–74.97

P-valuea - - <0.0001 <0.0001

Height (cm)

Mean ± SD 157.43 ± 5.66 169.47 ± 6.29 157.17 ± 5.83 168.05 ± 6.80

Median 157.50 169.50 157.00 168.00

Range 118.50–181.50 112.00–200.00 124.00–200.00 127.50–202.50

P-valuea - - 0.6336 0.1505
aP-value for t-test compared to TWB dataset.
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Actualheightvs.predictedheight inTWBtrainingandtestingsets
Birth year, age at measurement, SNPs obtained by the univariable linear
regression, and their weights obtained by themultivariable linear regression
LASSO selectionmethod are used to predict height in the TWB training set.
Using only birth year, only age at measurement, or birth year plus age at
measurement to predict height does not yield good predictions in the TWB
training set (Supplementary Figure 4 and Supplementary Table 2) but

adding height-related SNPs increases height prediction accuracy (Fig. 2A–C
andTable 2). Combiningbirth year, age atmeasurement, andheight-related
SNPs simultaneously improves the accuracy of height prediction and
decreases difference between actual and predicted height (Fig. 2D and
Table 2).

Applying the samemethod topredictheight in theTWB testing set, the
Pearson correlation coefficient between actual and predicted height based
on birth year, age at measurement, and height-related SNPs are found to be
0.7759 and 0.6084 for males and females, respectively (Table 2), sub-
stantially higher than all other combinations. Moreover, the difference
between the height predicted by this combination and the actual height is
also the smallest. The distribution of actual andpredictedheight in theTWB
testing set also yields the same results, suggesting that combining birth year,
age at measurement, and height-related SNPs will give the best height
predictions (Fig. 3 and Supplementary Fig. 5).

Actual height vs. principal component analysis (PCA) adjustment
predicted height in TWB training and testing sets
In most genomic related studies, the principal component analysis (PCA)
adjustment is applied to correct for population stratification19,23,25,27,28. The
TWB female and male PCA eigenvalues were tabulated in Supplementary
Table 1. Since the PCA eigenvalue after the 20th in females is <1, PCA1-
PCA20 were selected for subsequent analysis. Although males are <1 from
the 15th onwards, based on the consistency of analysis, the same PCA1-
PCA20 as females were selected for subsequent analysis (Supplementary
Table 3). The outcomes are the same as those without 20 PCA factors
(Figs. 4, 5, and Table 3). Though the accuracy was more precise, there were
no statistically significant differences between the TWB testing set without
and with PCA adjustment; the Pearson correlation coefficient in males was
0.7759 and 0.7816, respectively. And in the female group, it was 0.6084 and
0.6262 (Tables 2 and 3). The overall impact of PCA is minimal. In the
subsequent validation analysis, we opted for a model that excluded PCA to
mitigate the potential variations stemming from differing PCA coefficients
across various databases.

Fig. 1 | Taiwan Biobank and Taiwan Precision Medicine Initiative (TPMI)
females’ and males’ height distribution. A The average height in the year of birth,
the trendline equation: TWB Male = 0.2258*(year of birth in AD)-274.22; TPMI
Male = 0.1789*(year of birth inAD)-183.20; TWBFemale = 0.1890*(year of birth in
AD)-213.90; TPMI Female = 0.1766*(year of birth in AD)-190.01, B count of the
different heights.

Fig. 2 | The distribution of actual height and predicted height based on the combination of different factors combination in the Taiwan Biobank training set.
A Polygenic score (PGS) only, B PGS+ birth year in AD, C PGS+ age at measurement, D PGS+ birth year in AD+ age at measurement.
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Validation of height predictions in the TPMI dataset
To assess the reliability of the height prediction method, an independent
dataset, TPMI, was employed for validation and performance evaluation.
Birth year, age at measurement, and height-related SNPs with the same
weighting was used for height prediction in the TPMI dataset. The dis-
tribution of actual and predicted height based on the combination model
(birth year, age at measurement, and height-related SNPs) again shows
improvement in the accuracy of height prediction compared to those using
only one element or combinations of only two of the elements (Fig. 6). For
example, the combination model improves the correlation of predicted to
actual height from 0.2225 to 0.3980 for males and 0.2708 to 0.4444 for
females, respectively (Table 4). Similarly, the proportion of males and
females with >5% difference between their actual and predicted heights
decreases significantly, from 19.51% to 11.70% for males and from 19.93%
to 13.20% for females, respectively.

Discussion
Geographical location and environmental factors influence Taiwan’s
population composition. The majority of Taiwanese ethnic groups
are of Han ancestry (>95%), with ~2% being of Aboriginal ancestry
(Austronesian)39,40. Furthermore, based on PCA results comparing TWB
and TPMI samples with the 1000 Genomes Project, the TWB and TPMI
samples clusterwithEastAsian ancestry, confirming that themajority of the
samples belong to the Han Chinese ancestry group (Supplementary Fig. 6).
The Taiwanese Han Chinese population comprises Min-Nan (also known

asHolo), Hakka, andMainlanders. Although there are genetic, lifestyle, and
dietary habit differences among these ethnicities, there is no statistically
significant difference in actual and predicted height when comparing the
three major ethnic groups (ethnic information comes from TWB pheno-
typic data) within the Taiwanese Han Chinese population (Supplementary
Table 4).

Generally, humans grow taller and consume more nutritious diets
when food is abundant41. However, as age increases, height tends to gra-
dually decrease due to factors such as spinal disc degeneration, osteoporosis,
andmuscle loss. Women typically lose around two inches between the ages
of 30 and 70, while men lose about an inch by age 70 and two inches by age
8042–46. This is consistent with the results shown in this study, where bone
density increased with birth year in both males and females but decreased
with age at measurement (Supplementary Table 5). Although the inclusion
of both birth year in AD and age at measurement in the prediction model
raises concerns about collinearity and potential overfitting, our analysis
indicates that the variance inflation factors (VIF) for birth year in AD and
age at measurement were 9.36 and 8.72, respectively, both below the
threshold of 10, indicating no collinearity issues. Therefore, including birth
year in AD and age at measurement in the model increases the accuracy of
height prediction.

The average age at measurement for the TPMI validating set (female:
53.09 ± 12.15; male: 55.90 ± 11.64) is slightly older than the TWB training
and testing sets (female: 51.68 ± 10.40; male: 51.96 ± 11.16) for both sexes.
This difference may cause a bias for the height prediction. However, age at

Table 2 | The actual and predicted height distribution in TWB participants (N = 78,719)

Male

Model N Mean ± SD Median (range) Difference > 5% N (%)a PCC PCC’s SD

Actual

24655 169.47 ± 6.29 169.5 (112.00–200.00)

Training set

PGS 221895 169.47 ± 5.40 169.38 (128.19–196.72) 179 (0.73%) 0.8675 0.0011

PGS+ birth year in AD 221895 169.47 ± 5.50 169.41 (131.08–195.88) 133 (0.54%) 0.8825 0.0010

PGS+ age at measurement 221895 169.47 ± 5.50 169.41 (131.18–195.84) 134 (0.54%) 0.8825 0.0010

PGS+ birth year in AD+ age at measurement 221895 169.47 ± 5.50 169.40 (131.13–195.86) 132 (0.54%) 0.8826 0.0010

Testing set

PGS 24655 169.48 ± 5.61 169.40 (138.82–200.43) 1184 (4.80%) 0.7481 0.0042

PGS+ birth year in AD 24655 169.47 ± 5.69 169.41 (140.59–199.00) 924 (3.75%) 0.7758 0.0040

PGS+ age at measurement 24655 169.47 ± 5.69 169.41 (140.70–199.16) 922 (3.74%) 0.7757 0.0040

PGS+ birth year in AD+ age at measurement 24655 169.47 ± 5.69 169.40 (140.62–199.04) 920 (3.73%) 0.7759 0.0040

Female

Model N Mean ± SD Median (range) Difference > 5% N (%)a PCC PCC’s SD

Actual

54064 157.43 ± 5.66 157.50 (118.50–181.50)

Training set

PGS 486576 157.44 ± 4.75 157.38 (133.77–179.61) 497 (0.92%) 0.8509 0.0008

PGS+ birth year in AD 486576 157.44 ± 4.88 157.39 (135.06–180.68) 301 (0.56%) 0.8717 0.0007

PGS+ age at measurement 486576 157.44 ± 4.88 157.38 (134.94–180.59) 295 (0.55%) 0.8718 0.0007

PGS+ birth year in AD+ age at measurement 486576 157.43 ± 4.88 157.38 (135.04–180.66) 294 (0.54%) 0.8719 0.0007

Testing set

PGS 54064 157.44 ± 5.47 157.41 (108.54–244.86) 7144 (13.21%) 0.5427 0.0036

PGS+ birth year in AD 54064 157.44 ± 5.51 157.41 (106.93–242.99) 5784 (10.70%) 0.6032 0.0034

PGS+ age at measurement 54064 157.44 ± 5.51 157.42 (104.26–243.81) 5745 (10.63%) 0.6026 0.0034

PGS+ birth year in AD+ age at measurement 54064 157.43 ± 5.48 157.41 (111.32–209.12) 5722 (10.58%) 0.6084 0.0034

PGS polygenic score, SD standard deviation, AD Anno Domini, PCC Pearson correlation coefficient, SD equation for PCC = sqrt [(1 - PCC²) / (N - 2)].
a Number of samples with a value >0.05 from take the absolute value after subtracting the actual height from the predicted height and then divided by the actual height.
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measurement is included in the correction in analysis models to avoid the
impact of differences. With the additional adjustment, we can also estimate
the impact of birth cohort changes on height by using the deviation caused
by birth year. The new method for height prediction that combines genetic
and age factors as a surrogate for nutritional status in two large datasets

(TWB and TPMI), is shown to estimate height accurately for the Han
Chinese in Taiwan.

In our analysis, all 10 analysis groups (G1-G10) were used simulta-
neously as both training and testing sets. This dual role of the data could
potentially lead to the testing set showing a somewhat inflated performance

Fig. 4 | The distribution of actual height and principal component analysis (PCA) adjustment predicted height based on the combination of different factors
combination in the Taiwan Biobank training set. A PGS only,B PGS+ birth year in AD,C PGS+ age at measurement,D PGS+ birth year in AD+ age at measurement.

Fig. 3 | The distribution of actual height and predicted height based on the combination of different factors combination in the Taiwan Biobank testing set. A PGS
only, B PGS+ birth year in AD, C PGS+ age at measurement, D PGS+ birth year in AD+ age at measurement.
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Fig. 5 | The distribution of actual height and principal component analysis (PCA) adjustment predicted height based on the combination of different factors
combination in the Taiwan Biobank testing set. A PGS only,B PGS+ Birth year in AD,C PGS+Age at measurement,D PGS+ Birth year in AD+Age at measurement.

Table 3 | The actual and principal component analysis (PCA) adjustment predicted height distribution in TWB participants
(N = 78,719)

Male

Model N Mean ± SD Median (range) Difference > 5% N (%)a PCC PCC’s SD

Actual

24655 169.47 ± 6.29 169.5 (112.00–200.00)

Training set

PGS+ PC1 - PC20 221895 169.47 ± 5.43 169.38 (127.70–196.31) 151 (0.61%) 0.8726 0.0010

PGS+ birth year in AD+PC1 - PC20 221895 169.47 ± 5.52 169.38 (130.53–195.57) 119 (0.48%) 0.8856 0.0010

PGS+ age at measurement+ PC1 - PC20 221895 169.47 ± 5.52 169.39 (130.62–195.53) 118 (0.48%) 0.8857 0.0010

PGS+ birth year in AD+ age at measurement+ PC1 - PC20 221895 169.47 ± 5.52 169.39 (130.58–195.55) 117 (0.47%) 0.8858 0.0010

Testing set

PGS+ PC1 - PC20 24655 169.48 ± 5.64 169.39 (138.11–201.41) 1132 (4.59%) 0.7573 0.0042

PGS+ birth year in AD+PC1 - PC20 24655 169.48 ± 5.71 169.42 (139.55–199.92) 864 (3.50%) 0.7815 0.0040

PGS+ age at measurement+ PC1 - PC20 24655 169.47 ± 5.71 169.41 (139.66–200.07) 867 (3.52%) 0.7814 0.0040

PGS+ birth year in AD+ age at measurement+ PC1 - PC20 24655 169.48 ± 5.71 169.41 (139.59–199.96) 862 (3.50%) 0.7816 0.0040

Female

Model N Mean ± SD Median (range) Difference > 5% N (%)a PCC PCC’s SD

Actual

54064 157.43 ± 5.66 157.50 (118.50–181.50)

Training set

PGS+ PC1 - PC20 486576 157.44 ± 4.81 157.39 (133.26–178.97) 387 (0.72%) 0.8596 0.0007

PGS+ birth year in AD+PC1 - PC20 486576 157.44 ± 4.92 157.39 (134.56–180.08) 244 (0.45%) 0.8778 0.0007

PGS+ age at measurement+ PC1 - PC20 486576 157.44 ± 4.92 157.38 (134.45–180.00) 242 (0.45%) 0.8779 0.0007

PGS+ birth year in AD+ age atmeasurement+PC1 - PC20 486576 157.44 ± 4.92 157.38 (134.54–180.07) 239 (0.44%) 0.8780 0.0007

https://doi.org/10.1038/s41525-025-00468-6 Article

npj Genomic Medicine |            (2025) 10:7 6

www.nature.com/npjgenmed


due to its inclusion in the training process. This observationmay explain the
notably high Pearson correlation coefficient of 0.7759 for male and 0.6084
for female observed in the model involving SNPs, birth year, and age at
measurement in the TWBmale testing set. However, while the result on the
testing set may be somewhat inflated due to its dual role in the analysis, the
independent TPMI dataset validation results remain robust and are the
primary focusof our paper.That said,we acknowledge that there is anotable
drop in the correlation coefficient, decreasing fromover 0.7 in the testing set
to ~0.4 in the validation set. This reduction highlights the challenges of
generalizing the model to an independent dataset. The validation results
provide a more reliable assessment of the model’s generalization perfor-
mance,which is consistentwithother articles47,48 and constitutes akey aspect
of our findings.

Furthermore, we observed that females required a larger set of SNPs
(20,311 SNPs) compared to males (5878 SNPs) to achieve higher pre-
diction accuracy. One plausible explanation is the influence of hormonal
dynamics, particularly estrogen levels, which play a significant role in
skeletal growth and development. Hormonal fluctuations, such as those
occurring during menopause49,50, can impact height-related genetic
variants differently in females compared to males. Additionally, age-
related processes, including height loss due to aging, may necessitate the

inclusion of a broader array of genetic markers in females to account for
these physiological changes.

A recent study analyzed the rare and low-frequency coding variants
found in >200,000 individuals of six different ethnicities and identified
>1000 variants associated with height51. The authors observed that these
variants were associated with body mass index, bone mineral density, and
lung function51. In aGWAS studyof theTaiwanBiobank (TWB), four novel
genes—NABP2, RASA2, RNF41, and SLC39A5—were identified for
human height, and it was also discovered that these genes have associated
with cardiovascular disease, diabetes, and cancer52. In our current study,
with the exception of rs295321 in the RASA2 gene, all SNPs from these four
height-related genes (NABP2, RASA2, RNF41, and SLC39A5) were
incorporated into our height prediction model. Other studies using TWB
data have suggested potential associations between height and certain
health-related outcomes, though the most significant findings were related
to anthropometric traits. While there may be trends indicating that taller
individuals could have lower risks for some chronic diseases, such as car-
diovascular disease, diabetes, and cancer, these associations are not defini-
tive. Additionally, height has been suggested to be associatedwith longer life
expectancy in some populations, but further research is needed to confirm
these findings53. In addition, the relationship between height and mate

Table 3 (continued) | The actual and principal component analysis (PCA) adjustment predicted height distribution in TWB
participants (N = 78,719)

Female

Model N Mean ± SD Median (range) Difference > 5% N (%)a PCC PCC’s SD

Testing set

PGS+ PC1 - PC20 54064 157.43 ± 5.47 157.40 (109.07–241.61) 6606 (12.22%) 0.5711 0.0035

PGS+ birth year in AD+PC1 - PC20 54064 157.43 ± 5.51 157.42 (111.06–242.96) 5345 (9.89%) 0.6229 0.0034

PGS+ age at measurement+ PC1 - PC20 54064 157.44 ± 5.52 157.42 (109.89–237.99) 5360 (9.91%) 0.6211 0.0034

PGS+ birth year in AD+ age atmeasurement+PC1 - PC20 54064 157.43 ± 5.48 157.42 (110.86–214.27) 5311 (9.82%) 0.6262 0.0034

PGS polygenic score, SD standard deviation, AD Anno Domini, PCC Pearson correlation coefficient, SD equation for PCC = sqrt [(1 - PCC²) / (N - 2)].
a Number of samples with a value greater than 0.05 from take the absolute value after subtracting the actual height from the predicted height and then divided by the actual height.

Fig. 6 | The distribution of actual height and predicted height based on the combination of different factors combination in the TPMI validating set. A PGS only,
B PGS+ birth year in AD, C PGS+ age at measurement, D PGS+ birth year in AD+ age at measurement.
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choiceand reproduction inTaiwan found that tallermenweremore likely to
have a partner and have more children. They were also more likely to have
shorter periods of celibacy and live with their partners for longer periods of
their lives54. Furthermore, a polygenic risk predisposition score for familial
short stature (FSS) in the Han Chinese population, comprising 10 novel
SNPs and nine previously reportedheight-related SNPs, demonstrated high
predictive accuracy for FSS risk, with an area under the curve of 0.940 in the
testing group55. These nine height-related SNPs have also been included in
our height predictionmodel to enhance its predictive capability. The height
prediction study by Yengo et al.16 identified 12,111 independent SNPs sig-
nificantly associated with height, based on data from a genome-wide
association study of 5.4 million individuals from diverse ancestries16. In our
analysis, 34.20% ((855+ 1155)/5878) of these SNPs were included in our
male height prediction model, and 33.55% ((1155+ 5659)/20311) were
included in our female model (supplementary Fig. 7). Although approxi-
mately one-third of the SNPs overlap, the heritability (h²) of the SNPs we
selected for height prediction is 0.4775 ± 0.0069 in males and
0.4267 ± 0.0050 in females. Furthermore, gene ontology (GO) analysis
basedon the SNPswe selected for height prediction identified the top 30GO
terms with the smallest false discovery rate (FDR) (Supplementary Fig. 8).
The top five GO terms in females—developmental process, system devel-
opment, anatomical structure development, multicellular organism devel-
opment, and multicellular organismal process—are all related to height
(Supplementary Fig. 8A). Similarly, inmales, the GO termwith the smallest
FDR is also related to height (Supplementary Fig. 8B). Therefore, the SNPs
we selected are indeed associated with height and can be used for height
prediction.

Limitations of this study include the following: First, TWB only
includes individuals aged 30–70 years, limiting the generalizability of the
study results to other age groups. Second, because it is not a long-term
follow-up data and only the most recent height measurement is used, this
may not fully explain the decrease in height with age. Third, due to data
limitations of TPMI, which has not yet completed imputed SNP data, we
lack fully available imputed SNP data and we can only use SNPs confirmed
by genotypingmicroarrays, which limits the genetic resolution of the study.
In addition, although we validated the model using the Taiwan Precision
Medicine Initiative (TPMI) dataset, both TWB andTPMI datasets are from
the same population, which may limit generalization to other populations.
Finally, although non-genetic factors such as year of birth and age at

measurement improve prediction accuracy, theymay introduce collinearity
and overfitting risks, even if we checked for these issues.

In conclusion, the height prediction model which matches theoretical
expectations has been effectively developed and validated within the Han
Chinese population of both TWB and TPMI databases.We employed a 10-
fold cross-validation procedure33–36 to ensure methodological rigor in
developing and evaluating the final model. It has long been known that an
increase in height is correlated with improved nutrition56 and a decrease in
height is correlated with advanced age57. Despite potential variations in
environmental and genetic factors across different databases, this study
consistently emphasizes the predictability of height based on combining
genetic factors, birth year, and age at measurement. It also underscores the
high data quality of the two Taiwanese databases. Understanding the
genetics of height carries significant importance, given its associations with
various diseases. These newly established predictors forHanChinese height
represent another crucial step toward achieving this overarching research
objective.

Data availability
The relevant data and summary statistics are publicly available at https://
pheweb.ibms.sinica.edu.tw.
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