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bDepartment of Electrical and Computer Engineering, University of New Mexico, Albuquerque, 
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cDepartment of Psychiatry, University of California, San Francisco, CA, USA

dMental Health Service, San Francisco VA Medical Center, San Francisco, CA, USA

Abstract

New techniques to investigate functional network connectivity in resting state functional magnetic 

resonance imaging data have recently emerged. One novel approach, called meta-state analysis, 

goes beyond the mere cross-correlation of time courses of distinct brain areas and explores 

temporal dynamism in more detail, allowing for connectivity states to overlap in time and 

capturing global dynamic behavior. Previous studies have shown that patients with chronic 

schizophrenia exhibit reduced neural dynamism compared to healthy controls, but it is not known 

whether these alterations extend to earlier phases of the illness. In this study, we analyzed 

individuals at clinical high-risk (CHR, n= 53) for developing psychosis, patients in an early stage 

of schizophrenia (ESZ, n= 58), and healthy controls (HC, n= 70). ESZ individuals exhibit reduced 

neural dynamism across all domains compared to HC. CHR individuals also show reduced neural 

dynamism but only in 2 out of 4 domains investigated. Overall, meta-state analysis adds 

information about dynamic fluidity of functional connectivity.
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1. Introduction

Functional network connectivity (FNC) has gained much interest in recent years as a 

measure of functional brain integrity that often appears disrupted in neurological and 

psychiatric disorders (Calhoun et al., 2014; Fornito et al., 2015). The analysis of FNC has 

potential to further our understanding of the neural mechanisms underlying disabling 

psychiatric and neurological disorders. Most often, FNC is analyzed using resting state 

functional magnetic resonance imaging (rs-fMRI) data. After initial acquisition and pre-

processing of the data, there are multiple options to further analyze functional connectivity 

(van den Heuvel & Hulshoff Pol, 2010), including group independent component analysis 

(GICA; Calhoun et al., 2001; Erhardt et al., 2011), graph theoretical approaches (Bullmore 

& Sporns, 2009), and dynamic causal modelling (Friston et al., 2014).

In the current paper, we focus on independent component analysis (ICA) and one of its 

diverse applications. ICA is a purely data-driven approach that does not make assumptions 

about the shape of the time courses of the blood oxygenation level dependent (BOLD) 

signal. GICA estimates maximally independent spatial components with common time 

courses that can be characterized as intrinsic connectivity networks (ICN) and further 

grouped into functional domains. Recently, there has been considerable development of 

various aspects of GICA. The first established GICA measure was static FNC (Jafri et al., 

2008) that involves calculation of whole brain connectivity, i.e., correlation of time courses, 

across the entire resting state scan. Subsequent work focused on the development of a 

dynamic FNC approach, as it has been shown that functional connectivity is highly dynamic 

throughout the duration of a typical resting state scan (Chang & Glover, 2010; Hutchison et 

al., 2013).

In dynamic FNC, time courses are parceled into temporal windows, each with a size of 

multiple repetition times (TR) allowing for a finer temporal resolution than static FNC. 

Across the windowed FNC matrices, recurring connectivity patterns have been identified 

and summarized as discrete states based on cluster centroids, i.e., matrices most distinctively 

representing each state. It has been shown that these states occur independently of the 

population studied, including healthy and clinical populations (Abrol et al., 2017). Even 

though dynamic FNC analysis can uncover abnormalities in patient samples relative to 

healthy controls that are obscured in static FNC analyses (Damaraju et al., 2014; Rashid et 

al., 2014), it still appears to be an oversimplified measure of complex brain dynamics.

In order to further investigate brain dynamics, Miller et al. (Miller et al., 2016) introduced an 

approach to analyze meta-states: instead of ‘forcing’ windowed FNC matrices into one 

specific state membership, this approach builds distance vectors to the cluster centroids for 

each windowed FNC matrix. More specifically, windowed FNCs are modeled as “weighted 

sums of maximally independent connectivity patterns (CP)” (Miller et al., 2016). Discretized 
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CP distance vectors are called meta-states. A meta-state analysis enables the estimation of 

different measures of neural dynamism, for example, the total distance traveled in the n-

dimensional state space (n reflecting the number of distinct CPs), number of distinct meta-

states, span of meta-states, and number of meta-state changes. Thereby it is a new approach 

to depict neural dynamics beyond the analysis of static and dynamic FNC. With finer 

temporal resolution than typically examined in FNC, this technique allows to assess how 

dynamic and ‘agile’ functional connectivity is across the duration of the resting state scan, 

including how many distinct meta-states individuals exhibit and how often they switch 

among states.

Schizophrenia is one of the most extensively studied psychiatric illnesses. It is viewed as a 

neurodevelopmental disorder characterized by structural and functional dysconnectivity 

(Calhoun, 2009; Fornito et al., 2012). Dysconnectivity, the abnormal functional and 

structural ‘communication’ between brain areas, can lead to erroneous integration of 

perception, which might explain symptoms such as hallucinations and delusions. 

Furthermore, it has recently been shown that dynamic changes of functional connectivity are 

essential for cognitive processing (Shine et al., 2016; Vatansever et al., 2015). Given that 

schizophrenia is often accompanied by cognitive decline, the thorough investigation of brain 

dynamics in schizophrenia seems important in order to better understand underlying neural 

mechanism.

With regard to neural dynamism in meta-state analysis in patients with schizophrenia, Miller 

et al (Miller et al., 2016) showed that compared to healthy controls, patients exhibit reduced 

dynamism: they switch less often between meta-states, occupy fewer meta-states in general, 

and explore a restricted range in the meta-state space compared to healthy controls. These 

findings provide novel extensions of the evidence for global dysconnectivity in 

schizophrenia, which to date has been assessed predominantly with static FNC techniques.

Most patients with first episode schizophrenia retrospectively describe a prodromal state, 

typically lasting a few years, preceding the onset of their full-blown psychotic symptoms. 

Prospectively, individuals who exhibit symptoms resembling the psychosis prodrome are 

said to be at clinical high-risk for psychosis (CHR), meeting criteria for a psychosis-risk 

syndrome characterized by attenuated psychotic symptoms, brief intermittent psychotic 

episodes, and/or genetic risk and recent functional decline, as well as associated 

impairments in social and cognitive functions (Fusar-Poli et al., 2013; McGlashan et al., 

2010). In order to understand the pathogenesis of underlying brain dysfunction in 

schizophrenia, it is essential to investigate the CHR state. As has been shown in previous 

work, the CHR state is already characterized by functional dysconnectivity in static as well 

as dynamic FNC analyses (Du et al., 2017a; Du et al., 2017b; Mennigen et al., “The 

chronnectomics of schizophrenia risk: dynamic functional network connectivity in clinical 

high-risk, early illness schizophrenia, and healthy control individuals” at Society for 

Neuroscience, 2016, San Diego, CA)2. Findings from Du and colleagues indicated that the 

2https://www.researchgate.net/publication/
310605352_Dynamic_functional_connectivity_in_individuals_at_clinical_high_risk_for_psychosis_early_illness_schizophrenia_patie
nts_and_healthy_controls
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level of dysconnectivity observed in CHR individuals fell intermediately between patients 

with early-illness schizophrenia and healthy controls (Du et al., 2017a).

In the current study, we analyzed the same sample of CHR, early illness schizophrenia 

(ESZ), and healthy control (HC) individuals as presented in Du et al. and Mennigen et al. in 

order to investigate temporal dynamism in both a CHR sample as well as in an early stage of 

schizophrenia using the meta-state approach introduced by Miller et al. (Miller et al., 2016) 

but focusing on k-means clustering. Based on our previous studies using these data, as well 

as a general theoretical framework that posits less severe brain dysfunction in CHR 

individuals relative to ESZ patients, either due to progressive decline of brain function or the 

presence of more severe dysfunction in only the subgroup of CHR individuals destined to 

transition to full psychosis, we hypothesized that CHR individuals would exhibit alterations 

in neural dynamism that are intermediate, falling in between ESZ and HC individuals.

2. Material and methods

2.1. Participants

CHR individuals (n=53) were recruited from University of California, San Francisco 

(UCSF) Early Psychosis Clinical Research Program, local clinics, and school counseling 

centers. The CHR for psychosis syndrome was diagnosed based on the Criteria of Prodromal 

Syndromes (COPS; T. J. Miller et al., 2002) as assessed using the Structured Interview for 

Prodromal Syndromes (SIPS; McGlashan et al., 2001). Individuals met criteria for one or 

more of three non-mutually exclusive prodromal syndromes: Attenuated Psychotic 

Symptoms (92.5%), Brief Intermittent Psychotic Symptoms (1.9%), and Genetic Risk and 

Deterioration (7.5%) (T. J. Miller et al., 2003).

ESZ patients (n=58) were recruited from the Early Psychosis Clinical Research Program at 

USCF and from local community clinics. ESZ patients met DSM-IV criteria for 

schizophrenia (n=63.8%), schizoaffective (n=27.6%) or schizophreniform (n=6.9%) disorder 

based on the Structured Clinical Interview for DSM-IV (SCID; First et al., 2002) 

administered by a trained interviewer. The mean illness duration for ESZ patients was 2.09 

years (standard deviation, SD, 1.37).

Symptom severity was assessed by trained clinical raters using the Scale of Prodromal 

Symptoms (SOPS; T. J. Miller et al., 2003) for CHR individuals and the Positive and 

Negative Syndrome Scale (PANSS; Kay et al., 1987) for ESZ patients.

HC individuals (n=70) were recruited from the community and did not meet criteria for any 

axis I diagnosis based on the SCID. For participants < 16 years of age, the Schedule for 

Affective Disorders and Schizophrenia for School-Age Children (Kiddie-SADS), Present 

and Lifetime Version (Kaufman et al., 1997) was used in order to assess for Axis I diagnoses 

in younger teenagers.

General exclusion criteria included DSM-IV substance dependence in the past year (except 

nicotine), a history of head injury with loss of consciousness, neurological disorders, or a 

first-degree relative with a psychotic illness (for HC individuals only).
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Written informed consent was obtained from participants, or from their parents/legal 

guardians in the case of minors (who also provided written assent), under protocols 

approved by the institutional review board at UCSF. Demographic data are presented in 

Table 1. The final sample comprised 70 HC, 53 CHR, and 58 ESZ individuals and groups 

did not differ significantly with regard to age and gender. 12 CHR (22.6%) and 53 ESZ 

(91.4%) individuals were medicated with antipsychotics (supplementary table 1) at the time 

of fMRI scanning.

2.2. Data acquisition

Resting state fMRI data were collected at the UCSF Neuroimaging Center using a 3T 

Siemens Trio (Erlangen, Germany) scanner.

2.2.1. Resting state fMRI pre-processing—Participants were instructed to keep their 

eyes closed while scanning and to stay awake. Resting state scans were acquired using a 

high-speed whole brain echo planar imaging sequence (32 axial slices, thickness 3.5mm, 

FOV 24cm, TR 2s, echo time 29ms, flip angle 75°). Pre-processing was computed with SPM 

8 (http://www.fil.ion.ucl.ac.uk/spm) and the Data Processing Assistant for Resting State 

fMRI (DPARSF) toolbox (Yan & Zang, 2010). The first 10 images were discarded due to 

equilibration effects, leaving 170 images for further analysis. Further pre-processing 

included slice time correction, realignment to the first volume, spatial normalization to a 

standard MNI template, reslicing to a voxel size of 3×3×3mm, and smoothing with a 6mm 

Gaussian kernel. Individuals included did not exceed 4mm/4 degrees movement across 

volumes.

2.3. Functional network connectivity analysis

The meta-state analysis is based on windowed FNC matrices. Therefore, we describe all 

FNC processing steps in detail below.

2.3.1. Group Independent Component Analysis (GICA)—Figure 1 depicts analysis 

steps for GICA and for the k-means meta-state approach. Spatial GICA (Calhoun & Adali, 

2012; Calhoun et al., 2001) decomposes the whole brain rs-fMRI data into linear mixtures of 

spatially independent components. GICA was performed using the Group ICA fMRI 

toolbox (GIFT) (http://mialab.mrn.org/software/gift/index.html) with two data reduction 

steps using principal component analysis: 1) a subject-specific reduction of time points from 

170 time points to 120 temporal principle components comprising weighted sums of time 

points, and 2) a group-wise reduction of the concatenated subject-reduced data to 100 

aggregate components each consisting of a spatial map and a corresponding time course 

using the expectation-maximization algorithm (Roweis, 1998). Pre-processing in GIFT 

included z-scoring of time courses in order to normalize variance. ICA was repeated 20 

times in ICASSO (Himberg & Hyvärinen, 2003) using the infomax (Bell & Sejnowski, 

1995) algorithm in order to ensure stability of estimation. We used spatial-temporal back 

reconstruction (Erhardt et al., 2011) to estimate subject-specific time courses and spatial 

maps for each independent component. The resulting 100 independent components were 

manually reviewed in order to identify meaningful ICNs based on the Automated Anatomic 

Labeling atlas (Tzourio-Mazoyer et al., 2002). ICNs should show peak locations in gray 

Mennigen et al. Page 5

Schizophr Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fil.ion.ucl.ac.uk/spm
http://mialab.mrn.org/software/gift/index.html


matter with minimal overlap with white matter, ventricles, blood vessels, and non-brain 

structures. Further, spectral power of the time courses of meaningful ICNs should obey the 

power law, showing exponentially higher power at the lowest frequencies and lowest power 

at the highest frequencies. Inspection of the 100 independent components yielded 47 

meaningful ICNs which were assigned to 8 functional domains based on prior scientific 

literature (http://neurosynth.org/): subcortical (SC), salience (SAL), auditory (AUD), 

sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN), and 

cerebellum (CB). Supplementary figure 1 shows all functional domains and supplementary 

table 2 contains ICNs assigned to each domain.

2.3.2. Post-processing of time courses—Post-processing of time courses included 

linear, quadratic, and cubic detrending and regression of motion parameters (in x-, y-, and z-

direction as well as pitch, roll, and yaw) as well as their derivatives and squares, in a single 

multiple regression framework (Power et al., 2014). Time courses were also despiked. 

Spikes were defined as time points with a root mean square of the frame-wise displacement 

>0.5mm. These were identified based on the 3Ddespike algorithm as implemented in 

Analysis of Functional NeuroImages (AFNI; Cox, 1996) and interpolated using a 3rd order 

spline fit to ‘clean’ neighboring data. Temporal filtering was applied with a bandpass 5th 

order Butterworth filter (passband 0.01 – 0.15 Hz). FNC was computed after post-processing 

and interpolation of time points identified as spikes.

2.3.3. Windowed functional network connectivity matrices—As in earlier studies 

(Allen et al., 2012; Damaraju et al., 2014; Rashid et al., 2014), we applied a sliding temporal 

window approach to rs-fMRI data in order to capture fluctuations of functional connectivity. 

A rectangular window (width 22 TRs = 44s) was convolved with a Gaussian of sigma 3 TRs 

in order to obtain tapering along the edges of the window and slid in steps of 1 TR across 

concatenated time courses. For each window, a separate FNC matrix consisting of cross-

correlations of ICNs (size ICN x ICN) was calculated.

2.3.4 Connectivity patterns (CP) and meta-states—Unlike Miller et al. (Miller et al., 

2016), we solely applied a k-means clustering algorithm to windowed FNC (wFNC) 

matrices (representing a connectivity pattern in an individual at a certain point in time) in 

order to make results between the dynamic FNC approach and the meta-states approach 

more comparable. Estimated wFNC matrices were clustered based on the k-means algorithm 

implemented in Matlab (7.12.0 (R2011a), The MathWorks Inc., Natick, MA) with squared 

Euclidean distance as similarity measure (150 iterations, 5 replicates). The optimal number 

of cluster centroids was estimated to be 5 based on the elbow criterion (supplementary figure 

2). Supplementary figure 3 shows the k-means clustering process in more detail.

The resulting cluster centroids were used as main connectivity patterns (CPs) in order to 

generate distance vectors for each wFNC matrix. The distance was measured as squared 

Euclidean distance of each wFNC matrix to the five cluster centroids in the 5-dimensional 

meta-state space resulting in a vector consisting of 5 distances, see Figure 1. This distance 

vector is then parameterized by replacing each concrete distance value with the quartile this 

distance falls in based on the group’s distance. These parameterized vectors are called meta-
states.
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The following measures of dynamism can be calculated from the discretized distance 

vectors:

• The number of changes of meta-states, i.e., how often does an individual switch 

between distinct meta-states;

• The number of distinct meta-states, i.e., how many unique distance vectors are 

present in an individual;

• The span of meta-states, i.e., the actual range of the 5-dimensional meta-state 

space that one individual covers during the entire scan;

• The total distance traveled through the meta-state space.

Using analysis of variance (ANOVA), we tested for differences between groups separately 

for each measure of neural dynamism (significance level p<0.05). Significant results were 

followed up using the inbuilt Matlab (7.12.0 (R2011a), The MathWorks Inc., Natick, MA) 

function multcompare that uses Tukey’s HSD tests in order to determine which groups 

differed. Tukey’s HSD test was designed to control for type 1 errors and corrects for 

multiple comparisons by itself (Sato, 1996).

2.3.4.1. Summary: In the current study, a meta-state represents a whole brain connectivity 

pattern in time consisting of overlapping manifestations of 5 main connectivity patterns. 

Thus, the term meta-state refers to a high-level summary of overlapping connectivity states. 

Meta-states are then used to calculate metrics reflecting dynamic properties of whole-brain 

connectivity, i.e., number of meta-states changes, number of meta-states, span of meta-

states, and total distance travelled in the 5-dimensional meta-state space.

2.3.5. Association between neural dynamism and symptom severity—In order 

to investigate possible associations between neural dynamism and symptom severity, we 

computed bivariate Pearson’s correlations for CHR and ESZ groups and each dynamic 

measure. Positive and negative symptom scores based on SOPS for CHR individuals and 

PANSS for ESZ individuals were correlated with measures of neural dynamism. Results 

were considered significant when reaching a Bonferroni adjusted α-level of 0.0031 (0.05/16, 

i.e. nominal type I error/number of tests). Clinical data were available for 36 CHR and 56 

ESZ individuals for this analysis.

2.3.6 Influence of antipsychotic medication on neural dynamism in CHR 
individuals—In order to test medication effects, we compared measures of dynamism in 

unmedicated (N= 41, 77.4%) vs. medicated (N= 12, 22.6%) CHR individuals. Due to the 

unbalanced sample size, we computed non-parametric Wilcoxon rank sum tests. Since there 

were not enough ESZ patients without antipsychotic medication (n= 5, 8.6%) we could not 

apply the same approach to the ESZ sample.
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3. Results

3.1. Analysis of variance for group differences in measures of neural dynamism

For an overview of means and standard deviations of measures of neural dynamism see 

Table 2: HC individuals show highest values of neural dynamism, whereas CHR individuals 

fall intermediately between HC individuals and ESZ patients. We found significant 

differences between groups for the number of meta-state changes (F= 6.26, p= 0.0024), 

number of meta-states (F= 4.66, p= 0.0107), metastate span (F= 5.72, p= 0.0039), and total 

distance travelled in the meta-state space (F= 6.72, p= 0.0015). Tukey HSD tests showed 

that ESZ patients, relative to HC individuals, had significantly lower temporal dynamism as 

reflected by reductions in the number of meta-state changes (p= 0.0043), number of 

metastates (p= 0.0066), meta-state span (p= 0.0021), and the total distance travelled (p= 

0.0021). CHR individuals, relative to HC individuals, had significantly lower dynamism for 

the number of meta-state changes (p= 0.0138) and the total distance travelled in the meta-

state space (p= 0.0156) compared to HC individuals. CHR and ESZ groups did not 

significantly differ on any of the four dynamic measures.

3.2. Correlation of clinical symptom scores

Neither the CHR group nor the ESZ group exhibited significant correlations between 

symptom severity (SOPS/PANSS positive and negative symptom scores) and measures of 

dynamism.

3.3. Wilcoxon rank sum test for differences between medicated and unmedicated clinical 
high-risk individuals in measures of neural dynamism

Statistical tests for each measure of neural dynamism did not yield significant differences 

between medicated and unmedicated CHR individuals (number of meta-state changes: p= 

0.3434, z-statistic= 0.95; number of meta-states: p= 0.2133, z-statistic= 1.24; meta-state 

span: p= 0.787, z-statistic= −0.27; total distance travelled: p= 0.4374, z-statistic= 0.78).

4. Discussion

Even though the analysis of meta-states is a new approach that has not yet been widely 

applied, it offers an opportunity to further our understanding of temporal dynamism of 

functional connectivity in severe neurological and psychiatric illnesses. Previous attempts to 

capture brain dynamics in rs-fMRI data, even data-driven approaches, somewhat 

oversimplify the underlying temporal structure of the data by focusing on spatial patterns of 

dysconnectivity. The meta-state approach (Miller et al., 2016) carefully preserves as much 

information as possible about underlying dynamics in time courses, while also providing 

intuitive summary measures, thereby allowing a more detailed analysis of underlying neural 

behavior.

We applied the k-means meta-state approach to a sample of clinical high-risk individuals for 

developing psychosis, patients in an early stage of schizophrenia, and healthy controls, and 

found that neural dynamism is not only reduced in early schizophrenia but also prior to 

psychosis onset in individuals exhibiting the psychosis risk syndrome.
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4.1. Neural dynamism – Number of meta-states, meta-state changes, state span, and 
distance travelled

In both studies using this approach so far (Miller et al., 2016 and the current study) HC 

individuals exhibited highest numbers in all measures of dynamism reflecting greater 

dynamism. Again, indicating that HC individuals show more variable connectivity patterns 

and greater agility with regard to changes of connectivity patterns compared to patients with 

chronic schizophrenia (Miller et al., 2016), ESZ patients, and CHR individuals (as shown by 

the current study).

ESZ individuals show significantly reduced neural dynamism in all measures investigated 

compared to healthy controls: they exhibit a lower number of distinct meta-states, switch 

less often between these, and traverse less of the five-dimensional state space. These results 

are consistent with and extend previous findings by Miller et al. (Miller et al., 2016). 

Whereas Miller et al. examined meta-state dynamism in chronic schizophrenia, we find 

similar alterations present at an earlier stage of the disorder (mean illness duration 2.09 

years). In CHR individuals, on the other hand, 2 out of 4 metrics were significantly reduced 

compared to healthy controls. This suggests that alterations in CHR individuals are not as 

pronounced as in ESZ patients both compared to HC individuals albeit differences between 

CHR and ESZ groups were non-significant. This furthers our understanding of deficits in 

neural dynamics in schizophrenia by highlighting the fact that it is not a late emerging deficit 

associated with illness chronicity and further, that it is presumably not a deficit that emerges 

de novo following the onset of schizophrenia since reduced dynamism is captured in CHR 

individuals as well. Moreover, the presence of these deficits in neural dynamism in CHR 

individuals renders unlikely the possibility that the deficits are secondary consequences of 

antipsychotic medication since there were no significant differences between medicated and 

unmedicated CHR individuals. Fewer significant differences between CHR and HC 

individuals might be explainable by the following:

a) The CHR group is very heterogeneous with regard to transition rates because 

only about one third of CHR individuals will actually develop a psychotic 

disorder (Bechdolf et al., 2012). This heterogeneity may ‘water down’ the true 

effect of the psychosis prodrome on neural dynamism, which might in fact be 

even more similar to abnormalities observed in early-illness schizophrenia if the 

analyses were limited to those at-risk individuals who subsequently transition to 

psychosis;

or

b) Abnormalities in neural dynamism progressively worsen as individuals 

transition from the psychosis risk syndrome to full-blown psychosis.

Unfortunately, the clinical follow-up data and number of transitions to psychosis in our CHR 

sample were insufficient to permit analyses aimed at evaluating these alternative 

explanations.
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4.2. Conclusion

In this study, we applied a new connectivity analysis to samples of CHR individuals, ESZ 

patients, and HC individuals. Deficits in measures of neural dynamism were evident in early 

illness schizophrenia, consistent with prior work showing such deficits in chronic 

schizophrenia. Moreover, some deficits were present in the psychosis risk syndrome despite 

the fact that full psychosis had yet to emerge. The attenuated nature of the neural dynamism 

deficits in CHR individuals could arise from the presence of modest deficits in most 

individuals, consistent with neural dynamism deficits progressively worsening from the 

psychosis risk syndrome to full blown schizophrenia. Alternatively, these attenuated deficits 

could result from an admixture of normal or mild deficits in most individuals and more 

severe deficits in the minority of individuals destined to convert to full psychosis. 

Distinguishing between these alternatives requires clinical follow-up data on psychosis 

conversion status, data that are not available in the current sample. Nonetheless, the presence 

of these deficits in the psychosis risk syndrome, supports the conclusion that neural 

dynamism deficits precede the onset of psychosis.

The meta-state analysis adds information on fluctuations of FNC which extends our 

knowledge of brain dynamics. To further show that patients with schizophrenia (chronic and 

early-illness) and CHR individuals exhibit alterations in temporal brain dynamics 

complements findings of spatial dysconnectivity found in previous studies. Beyond this, it is 

known from task-based fMRI studies (Shine et al., 2016; Vatansever et al., 2015) that the 

dynamic reconfiguration of functional connectivity plays an important role in cognitive 

processing. This suggests that the diminished fluidity of brain connectivity as observed with 

the meta-state approach during resting state fMRI in patients with chronic schizophrenia 

(Miller et al., 2016), early-illness schizophrenia and clinical high-risk individuals (current 

study) might be connected to cognitive performance and decline thereof in schizophrenia 

and the prodromal state. Future studies are needed to test this hypothesis specifically.

4.3. Limitations

A main limitation of the current study is the novel method of meta-state analysis. Regarding 

the interpretation of results, it is important to recall that instead of making assertions about 

spatial patterns of dysconnectivity, meta-state analysis explores temporal dynamics and 

rather asks how fluidly whole brain connectivity patterns change. Whether this impaired 

fluidity is also associated with poorer task performance in schizophrenia should be explored 

in future research; an approach which would also test the validity of meta-state analysis in 

more detail.

Even though, no significant differences between medicated and unmedicated CHR 

individuals were observed, future studies should consider a more in-depth analysis of 

medication effects in CHR and ESZ populations. Again, the analysis of longitudinal data 

including conversion status of CHR individuals seems most urgent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Mennigen et al. Page 10

Schizophr Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

We thank all study participants for taking time to participate in the study.

Bibliography

Abrol A, Damaraju E, Miller RL, Stephen JM, Claus ED, Mayer AR, Calhoun VD. Replicability of 
time-varying connectivity patterns in large resting state fMRI samples. NeuroImage. 2017 In press. 

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking Whole-Brain 
Connectivity Dynamics in the Resting State. Cerebr Cortex. 2012; 24(3):663–676.

Bechdolf A, Wagner M, Ruhrmann S, Harrigan S, Putzfeld V, Pukrop R, … Klosterkotter J. Preventing 
progression to first-episode psychosis in early initial prodromal states. Br J Psychiatr. 2012; 200(1):
22–29.

Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind 
deconvolution. Neural Comput. 1995; 7(6):1129–1159. [PubMed: 7584893] 

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional 
systems. Nat Rev Neurosci. 2009; 10(3):186–198. [PubMed: 19190637] 

Calhoun VD. Functional brain networks in schizophrenia: a review. Front Hum Neurosci. 2009; 3

Calhoun VD, Adali T. Multisubject Independent Component Analysis of fMRI: A Decade of Intrinsic 
Networks, Default Mode, and Neurodiagnostic Discovery. IEEE Reviews in Biomedical 
Engineering. 2012; 5:60–73. [PubMed: 23231989] 

Calhoun VD, Adali T, Pearlson Gd, Pekar JJ. A method for making group inferences from functional 
MRI data using independent component analysis. Hum Brain Mapp. 2001; 14(3):140–151. 
[PubMed: 11559959] 

Calhoun VD, Miller RL, Pearlson G, Adalı T. The Chronnectome: Time-Varying Connectivity 
Networks as the Next Frontier in fMRI Data Discovery. Neuron. 2014; 84(2):262–274. [PubMed: 
25374354] 

Chang C, Glover GH. Time–frequency dynamics of resting-state brain connectivity measured with 
fMRI. NeuroImage. 2010; 50(1):81–98. [PubMed: 20006716] 

Cox RW. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance 
Neuroimages. Comput Biomed Res. 1996; 29(3):162–173. [PubMed: 8812068] 

Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, 
Potkin SG, Preda A, Turner JA, Vaidya JG, van Erp TG, Calhoun VD. Dynamic functional 
connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: 
Clinical. 2014; 5:298–308. [PubMed: 25161896] 

Du Y, Fryer SL, Fu Z, Lin D, Sui J, Chen J, Damaraju E, Mennigen E, Stuart B, Mathalon DH, 
Calhoun VD. Dynamic functional connectivity impairments in early schizophrenia and clinical 
high-risk for psychosis. NeuroImage. 2017a

Du Y, Fryer SL, Lin D, Sui J, Yu Q, Chen J, Stuart B, Calhoun VD, Mathalon DH. Identifying 
functional network changing patterns in individuals at clinical high-risk for psychosis and patients 
with early illness schizophrenia: A group ICA study. NeuroImage: Clinical. 2017b

Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject 
ICA methods for analysis of fMRI data. Hum Brain Mapp. 2011; 32(12):2075–2095. [PubMed: 
21162045] 

First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV-TR Axis I 
Disorders, Research Version, Patient Edition. New York: Biometrics Research, New York State 
Psychiatric Institute; 2002. 

Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015; 
16(3):159–172. [PubMed: 25697159] 

Fornito A, Zalesky A, Pantelis C, Bullmore ET. Schizophrenia, neuroimaging and connectomics. 
NeuroImage. 2012; 62(4):2296–2314. [PubMed: 22387165] 

Friston KJ, Kahan J, Biswal B, Razi A. A DCM for resting state fMRI. NeuroImage. 2014; 94:396. 
[PubMed: 24345387] 

Mennigen et al. Page 11

Schizophr Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fusar-Poli P, Borgwardt S, Bechdolf A, Addington J, Riecher-Rössler A, Schultze-Lutter F, … Yung 
A. The Psychosis High-Risk State: A Comprehensive State-of-the-Art Review. JAMA Psychiatry. 
2013; 70(1):107. [PubMed: 23165428] 

Himberg J, Hyvärinen A. Icasso: software for investigating the reliability of ICA estimates by 
clustering and visualization. Neural Networks for Signal Processing, 2003. NNSP’03. 2003 IEEE 
13th Workshop on; IEEE; 2003. 259–268. 

Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS. Resting-state networks show dynamic 
functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp. 2013; 
34(9):2154–2177. [PubMed: 22438275] 

Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among 
spatially independent resting-state components in schizophrenia. NeuroImage. 2008; 39(4):1666–
1681. [PubMed: 18082428] 

Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, … Ryan N. Schedule for Affective 
Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-
PL): Initial Reliability and Validity Data. J Am Acad Child Adolesc Psychiatr. 1997; 36(7):980–
988.

Kay SR, Flszbein A, Opfer LA. The positive and negative syndrome scale (PANSS) for schizophrenia. 
Schizophr Bull. 1987; 13(2):261. [PubMed: 3616518] 

McGlashan TH, Miller TJ, Woods SW, Hoffman RE, Davidson L. Instrument for the Assessment of 
Prodromal Symptoms and States. In: Miller T, Mednick SA, McGlashan TH, Libiger J, 
Johannessen JO, editorsEarly Intervention in Psychotic Disorders. Springer; Netherlands: 2001. 
135–149. 

McGlashan T, Walsh B, Woods S. The Psychosis-Risk Syndrome: Handbook for Diagnosis and 
Follow-Up. Oxford University Press; USA: 2010. 

Miller RL, Yaesoubi M, Turner JA, Mathalon DH, Preda A, Pearlson G, … Calhoun VD. Higher 
Dimensional Meta-State Analysis Reveals Reduced Resting fMRI Connectivity Dynamism in 
Schizophrenia Patients. PLOS ONE. 2016; 11(3):e0149849. [PubMed: 26981625] 

Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Ventura J, McFarlane W, … Woods SW. 
Prodromal assessment with the structured interview for prodromal syndromes and the scale of 
prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr 
Bull. 2003; 29(4):703. [PubMed: 14989408] 

Miller TJ, McGlashan TH, Rosen JL, Somjee L, Markovich PJ, Stein K, Woods SW. Prospective 
Diagnosis of the Initial Prodrome for Schizophrenia Based on the Structured Interview for 
Prodromal Syndromes: Preliminary Evidence of Interrater Reliability and Predictive Validity. 
JAMA Psychiatry. 2002; 159(5):863–865.

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, 
characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014; 84:320–341. 
[PubMed: 23994314] 

Rashid B, Damaraju E, Pearlson GD, Calhoun VD. Dynamic connectivity states estimated from resting 
fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. 
Front Hum Neurosci. 2014; 8

Roweis S. EM algorithms for PCA and SPCA. Advances in neural information processing systems. 
1998:626–632.

Sato T. Type I and Type II Error in Multiple Comparisons. J Psychol. 1996; 130:293–302.

Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, Moodie CA, Poldrack RA. 
The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task 
Performance. Neuron. 2016; 92:544–554. [PubMed: 27693256] 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, … Joliot M. 
Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical 
Parcellation of the MNI MRI Single-Subject Brain. NeuroImage. 2002; 15(1):273–289. [PubMed: 
11771995] 

van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: A review on resting-state fMRI 
functional connectivity. Eur Neuropsychopharmacol. 2010; 20(8):519–534. [PubMed: 20471808] 

Mennigen et al. Page 12

Schizophr Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vatansever D, Menon DK, Manktelow AE, Sahakian BJ, Stamatakis EA. Default Mode Dynamics for 
Global Functional Integration. J Neurosci. 2015; 35:15254–15262. [PubMed: 26586814] 

Yan C-G, Zang Y. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State 
fMRI. Front Syst Neurosci. 2010; 4

Mennigen et al. Page 13

Schizophr Res. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
General approach for group independent component analysis (GICA) and meta-state 

analysis using k-means clustering
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